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After an appropriate restatement of the Gelfand–Naimark–Segal construction for
topological *-algebras we prove that there exists an isomorphism among the set
Cycl�A� of weakly continuous strongly cyclic *-representations of a barreled dual-
separable *-algebra with unit A, the space HilbA�A*� of the Hilbert spaces that are
continuously embedded in A* and are * -invariant under the dual left regular action
of A, and the set of the corresponding reproducing kernels. We show that these
isomorphisms are cone morphisms and we prove many interesting results that fol-
low from this fact. We discuss how these results can be used to describe cyclic
representations on more general inner product spaces. © 2008 American Institute
of Physics. �DOI: 10.1063/1.2897032�

I. INTRODUCTION

Quantum statistical mechanics and quantum field theories are believed to be fully described in
purely algebraic terms, the so-called C*-algebraic approach �see Refs. 1–3 for textbooks and Refs.
4 and 5 for recent reviews on the subject� being the most appealing one. Despite the successful
aspects of the C*-algebraic approach, in order to find abstract counterparts for all observable
magnitudes in an algebraic approach it is mandatory to consider *-algebras with less restrictive
topologies than the ones derived from C*-norms.6–9 Moreover, if quantum gauge theories are also
assumed to be described in algebraic terms, the appropriate representation spaces would be more
general inner product spaces than Hilbert spaces10 and in that case there is no compelling reason
to believe that the *-algebra describing the observable content of the theory should be a normable
one.

One of the fundamentals of the C*-algebraic approach is the Gelfand–Naimark–Segal �GNS�
theorem. The so-called GNS construction is an important tool from both the physical and the
strictly mathematical points of view. It characterizes the building blocks of the representation
theory of C*-algebras, i.e., their cyclic representations, and defines in this way the bridge between
the formalism and the physical reality.

During the 1970s the systematic study of the representations of algebras of unbounded opera-
tors begun with Powers.11–13 In the seminal paper of Powers there is a version of the GNS theorem
but unfortunately it makes no mention on the topological properties of the represented *-algebra.
The lack of information on this topology gives to the construction generality but, on the other
hand, it restricts its scope. There were other statements of the GNS theorem for the past years14–17

assuming more or less restrictive conditions on the topological nature of the C*-algebra and there
are even versions of the GNS construction on non-necessarily definite positive inner product
spaces.18–20 The aim of this paper is to complement all these treatments.
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We will restate the GNS theorem for a wide class of topological *-algebras this restatement
allowing us to prove that there exists a continuous bijection between the space of GNS represen-
tations and a set of Hilbert spaces continuously embedded in the dual space of the *-algebra in
hand, an idea already suggested in Refs. 21 and 22. More explicitly, if A is a barreled dual-
separable *-algebra with unit we will prove that the set Cycl�A� of weakly continuous strongly
cyclic *-representations of A is isomorphic to the set HilbA�A*� of the Hilbert subspaces of A* that
are *-invariant under the left dual regular action of A on A*. In turn this bijection can be extended
to a multiple isomorphism among these spaces, the space of continuous positive functionals over
A and the corresponding space of invariant positive operators.

This characterization of the space of GNS representations will also allow us to transport the
cone structure already defined on HilbA�A*� to Cycl�A� and to prove some remarkable conse-
quences of this fact. Let us mention that this strictly convex cone structure on Cycl�A� can be used
for describing GNS representations over spaces with non-necessarily positive definite inner
product23 and it could be useful for studying deformation theory of GNS representations.24

The paper is organized as follows. In Sec. II, we review the main results of Schwartz’s theory
of Hilbert subspaces25 and their associated reproducing kernels, the most important one being the
natural bijection between the set of Hilbert subspaces of a given topological space and the set of
positive operators mapping its dual on it. In Sec. III we present those aspects of the representation
theory of topological algebras needed in the sequel. We have essentially followed26 but some
concepts were slightly modified. In Sec. IV we show that for a barreled dual-separable *-algebra
there is a one-to-one correspondence between its GNS representations and those Hilbert subspaces
of its dual that are invariant under the dual left regular action. We also show that this map is a cone
morphism for the cone structure already defined on this last space in Ref. 25. In Sec. V we derive
many consequences of the previous section. Finally, in Sec. VI we present our conclusions.

II. HILBERT SUBSPACES AND REPRODUCING KERNELS

In this Section we will review some definitions and we will introduce a few items of notation
concerning the theory of the Hilbert spaces that can be continuously embedded in a
quasicomplete1 locally convex Hausdorff separable vector space over the field of complex num-
bers C.25 We will denote any space fulfilling these requirements by E.

Let us first recall the definition of a Hilbert subspace of E. A linear subspace H�E is called
a Hilbert subspace of E whenever H is equipped with a definite positive inner product �·,·� turning
it into a Hilbert space and the inclusion of H into E is a continuous map, the norm � · �= �· , · �1/2

defining a topology on H finer than the one induced by E.
When dealing with the Hilbert subspaces of E it is convenient to consider the topological

antidual space of E instead of its dual E�, the reason being that every Hilbert space can be
canonically identified through the Riesz isomorphism with its antidual. The antidual space E* of
E is the conjugate of E�,2 i.e., it is defined as a topological vector space over C with an anti-
isomorphism mapping it onto E�. Under this map the canonical bilinear form on E��E becomes
a sesquilinear map on E*�E which we will denote as �x ��� for all x�E* and all ��E. Notice
that this bracket is antilinear in its first argument while it is linear in the second one. We will refer
to the elements of E* as functionals over E even when it should be remembered that they are not
elements of the dual. If E is a Hilbert space and, as we have already said, we identify the elements
of E with those of E*, the duality bracket reduces to the inner product on E.

As in the case for a strictly dual system, given a continuous map T :E→F we introduce its
adjoint as the linear map T*:F*→E* defined by the identity �T*x ���= �x �T�� for all x�F* and
all ��E. It is a continuous map provided that E* and F* are equipped with their weak or,
alternatively, their strong dual topologies. If both spaces are Hilbert spaces, the adjoint of a map
equals the usual Hilbert space adjoint, i.e., T*=T†. In the case that T is an antilinear operator, the

1A topological vector space E is said to be quasicomplete if every bounded closed subset of E is complete.27

2Notice that, up to isomorphisms, E* is unique.
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expression defining its adjoint must be replaced by �T*x ���= �x �T�� for all x�F* and all �

�E.
Let H be a Hilbert subspace of E and let J be the inclusion map of H into E. By the Riesz

representation theorem, given x�E*, there exists a unique element J*x�H such that �J*x ,��
= �x �J�� for all ��H. Let us denote by Hx=JJ*x the same element regarded as an element of E.
The operator H mapping E* into E is called the reproducing operator of H. It is a continuous
operator when E and E* are equipped with their weak topologies ��E* ,E� and ��E ,E*�, respec-
tively.

The reproducing operators of Hilbert subspaces have many remarkable properties. For in-
stance, they are all Hermitian, where by a Hermitian operator we mean a linear map T :E*→E
satisfying �x �Ty�= �y �Tx�, for any pair x ,y�E*. In fact, for all x ,y�E* we have �x �Hy�
= �J*x ,J*y�= �J*y ,J*x�= �y �Hx�. Moreover, setting x=y in the last expression it follows that H is
a positive operator, i.e., �x �Hx�= �J*x ,J*x��0 for all x�E*. In addition, it is possible to prove a
Cauchy–Schwartz-like identity, i.e., ��x �Hy��2� �x �Hx��y �Hy� for all x ,y�E*.

Let us denote by L�E� the set of all continuous operators mapping E* into E, these spaces
being endowed with their weak topologies, and let L+�E� be the proper strictly convex cone of
positive elements of L�E�. Reproducing operators belong to L+�E�.

The map that assigns to each element T�L�E� the form given by �x �Ty� with x ,y�E* is an
algebraic isomorphism mapping L�E� onto the space of separately weakly continuous sesquilinear
forms on E*, i.e., the kernels on E*. As it should be clear, when this map is restricted to L+�E� it
gives an isomorphism onto the positive kernels on E*. In this context, if the operator in L+�E� is
the reproducing operator of a Hilbert subspace H of E, the corresponding sesquilinear form on E*

is called the reproducing kernel of H in E.
Let Hilb�E� be the set of all Hilbert subspaces of E. As it was already proved by Schwartz,25

it is possible to endow Hilb�E� with a proper strictly convex cone structure. Let us briefly outline
the corresponding definitions.

Sum of Hilbert subspaces. Let H1 and H2 be two Hilbert subspaces of E, J1 and J2 being the
respective inclusion maps. Let H1�H2 be the Hilbert space product of H1 and H2. Finally, let
� :H1�H2→E be the continuous map given by ���1 ,�2�=J1�1+J2�2 and consider the quotient
space �H1�H2� /ker��� equipped with its canonical Hilbert space structure. The sum of H1 and
H2 is defined as the image space ��H1�H2��E endowed with the unique norm that makes the
canonical linear bijection between �H1�H2� /ker��� and ��H1�H2� an isometric isomorphism.
We will denote this space by H1+H2. The norm on H1+H2 is explicitly given by ���2

=inf	��1�1
2+ ��2�2

2
, where � · �1 �respectively, � · �2� is the norm on H1 �respectively H2� and the
infimum is taken over those pairs ��1 ,�2��H1�H2 such that �=���1 ,�2�. If ker���=0, then
H1�H2= 	0
 and H1+H2 is simply the Hilbert space direct sum of both spaces and in that case
we will write, as it is usual, H1 � H2.

The definition of the sum of two Hilbert subspaces does agree with a more general construc-
tion concerning the Hilbert subspaces of spaces that are images under continuous mappings. Let E
and F be two quasicomplete locally convex Hausdorff separable vector spaces over C and let
T :E→F be a continuous linear map. Consider a Hilbert subspace H of E and let us denote by J
the inclusion map of H into E. Since TJ :H→F is also a continuous map, its kernel is a closed
linear subspace of H. The image space of H under TJ, endowed with the Hilbert structure making
the restriction of TJ to ker�TJ�� a linear isometry, is a Hilbert subspace of F. We will simply
denote this space by T�H�.

Multiplication by non-negative real numbers in Hilb�E�: The multiplication law on Hilb�E� by
non-negative real numbers is defined as follows. Let H be a Hilbert subspace of E and let � be a
positive real number. The space �H is the Hilbert subspace of E with underlying linear space
equal to H and the norm on �H being defined as �1 /��� times the original norm on H. The action
of R	0 on Hilb�E� is extended to R�0 setting �H equal to 	0
 when �=0.

Order in Hilb�E�: Finally, a partial order, compatible with the structures given above, is
defined on Hilb�E� in the following way. If H1 and H2 are two Hilbert subspaces of E, we will
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write H1�H2 if H1�H2 and the inclusion of H1 into H2 is an operator of norm at most 1, i.e.,
H1 belongs to Hilb�H2�.

If H1 and H2 are two Hilbert subspaces of E it is easy to check that H1�H2= 	0
 if and only
if H1 and H2 are mutually excluding for the order relation in Hilb�E�, i.e., if for any Hilbert
subspace K of E such that K�H1 and K�H2 it follows that K= 	0
. We will say that a Hilbert
subspace H is indecomposable if it does not admit a nontrivial decomposition as a direct sum of
Hilbert subspaces, i.e., if for any decomposition H=H1+H2, H1 and H2 being two mutually
excluding Hilbert subspaces of E, it is possible to prove that H1= 	0
 or H2= 	0
. We will denote
by �0,H� the interval in Hilb�E� between 	0
 and H, i.e., �0,H�= 	H��Hilb�E� :0�H��H
. We
will say that H is an extremal element of Hilb�E� if the interval �0,H� equals 	�H�Hilb�E� :0
���1
. Notice that every extremal element of Hilb�E� is an indecomposable Hilbert subspace of
E but the converse of this statement is not generally true.

We are now in a position to recall the most important result of Schwartz Hilbert subspaces
theory. We will only sketch the proof and we refer to Ref. 25. for more details.

Theorem 2.1: The map that assigns to each Hilbert subspace of E its reproducing operator is
a bijection from Hilb�E� onto L+�E�.

Proof: Let H be a Hilbert subspace of E and let us denote by J the inclusion of H in E. We
will prove that H is determined by its reproducing operator H. First, notice that J being an
inclusion, it follows that J* is a dense range projection, i.e., J*E* is a dense linear subspace of H.
On the other hand, there is no element in H orthogonal to J*E* but the origin. Since the unit ball
B of H is weakly compact, JB is weakly closed in E, and this set being convex, it is closed for the
original topology on E. It follows that JB is the closure in E of the set 	Hx�E : �x �Hx�1/2�1
 and
this proves that H is fully determined by H. Moreover, given ��E, it belongs to H if and only
if sup	��x ���� / �x �Hx�1/2

 +�, where the supremum is taken over the elements x�E such that
�x �Hx�	0. The value of this expression equals ���.

Now, let us prove that given H�L+�E�, we can define a Hilbert subspace H of E in such a
way that its reproducing operator equals it. Let the quotient space E* /ker�H� be equipped with the
Hilbert space structure derived from the sesquilinear form induced by H. The canonical injection
of E* /ker�H� into E has a one-to-one extension to the completion. It is in order to prove this
statement that it is essential to assume that E is a quasicomplete separable vector space.25 The
image space under this mapping, endowed with the unique Hilbert space structure turning it into
an isometry, is a Hilbert subspace of E, its reproducing operator being H. �

Proposition 2.2: The bijection between L+�E� and Hilb�E� is a cone morphism for the usual
cone structure on L+�E� and the cone structure we have already introduced for Hilb�E�. More
explicitly, let H, H1, and H2 be three Hilbert subspaces of E, and let H, H1, and H2 be their
respective reproducing operators. Let � be a non-negative real number. Then,

1. H=H1+H2 if and only if H=H1+H2,
2. H=�H1 if and only if H=�H1, and
3. H1�H2 if and only if H1�H2.

Proof: See Ref. 25, Propositions 11–13, pp. 158–160. �

III. REPRESENTATIONS OF *-ALGEBRAS

The purpose of this section is to restate the classical GNS theorem for topological *-algebras.
In order to do that we will first recall some basic facts on representations and *-representations of
*-algebras on Hilbert spaces by �non-necessarily bounded� linear operators. We will mainly fol-

low Ref. 26 except for some minor changes in some definitions that will be justified in the rest of
the paper. We will always denote by A an associative algebra over C. When assuming A to be an
algebra with unit, we will denote the unit in A by e.

A representation � of A on a Hilbert space H is a map from A into a set of linear operators,
all of them defined on a common domain D, such that the following conditions are fulfilled:

1. D is a dense subspace of H,
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2. D is invariant under the action of A, i.e., ��x�D�D for all x�A, and
3. A acts linearly and multiplicatively on D, i.e., for all x ,y�A and all ��C we have

��x+y�=��x�+��y�, ���x�=���x�, and ��xy�=��x���y�.
If the algebra has a unit, it is also assumed that

4. ��e� equals the identity operator on D, i.e., ��e�=IdD.

Let �1 and �2 be two representations of A on the Hilbert spaces H1 and H2 and let D1 and D2

be their respective domains. We will say that �1 is an algebraic extension of �2 or that �2 is an
algebraic subrepresentation of �1, and we will write �2��1, if D2�D1, H2 is a linear subspace
of H1 and �1�x��D2 equals �2�x� for every x�A. If, in addition, the scalar product on H2 is the
restriction to H2 of the scalar product on H1, i.e., �2�x���1�x� for all x�A, we will say that �1

is an extension of �2 or that �2 is a subrepresentation of �1. In this last case we will write �2

��1.
Remark 3.1: In the next section we will find that the conditions imposed on H1 and H2 for �2

to be a subrepresentation of �1 can be conveniently modified. We will consider a less restrictive
notion of extension of a representation asking H2 to be a Hilbert subspace of H1, i.e., we will
assume that H2 is continuously embedded in H1, the corresponding inclusion being an operator of
norm at most 1. Let us notice that all the contents of the present section will remain being valid.

In order to define a concept analogous to the one of a closed operator but for a representation,
we will proceed as usual endowing the domain of a given representation with a topology induced
by the action of the algebra on it. Let � be a representation of A on a Hilbert space H and let D
be its domain. The graph topology on D is the locally convex topology generated by the family of
seminorms 	px= ���x� · �
, where �·� is the norm on H and x runs over A. The graph topology can
be characterized as the weakest locally convex topology on D which makes the embedding of D
into its completion relative to the topology determined by the norm � · �+ ���x� · � a continuous
mapping for every x�A. In this context, the graph topology can be viewed as a projective
topology in the sense of the theory of locally convex spaces.27 When A has a unit, the graph
topology is always finer than the one induced by H on D. Clearly, the graph topology is generated
by a single norm, the one on H, if and only if the image of each element of A through � can be
extended to a bounded operator on H.

If D is complete when equipped with the graph topology we will say that � is a closed
representation. A representation � will be called a closable representation of A if ��x� is a
closable operator on D for all x�A.

Given a closable representation of A on a Hilbert space H, let ��x� be the closure of the

operator ��x�, the domain of ��x� being the common domain D for all x�A. Let us denote by D̄x

the domain of ��x� for every x�A. Finally, let D̄ be the completion of D in �x�AD̄x relative to the

graph topology. D̄ is the domain of a closed representation �̄ of A in H defined as

�̄�x� = ��x� D̄ �1�

for all x�A. This representation is called the closure of �, and it is the minimal closed extension
of it. Of course11 � is closed if and only if � is closable and it equals �̄.

Let us now assume that A is a �-algebra. Like in the case of a single operator acting on a
Hilbert space, we will define an adjoint of a given representation.

Suppose that � is a representation of A on a Hilbert space H and let D be its domain. For all
x�A, let ��x�* be the adjoint of ��x� and let D

x
* be its domain. Further, let D*=�x�AD

x
* and let

us denote by H* the completion of D* in H. The adjoint representation of � is defined as the
representation �* of A on H* with domain D* given by

�*�x� = ��x*�* � D* �2�

for all x�A.
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The adjoint of a given representation is always a closed representation and it is the largest one

among those representations �̃ of A on H* with domain D̃ that satisfies �� , �̃�x*�
�= ���x�� ,
� for

all x�A, 
� D̃, and ��D.
We will say that a representation � is adjointable �respectively, biclosed� if H=H* �respec-

tively, if it equals its biadjoint representation, i.e., if ���= ��*�*�.
All concepts above suggest the following definition originally introduced by Powers in Ref.

11. Let � be a representation of a *-algebra A on a Hilbert space H and let D be its dense domain.
We will say that � is a Hermitian representation, or simply a *-representation of A, if ���*; in
other words, if for all 
 ,��D and all x�A, � satisfies

��,��x*�
� = ���x��,
� . �3�

Notice that every *-representation is necessarily adjointable.
If A is a Banach *-algebra then a *-representation � of A on a Hilbert space H is closed if

and only if D equals H. On the other hand, if � is a *-representation of a *-algebra A on a Hilbert
space H and D=H, it follows from the closed graph theorem that � is a bounded representation,
i.e., � maps A into bounded operators on H. These facts are clear evidences that the previous
definition is a consistent generalization of the usual concept of *-representation by bounded
operators.

The adjoint representation of a given *-representation � may fail to be a *-representation as
it is the case of the adjoint of a single Hermitian operator acting on a Hilbert space. However, as
we have already said it is actually a closed representation extending �. Moreover, every
*-representation extending � is necessarily a restriction of �*.

We will say that a *-representation � of a *-algebra A is a maximal �respectively, self-
adjoint, respectively, essentially self-adjoint� *-representation if every *-representation extending
� equals it �respectively, if �=�*, respectively, if its closure is a self-adjoint representation�.

Some general properties of *-representations are collected in the following proposition. The
proof can be found in Ref. 26.

Proposition 3.2: Let � be a *-representation of A in a Hilbert space H with domain D.

1. �̄ and ��� are both *-representations of A, and ���̄������*. Moreover, one has D̄

=�x�AD̄x.
2. � is self-adjoint if and only if D*�D.
3. �* is self-adjoint if and only if it is a *-representation.
4. If � is self-adjoint then any *-representation extending � in the same Hilbert space equals

it.

Among those representations that usually appear in quantum statistical mechanics and quan-
tum field theories, cyclic ones play a particularly relevant role. When dealing with algebras of
non-necessarily bounded operators two definitions of cyclicity are available.

Let � be a representation of an algebra A on a Hilbert space H and let D be its domain. A
vector ��D is said to be a cyclic vector if the set ��A��= 	��x�� :x�A
 is dense in H. In that case
we will say that the representation is a cyclic representation. If ��A�� is dense in D when endowed
with the graph topology, then � is said to be a strongly cyclic vector of �. A representation having
a strongly cyclic vector will be called a strongly cyclic representation.

Let � be a *-representation of a *-algebra A on a Hilbert space H and let ��D. Let �̂ be the
restriction of � to ��A��. It follows that � is strongly cyclic if and only if the closure of �̂ is an
extension of �.

From now on, we will consider the case in which A is a topological *-algebra.
Let � be a functional on A.3 If for all x�A such a functional satisfies ��x*x��0 then it will

be called a positive functional. Continuous positive functionals over A conform a proper strictly

3Recall that we are calling functionals those elements in A*.
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convex weakly closed cone in A* that we will denote A
+
*. While the sum and the multiplication law

by non-negative real numbers are the ones induced by restricting the ordinary sum and scalar
multiplication on A*, the order on A

+
* is defined as follows: given �1 ,�2�A

+
*, one writes �1��2 if

and only if �1�x*x���2�x*x� for all x�A.
Let us recall that A being a unital *-algebra and � being a positive functional on A, for all

x ,y�A, it follows15 that ��x*y�=��y*x�*. In particular, � is Hermitian, i.e., ��x*�=��x�* for all
x�A. Moreover, for all x ,y�A it follows that ���x*y��2���x*x���y*y� and � is Hilbert bounded,
i.e., there exists a constant B satisfying, for all x�A, ���x��2�B��x*x�. The Hilbert bound ���
�sup	���x��2 :x�A ,��x*x��1
 equals ��e�, where e is the unit in A.

We will say that a continuous positive functional on A is an extremal element of A
+
* if it is

indecomposable as a sum of continuous positive functionals that are not multiples of �. Equiva-
lently, a continuous positive functional on A is extremal in A

+
* if and only if the interval �0,��

= 	���A
+
*:0�����
 equals 	�� :0���1
.

Finally, we can state the GNS theorem for topological *-algebras. Its proof mainly follows the
steps of the original proof for C*-algebras �see, for example, Ref. 1�. More details for the case of
general *-algebras can be found in Refs. 11, 15, and 26. Notice that they all discuss pre-
*-representations and only consider *-representations for the normable case. This fact distin-

guishes our version of the theorem from theirs.
Theorem 3.3: For each continuous positive functional � on a topological *-algebra A with

unit there is a closed weakly continuous strongly cyclic *-repre sentation � of A on a Hilbert
space H with domain D such that

��x� = ���x��,�� �4�

for all x�A, ��D being a strongly cyclic vector of �. The representation � is determined by � up
to unitary equivalence. Furthermore, if � is an extremal functional then the corresponding repre-
sentation is topologically irreducible.

Proof: Let � be a continuous positive functional on A and consider the quotient space A�

=A /N�, where N�= 	x�A :��y*x�=0 for all y�A
 is the so-called Gelfand ideal of �. Let us
denote by �� the canonical projection of A onto A� and let �·,·�: A��A�→C be the form on A�

defined by ���x ,��y�=��y*x� for all x ,y�A. It is straightforward to check that this form is a
positive nondegenerate sesquilinear form on A� endowing it with a pre-Hilbert structure. We will
denote by H the completion of A� with respect to the norm � · �= �· , · �1/2.

Since N� is a left ideal of A, the map �0 assigning to every element x�A the �non-necessarily
bounded� operator �0�x� on H with domain A� given by �0�x���y=���xy� for all y�A defines a
representation of A. It is actually a *-representation of A �see Ref. 21 for the details�. The closure
� of �0 is the closed *-representation of A whose existence is claimed in the theorem. Recall that
the domain D of � is the completion of A� with respect to the graph topology. The weak continuity
of � is a direct consequence of the continuity of �. On the other hand, setting �=��e, it follows
that ��x��=�0�x���e=��x and, therefore, ��A�� equals A�, which is a dense subspace of D,
showing that � is a strongly cyclic representation of A and that � is a strongly cyclic vector of �.
Finally, for all x�A we have ���x�� ,��= ��0�x���e ,��e�= ���x ,��e�=��x�, and the first state-
ment of the theorem is proved.

In order to prove that � is determined by � up to unitary equivalence it is necessary to show
that there exists a unitary operator intertwining any two *-representations satisfying �4�. Explic-
itly, let �1 and �2 be two closed weakly continuous strongly cyclic *-representations of A, let H1

�respectively, H2� be the Hilbert space on which �1 �respectively, �2� acts, let D1 �respectively,
D2� its domain, and let �1�D1 �respectively, �2�D2� be a strongly cyclic vector of �1 �respec-
tively, �2� such that ��1�x��1 ,�1�1= ��2�x��2 ,�2�2, where �· , · �1 �respectively, �· , · �2� is the inner
product on H1 �respectively, H2�. We need to show that there exists a unitary operator U mapping
H1 onto H2 such that, for all x�A, U�1�x�=�2�x�U. In Ref. 11 it was proved that such an
operator is obtained by extending the operator U0 :D1→D2 given by U0�1�x��1=�2�x��2 for all
x�A to an operator from H1 into H2.
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The proof of the last statement of the theorem concerning extremal functionals on A and
topologically irreducible representations of A can be found in Ref. 26. �

Given a continuous positive functional � on A, the representation built as in the theorem is
called the GNS representation of A associated with �. The vector � in �4� is sometimes referred as
a normalizing vector of �.

GNS representations are usually constructed from states instead of positive functionals. States
over A are defined as those continuous functionals that are positive and, in addition, satisfy
��e�=1. The set of states is a weakly closed convex section of A

+
*. Pure states are defined in

analogy with extremal positive functionals as those that are indecomposable as convex combina-
tions of other states. In that context it is possible to prove a stronger statement than the last one in
Theorem 3.4. In fact, if GNS representations are built upon states, the cyclic vector � is necessarily
a normal vector, i.e., �� ,��=1, and the space of pure states is in one-to-one correspondence with
the collection of unitary equivalence classes of topologically irreducible GNS representations of A.

At this point it will be convenient to introduce the space Cycl�A� of those pairs of the form
�� ,��, where � is a closed weakly continuous strongly cyclic *-representation of A and � is a
particular strongly cyclic vector of �. We will endow this space with an equivalence relation as
follows: given ��1 ,�1� and ��2 ,�2� in Cycl�A� we will say that they are unitarily equivalent, and
we will denote it by ��1 ,�1�
��2 ,�2�, if there exists a unitary operator U intertwining �1 and �2,
i.e., �1�x�U=U�2�x� for all x�A, and, in addition, we have �1=U�2. Notice that this notion of
unitary equivalence for cyclic *-representations is stronger than the usual one where no require-
ments on the corresponding cyclic vectors are imposed.

The motivations for introducing the space Cycl�A� and their unitary equivalence classes arise
from both physical and mathematical interests. From a strictly physical point of view, there are
cases �for example, when a symmetry is spontaneously broken� where the usual notion of unitary
equivalence of *-representations is not sufficient to ensure a complete identification of two physi-
cal situations. In a more mathematical context, the space Cycl�A� and their unitary equivalence
classes are relevant in our discussion since the quotient Cycl�A� /
 is precisely the space on which
the GNS mapping becomes a bijection as it is proved in the following proposition.

Proposition 3.4: The map assigning to each continuous positive functional � on a topological
*-algebra with unit A the GNS representation of A associated with � defines, up to unitary

equivalence, a one-to-one mapping from A
+
* onto Cycl�A�.

Proof: Theorem 3.4 asserts that the GNS mapping actually maps, up to unitary equivalence,
A

+
* into Cycl�A�. Therefore, we only need to check that this map is, in fact, a bijection. Let �1 and

�2 be two continuous positive functionals on A and let us assume that the corresponding GNS
representations �1 and �2 are unitarily equivalent as elements of Cycl�A�. Let us denote by H1

and H2 the Hilbert spaces on which �1 and �2 act, and let �1 and �2 be their respective strongly
cyclic vectors. It follows that there exists a unitary operator U mapping H1 onto H2 satisfying
U�1�x�=�2�x�U for all x�A and U�1=�2. But then, for all x�A, ��1�x��1 ,�1�1

= �U�1�x��1 ,U�1�2= ��2�x�U�1 ,U�1�2= �i2�x��2 ,�2�2, i.e., �1=�2. On the other hand, given an ar-
bitrary element � in Cycl�A� with strongly cyclic vector �, the GNS representation of A associated
with the positive functional �= ���·�� ,�� is unitarily equivalent to �, the proof being identical to
the one of the unicity statement in Theorem 2. �

The previous proposition shows that the space of unitary equivalence classes of Cycl�A� can
be suitably endowed with a proper strictly convex cone structure, the one inherited from A

+
*

through the GNS map. In the next section we will explicitly define this structure after relating the
GNS representations of a *-algebra with some of the Hilbert subspaces embedded in its antidual
space.

Throughout the rest of the paper we will identify the elements in Cycl�A� with their respective
canonical GNS representatives and we will omit any explicit reference to the cyclic vector asso-
ciated with each representation in Cycl�A�. Therefore, instead of saying that �� ,�� belongs to the
unitary equivalence class in Cycl�A� corresponding to the GNS representation associated with the
functional �= ���·�� ,�� we will simply say that � is an element of Cycl�A�.
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IV. GNS REPRESENTATIONS AND INVARIANT HILBERT SUBSPACES

In the previous sections we have recalled the theory of the Hilbert subspaces of a quasicom-
plete locally convex Hausdorff separable vector space E and we have discussed the GNS con-
struction for a topological unital *-algebra A. In this section, and following an idea already
suggested in Refs. 21 and 22, we will establish a connection between both approaches showing
that there exists a bijection between Cycl�A� and a particular subcone of Hilb�A*�, this statement
being valid for a wide class of topological *-algebras. This characterization of Cycl�A� will
further allow us to explicitly endow it with a cone structure in such a way that this bijection
actually becomes a cone morphism.

Let us begin with some general remarks on the continuous representations of a topological
*-algebra over a vector space and their restrictions to its Hilbert subspaces. Let � be a strongly

continuous representation of A on E, i.e., a separately continuous map �x ,��→��x�� from A
�E into E such that ��xy��=��x���y�� for all x ,y�A and all ��E. Let us denote by �* the
dual representation of �, i.e., the representation of A on E* defined by ��*�x�y ���= �y ���x*���
for all x�A, all y�E*, and all ��E. The representation �* should not be confused with the
Hilbert adjoint representation we have defined in Sec. III. As it is the case for �, �* is also a
strongly continuous representation of A whenever E* is equipped with the weak topology, as we
will assume from now on.

Given a Hilbert subspace H of E with reproducing operator H, we will say that H is invariant
under � or �-invariant if ��x�HE*�HE* for all x�A. If ��x�H=H�*�x� for all x�A we will
say that H is *-invariant under � or �- *-invariant. Obviously, any �- *-invariant Hilbert sub-
space of E is invariant under �.

The motivation for introducing invariant and *-invariant Hilbert subspaces is the following. If
H is a �-invariant Hilbert subspace of E, the restriction of � to HE* defines a representation of A
on H in the sense of Powers.11 This fact should be clear since H can be thought as the completion
of HE* with respect to the norm given by �Hx�= �x �Hx�1/2 for all x�E*, i.e., HE* is an invariant
dense subspace of H.

When H is a �- *-invariant Hilbert subspace of E, � defines by restriction to HE* a
*-representation on H. In fact, for all x�A one has ��x*� equals ��x�* on HE* �see Ref. 21 for

the details�. In this case, not only the restriction of � to HE* defines a *-representation but also
its closure, which exists since every *-representation is closable. The domain D of this represen-
tation, that we will denote also by � as for the representation acting on E, is the completion of
HE* in the graph topology.

Let us assume that A is a barreled4 dual-separable *-algebra with unit.5 Since the weak dual
of any barreled space is necessarily a quasicomplete space, Schwartz’s theory of Hilbert subspaces
applies to A* and we can set E=A* in the previous discussion. Under this identification E* is
isomorphic to A.

Further, let us consider the particular case in which � is the dual representation of the left
regular action of A on itself, i.e., the representation of A on A* defined through �y ���x���
= �x*y ��� for all x ,y�A and all ��A*. We will denote by HilbA�A*� the subcone of Hilb�A�
composed by those Hilbert subspaces of A* that are *-invariant under the �.

Theorem 4.1: For every �- *-invariant Hilbert subspace H of A* there exists a closed weakly
continuous strongly cyclic *-representation of A acting on it, this representation being identifiable
with the GNS representation of A associated with the functional �=He, where, as before, H is the
reproducing operator of H and e is the identity of A. The correspondence defined in this way is a
bijection from HilbA�A*� into Cycl�A�.

Proof: Let us first check that in this situation the restriction of � to HA defines a representa-

4Recall that a barreled algebra is a topological algebra in which every barrel, i.e., every absorbing, convex, balanced, and
closed subset, is a zero neighborhood.27

5Notice that these conditions are fulfilled in the particular case in which A is separable by itself and 	0
 is the intersection
of a numerable set of environments.
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tion whose closure is a weakly continuous strongly cyclic *-representation of A on H. The weak
continuity of � 6 follows immediately, via polarizability, from the continuity of H, the strong
continuity of � on A*, and the quasicompleteness of A*. The strong cyclicity of � is a conse-
quence of the existence of a unit in A. Setting �=He it follows that ��A�� equals HA, and since
this space is a subspace of D that is dense for the graph topology, it follows that � is a strongly
cyclic vector of �. On the other hand, we have ��x�= �x �He�= ���x�He ,He� for all x�A.7 By
virtue of Theorem 3.4 it follows that � can be identified with the GNS representation of A
associated with �=He.

We need to prove that the mapping we have defined is a one-to-one correspondence between
HilbA�A*� and Cycl�A�. First, consider two different �- *-invariant Hilbert subspaces of A*. Let us
denote them by H1 and H2. Let H1 and H2 be their respective reproducing operators and let �1

and �2 be the corresponding representations of A. Since H1 does not equal H2, it follows that
�1=H1e is a functional on A different from �2=H2e. If it were not the case, a contradiction is
obtained from the cyclicity of both functionals and the fact that �1 and �2 are restrictions of the
same representation over A*. Finally, since �1 and �2 are the GNS representations of A associated
with �1 and �2, respectively, from the unicity statement in Theorem 2 it follows that �1 and �2

cannot be simultaneously identified with the same GNS representation.
Let us finally check that given a closed weakly continuous strongly cyclic *-representation �̄

of A on a Hilbert space H̄ with domain D̄ and cyclic vector �̄ it is possible to construct a
�- *-invariant Hilbert subspace of A* in such a way that the corresponding representation is

equivalent to �̄. Consider the correspondence x→ �̄�x��̄. Let us denote it by T. Since �̄ is weakly

continuous, T is a continuous operator mapping A into H̄. On the other hand, �̄ is strongly cyclic
and then T is a dense range operator. It follows that T*, the adjoint of T, is an injective continuous

map from H̄ into A*. Let H be the image of H̄ through T* with the transported Hilbert space
structure. The operator H=T*T from A into A* is a positive operator reproducing H in A*. It is
easy to see that H is actually a �- *-invariant Hilbert subspace of A*. In fact, for all x ,y�A we
have �y ���x�He�= �x*y �He�= �T�x*y� ,Te�= ��̄�x*�Ty ,Te�. However, since by hypothesis �̄ is a
*-representation, we have ��̄�x*�Ty ,Te�= �Ty , �̄�x�Te�= �Ty ,Tx�= �y �Hx�, i.e., ��x�He=Hx, and

then, ��x�Hy=H�xy� for all x ,y�A. Finally, ��̄�x��̄ , �̄�= �Tx ,Te�= �x �T*Te�= �x �He� and, then, �
can be fully identified with �̄. �

We have found that, for a barreled dual-separable *-algebra with unit A, there exists a
multiple bijection among the following spaces:

1. the set Cycl�A� of unitary equivalence classes of GNS representations of A,
2. the space A

+
* of positive continuous functionals on A,

3. the cone of HilbA�A*� of Hilbert subspaces of A* that are *-invariant under the dual left
regular action � of A,

4. the subfamily of L+�A*� of continuous �- *-invariant positive operators mapping A* into A,
and

5. the space of �- *-invariant positive kernels on A.

The natural cone structures on the last four listed spaces are compatible with the bijection
connecting them. It is then customary to transport such a structure on Cycl�A�. We introduce the
following definitions.

Addition law in Cycl�A�. As we will see in the next paragraphs, the multiplication law by
non-negative real numbers and the order can be easily defined on Cycl�A� without any reference
to the bijection connecting this space with any other of those listed above. It is not the case for the
sum. In fact, in order to properly define the sum of GNS representations it is mandatory to embed

6Recall that we are using the same notation for denoting both the representation acting on A* and the closed one on H
defined by restriction.
7In what follows we omit any reference to the inclusion J of H into A*. Therefore, instead of writing �J*x ,J*y� for all
x ,y�A, we will write �Hx ,Hy�.
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the corresponding representation spaces in a common domain. Let �1 and �2 be two elements of
Cycl�A� and let H1 and H2 be the two Hilbert subspaces of A* on which they act. Recalling that
the domain of �1 �respectively, �2� is the completion in the graph topology of H1A �respectively,
H2A� where H1 �respectively, H2� is the reproducing operator of H1 �respectively, H2�, let us
consider the representation on H1+H2 with domain �H1+H2�A given by �H1+H2�y→�1�x�H1y
+�2�x�H2y for all x ,y�A. This is actually a well defined representation on H1+H2 since for any
other y��A such that H1y�+H2y�=H1y+H2y it follows that �z ��1�x�H1y�+�2�x�H2y��
= �x*z �H1y�+H2y��= �x*z �H1y+H2y�= �z ��1�x�H1y+�2�x�H2y� for all z�A and then �1�x�H1y�
+�2�x�H2y� equals �1�x�H1y+�2�x�H2y. Moreover, since �1 and �2 are both weakly continuous
strongly cyclic *-representations of A, it is also the case for it. We will define the sum of �1 and
�2 as the closure of this representation and we will denote it by �1+�2. Of course, �1+�2 can be
identified with the GNS representation of A associated with the positive functional H1e+H2e.

Multiplication by non-negative real numbers in Cycl�A�. Given a closed weakly continuous
strongly cyclic *-representation � of A acting on the �- *-invariant Hilbert subspace H of A* we
will define the representation �� for every �	0 as the one that acts on �H and algebraically
coincides with �. If � is the strongly cyclic vector associated with �, we will set �� to be the
corresponding cyclic vector of ��. The action of R	0 on Cycl�A� is extended to R�0 by identi-
fying the representation 0� with the trivial representation of A. It is straightforward to check that
�� is a weakly continuous strongly cyclic *-representation identifiable with the GNS represen-
tation of A associated with �He, where, as before, H is the reproducing operator of H.

Notice that even when we are not identifying � and �� as GNS representations of A, �� is
unitarily equivalent to � in the usual sense for every �	0. Consequently, extremal elements in
Cycl�A�, i.e., those GNS representations of A obtained as in Theorem 4.1 from extremal
�- *-invariant Hilbert subspaces of A*, are necessarily associated with topologically irreducible
representations.

Order in Cycl�A�. A partial order on Cycl�A� compatible with the operations we have just
defined on this space has been already mentioned in the previous section. We will write �2��1,
�1 and �2 being two elements in Cycl�A�, if and only if �1 extends �2 in the sense of Remark 3.1.

Finally we can state the following proposition. The proof straightforwardly follows from the
previous definitions.

Proposition 4.2: The canonical bijection between Cycl�A� and HilbA�A*� is an isomorphism
for the cone structures we have defined. Explicitly, let �, �1, and �2 be three weakly continuous
strongly cyclic *-repre sentations of A and let H, H1, and H2 be three elements of HilbA�A*�. Let
� be a non-negative real number. It follows that

1. �=�1+�2 if and only if H=H1+H2,
2. � equals ��1 if and only if H=�H1, and
3. �1��2 if and only if H1�H2.

V. CONSEQUENCES OF THE ISOMORPHISM BETWEEN THE SPACES Cycl„A…

AND HilbA„A*…

As we have already mentioned, the cone structure defined on Cycl�A� have many interesting
consequences. In this section we will derive some of them. As before, A will denote a barreled
dual-separable *-algebra with unit. Hilbert subspaces of A* that are *-invariant under the left dual
regular action of A on A* will be simply referred as *-invariant Hilbert subspaces of A*.

Proposition 5.1: Let � and �1 be two elements in Cycl�A�. �1 belongs to �0,�� if and only if
there exists a representation �2 in Cycl�A� such that �=�1+�2. In that case, �2 is unique. We will
denote it by �2=�−�1.

Proof: Let H1 and H be the *-invariant Hilbert subspaces of A* associated with �1 and �,
respectively. If there exists a representation �2�Cycl�A� such that �=�1+�2 it follows that H
=H1+H2, H2 being the *-invariant Hilbert subspace of A* associated with �2 and then, H1

�H, i.e., �1��. Conversely, if �1� �0,��, H1�H and this inequality extends to the reproduc-
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ing operators, i.e., H1�H, where H �respectively, H1� is the reproducing operator of H �respec-
tively, H1�. It follows that H−H1 is a positive operator reproducing a *-invariant Hilbert subspace
of A*, say, H2, whose associated representation �2 in Cycl�A� satisfies �=�1+�2. The uniqueness
of �2 follows from the uniqueness of the operator H−H1. �

Proposition 5.2: Let �1 ,�2�Cycl�A�. Then, �1 is an algebraic subrepresentation of �2 if and
only if there exists �	0 such that �1� �0,��2�.

Proof: If there exists �	0 such that ��2 extends �1 it straightforwardly follows that ��2

algebraically extends �1 and the same is true for �2 since it is unitarily equivalent, in the ordinary
sense, to ��2. Let us assume that �1 is an algebraic subrepresentation of �2. Let H1 and H2 be the
*-invariant Hilbert subspaces of A* associated with �1 and �2, respectively. Since the inclusion of
H1 into A* is continuous, its graph is closed in H1�A* and it is also the case for its graph in
H1�H2. It follows from the closed graph theorem that the inclusion of H1 into H2 is continuous,
and �� denoting its norm, we finally obtain that H1��H2. Therefore, �1 is in �0,��2� as we
wanted to prove. �

Proposition 5.3: Let �1 and �2 be two representations in Cycl�A�. It follows that �1 and �2

are mutually excluding, i.e., �1+�2 is unitarily equivalent to �1 � �2 if and only if ���1, �
��2 with ��Cycl�A� implies �=0.

Proof: Let H1 and H2 be the *-invariant Hilbert subspaces of A* associated with �1 and �2,
respectively. If �1+�2 is unitarily equivalent to �1 � �2 it follows that H1�H2= 	0
 and then, if
there exists a *-invariant Hilbert subspace H of A* such that H�H1 and H�H2, we have H
= 	0
, i.e., for any ��Cycl�A� such that ���1 and ���2 it follows that � is the trivial repre-
sentation. Conversely, assume that for any ��Cycl�A� satisfying ���1 and ���2 one has �
=0 and let us define on H1�H2 the form �� ,
�= �� ,
�H1

+ �� ,
�H2
. This form is a positive definite

inner product making H1�H2 into a Hilbert subspace of A*.25 Since it clearly is a *-invariant
form, he have H1�H2 that belongs to HilbA�A*�. However, H1�H2�H1 and H1�H2�H2,
and then H1�H2= 	0
. Consequently, �1+�2 is unitarily equivalent to �1 � �2, as we wanted to
prove. �

Proposition 5.4: Let �1 and � be two elements of Cycl�A�. Then, �1 is a subrepresentation of
� in the ordinary sense if and only if �−�1�Cycl�A� and �1 and �−�1 are mutually excluding.
In that case, �−�1 is also a subrepresentation of � in the ordinary sense and � is unitarily
equivalent to �1 � ��−�1�.

Proof: Let us first suppose that �1 is unitarily equivalent to a subrepresentation of � in the
ordinary sense. It follows that the *-invariant Hilbert subspace H1 of A* associated with �1 is a
subspace of the one associated with � with the induced Hilbert space structure. Let us consider the
space H1

� orthogonal to H1 in H. It is also a *-invariant Hilbert subspace of A* and it equals
H−H1. Accordingly, we have �−�1 that belongs to Cycl�A� and that it is unitarily equivalent to
a subrepresentation of � in the ordinary sense, since the Hilbert space structure of H1

� is the one
induced by H. On the other hand, since H1�H1

�= 	0
, it follows from the previous proposition
that � is unitarily equivalent to �1 � ��−�1�.

Reciprocally, let us assume that �−�1 belongs to Cycl�A� and that �1 and �−�1 are mutually
excluding. If we denote by H2 the *-invariant Hilbert subspace of A* associated with �−�1, then
H1�H2= 	0
, H=H1+H2, and H1�H with the induced Hilbert space structure, i.e., �1 is a
subrepresentation of � in the ordinary sense as we wanted to prove. �

Proposition 5.5: Let ��i�i�I be a decreasing filtering system of representations in Cycl�A�. It
follows that �=inf	�i : i� I
 exists in Cycl�A�.

Proof: I is a right filtering set of indices such that, for i, j� I, i� j, we have �i that is a
subrepresentation of � j. Let �Hi�i�I be the *-invariant Hilbert subspaces of A* associated with
��i�i�I, respectively, and let �Hi�i�I be their corresponding reproducing operators. The space H
=inf	Hi : i� I
 exists in Hilb�A*� and its reproducing operator is H=inf	Hi : i� I
 which equals
limi Hi in L�A*� when this space is endowed with the weak uniform convergence topology.25 Since
for every i� I, Hi is *-invariant under the dual left regular action of A, it follows that H
�HilbA�A*�. The corresponding GNS representation is the one whose existence is claimed in the
proposition. Further, notice that the Hilbert space on which � acts is the subspace of �i�IHi
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composed by those ��A* such that ���ªsup	���i : i� I
=limi���i
 +�. �

Proposition 5.6: Let ��i�i�I be an increasing filtering system of elements of Cycl�A� and let
��i�i�I be their corresponding normalizing vectors. Then, ��i�i�I is majorized in Cycl�A� if and
only if

sup	��i�x��i�i
2:i � I
 
 + � �5�

for all x�A.
Proof: Here, the set I is as in the previous proposition but now for i, j� I, i� j, we have �i

that is an extension of � j. Let �Hi�i�I be the *-invariant Hilbert subspaces of A* associated with
��i�i�I, respectively, �Hi�i�I being their reproducing operators. Notice that ��i�x��i�i

2= �x ,Hix� for
all i� I and all x�A. It follows that condition �5� is necessary and sufficient for �Hi�i�I to be
majorized in HilbA�A*�. In this case, H=sup	Hi : i� I
 has H=sup	Hi : i� I
=limi Hi as a repro-
ducing operator where, as before, the limit is taken in L�A*� with this space endowed with the
weak uniform convergence topology. Since H is obviously *-invariant under the dual left regular
action of A, the proposition is proved. Notice, in addition, that H can be characterized as the
q-completion in A* of the space �i�IHi equipped with the pre-Hilbert structure derived from the
norm ���ª inf	���i : i� I
=limi���i. �

Proposition 5.7: Let ��i�i�I be a collection of elements of Cycl�A�. For every i� I, let us
denote by Hi the *-invariant Hilbert subspace of A* associated with �i, respectively. Consider the

(abstract) Hilbert sum �̂ i�IHi, the elements of this space being those sequences ��i�i�I with �i

�Hi such that

���i�i�I�2 = �
i�I

��i�i
2 
 + � , �6�

where � · �i denotes the norm in Hi. Finally, let � i�IHi be the dense linear subspace of �̂ i�IHi

composed by those sequences ��i�i�I in which all the �i are null but a finite number of them and

the pre-Hilbert structure inherited from �̂ i�IHi. It follows that the sums �i�I��i, I� denoting the
finite subsets of I, are majorized in Cycl�A� if and only if the application � mapping � i�IHi into
A* defined by

��� i�I�i� = �
i�I

�i �7�

is continuous.
Proof: Let us assume that the finite sums �i�I��i, I� being any finite subsets of I, are ma-

jorized in Cycl�A�. From Proposition 5.6 we have �i�I�x �Hix�
 +� for all x�A, where we are
denoting by Hi the reproducing operator of Hi for all i� I, respectively. In order to see that the

mapping given by Eq. �7� is continuous we must prove that the image of the unit ball B in �̂ i�IHi

under � is weakly bounded. Now, let x be an element of A and let � be in ��B�. � equals �i�I��i

for a finite subset I� in I and �i�I���i�i
2
 +�. It follows that ��x ����2��i�I���x ��i��2

� ��i�I���i�i
2���i�I��x �Hix����i�I��x �Hix�, which proves that ��B� is weakly bounded. Recipro-

cally, let us assume that � is a continuous mapping. Let us consider the extension of it to a

continuous operator mapping �̂ i�IHi into A*. If we denote by �̂ such extension and ��i�i�I is an

element of �̂ i�IHi, it follows that it equals the limit following the filtering system of finite subsets
I� of I of those sequences ��i��i�I whose components satisfy �i�=�i for all i� I� and �i�=0

otherwise. Consequently, �̂���i�i�I� is the limit taken in A* of �i�I��i. Further, we have the

following factorization for �̂: �̂ i�IHi→ ��̂ i�IHi� /ker��̂�→A*. The first mapping is the canonical

projection of �̂ i�IHi onto ��̂ i�IHi� /ker��̂�, while the second one, that we will denote by �̃, is an

isomorphism from ��̂ i�IHi� /ker��̂� onto the image of �̂ i�IHi under �̂. Assuming

��̂ i�IHi� /ker��̂� endowed with the Hilbert structure derived from the quotient norm, let us con-

sider on ���̂ i�IHi� this structure transported by �̃, i.e., the metric structure making �̃ an iso-
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metric isomorphism. Explicitly, the norm on ���̂ i�IHi� is given by ���I
2=inf	�i�I��i�i

2 :�i�I�i

=�
. If I� is a finite subset of I it follows that any element � in �i�I�Hi pick ups the form �i�I��i

with �i�Hi for all i� I�, and then ���I�
2 =inf	�i�I���i�i

2 :�i�I��i=�
. This shows that �i�I�Hi is

a Hilbert subspace of ���̂ i�IHi�. Further, since ���̂ i�IHi� is clearly a *-invariant Hilbert sub-
space of A*, it follows that the finite sums of the form �i�I��i are majorized by the element in

Cycl�A*� associated with ���̂ i�IHi�. �

If a given sequence ��i�i�I of elements of Cycl�A� satisfies the conditions of the previous
proposition, it is called a summable sequence in Cycl�A�. The element in Cycl�A*� associated with

���̂ i�IHi� with the Hilbert structure transported by �̃ is the sum of ��i�i�I and we will denote it
by �i�I�i.

Corollary 5.8: Let ��i�i�I be a collection of elements of Cycl�A�. Then, there exists a repre-
sentation ��Cycl�A� such that �= � i�I�i if and only if

1. �i�I�i is well defined and
3. if �i�Hi such that �i�I��i�i

2
 +� then �i�I�i�x��i=0 for all x�A implies �i=0 for all
i� I.

Proof: For the existence of such a representation it is necessary and sufficient that ��i�i�I is a

summable sequence in Cycl�A�, i.e., �i�I�i is well defined, and that the map �̂ in the previous
proposition is an isomorphism, i.e., the second condition. �

The definition of infinite sums of representations in Cycl�A� has a natural generalization to
integrals when A by itself is weakly separable. We will briefly comment on this issue.

Let � be a locally compact measure space and let us denote by � its measure. We will say that
a mapping �→�� from � into Cycl�A� is integrable if, for every x�A, the function �
→ ����x�����

2 is integrable, where we are denoting by �� the normalizing vector of ��, for every
���. The mapping �→H�, where H� is the *-invariant Hilbert subspace of A* associated with
�� for each ���, respectively, will also be referred as an integral mapping from � into HilbA�A*�.

In Ref. 25, it was proved that given an integral map from � into HilbA�A*� there exists a

continuous mapping �̂ from ��
�H�d���� into A* defined by

�̂��������� = �
�

��d���� , �8�

the second term in this equation being the weak integral of a scalarly integrable function. The
space ��

�H�d���� is the space of measurable vector fields �→���H� such that �������
2d����


 +�, where � · �� is the norm on H� for every ���, endowed with the Hilbert space structure
derived from the norm ����������

2 =�������
2d����.

As it is the case for infinite sums of Hilbert subspaces, the operator �̂ can be decomposed as

��
�H�d����→ ���

�H�d����� /ker��̂�→A*. The first map appearing in this factorization is the

canonical projection of ��
�H�d���� onto ���

�H�d����� /ker��̂� while the second one is the iso-

morphism from ���
�H�d����� /ker��̂� onto �̂���

�H�d�����. This last space, if equipped with the

transported Hilbert space structure of ���
�H�d����� /ker��̂�, is a Hilbert subspace of A* that we

will denote by ��H�d����. When all the vector fields �→�� take values in *-invariant Hilbert
subspaces of A*, i.e., when the integral mapping under consideration maps � into HilbA�A*�, the
space ��H�d���� turn to be also a *-invariant Hilbert subspace of A*, its associated representa-
tion in Cycl�A� being called the integral of the map �→��. Of course, we will denote it by
����d����.

Finally, we will discuss which is the effect of a continuous algebra *-morphism in this
context. Let A1 and A2 be two barreled dual-separable *-algebras with unit and let � be a strongly
continuous *-homomorphism from A1 into A2. We will denote by �1 �respectively, �2� the dual
representation of the left regular action of A1 �respectively, A2� on its antidual space. We can prove
the following proposition.
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Proposition 5.9: Let H2 be a �2- *-invariant Hilbert subspace of A
2
* and let H1 be the Hilbert

subspace of A
1
* that is image of H2 under the transpose mapping of �. It follows that H1 is

*-invariant under the dual left regular action of A1.
Proof: Let H1 and H2 be the reproducing operators of H1 and H2, respectively. Recall that

H1=�*H2�. Let x1 ,y1 be an arbitrary pair of elements of A1. Then �y1 ��*�2��x1��2�
= ��y1 ��2��x1��2�= ���x1�*�y1 ��2�= ���x

1
*y1� ��2�= �x

1
*y1 ��*�2�= �y1 ��1�x1��*�2� for all �2

�A
2
*, i.e., we have �*�2��x1� equals �1�x1��* on A

2
*. It follows that �*�2��x1�H2�

=�1�x1��*H2�=�1�x1�H1. Now, let us assume that H2 is *-invariant under �2. Under this as-
sumption we have �*�2��x1�H2�y1=�*H2���x1��y1�=�*H2��x1y1�=H1�x1y1�. But then, for all
x1 ,y1�A1 we have �1�x1�H1y1=H1�x1y1�, i.e., H1=�*�H2� is *-invariant under �1, as we wanted
to prove. �

The previous proposition shows that the mapping assigning to every Hilbert subspace H2 of
A

2
* the Hilbert subspace of A

1
* given by H1=�*�H2�, when restricted to those Hilbert subspaces

that are *-invariant under the dual left regular action of A2, defines a mapping from HilbA2
�A

2
*�

into HilbA1
�A

1
*�. Consequently, we have a well defined mapping from Cycl�A2� into Cycl�A1� that

we will also denote by �*. It is straightforward to prove that this application is a cone structure
preserving mapping.

VI. CONCLUSIONS AND OUTLOOK

Let us conclude this paper by summarizing the main results we have obtained.
After recalling in Sec. II the main aspects of Schwartz’s theory on Hilbert subspaces of

topological vector spaces, in Sec. III we have discussed some basics of the representation theory
of algebras of unbounded operators and we have restated the GNS construction theorem for
general *-algebras.28 In Sec. IV we have proved that for a wide class of topological *-algebras,
i.e., barreled dual-separable unital *-algebras, their weakly continuous strongly cyclic
*-representations are in one-to-one correspondence with the Hilbert spaces continuously embed-

ded in its dual that are *-invariant under the dual left regular action of the algebra in hand. After
explicitly endowing the first of these spaces with a cone structure we have proved that this
correspondence actually is a cone isomorphism. Finally, in Sec. V we have proved many conse-
quences of the existence of such an isomorphism: We described the connection between the order
of GNS representations and the usual concept of subrepresentation, we defined the difference of
GNS representations, we proved a couple of propositions concerning the existence of extremal
representations of filtering systems, and we discussed the effect of *-algebra morphisms.

As we have already mention these results could be useful for studying continuity aspects of
the deformation of GNS representations. In a forthcoming paper we will prove that the similarity
classes of GNS representations of a given barreled dual-separable *-algebra with unit A on inner
product spaces are in one-to-one correspondence with the elements of the canonical real expansion
of L+�A*�, showing that Kolmogorov functionals exhaustively define the GNS representations on
Krein spaces.
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