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We find the minimal mathematical structure to represent quantum eigenstates with
complex eigenvalues with no need of analytic continuation. These eigenvectors
build doublets in non-Hilbert spaces. We construct exact solutions for the
Friedrichs model that continuously join the ones of the free Hamiltonian. We ex-
tend the Wigner operator to these non-Hilbert spaces and enlarge the concept of
normalized vectors via the definition of the doublets. Making use of these doublets,
we describe systems whose states have initial conditions out of Hilbert space.
© 1996 American Institute of Physics.@S0022-2488~96!00204-4#

I. INTRODUCTION

As it is generally known, unstable quantum states can be rigorously represented by~Gamow!
vectors of rigged Hilbert spaces defined using Hardy class functions.1–4 Then a natural question
arises: is this the most general rigorous mathematical model for unstable quantum states?

The aim of this paper is to find the minimal mathematical structure to represent quantum
states in non-Hilbert spaces and to conjecture a provisional definition of probability for them. In
this approach we describe the states in an eigenbasis of the free Hamiltonian$u1&,uv&%, wherev
~0<v,`! is the frequency which represents the energy of the system andu1& is a discrete eigen-
state of eigenvaluev0.0.

We know that the eigenvalue problem for unbounded self-adjoint operators is not solvable in
Hilbert space.5 The Gelfand–Maurin theorem6–8 deals with this problem and allows the appear-
ance of eigenvalues that belong eventually to the complex plane. This is the case, for example, of
the Hamiltonian of a discrete harmonic oscillator coupled to a bath described by the Fredrichs
model which is usually solved by analytic continuation~and, in this case, there are unstable
quantum states that belong to the above mentioned rigged Hilbert space9–14! or by perturbation
methods.15

In this work we construct exact solutions for the Friedrichs model that are continuous in the
coupling constant. This is a desirable property of the solutions we are looking for. In other words,
we would like to bypass the Poincare´ cathastrophe16 generalized to the quantum domain. Then, all
the solutions emerge in a natural way, with no need of analytic continuations17 or perturbative
methods15 and they belong to a vector space that contains Hilbert spaceH. This extended space
is defined by the construction itself. Rigged Hilbert space will be a particular case of this con-
struction and we believe that it encompasses other mathematical structures where unstable quan-
tum states can be rigorously defined~nuclear spaces or convex algebras of operators18!.

Furthermore, as the extended wave functions do not belong to Hilbert space any more, they
lose their usual role in the probabilistic interpretation. Making use of the Friedrichs example, we
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introduce a doublet, namely the wave function plus a partner wave function, both belonging to
convenient extended spaces, which seems to yield a criterion for extending the definition of
probability.

The paper is organized as follows: in Sec. II we show that the requirement of continuity in the
coupling parameter implies the appearance of complex eigenvalues. In Sec. III we define an
operation~the star operation! which assigns a real number to the components of the doublet in
generalized spaces. Section IV is devoted to well posing the Hamilton equations in the new space
and in Sec. V we find the spectrum of the Hamiltonian. In Sec. VI we discuss the relation between
the star operation and an extension of the time reversal Wigner operator. In Sec. VII we discuss
the problem of defining probabilities and finding mean values in non-Hilbert spaces. In Sec. VIII
we give a brief resume of the results. In Appendix A we show that our treatment allows us to
recover the non-pure-exponential decay in Hilbert space. In Appendix B we study the statistics of
a non-Hilbert eigenvector and its corresponding energy.

II. COMPLEX EIGENVALUES AND ANALYTICITY IN THE COUPLING PARAMETER

In this section we study the consequences of demanding a well-behavedl→0 limit for the
eigenvectors and eigenvalues of the Friedrichs HamiltonianH. This Hamiltonian reads

H5H01H int , ~1!

where

H05v0u1&^1u1E
0

`

vuv&^vudv

is the free Hamiltonian,

H int5lE
0

`

g~v!@ uv&^1u1u1&^vu#dv,

v0 is the discrete eigenvalue,vPR
1 is the continuous spectrum, and the eigenvectors of the free

Hamiltonian satisfy

^1u1&51, ^1uv&5^vu1&50, ^vuv8&5d~v2v8!,

lPR and the interactionlg(v) causes transitions between the discrete and continuous states. Let
uc& be a vector belonging to the vector spaceJ spanned by the eigenvectors ofH0 , the space
whereH0 andH are defined,

uc&5w1u1&1E
0

`

w~v!uv&, uc&PJ, ~2!

where

w15^1uc& and w~v!5^vuc&.

In Hilbert spaceH, where quantum mechanics of stable states is formulated, the coefficients
satisfy

w1w1*1E
0

`

w~v!w* ~v!dv,` ~3!
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~* indicates complex conjugation!. With this condition,H and its conjugated space have the
topology of the norm. Nevertheless, asH0 andH are unbounded continuous operators, we can
relax condition~3! to work in the less restrictive vector spaceJ.H.

In terms of wave functions, we have the evolution equations

^1uHuc&5v0w11lE g~v!w~v!dv5 i
]

]t
w1 , ~4!

^vuHuc&5vw~v!1lg~v!w15 i
]

]t
w~v!. ~5!

As ~4! and ~5! are true for anyuc&, we have

^1uH5v0^1u1lE
0

`

g~v!^vudv5^1u i
]

]t
, ~6!

^vuH5v^vu1lg~v!^1u5^vu i
]

]t
. ~7!

If we call ^ 1̃ u and ^ṽu the left eigenstates ofH, we have

^ 1̃ uH5ṽ0^ 1̃ u5^ 1̃ u i
]

]t
, ~8!

^ṽuH5ṽ^ṽu5^ṽu i
]

]t
, ~9!

H being a self-adjoint operator acting onH and ṽ0 , ṽPR.

To obtain the vectors that diagonalize the Hamiltonian, let^1u, ^vu and^ 1̃ u, ^ṽu be linked by
the ansatz

^ 1̃ u5j^1u1E
0

`

f~v!^vudv, ~10!

^ṽu5jṽ^1u1E
0

`

fṽ~v!^vudv. ~11!

Taking into account that we have not defined a topology inJ, all we can demand of the vectors
with respect to the continuous parameterl is that

lim
l→0

^ 1̃ uc&5^1uc&, ~12!

lim
l→0

^ṽuc&5^vuc&, ~13!

;uc&eJ and

lim
l→0

ṽ05v0 . ~14!

For short we will write~12! and ~13! as
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lim
l→0

^ 1̃ u5^1u, ~15!

lim
l→0

^ṽu5^uv, ~16!

and refer to them as ‘‘the weak limits.’’
The ansatz~10! and~11! plus the dynamical evolution lead to the following equations for the

coefficientsj, f~v!:

~ṽ02v0!5lE
0

`

f~v!g~v!dv, ~17!

~ṽ02v!f~v!5jlg~v!. ~18!

If ṽ0PR
1, the solution to~17! and ~18! is

f~v!5d~ṽ02v!1
lg~v!

~ṽ02v6 i e!
. ~19!

This solution should be rejected because when replacing~19! in ~10! the d-function causes the
undesired behavior

l50⇒^ 1̃ u5j^1u1^v0uÞ^1u. ~20!

Therefore to guarantee that thed-function disappears fromf~v!, ṽ0 must not belong toR1. In
this case we have

f~v!5
lg~v!

~ṽ02v!
. ~21!

Replacing~21! in ~17! we have the condition

a~ṽ0!•j50 with a6~v!5v02v2l2E
0

` g2~v8!dv8

v6 i e2v8
, ~22!

where

a1~v!2a2~v!522p il2g2~v!. ~23!

If a were different from zero,j had to be zero, and we would have again, in Eq.~10!, the
undesired behavior

l50⇒^ 1̃ uÞ^1u.

So we needa(ṽ0)50.
In this section we have considered only real eigenvalues. Therefore, reminding the reader that

the eigenvalueṽ0 does not belong toR
1, if ṽ0 is real, it must belong toR

2. However, asv0.0,
whenl approaches continuously 0,ṽ0 goes through the forbidden zoneṽ0.0. So we conclude
that there is no acceptableṽ0 real solution. Then the rootṽ0 of a~v!50 must be complex and it
cannot be an eigenvalue of a self-adjoint Hamiltonian operator overH.
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III. THE STAR OPERATION

In order to diagonalize the Hamiltonian preserving continuity inl, we reformulate the prob-
lem from the very beginning, namely, from the field equations~6!–~9!. Let us define the spaceJ8
of the linear functionals overJ

F„w1 ,w~v!…5neC

where„w1,w~v!… are the components of vectoruc&eJ. In spaceJ, in spite of the fact that we have
lost the notion of normalizability, a physical meaningful concept of probability can be defined all
the same as we shall see. To do this, let us define a mapping! on vectors ofJ:

!:J→J8

!:„w1 ,w~v!…→„w1 ,w~v!…![„w1
!,w!~v!…,

F
„w1 ,w~v!…~„w1 ,w~v!…!5w1w1

!1E
0

`

w~v!w!~v!5^c!uc&,

satisfying
~a! F

„w1 ,w(v)…
(„w1 ,w(v)…) is a ~finite! number constant in time and

~b! @„w1,w~v!…!#!5„w1,w~v!…. Then vector

uc&5w1u1&1w~v!uv&

and its partner

^c!u5w1
!^1u1w!~v!^vu5F

„w1 ,w~v!…~• !,

whose coefficients obey conditions~a! and~b!, are said to belong to the spacesF andF!. These
spaces satisfyH,F,J andH8,F!,J8. ~We will show in Appendix B that there is at least
one vector inF which does not belong toH.! Properties~a! and~b! make brâ c!u a convenient
partner of ketuc& in order to define probabilities.

Of course, ifuc&PH we have that

^c!u5^cu, w1
!5w1* , and w!~v!5w* ~v!,

and the usual state of affairs is reproduced.
As we shall see in Sec. IV, the time evolution ofw1

! andw!~v! is completely determined by
the action of the Hamiltonian overw1 andw~v! and conditions~a! and ~b!.

IV. FIELD EQUATIONS IN THE EXTENDED SPACE F%F!

We demand the action of the ‘‘partner’’ of the Hamiltonian, namelyH!, which determines the
temporal evolution ofF

„w1 ,w(v)…
to satisfy

H!F
„w1 ,w~v!…„w1 ,w~v!…5F

„w1 ,w~v!…~H„w1 ,w~v!…!. ~24!

In order to find it explicitly, we use the fact that the temporal evolution of„w1,w~v!… is given by
~4! and~5! and the independence of time requested by condition~a! of Sec. III. Then, in compo-
nents, Eq.~24! reads

v0w1w1
!1lE

0

`

g~v!w~v!w1
!~v!dv1E

0

`

vw~v!w!~v!dv1lE
0

`

g~v!w1w
!~v!dv

52 iw1] tw1
!2 i E

0

`

w~v!] tw
!~v!dv, ~25!

2111Castagnino et al.: Doublet representation of non-Hilbert eigenstates

J. Math. Phys., Vol. 37, No. 5, May 1996



which splits into

v0u1&1lE
0

`

g~v!uv&dv5~2 i !
]̄

]t
u1&, ~26!

vuv&1lg~v!u1&5~2 i !
]̄

]t
uv&, ~27!

which are nothing but the ket version of~6! and ~7! ~]̄ indicates left derivative!.
Now we want to obtain the diagonal form of the complete set of equations in theF%F!

extended space of doublets$uc&,^c!u%. The set of equations for the bras has the same form as~8!
and ~9! but, in order to indicate that the Hamiltonian eigenvalues may be complex, we call them
z0̃ , z̃ instead ofṽ0 , ṽ:

^ 1̃uH5 z̃0^ 1̃u5^ 1̃u i
]

]t
, ~28!

^z̃ uH5 z̃^ z̃ u5^z̃ u i
]

]t
. ~29!

The ket set of the diagonal equations is obtained from Eq.~24! using ~28! and ~29!. They are

H!u 1̃&5 z̃0u 1̃&5~2 i !
]̄

]t
u 1̃ &, ~30!

H!uz̃ &5 z̃ u z̃ &5~2 i !
]̄

]t
uz̃ &. ~31!

Kets u 1̃ &, uz̃ & are the right eigenvectors ofH!.

We want to emphasize that, in general,^ 1̃ u Þ ( u 1̃ &)! and^z̃ u Þ (uz̃ &)!, i.e.,^ 1̃ u and^ z̃ u are
not necessarily the partners ofu 1̃&, uz̃ &. Indeed, the star operation is not always well defined
among the right and left eigenvectors ofH.

V. THE SPECTRUM OF THE HAMILTONIAN

The Friedrichs model has been long treated in the literature. Recently, in Ref. 15, it was found
a basis that diagonalized the Hamiltonian preserving continuity in the coupling parameterl using
a perturbative method. On the other hand, in Ref. 17 an exact solution was obtained regardless of
the continuity inl.

Here we find a diagonal basis for the same problem that it is not only an exact solution but
also preserves the desired continuity inl. In order to diagonalize the Hamiltonian we will use an
ansatz to relate the diagonal and nondiagonal basis, namely,

^ 1̃ u5j^1u1E
0

`

f~v!^vudv, ~32!

u 1̃&5j!u1&1E
0

`

f!~v!uv&dv, ~33!

^ z̃ u5j z̃^1u1E
0

`

f z̃~v!^vudv, ~34!
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uz̃ &5j z̃
! u1&1E

0

`

f z̃
!~v!uv&dv. ~35!

Applying the Hamiltonian to the ansatz~32!–~35! we obtain

f~v!5j
lg~v!

z̃02v
, f!~v!5j!

lg~v!

z̃02v
,

jS v02 z̃02l2E
0

` g2~v!

z̃02v
dv D 50⇒a~ z̃0!50.

Requiring the good behavior with respect tol, the coefficientf z̃(v) results:

f z̃~v!5d~ z̃2v!1j z̃

lg~v!

z̃2v
. ~36!

Here d( z̃2v) is the d-function generalized to complex numbers. This extension of Dirac’s
d-function as mentioned by Gelfand and Shilov19 goes beyond the tempered distributions and was
used by Nakanishi20 in the discussion of the Friedrichs model. In order to preserve the good limit,
d( z̃2v) must be different from zero for everyz̃, i.e., $z̃% must coincide withR1. So we callṽ
this real variable:

fṽ~v!5d~ṽ2v!1jṽ

lg~v!

ṽ2v
, ~37!

jṽ~ ṽ2v0!5lg~ṽ !1jṽl2E
0

` g2~v!

ṽ2v
dv, ~38!

i.e.,

jṽ5
lg~ṽ !

a~ṽ !
and fṽ~v!5d~ṽ2v!1

l2g~v!g~ṽ !

~ṽ2v!a~ṽ!
.

The singularities ina(ṽ) and (ṽ2v)21 must be avoided making the shift6 i e. We do not write
it explicitly so as not to embarrass the notation. The equivalent star equations to~37! and ~38!
yield

jṽ
! 5

lg~ṽ !

a~ṽ !

and

fṽ
! ~v!5d~ṽ2v!1

l2g~v!g~ṽ !

~ṽ2v!a~ṽ!
.

Putting it all together, the change of basis that diagonalizes the Hamiltonian results in

^ 1̃ u5j^1u1jE
0

` lg~v!

z̃02v
^vudv, ~39!
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u 1̃&5j!u1&1j!E
0

` lg~v!

z̃02v
uv&dv, ~40!

^ṽu5
lg~ṽ !

a~ṽ !
^1u1E

0

`Fd~ṽ2v!1
l2g~v!g~ṽ !

~ṽ2v!a~ṽ!G^vudv, ~41!

uṽ&5
lg~ṽ !

a~ṽ !
u1&1E

0

`Fd~ṽ2v!1
l2g~v!g~ṽ !

~ṽ2v!a~ṽ!G uv&dv, ~42!

where

@jj!#215
]a~z!

]z U
z5 z̃0

[a8.

When the initial conditions belong toH, solutions~39!–~42! are such that temporal evolution
keeps the state intoH. As we have already said,^ṽu of Eq. ~41! must be understood as^ṽ6u and
the same foruṽ& of Eq. ~42!. Taking this into account, a straightforward computation proves that
they are nothing but the retarded and advanced Lippman–Schwinger solutions, which are exact
solutions of the Friedrichs model.21

We will also need the inverse of the ansatz. To obtain it, we posed the inverse problem and,
after some calculation, we obtained

^1u5h^ 1̃u1E
0

` lg~ṽ !

a~ṽ !
^ṽudṽ, ~43!

u1&5h!u 1̃&1E
0

` lg~ṽ !

a~ṽ !
uṽ&dṽ, ~44!

^vu5
lg~v!

z̃02v
h^ 1̃ u1E

0

`Fd~v2ṽ !1
l2g~v!g~ṽ !

~ṽ2v!a~ṽ!G^ṽudṽ, ~45!

uv&5
lg~v!

z̃02v
h!u 1̃&1E

0

`Fd~v2ṽ !1
l2g~v!g~ṽ !

~ṽ2v!a~ṽ!G uṽ&dṽ. ~46!

The composition of the transformations~39!–~42! and~43!–~46! gives the identity transformation,
so one is the inverse of the other. Having found a regular transformation which has a regular
inverse, we conclude that we have found a new basis for the spaceF%F! and also the spectrum
of the Hamiltonian.

VI. THE STAR OPERATION AND TIME REVERSAL

In order to avoid the difficulties of the bra–ket notation when dealing with antilinear
operators,22 we will use the wave function formalism to generalize the time reversal operator and
to compare it with the star operation.

We know that inH the action of the time reversal operatorT, in the wave function formal-
ism, comes from the conjugation of the Schro¨dinger equation, i.e., we have

T:H→H,

w→w* and t→2t.
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In F, Schrödinger equations~28!–~31! ~with z̃5ṽ! in the wave function formalism read

Hw̃15 z̃0w̃15 i
]

]t
w̃1 , ~47!

Hw̃~ ṽ !5ṽw̃~ ṽ !5 i
]

]t
w̃~ ṽ !, ~48!

H!w̃1
!5 z̃0w̃1

!52 i
]

]t
w̃1

!, ~49!

H!w̃!~ṽ !5ṽw̃!~ṽ !52 i
]

]t
w̃!~ṽ !. ~50!

As we can immediately see, in the extended space the appearance of complex eigenvalues
forces the time reversal to be related to the star operation which is not a simple complex conju-
gation. In the extended space we can define an extension ofT,

T̃:F→F!, T̃21:F!→F,

whose action can be represented by

w→w! when t→2t.

On the other hand, asz̃05ṽ02 ig/2 with gPR
1 ~conventionally!, solution to Eq.~47!,

w̃1~ t !5w̃1~0!exp~2 i z̃0t !5w̃1~0!exp~2 i ṽ0t !exp~gt/2!,

is not defined whent→`. Analogously, solution to Eq.~49!,

w̃1
!~ t !5w̃1

!~0!exp~ i z̃0t !5w̃1
!~0!exp~ i ṽ0t !exp~2gt/2!,

is not defined whent→2`. So, temporal evolution described by Eqs.~47!–~50! is not defined in
the whole interval@2`, `# but in @2`, `! for solutions which evolve withH and in~2`, `# for
those which evolve withH* . This fact could be related to the splitting of the system evolution
group into two semigroups15 for the case of non-pure states and will be studied elsewhere.

VII. DISCUSSION ABOUT PROBABILITY AND MEAN VALUE OF OBSERVABLES IN
EXTENDED SPACES

In this section we will sketch a discussion about a possible probabilistic interpretation for our
extended formalism. Consider that the system is initially free and that the self-interaction begins at
t50 and finishes at an arbitrary timet, when the system becomes free again. During the interac-
tion, eigenvalues of the operatorH may be complex and states represented byuc& and ^c!u may
also belong to the extended space. In order to define probability in this space we consider again the
scalar quantity

^c!uc&5w1w1
!1E

0

`

w~v!w!~v!dv5^c̃!uc̃&5w̃1w̃1
!1E

0

`

w̃~ṽ !w̃!~ṽ !dṽ ~51!

that we have introduced in Sec. III to construct the spaceF! and we normalize it to 1. Herêc!uc&
is a scalar conserved under the change of basis and constant in time and reduces to the standard
norm whenuc& belongs toH. However, we cannot be assured that each term of Eq.~51! is a real
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number. Nevertheless, if it is so, we are able to interpret each term of the sum~51! as a probability
itself, i.e.,w1(t)w1

!(t) represents the probability of finding the system in the discrete eigenstate of
the free Hamiltonian and

E
v

v1Dv

w~v,t !w!~v,t !dv

represents the probability of finding the system in the continuous spectrum with frequencies into
@v, v1Dv# after the interaction. In this case, we have a natural extension of the definition of
probability fromH to the extended spaceF%F!.

Notice that, even in cases in which the! operation is well defined in the extended space and
is conserved in time and under changes of basis, these facts are not enough to guarantee that the
first term and any partial integral in the sum~51! belong to the interval@0, 1#. As it was pointed
out,23 we can interpretate this fact as being related with initial conditions not possible to be
realized or representing a situation for which probability cannot be verified directly or a combi-
nation of both. These situations would be impossible, not in the sense that the chance for their
occurrence is zero, but in the sense that the conditions of preparation or verification of those states
are unattainable. The problem of an adequate interpretation of negative probabilities has been long
studied. See, for example, Refs. 23 and 24.

With our definition of probability the mean value of a constant of motionA is defined as

Ā5S iaiP~w i !1E aP „w~a!…da5S iaiw iw i
!1E aw~a!w!~a!da,

whereai anda belong to the discrete and continuous spectra ofA, respectively.Ā is in general a
complex number and reduces to a real one whenA is a self-adjoint operator onH. Notice that
when the eigenvaluesai are positive real numbers, the mean valueĀ is a positive real number if
probability also is. This allows us to have states with positive defined unperturbed energy out of
H. Namely, even in the extended space, when the initial conditions are so that their corresponding
probabilities belong to@0, 1#, we can guarantee the positivity of the mean value of the unperturbed
energyH̄0 :

H 0̄5v0u1&^1u1E
0

`

vuv&^vudv.

So we can relate reality and positivity of probability with positivity of this energy. It is in this
sense that we have said that negative probabilities correspond to impossible initial conditions.

Regardless our interpretation is merely a conjecture we will use to see how it works in two
cases: in Appendix A the conjecture applied to a Hilbert space vector lets us reproduce the
non-pure exponential decay. In Appendix B we use the conjecture to compute probabilities and
mean values of energy for a system whose initial conditions are out ofH.

VIII. CONCLUSIONS

We have found an exact solution of the Friedrichs model which for the continuous spectrum
coincides with the Lippman–Schwinger solutions. To find the right and left eigenvectors of the
Hamiltonian with interaction, we have neither made use of analytic continuations nor perturbative
methods. As we have preserved continuity in the coupling parameterl, our approach is also
applicable to systems that must be treated in a perturbative way. We also found the minimal
mathematical structure to represent quantum states. To generalize the notion of probability from
H, we defined the star operation in Sec. III and constructed the doublets of wave functions. The
star operation is also related to the time reversal operation in the extended space. The main tool

2116 Castagnino et al.: Doublet representation of non-Hilbert eigenstates

J. Math. Phys., Vol. 37, No. 5, May 1996



that we have is the scalar magnitude defined by Eq.~51!. This scalar magnitude, built up with a
doublet of wave functions, plays in the extended space an analogous role to the norm inH and
reduces to it when the star operation reduces to the conjugation. Then we have a probabilistic
interpretation of this extension of the norm. Further restrictions conducing to the choice of a
particular topology will be imposed when they appear necessary because of physical reasons. In a
forthcoming work we will try to apply our formalism to more realistic models like those of Refs.
25–29.

Finally we show in Appendix A that our approach gives the correct non-purely exponential
decay amplitude and, in Appendix B, our formalism is applied to describe quantum states out of
H.
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APPENDIX A: THE NON-PURE EXPONENTIAL DECAY

Here we apply our formalism to study the decay of a state whose initial condition belongs to
H and that represents, att50, a particle with energyv0:

^1u5S w151
w~v!50D .

Then, aŝ 1u belongs toH, we have

~^1u!![u1!&5u1&5S w1
!51

w!~v!50D .
Temporal evolution in the diagonal basis is

w̃1~ t !5
1

Aa8
e2 i z̃0t, w̃1

!~ t !5
1

Aa8
ei z̃0t,

w̃~ ṽ,t !5
lg~ṽ !

a~ṽ !
e2 i ṽt, w̃!~ṽ,t !5

lg~ṽ !

a~ṽ !
ei ṽt.

So, in the nondiagonal basis, the wave functions are

^1u1~ t !&5w1~ t !5
e2 i z̃0t

a8
1E

0

` l2g2~ṽ !

a2~ṽ !
e2 i ṽt dṽ,

^1!~ t !u1&5w1
!~ t !5

ei z̃0t

a8
1E

0

` l2g2~ṽ !

a2~ṽ !
ei ṽt dṽ.

Changing the contours of integration appropriately~see Appendix A of Ref. 17! and Eq.~23!,
w1(t) results in

w1~ t !52
i

2p E
G

e2 izt

a~z!
dz.
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With our definition, the probability of having the system in the discrete state isw1w1
!. By direct

computation it can be seen that

w1
!~ t !5w1* ~ t !

as corresponds to a vector belonging toH. So

w1w1
!5w1w1*5uw1u2

predicts the correct non-pure exponential decay amplitude with the Zeno30,31 and Khalfin
effects.32,33

APPENDIX B: PROBABILITY AND UNPERTURBED ENERGY OF A NON-HILBERT
EIGENSTATE

We consider now a system whose initial state is the discrete eigenstate ofH with eigenvalue
z0̃ :

^ 1̃u5S 10D . ~B1!

Given ~B1!, its partner satisfying Eq.~51! is

~^ 1̃u!![u 1̃!&5u 1̃&5S 10D .
Temporal evolution gives

F S e2 i z̃0t

0 D , S ei z̃0t0 D G .
In terms of the eigenfunctions of the free Hamiltonian, the doublet reads

w1~ t !5
1

Aa8
e2 i z̃0t, w1

!~ t !5
1

Aa8
ei z̃0t, ~B2!

w~v!5
lg~v!

z̃02v

1

Aa8
e2 i z̃0t, w!~v!5

lg~v!

z̃02v

1

Aa8
ei z̃0t. ~B3!

As ~B2! and~B3! are solutions of the Schro¨dinger equations that do not belong to Hilbert space,
they need to be given a physical interpretation.

First we check the conservation of probability:

w̃1w̃1
!1E

0

`

w̃~ṽ !w̃!~ṽ !dṽ51

and

w1w1
!1E

0

`

w~v!w!~v!dv5
1

a8
1E

0

` 1

a8

l2g2~v!

~ z̃02v!2
dv5

1

a8
1

a821

a8
51

because

2118 Castagnino et al.: Doublet representation of non-Hilbert eigenstates

J. Math. Phys., Vol. 37, No. 5, May 1996



a5z2v02l2E
0

` g2~v!

~z2v!
dv⇒]a~z!

]z U
z5 z̃0

5a8511l2E
0

` g2~v!

~ z̃02v!2
dv.

With this procedure we have a way to identify a pure state corresponding to a complex
eigenvalue in terms of the eigenfunctions of the free Hamiltonian: it is a state with probability 1/a8
of being in the discrete level with energyv0 and probability~a821!/a8 of being in any levelv of
the continuum, respectively. These probabilities are constant in time as it corresponds to an
eigenstate ofH.

We now compute the mean value of the energy when the interaction finishes:

H̄0~ w̃1 ,w̃1
!!5v0w1w1

!1E
0

`

vw~v!w!~v!dv. ~B4!

Using ~B2! and ~B3! we have

H̄0~ w̃1 ,w̃1
!!5

1

a8~ z̃0!
S v01E

0

`

v
l2g2~v!

~ z̃02v!2
dv D . ~B5!

Some comments are in order:

~1! H̄0 is a real number if probability is.
~2! If the interactiong(v) is such that (w̃1 ,w̃1

!) is a possible initial condition, the unperturbed
energy of the state is a positive number.

~3! Whenl→0, we have the correct limit liml→0 H̄05v0 .
~4! The mean value of the evolution operator during the interaction that corresponds to

(w̃1 ,w̃1
!) state is the complex numberH̄ (w̃1 ,w̃1

!) 5 z̃0 . This is not surprising because it is only

the evolution operator and the energy is not defined during the interaction.
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