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We find the minimal mathematical structure to represent quantum eigenstates with
complex eigenvalues with no need of analytic continuation. These eigenvectors
build doublets in non-Hilbert spaces. We construct exact solutions for the
Friedrichs model that continuously join the ones of the free Hamiltonian. We ex-
tend the Wigner operator to these non-Hilbert spaces and enlarge the concept of
normalized vectors via the definition of the doublets. Making use of these doublets,
we describe systems whose states have initial conditions out of Hilbert space.
© 1996 American Institute of Physids$0022-24886)00204-4

I. INTRODUCTION

As it is generally known, unstable quantum states can be rigorously represen(@drpw
vectors of rigged Hilbert spaces defined using Hardy class functidrihen a natural question
arises: is this the most general rigorous mathematical model for unstable quantum states?

The aim of this paper is to find the minimal mathematical structure to represent quantum
states in non-Hilbert spaces and to conjecture a provisional definition of probability for them. In
this approach we describe the states in an eigenbasis of the free Hamilfdpias)}, where o
(0sw<) is the frequency which represents the energy of the systenfilaila discrete eigen-
state of eigenvalue,>0.

We know that the eigenvalue problem for unbounded self-adjoint operators is not solvable in
Hilbert spac€. The Gelfand—Maurin theoreirf deals with this problem and allows the appear-
ance of eigenvalues that belong eventually to the complex plane. This is the case, for example, of
the Hamiltonian of a discrete harmonic oscillator coupled to a bath described by the Fredrichs
model which is usually solved by analytic continuatiGand, in this case, there are unstable
quantum states that belong to the above mentioned rigged Hilbert’sfha® by perturbation
methodst®

In this work we construct exact solutions for the Friedrichs model that are continuous in the
coupling constant. This is a desirable property of the solutions we are looking for. In other words,
we would like to bypass the Poincazathastroph® generalized to the quantum domain. Then, all
the solutions emerge in a natural way, with no need of analytic continuationperturbative
method$® and they belong to a vector space that contains Hilbert spéc@his extended space
is defined by the construction itself. Rigged Hilbert space will be a particular case of this con-
struction and we believe that it encompasses other mathematical structures where unstable quan-
tum states can be rigorously defingdiclear spaces or convex algebras of oper&tors

Furthermore, as the extended wave functions do not belong to Hilbert space any more, they
lose their usual role in the probabilistic interpretation. Making use of the Friedrichs example, we
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2108 Castagnino et al.: Doublet representation of non-Hilbert eigenstates

introduce a doublet, namely the wave function plus a partner wave function, both belonging to
convenient extended spaces, which seems to yield a criterion for extending the definition of
probability.

The paper is organized as follows: in Sec. Il we show that the requirement of continuity in the
coupling parameter implies the appearance of complex eigenvalues. In Sec. Ill we define an
operation(the star operatignwhich assigns a real number to the components of the doublet in
generalized spaces. Section |V is devoted to well posing the Hamilton equations in the new space
and in Sec. V we find the spectrum of the Hamiltonian. In Sec. VI we discuss the relation between
the star operation and an extension of the time reversal Wigner operator. In Sec. VIl we discuss
the problem of defining probabilities and finding mean values in non-Hilbert spaces. In Sec. VIl
we give a brief resume of the results. In Appendix A we show that our treatment allows us to
recover the non-pure-exponential decay in Hilbert space. In Appendix B we study the statistics of
a non-Hilbert eigenvector and its corresponding energy.

IIl. COMPLEX EIGENVALUES AND ANALYTICITY IN THE COUPLING PARAMETER

In this section we study the consequences of demanding a well-behavedimit for the
eigenvectors and eigenvalues of the Friedrichs Hamiltokiafmhis Hamiltonian reads

H=Hg+Hiq, 1

where
Ho=wol1)(1] + [ "olw)(wlde
0
is the free Hamiltonian,

Hn | a1l + (1) ol 1do,

wy is the discrete eigenvalue,eR™ is the continuous spectrum, and the eigenvectors of the free
Hamiltonian satisfy

(111)=1, (llw)={(w|1)=0, (w|w)=8w-o'),
A efR and the interactiong(w) causes transitions between the discrete and continuous states. Let

|» be a vector belonging to the vector spagespanned by the eigenvectors Idf,, the space
whereH, andH are defined,

W=D+ [ etolle) ez, @

where

e1=(1ly) and ¢(w)=(w|¥).
In Hilbert space 77, where quantum mechanics of stable states is formulated, the coefficients
satisfy

1ot + jol(w)@*(w)dw@ 3

J. Math. Phys., Vol. 37, No. 5, May 1996



Castagnino et al.: Doublet representation of non-Hilbert eigenstates 2109

(* indicates complex conjugatipnWith this condition,.”Z and its conjugated space have the
topology of the norm. Nevertheless, Hg andH are unbounded continuous operators, we can
relax condition(3) to work in the less restrictive vector spage. 7.

In terms of wave functions, we have the evolution equations

J
<1|H|l//>:wo¢1+)\f g(w)e(w)dw=i o1 P (4)

d
(o[H[¢)=we(w) tAg(0)e1=1 — ¢(w). ©)

As (4) and(5) are true for any), we have

. p
<1|H=wo<1|+)\J'0 g(w){w|do=(1]i e (6)

.0
(0|H=o(w|+rg(w)(1]=(w]i 5t (7)
If we call (1| and(@| the left eigenstates dfi, we have

(TIH=(T|=(T]i — ®)

J
(o|H=o(o|= (| a5 9
H being a self-adjoint operator acting o and@,, @ A.

To obtain the vectors that diagonalize the Hamiltonian{1gt(w| and(1|, (@| be linked by
the ansatz

<T|=§<1I+f:¢(w)<w|dw, (10)

(@l=es(1l+ | d5to)(oldo. v

Taking into account that we have not defined a topolog§ijrall we can demand of the vectors
with respect to the continuous parameteis that

lim (T|y)=(1|y), (12
A—0
lim (@] ) =(w|¥), 13
A—0
V|)e= and
lim @o= wq. (14
A—0

For short we will write(12) and (13) as
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2110 Castagnino et al.: Doublet representation of non-Hilbert eigenstates

lim (1|=(1], (15
A—0
lim(®|=(|w, (16)
A—0

and refer to them as “the weak limits.”
The ansatZ10) and(11) plus the dynamical evolution lead to the following equations for the
coefficientsé, ¢(w):

(@o—wg) =\ f:fb(w)g(w)dw. 17

(09— ) p(w)=ENg(w). (18

If @oeMR™, the solution ta(17) and(18) is

d(w)=6(wy— w)+ M (19

(wg—w=xie)’

This solution should be rejected because when repladfgin (10) the &function causes the
undesired behavior

A=0=(T1|=&1|+(wo| % (1]. (20)

Therefore to guarantee that tidgfunction disappears fromp(w), @, must not belong tak*. In
this case we have

_ Ag(w)
d(w)= (Do)’ (21)
Replacing(21) in (17) we have the condition
o N2 ’ ’
a(@)-£=0  with a(w)=wo—w—A? | % 22)
where
ai(w)—a_(0)=—27INg%(w). (23

If « were different from zero¢ had to be zero, and we would have again, in Ef), the
undesired behavior

A=0=(T|#(1].

So we needy(wg)=0.

In this section we have considered only real eigenvalues. Therefore, reminding the reader that
the eigenvalu@, does not belong t&i™, if @, is real, it must belong té:~. However, asv,>0,
when\ approaches continuously B,, goes through the forbidden zofag>0. So we conclude
that there is no acceptablg, real solution. Then the ro@, of a(w)=0 must be complex and it
cannot be an eigenvalue of a self-adjoint Hamiltonian operator.g¥er

J. Math. Phys., Vol. 37, No. 5, May 1996
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lll. THE STAR OPERATION

In order to diagonalize the Hamiltonian preserving continuityjrwe reformulate the prob-
lem from the very beginning, namely, from the field equatit)s-(9). Let us define the spacg’
of the linear functionals oveE

F(e1,0(w))=nez

where(¢;,¢(w)) are the components of vectighe=. In space=, in spite of the fact that we have
lost the notion of normalizability, a physical meaningful concept of probability can be defined all
the same as we shall see. To do this, let us define a mappamgvectors of=:

o — oty
. E—E

*:(¢1,0(0)—= (01, 0(0) =(¢],¢*(w)),
F(¢1,¢<w>)((¢1,¢(w)))=4>1<PI+Joxcp(w)go*(w):(t//*lt,b),

satisfying
(a) F(‘Pl,‘l,(m))((gol,(p(w))) is a (finite) number constant in time and
(b) [(¢1,9(0)]"=(¢1,¢(w)). Then vector

[9)=¢11)+ ¢(w)|w)
and its partner
(W= 01(1]+ ¢* (w){w|= Foy eton(-)

whose coefficients obey conditiof@ and(b), are said to belong to the spacksand ®*. These
spaces satisfiyZCPCE and 7' CP*CE’. (We will show in Appendix B that there is at least
one vector in® which does not belong to7.) Propertiesa) and(b) make bra{y*| a convenient
partner of ket in order to define probabilities.

Of course, if|)e. 77 we have that

(W |=(¥l, ei=¢1, and¢*(0)=¢*(v),

and the usual state of affairs is reproduced.
As we shall see in Sec. IV, the time evolution @f and ¢*(w) is completely determined by
the action of the Hamiltonian oves; and ¢(w) and conditionga) and (b).

IV. FIELD EQUATIONS IN THE EXTENDED SPACE ®&®*

We demand the action of the “partner” of the Hamiltonian, nantely which determines the
temporal evolution 0F(<p1,<p(w)) to satisfy

H*F(zpl,go(w))((Pl!(P(w)): F(<p1,<p(m))(H((Pl!(P(w))) (24)

In order to find it explicitly, we use the fact that the temporal evolutioi@f,¢(w)) is given by
(4) and(5) and the independence of time requested by cond{@pwnf Sec. Ill. Then, in compo-
nents, Eq(24) reads

wo¢1¢1+>\Jo g(w)e(w)el(w)do+ fo wqo(w)qo*(w)dwﬂxfo g(w)e1¢0™(w)dw

oo

=—i<P1¢9t<PI—if0 ¢(w)dp* (w)do, (25
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2112 Castagnino et al.: Doublet representation of non-Hilbert eigenstates

which splits into

e 9
wo|1>+>\fo g(w)|w)do=(—1i) 5|1>, (26)

d
olo)+rg(@)[1)=(~1) = |w), @7)

which are nothing but the ket version ) and(7) (¢ indicates left derivative

Now we want to obtain the diagonal form of the complete set of equations idDthd*
extended space of doubldig),(#*|}. The set of equations for the bras has the same for(8)as
and (9) but, in order to indicate that the Hamiltonian eigenvalues may be complex, we call them
Zy, Z instead ofw,, @:

— e = D
(1H=Zx(1|=(1]i e (28
- o d
EIH=2G |=F i o (29
The ket set of the diagonal equations is obtained from(E4)j. using (28) and (29). They are
T
HT) =2/ D)= (=) 5 1), (30
v im0
H*[Z)=Z|Z)=(~1) - [2). (3D

Kets|1), [Z) are the right eigenvectors &f*.

We want to emphasize that, in genexdl,| # (|1))* and(Z| # (|Z))*, i.e.,(1] and(Z | are
not necessarily the partners ﬁ}, [Z). Indeed, the star operation is not always well defined
among the right and left eigenvectors ldf

V. THE SPECTRUM OF THE HAMILTONIAN

The Friedrichs model has been long treated in the literature. Recently, in Ref. 15, it was found
a basis that diagonalized the Hamiltonian preserving continuity in the coupling parametiag
a perturbative method. On the other hand, in Ref. 17 an exact solution was obtained regardless of
the continuity in\.

Here we find a diagonal basis for the same problem that it is not only an exact solution but
also preserves the desired continuityhinin order to diagonalize the Hamiltonian we will use an
ansatz to relate the diagonal and nondiagonal basis, namely,

Al=&1+ [ plo)oldo, ®
B-el0+ | 6 lo)do, 33
@=&11+ | atoroldo, 3

J. Math. Phys., Vol. 37, No. 5, May 1996



Castagnino et al.: Doublet representation of non-Hilbert eigenstates 2113

E)=§%|1>+f;¢%(w)|w)dw. (35

Applying the Hamiltonian to the ansat32)—(35) we obtain

A
O

A
e 0) Zp—w’

w 2
g( wO_EO_AZJO }g"o(—wa)) dw) =O:>a60)20

Requiring the good behavior with respectipthe coefficientp3(w) results:

Ag(w)

Z-w

d3(0)=6(Z—w)+ &5 (36)

Here 6(Z— w) is the &function generalized to complex numbers. This extension of Dirac’s
sfunction as mentioned by Gelfand and Shifbgoes beyond the tempered distributions and was
used by Nakanisff in the discussion of the Friedrichs model. In order to preserve the good limit,
85(Z— w) must be different from zero for evewy i.e.,{Z} must coincide witi™. So we callo

this real variable:

A
Fa0)= 3T 0) 5 o, 37
o 2
(@00 =ra@)+én2 [ 21 do, 39
ie.,
_\g(@) \9(0)9(@)

= and ¢z (w)=8(w—w)+

© a(®) (0—-w)a(®)

The singularities in(@) and @ — ») ~* must be avoided making the shifti e. We do not write
it explicitly so as not to embarrass the notation. The equivalent star equatid8%)tand (38)
yield

. NJ(®)
o (@)
and
\2g(0)g(®)

d)g(w):&(?f)—w)—i- G—0)a@)’

Putting it all together, the change of basis that diagonalizes the Hamiltonian results in

- * Ng(w
Al-eve| 5

) (w|dw, (39

—w

J. Math. Phys., Vol. 37, No. 5, May 1996



2114 Castagnino et al.: Doublet representation of non-Hilbert eigenstates

|w)dw, (40
~ Ag(w) \g(w)g(@

(@)= (@ )<1|+f Sw— w)+(_T<w|dw (41

- A
|~>— fo 5(a—w)+—(wg(w;g(“’) |w)do, 42)

where
[¢67]7 1= Ja (z) =a'.
=7,

When the initial conditions belong t7, solutions(39)—(42) are such that temporal evolution
keeps the state inteZ. As we have already sai@w| of Eq.(41) must be understood &&= | and
the same foftw) of Eq. (42). Taking this into account, a straightforward computation proves that
they are nothing but the retarded and advanced Lippman—Schwinger solutions, which are exact
solutions of the Friedrichs mod#l.

We will also need the inverse of the ansatz. To obtain it, we posed the inverse problem and,
after some calculation, we obtained

al=n@+ [ 222 @105, 3
0
ax L, [F M)

V=rD+ [ 2 1w, (@4

AN ()  ~ Ng(0)g(@)] .
(w|:,20_w n J 5(&) w)'f‘m <w|dw, (45)

) ” \g(w)g(®) ~
|w>— |1>+f (w— a))+m |w>dw. (46)

The composition of the transformatio(@9)—(42) and(43)—(46) gives the identity transformation,

so one is the inverse of the other. Having found a regular transformation which has a regular
inverse, we conclude that we have found a new basis for the spade® and also the spectrum

of the Hamiltonian.

VI. THE STAR OPERATION AND TIME REVERSAL

In order to avoid the difficulties of the bra—ket notation when dealing with antilinear
operator$? we will use the wave function formalism to generalize the time reversal operator and
to compare it with the star operation.

We know that in.77 the action of the time reversal operaibyin the wave function formal-
ism, comes from the conjugation of the Sdtlirger equation, i.e., we have

T H— 7,

*

e—@* andt— —t.

J. Math. Phys., Vol. 37, No. 5, May 1996
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In ®, Schralinger equation$28)—(31) (with Z=®) in the wave function formalism read

_ om0

He1=2p01 = ot P (47)

— e O
He(®)=we(@)=1 — ¢(®), (48)

* Ik T Ik ; J ~%
H @] =2Zpp7=—1i ot P (49

* Tk~ ~T e~ H (9 ok~

H*¢ (@) =w¢™(®)=—1 — ¢*(). (50)

As we can immediately see, in the extended space the appearance of complex eigenvalues
forces the time reversal to be related to the star operation which is not a simple complex conju-
gation. In the extended space we can define an extensidn of

T-d—d*, T Lo*—d,

whose action can be represented by

*

¢o—¢* when t——t.

On the other hand, & =@,—i7y/2 with yeR™* (conventionally, solution to Eq.(47),

@1(t) =1(0)exp(—iZopt) = 1 (0)exp( —iwot)exp(y1/2),

is not defined whem— . Analogously, solution to Eq49),

B =1(0)exp(iZot) = 31 (0)expi Bot expl — 1/2),

is not defined wheh— —o0. So, temporal evolution described by E¢7)—(50) is not defined in
the whole interva] —e«, ] but in[—», ) for solutions which evolve withd and in(—c, o] for
those which evolve wittH*. This fact could be related to the splitting of the system evolution
group into two semigroups for the case of non-pure states and will be studied elsewhere.

VII. DISCUSSION ABOUT PROBABILITY AND MEAN VALUE OF OBSERVABLES IN
EXTENDED SPACES

In this section we will sketch a discussion about a possible probabilistic interpretation for our
extended formalism. Consider that the system is initially free and that the self-interaction begins at
t=0 and finishes at an arbitrary timewhen the system becomes free again. During the interac-
tion, eigenvalues of the operatbr may be complex and states representedi/byand (| may
also belong to the extended space. In order to define probability in this space we consider again the
scalar quantity

Wl =eiwit [ e@et@do=T -7+ [ F@F @@ 6

that we have introduced in Sec. llI to construct the sphtand we normalize it to 1. Her@/| )
is a scalar conserved under the change of basis and constant in time and reduces to the standard
norm when|) belongs ta77. However, we cannot be assured that each term of &.is a real

J. Math. Phys., Vol. 37, No. 5, May 1996



2116 Castagnino et al.: Doublet representation of non-Hilbert eigenstates

number. Nevertheless, if it is so, we are able to interpret each term of thésdlas a probability
itself, i.e., o1 (t) @1(t) represents the probability of finding the system in the discrete eigenstate of
the free Hamiltonian and

w+Aw
f eo(w,t)e*(0,)dw

w

represents the probability of finding the system in the continuous spectrum with frequencies into
[w, o+Aw] after the interaction. In this case, we have a natural extension of the definition of
probability from.77 to the extended spackod™.

Notice that, even in cases in which tkeoperation is well defined in the extended space and
is conserved in time and under changes of basis, these facts are not enough to guarantee that the
first term and any partial integral in the su@il) belong to the interva]0, 1]. As it was pointed
out?® we can interpretate this fact as being related with initial conditions not possible to be
realized or representing a situation for which probability cannot be verified directly or a combi-
nation of both. These situations would be impossible, not in the sense that the chance for their
occurrence is zero, but in the sense that the conditions of preparation or verification of those states
are unattainable. The problem of an adequate interpretation of negative probabilities has been long
studied. See, for example, Refs. 23 and 24.

With our definition of probability the mean value of a constant of motois defined as

A_Zziaip(¢i)+f aﬂ@(a))daZEiaﬂPi@r"'f ap(a)p*(a)da,

wherea; anda belong to the discrete and continuous spectra,afespectivelyA is in general a
complex number and reduces to a real one whAes a self-adjoint operator oiZ. Notice that

when the eigenvalues are positive real numbers, the mean valués a positive real number if
probability also is. This allows us to have states with positive defined unperturbed energy out of
. Namely, even in the extended space, when the initial conditions are so that their corresponding
probabilities belong t0, 1], we can guarantee the positivity of the mean value of the unperturbed
energyHgy:

wao|1><1| + foocw|w)<w|dw.

So we can relate reality and positivity of probability with positivity of this energy. It is in this
sense that we have said that negative probabilities correspond to impossible initial conditions.

Regardless our interpretation is merely a conjecture we will use to see how it works in two
cases: in Appendix A the conjecture applied to a Hilbert space vector lets us reproduce the
non-pure exponential decay. In Appendix B we use the conjecture to compute probabilities and
mean values of energy for a system whose initial conditions are augt.of

VIIl. CONCLUSIONS

We have found an exact solution of the Friedrichs model which for the continuous spectrum
coincides with the Lippman—Schwinger solutions. To find the right and left eigenvectors of the
Hamiltonian with interaction, we have neither made use of analytic continuations nor perturbative
methods. As we have preserved continuity in the coupling parameteur approach is also
applicable to systems that must be treated in a perturbative way. We also found the minimal
mathematical structure to represent quantum states. To generalize the notion of probability from
7, we defined the star operation in Sec. lll and constructed the doublets of wave functions. The
star operation is also related to the time reversal operation in the extended space. The main tool
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that we have is the scalar magnitude defined by (&#).. This scalar magnitude, built up with a
doublet of wave functions, plays in the extended space an analogous role to the néfmannd
reduces to it when the star operation reduces to the conjugation. Then we have a probabilistic
interpretation of this extension of the norm. Further restrictions conducing to the choice of a
particular topology will be imposed when they appear necessary because of physical reasons. In a
forthcoming work we will try to apply our formalism to more realistic models like those of Refs.
25-29.

Finally we show in Appendix A that our approach gives the correct non-purely exponential
decay amplitude and, in Appendix B, our formalism is applied to describe quantum states out of
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APPENDIX A: THE NON-PURE EXPONENTIAL DECAY

Here we apply our formalism to study the decay of a state whose initial condition belongs to
7 and that represents, &0, a particle with energw,:

901:1
<1':(¢<w>=0)'

Then, ag(1] belongs ta 7, we have

=1
p=lry=n=( £

Temporal evolution in the diagonal basis is

B 1 1.
o1(t)= \/7 e %, Pi(t)= \/7 e'zo,
Ag(w) Ag(w) iwt

a(a,t)zmefiwt, o' (@,t)= 2(3) e

So, in the nondiagonal basis, the wave functions are

e—i~2‘0t . Ang(E) o

(110)=p2() = — +jo I i g,
eifot o )\2 2 ~) ~

(1 OI1)=p3(t = — +j ag(f;)’ -

Changing the contours of integration appropriatedge Appendix A of Ref. 7and Eq.(23),
¢4(t) results in

—izt

3 i
p1(t)=— p L e dz.

J. Math. Phys., Vol. 37, No. 5, May 1996



2118 Castagnino et al.: Doublet representation of non-Hilbert eigenstates

With our definition, the probability of having the system in the discrete stagg ¢s. By direct
computation it can be seen that

eI =07 (1)
as corresponds to a vector belonging# So
P101= 0107 =1

predicts the correct non-pure exponential decay amplitude with the *¥&nhand Khalfin

effects’%33

APPENDIX B: PROBABILITY AND UNPERTURBED ENERGY OF A NON-HILBERT
EIGENSTATE

We consider now a system whose initial state is the discrete eigenstdtevith eigenvalue

Zy:

~ 1
=,/ (B1)
Given (B1), its partner satisfying Eq51) is
~ ~ ~ 1
(@@ =IT)=m=5)
Temporal evolution gives

(eiot

el Zot
o |

0

In terms of the eigenfunctions of the free Hamiltonian, the doublet reads

1 ~ 1 -
p1(t)= \/——, e %0l pl(t)= \/——, e'zo!, (B2
o o
N 1 ~ A 1 -
o(w)= Z?EQ;) ——e % o (w)= ~Z—§£a;)) ——= e'%o, (B3)
o o

As (B2) and(B3) are solutions of the Schdinger equations that do not belong to Hilbert space,
they need to be given a physical interpretation.
First we check the conservation of probability:

i+ [ 307 @de-1

and
*’LF od _1+f°°1)\2g2(a))d _1+a'—1_1
197 O<P(w)<P () =t T w2 T T
because
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= o) a2 [ 6%(w)
7 wn—\2 =14 \2
a=Z—wo— A\ Jo (=) do= 72 |Z:§0 a'=1+\ . —Z(Zo—w) do.

With this procedure we have a way to identify a pure state corresponding to a complex
eigenvalue in terms of the eigenfunctions of the free Hamiltonian: it is a state with probahility 1/
of being in the discrete level with energy and probability(a’—1)/a’ of being in any level of
the continuum, respectively. These probabilities are constant in time as it corresponds to an
eigenstate of7.

We now compute the mean value of the energy when the interaction finishes:

HO(zl,EI):wo<P1<PI+ jo wo(w)e*(w)do. (B4)

Using (B2) and(B3) we have

FPE T P s CO (85)
o iz |0 ) G o )

Some comments are in order:

(1) Hy is a real number if probability is.

(2) If the interactiong(w) is such that ¢, ¢7) is a possible initial condition, the unperturbed
energy of the state is a positive number.

(3) When\—0, we have the correct limit lij,o Hy= wg.

(4) The mean value of the evolution operator during the interaction that corresponds to
(¢1,97) state is the complex numbetg, 31 = Z,. This is not surprising because it is only

the evolution operator and the energy is not defined during the interaction.
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