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The fundamental space 5 is defined as the set of entire analytic functions [test 
functions &o(z)], which are rapidly decreasing on the real axis. The variable z 
corresponds to the complex energy plane. The conjugate or dual space 5’ is the set 
of continuous linear functionals (distributions) on 5. Among those distributions are 
the propagators, determined by the poles implied by the equations of motion and 
the contour of integration implied by the boundary conditions. All propagators can 
be represented as linear combinations of elementary (one pole) functionals. The 
algebra of convolution products is also determined. The Fourier transformed space 
k contains test functions Cp(x). These functions are extra-rapidly decreasing, so that 
the exponentially increasing solutions of higher-order equations are distributions 
on i. 

1. INTRODUCTION 

The usual quantum field theories can be considered to be mathematically sound when they are 
constructed from expectation values of products of field operators. An example is the Wightman 
functions.’ Such a system of functions actually forms a space of distributions (Y”), defined as 
continuous linear functionals on the set Y of infinitely differentiable functions which, for 1x1 --+w, 
tend to zero more rapidly than any power of Ix]-’ (rapidly decreasing functions). 7’ is the space 
of tempered distributions introduced by L. Schwartz.2 The space 7 was utilized by Streater and 
Wightman3 to handle and prove some important physical theorems. Similar mathematical consid- 
erations in a more general physical context were discussed by Bogolubov, Logunov, and Todorov.4 

The space of tempered distributions appears to be favored because, among other properties, it 
coincides with its Fourier-transformed space. However, a new situation arises when one introduces 
physical theories implying higher-order equations of motion. 

Let us take for example a free Lorentz-invariant higher-order equation, characterized by a 
polynomial in the D’Alambertian operator: 

l 1 
i up q(x)=O. 
s=o 

The Fourier transform of (1) is 

(% .,,-,,,j @ (k)=O 

so that $(k) =O except when k2 is one of the roots of 

(1) 

(2) 
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(j. 4-k2).) =O. (3) 

Equation (3) can be factorized as 

u,fi (k2-p,2)=0. 
s=l 

(4) 

The n roots of (3) are “mass parameters.” For @(k) to be different from zero, we must have 
k2 = pz. In general, r-L,’ is a complex number. An elementary exponential solution eikx of IQ. (1) 
has a complex kg=k2+p:. The exponential e ikOxO is now no longer a pure plane wave, as the 
imaginary part of k, contributes with a factor eeKXO that blows up for Ix~/--+@J. A real exponential 
certainly lies outside the space Y ’ of tempered distributions. To enlarge this space in the sense we 
want, we have to take test functions that go to zero faster than any exponential of the type ePalxl 
(a>O). Such is the case for the example of the spaces yi, (O<c~<l).~ They are formed by 
infinitely differentiable functions q(x) obeying 

where a and cq are positive constants. 
Any space -u?, contains all other spaces YP for O<P<a. It also contains 25, the space of 

infinitely differentiable functions with compact support. 
All the spaces yi, (O-CC& 1) “accept” eKX as a continuous linear functional. They also have 

the common feature that the Fourier transform @(k) of their fundamental functions p(x) belongs 
to Y (on which they form a dense subset) and can be extended to the complex plane z = k + in as 
entire analytic functions.6 We shall see below that this is an essential property for the test functions 
we need. 

II. FUNDAMENTAL SPACE 

We consider the fundamental space 5 as the set of all entire analytic functions cp(z) which are 
rapidly decreasing on the real axis, i.e., ~~(z>l,,=~= p(x) is a function belonging to the space Y of 
Schwartz test functions. On the definition and interesting mathematical properties of the space 5, 
see Refs. 7-10. This space can be embedded in the space Y of infinitely differentiable, rapidly 
decreasing functions. The vector space 5 can also be given a structure of countably normed space 
by introducing the family of norms:” 

ll44l,=$dz)l (nEN* (6) 
z R 

The norms are compatible and 

II44ln<ll(Plln+1 f 
A scalar product in 5 is given by 

The scalar product equation (8) allows the definition of a norm: 

(7) 

(9) 
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The completion of 5 in the topology induced by the norm (9) leads to a Hilbert space 3Y, formed 
by square integrable functions (~3330. 

The Fourier transform of the space YJO<cKl) is the space Y” formed by entire analytic 
functions obeying the inequalities6 

Ixk~(x+iy)l~ckeblYII10 (b,ck>o). (10) 

It is evident that 

lp.7” (11) 

The Fourier transform 35 of the space 37 is also formed by entire analytic functions, obeying (10) 
with a=O. So, 

The (anti)Fourier transforms G(x) of the functions (PE 5 form the dual space i: 

e(x) = & (13) 

[cp(k+iK)=~o(z)E5;~(x)E51. 
It follows from (11) and (12) that 

j>.Ya (O<a< l), (14) 

~3%. (1% 
The inclusion 5 335 [or the Fourier-transformed (15)] is important for the examination of local 
properties of distributions in coordinate space (EZ’). It means that among the test functions we 
can find those with compact support. The space of linear continuous functionals on 5 is the 
“conjugate” space I’. If, as usual, we identify the conjugate 3 with the Hilbert space %35, 
then we have 

~‘3% 35. (16) 

Analogously, we have the Fourier-transformed inclusions: 

tp>% IQ. (17) 

Ill. TEST FUNCTIONS AND DISTRIBUTIONS 

In Sec. II we have defined four different spaces. First, we define the fundamental space 5, 
whose “test functions” are entire analytic and rapidly decreasing on the real axis. Second, the 
(anti)Fourier transformed space i is defined whose test functions are infinitely differentiable and 
such that multiplied by any linear exponential gives an integrable function. Third, we define the 
conjugate space 4” formed by linear continuous functionals on 6, also called “distributions” on 5. 
Fourth, the conjugate space l’ formed by distributions on l is defined. 

Until now no direct connection has been established between 5’ and l’. However, the Fourier 
transform of a distribution f~i’ is a distribution g[=.P-‘u )] defined through the relation (see 
Ref. 12) 

w-v >,s-‘tcp))=(g,50)=(f,50); (18) 
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g is a continuous linear functional on the fundamental space 5. In other words, g is a distribution 
on 5, defined by (18) (g E 5’). 

For example, the functional eKXIfi E i’ operates as 

(19) 

However, 

F-y@(x))=& I _+Idx e-‘%+)=cp(k). (20) 

Equation (19) is seen to be the analytic continuation of &k) to in, which is precisely ~p(z)l,,~, . 
We can then identify F -t(eKX) with the continuous linear functional on 5, defined by13 

(6(z-zo),dz))=& j-/z g = Po(Zo), (21) 

where L is any positive loop around zo. 
Equation (21) is a simple example of a more general class of linear functionals on the 

fundamental space [ of entire functions. If G(z) is an analytic function having only a finite 
number of poles, and r is a path (or line) on the complex z plane, not touching any pole of G(z), 
we can define the continuous linear functional: 

(G,cp)= I, dz Gtzh~tz) (22) 

The functional defined by (22) on 5 (cf. Ref. 13) belongs to the conjugate space 5’. When G(z) 
has a simple pole at z. and I? is any loop around zo, then G is a constant times qz-zo). 

In general, different r-curves define different functionals. However, when G i(z) = G2(z) and 
l?r , lY2 have the same endpoints and can be brought into coincidence by continuous deformations, 
without crossing any pole of G(z), then both functionals are equivalent. When a pole has to be 
crossed, a loop around it should be added and 

Gl=Gz+2~ic6(z-zo) (c=Res G(z)&. (23) 

We will be mainly interested in functionals with G(z) =Z,c,(z-z,)-‘. 
When r runs from z = --oo to z = +M, leaving all the poles of G(z) below it (below I), we will 

say that the functional is of the retarded type. Similarly, when all the poles are left above r, we 
will say that the functional is of the advanced type. 

It is easy to see that, according to (23), if G(z) has n simple poles, 

R 
Gad=Grt+2rrix c$(z-z,), (24) 

s=l 

where ad (resp. rt) means advanced (resp. retarded). If no pole of G(z) lies on the real axis R, we 
can define the functional GR : 

(Grt,cp>= I, dz Gtddz). (25) 
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We introduce the notation 

q= MIm z), (26) 

where sg(x) is the function sign of x. 
Now GR can be related to Gad and G,: 

n 
Gd=GR+2~ix Cj 

j=l 

n 

G,=GR--2rix Cj 
j=l 

(27) 

(28) 

Equations (27) and (28) imply Eq. (24). 
From now on we will adopt the notation [G(z)]r for the functional defined by Eq. (22). For 

example, we will write 

6(z-zo)=1 1 
27ri [z-zolLo 

(Lo= loop around zo). 

For a single pole, (24), (27), and (28) give 

1 1 1 
=-+ 

[z-ZOlad [z-ZOlrt k-ZOlL., ' 

1 1 (5 vzo) 
=-+ 

[Z-ZOlad [z--ZOlR k-ZOh., ' 

1 1 t ;+ VZJ 
-=-- 
[z-zollt Cz-ZOIR [z-zolLo ’ 

(30) 

(31) 

(32) 

IV. PROPAGATORS AS FUNCTIONALS ON 5 

In general, a propagator is a Green function for the equation of motion of a field theory. When 
the field evolution is given by the usual Klein-Gordon equation 

(o+m2)cp(x)=j(x). 

We first look for a function G(x) obeying 

(U+m2)G(x)= S(x) (33) 

under prescribed boundary conditions. Such a solution is most easily found by Fourier transform- 
ing (33): 

(k*-n’)G(k)= 1, (34) 

W)=k2:,,,z- =k2;w2. 
0 

(35) 
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Of course, Eq. (35) only determines G(k) for kg#w2. A prescription must be given to handle the 
poles at k,=+o. This prescription is related to the boundary conditions to be imposed on the 
physical solutions of Q. (4). Classically, G(x) is determined by the choice of the retarded Green 
function: 

(36) 

For quantum field theories we impose Feynman’s conditions, namely, positive energies should be 
propagated by a retarded solution and negative energies by an advanced one. This fixes the 
Feynman path T=F, which runs below the pole at ko=-w and above the pole at k,= +w: 

1 
G~uan= 2 [ko- 02b ’ 

The path F can be taken along the real k. axis by the well-known procedure of giving the mass a 
small negative imaginary part: 

1 
GF=[k&02]R ’ 

where now 02=k2+m2-ie. 
For the higher-order equation (1) we can proceed in a similar way. The equation for the 

Fourier-transformed Green function can be written [cf. Eq. (4)] 

n 

III (k2-p:)W)= 1, 
s=l 

(39) 

from which we obtain 

G(k)=fi 21 2 
$=I ko-% . 

It is a matter of algebraic manipulation to write (40) into the form 

G(k)=5 2bs 2 
s=* ko-ws ’ 

(40) 

(41) 

where b, are appropriate us-dependent complex numbers. Again, for the complete determination 
of G(k), it is necessary to take into account the boundary conditions. It is outside the scope of the 
present paper to give the physical considerations needed to choose the correct I? for G(k). For 
quantum field theories the choice depends on the roots (,u:) of the characteristic equation (3). 
When a root is real and positive, Feynman’s path must be chosen. When the root is real and 
negative (see Ref. 14) or when it is complex (see Ref. 15), r must be half-advanced and half- 
retarded. See Refs. 14-17 for the reasons behind those choices (which are related to unitarity of 
the S-matrix). 

The propagator for the higher-order equation (1) is the functional 

G(k)=2 bs 
s= 1 I& dir, ’ (42) 
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where r, is Feynman’s path when &>O and r,=$ad+ $t for all other terms. These propagators 
are particular cases of “tempered ultrahyperfunctions” (see Ref. 10). 

We can now use the identity 

to write Eq. (42) as a linear combination of “elementary” functibnals of the form 

1 
Gj=[Z-ol],j ’ 

Furthermore, with (30)-(32) we can choose rj to coincide (at will) with rt, ad, or R, if we add to 
(43) a corresponding loop term, which also has the form (43) with Tj= Lj . 

V. CONVOLUTION PRODUCTS 

To solve the field equations with sources, the only known general method is the perturbative 
solution. The method leads to Feynman diagrams in which each propagator is represented by an 
internal line. The external lines represent the incoming and outgoing particles of the scattering 
process. The simplest diagrams (tree diagrams) give the lowest approximation. The next-to-lowest 
order corresponds to diagrams with an internal loop, implying an integration over an internal 
momentum variable. A second-order loop contains two lines and the integration is a “convolution 
product” of the involved propagators. 

For two elementary functionals (43), the convolution product is given by18 

dz1+z2) 

(z1-d(z2-6J2) . 
(44) 

When rl =L, and r2=L2, a double application of Cauchy’s theorem gives [cf. (2 l)] 

s(z-w,)*s(z-w2)=s(z-o~-w2). (45) 

Let us now take rl =ad and G2 = S(z - w2). Equation (44) gives 

(Gad*atz-02),(P)= I,& ,%rw;;) . (46) 

A change of variable zl-$-e (taki ng into account that ad goes below the pole at zl=wl, i.e., 
below the pole at e= wr + w;?) leads to 

1 

[z-(Gid *~~z-~2’=[z-W,lo21ad * 

Analogously, 

1 1 

cz- 4rt *(Z-W*)=[Z-01-02]n * (48) 

Thus, under convolution, the &functional behaves as a translation operator for another 
&functional and for an advanced or retarded functional. 

If we want the convolution (44) with I’,=R and T,=R, we write 
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(49) 

= j;~dMl/;; dx(x-wl)-1(t-x-w2)-1 (50) 

using the formula1g 

I 
+m 1 

dx (x-a)(x-b) 
. 

=2=z 
??a-gb 

-cc a-b * 

We obtain 

(51) 

(?&I* = 8-0, = - voZ), which means that 

1 1 t 170, + %o*) 

k4R*[Z- @21R =27ri [Z-Wl-WJrj. (52) 

Now, using (45), (47), (48), and (52) and the relations (30)-(32), it is possible to obtain the 
complete convolution algebra of the elementary functionals (43). We will simply quote the fol- 
lowing equations: 

[z-:,I,*[?:,], =[z-:l’o,], ’ 
1 1 2ri 

* =- 
cz-4.t [Z-w2ln [z-w-~2lrt’ 

(53) 

(54) 

1 1 
* = 

[z- Wllad [z- 02ll.t 
0. (55) 

Finally, if we define the W-functional as 

WE’ l 1 1 
2 [z-olad +z [z-o], ’ (56) 

we obtain [cf. (53), (54), and (30)] 

W*W=-7T2S(Z-Wl-W2). (57) 

Equation (57) is interesting. The functional (56) is a generalization of Cauchy’s principal value 
Green function to complex values of the pole. The convolution with W is then a generalization of 
the Hilbert transform.20 Equation (57) says that the inverse of a W(o)-transformation is a W(-co)- 
transformation, 

f-f’= Wo)*f, (58) 

f’-f”=W(-o)*f’=W(-o)*W(o)*f=-,rr%*f, (59) 
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VI. DISCUSSION 

When a field theory implies higher-order equations of motion, the elementary solutions eikx in 
general contain complex exponents. An exponentially increasing function lies outside the space of 
tempered distributions 7 ‘, which at most accepts functions of “power growth” as linear continu- 
ous functionals. The needed extension in the space of distributions is most easily described by 
taking the space 5 of entire analytic functions rapidly decreasing on the real axis of the complex 
energy plane. The (anti)Fourier dual space i is formed by “extra-rapidly decreasing” functions 
which, multiplied by any increasing exponential (of order one), gives integrable functions. In this 
way, complex exponentials (or hyperbolic functions) and their linear combinations are continuous 
linear function& EZ’. We can also find in l all the infinitely differentiable functions with com- 
pact support. This inclusion makes it possible to define local properties of distributions, particu- 
larly the principle of microcausality. 

Likewise, the Fourier transforms of these functions are well defined as functionals on 5. The 
propagators of higher-order field theories are represented by functionals characterized by the poles 
implied by the equations of motion, and by the associated contour of integration on the complex 
energy plane implied by the boundary conditions, imposed on the solutions for physical reasons. 

All propagators can be represented as linear combinations of elementary (one pole) function- 
als whose convolution algebra can readily be determined. 

For the usual second-order case (normal Klein-Gordon equation), the propagator is Feyn- 
man’s functional associated with the real axis of the energy plane or, at most, with a contour that 
runs along the real axis with infinitesimal deviation to avoid the poles. Any subsequent operation 
with Feynman propagators can be handled in the space of tempered distributions. For higher-order 
equations the situation changes; the poles of the propagators are well outside the real axis. The 
contour of integration must in general “move” freely all over the complex plane, avoiding the 
poles in an appropriate way. The test functions must not hinder or obstruct those integrations with 
unphysical singularities. It is then most reasonable that the fundamental space 5 shall contain only 
entire analytic functions. 

The elementary, single-pole functionals obey a simple convolution algebra. The complex 
&functional is a translation operator for another &functional and for the advanced and retarded (or 
W) Green functions. The convolution product of two advanced (resp. retarded) functionals gives 
another advanced (resp. retarded) functional. The convolution of an advanced times a retarded 
functional gives zero. These results are expected in view of the fact that the Fourier transform of 
an advanced (resp. retarded) function is zero for t<O (resp. t>O). It is also interesting that the 
convolution of two W-functionals gives a complex &functional. On one hand, this is related to 
properties of the Hilbert transform2’ On the other hand, it is related to the unitarity of the physical 
scattering matrix.17 
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