
On the quantization of reducible gauge systems
Rafael Ferraro, Marc Henneaux, and Marcel Puchin

Citation: Journal of Mathematical Physics 34, 2757 (1993); doi: 10.1063/1.530094
View online: https://doi.org/10.1063/1.530094
View Table of Contents: http://aip.scitation.org/toc/jmp/34/7
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/920663169/x01/AIP-PT/COMSOL_JCPArticleDL_WP_042518/comsol_JAD.JPG/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Ferraro%2C+Rafael
http://aip.scitation.org/author/Henneaux%2C+Marc
http://aip.scitation.org/author/Puchin%2C+Marcel
/loi/jmp
https://doi.org/10.1063/1.530094
http://aip.scitation.org/toc/jmp/34/7
http://aip.scitation.org/publisher/


On the quantization of reducible gauge systems 
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Facultk des Sciences, Uniuersitk Libre de Bruxelles, Campus Plaine, C.P.231, 
B-1050 Bruxeiles, Belgium 

(Received 19 October 1992; accepted for publication 28 January 1993) 

Reducible gauge theories with constraints linear in the momenta are quantized. 
The equivalence of the reduced phase space quantization, Dirac quantization, 
and BRST quantization is established, provided one transforms appropriately 
the Dirac wave functions under changes of representation of the constraint 
surface and of the reducibility functions. The ghosts of ghosts are found to play 
a crucial role in the equivalence proof. 

I. INTRODUCTION 

Gauge theories can be quantized according to at least three different methods: 
(i) The reduced phase space method quantizes only the gauge invariant functions and is for 

that reason physically quite appealing. However, it is often not tractable because it requires the 
explicit finding of a complete set of gauge invariant functions. 

(ii) The Dirac method realizes all the dynamical variables (gauge invariant and nongauge 
invariant ones) as operators in some linear space of states, and selects the physical states by 
means of a subsidiary condition. 

(iii) The BRST method increases further the redundancy in the description of the system 
by introducing ghosts. The physical states are again selected by means of a subsidiary condi- 
tion. 

It is easy to check that the three different approaches to the quantization of gauge systems 
are equivalent in the case of simple constraints (see, for instance, Ref. 1). The question of their 
equivalence for arbitrary systems is more subtle and has attracted recently a considerable 
amount of interest.‘-” Because the problem of “quantization” is inherently ambiguous (many 
different quantum systems possess the same X+ 0 limit), the question of equivalence is actually 
ill-defined in the absence of a definite choice of quantization prescriptions. For this reason, a 
conclusive analysis should either exhibit correspondence rules that insure equivalence of the 
three quantization methods, or prove the inexistence of such rules. 

The previous works on the equivalence question are all devoted to independent (“irreduc- 
ible”) first class constraints. The purpose of this paper is to investigate equivalence in the case 
of first class reducible constraints, for which some constraints are consequences of the others. 
The reducible case raises new problems with respect to the irreducible one. For instance, in 
order to get a consistent Dirac quantization, it is necessary not only that the constraints remain 
first-class quantum mechanically, but also that they remain dependent. Otherwise, the number 
of degrees of freedom in the classical and quantum theories would be different. Furthermore, 
in the BRST formalism, ghosts of ghost are necessary besides the standard ghosts, and it is of 
interest to understand their role in definite quantum models. 

As the general question of equivalence is quite intricate, we restrict in this paper the 
analysis to reducible first class systems with constraints that are linear, homogeneous in the 
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2758 Ferraro, Henneaux, and Puchin: On the quantization of reducible gauge systems 

momenta. This case is already of interest since it covers p-form gauge fields and illustrate very 
well the crucial role played by the ghosts of ghosts. The corresponding irreducible models have 
been investigated in Refs. 2, 7, and 9. 

In the framework of the quantization rules where the physical wave functions are taken to 
be densities of weight one-half in the configuration space, we show that the three methods of 
quantization yield the same physical spectrum, provided one transforms appropriately the 
Dirac wave functions under a redefinition of the constraints and of the reducibility coefficients. 
In order to get a consistent Dirac quantization, we also find it necessary to correct the naive 
Dirac operator condition by an extra term. This extra term, as well as the transformation 
properties of the Dirac wave functions, are quite natural from the BRST point of view. Our 
results generalize to the reducible case those derived by Tuynman in Ref. 9 for irreducible 
constraints. 

Our paper is organized as follows. In the next section, we describe explicitly the models 
considered in this paper. We then derive the classical BRST charge that captures all the 
identities fulfilled by those models (Sec. III). We turn next to the quantization of the models, 
first along the lines of the reduced phase space method (Sec. IV), and then along those of the 
Dirac approach (Sec. V). We find it crucial to improve the naive Dirac quantum constraints 
by an appropriate term that makes them anomaly free, and we derive this term by geometric 
arguments. Section VI establishes the equivalence of the reduced phase space and Dirac meth- 
ods by developing further the geometric interpretation. The BRST quantization and its equiv- 
alence with the other methods of quantization are given in Sec. VII. The key role played by the 
ghosts and ghosts of ghosts is particularly stressed since they precisely yield the anomaly 
cancelling term of the Dirac quantization method. Finally, Sec. VIII is devoted to concluding 
comments. 

II. THE MODELS 

The systems considered in this paper are described by n pairs of canonically conjugate 
variables ( qi,pi). They are subject to m. bosonic constraints, 

G,o(qi,pj) =O, ao= L...,mo, 

which we take to be linear in the momenta 

Goo(qi,pj) ={i,(q’)pj * 

The constraints are first class, i.e., 

Go ‘GoI = coboGco 9 

(2.2) 

where {,} stands for the Poisson bracket in the phase space spanned by the variables ( qi,pi) . 
Since the constraints are linear in the momenta, the structure functions C& can be taken to 
depend only on the coordinates qi. Furthermore, the gauge transformation of a function f(q) 
defined on the configuration space ?2, is 

and depends also only on q. The vector fields go0 define the gauge transformations in the 
configuration space and are tangent to the gauge orbits. By inserting Eq. (2.2) in Eq. (2.3) we 
obtain 
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(2Sa) 

where ,j denotes differentiation with respect to qj. Equation (2.5a) can be rewritten as 

y&,tbo= [~ao&bol = -cb k f 00 0 (2Sb) 

where [,] is the Lie bracket and Zg% is the Lie derivative operator along gao. 
The gauge transformations generated by the constraints are said to be reducible when there 

exist functions c D! 0 such that 

qG%=O. (2.6) 

Because the constraints are linear and homogeneous in the momenta, we may assume the 
reducibility functions c to depend only on qi; Eq. (2.6) is then equivalent to 

q(q)&o(q) =Q aI= L-m. (2.7) 

The functions q are required to exhaust all the relations among the fields gao. 
It might happen that the set {q} is overcomplete, i.e., there exists a set of functions 

x: such that 

<$fZO. (2.8) 

Equation (2.8) means that q:< can be written as a combination of the constraints. Again, 
the functions <: may be taken to depend only on q. Since the constraints depend on the 
momenta but the Z’s do not, the only possibility is that Eq. (2.8) is valid strongly. In general 
one finds a tower of reducibility equations: 

z”k z=k-‘=o 
‘kc1 ‘k ’ 

ak= 1 ,...tmk, k= l,...,L- 1. (2.9a) 

The tower stops with functions z”,:-‘(q) that are linearly independent, 

(2.9b) 

The theory has then order of reducibility equal to L. The number of independent gauge 
generators is 

L 

m= C (-)&rnk. 
k=O 

(2.10) 

It will be convenient to choose the Z’s such that 

(2.11) 

Non linearly independent gauge generators appear in a physical theory when one cannot 
isolate a subset of independent constraints without violating explicit covariance, locality, or 
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global conditions. A well-known example is the case of a p-form gauge field A 
= ( l/p!)+ ,,.$ dx” A * * * A dxiP, the canonically conjugated pairs being (Ai,,,,ip(X),a’.“ip(X)). 
For such a field the constraints are 

$1 -.ip,i, = 0 

(the generalization of the Gauss law) which are not independent because of the antisymme- 
trization in the indices i1 ,..., iP( ?jli2...$,i,i2~O). 

III. THE CLASSICAL BRST GENERATOR 

A. Identities 

The functions L&(q) and q:-‘(q) fulfill a series of identities that can be derived from Eqs. 
(2.5) and (2.6) by differentiation and use of the symmetry 

* For instance, the Jacobi identity, 
of the second partial derivatives. 

leads to the equation: 

(C Laoqoq,l,i- eoboc ]d,,) Geo=oe 

For a reducible theory, this means that there exist functions k($co(q) such that 

g fr+,~oc&= ~ob,,~&,~2~~b,,co~ ’ 

the last term not being present when the theory is irreducible. 
Similarly, by differentiating the identity (2.7) along the orbits, one gets 

(&(q&&),izo, 

(3.1) 

or, in terms of the vector fields &, 

[ygbo(q&) lj=~t(~~~),i-~~~,i~~~=O’ 

i.e., 

g~~~~~~+~(~~~~~i-~~~,~~) =a 

Because of Eq. (2.5a), this is equivalent to 

G&~i+~~&o=o. 

The completeness of the functions q implies then the existence of functions Df&, (q) such that 

i$o~i+<~l+,= D$,q’ (3.2) 

If one contracts this identity with e, sums over b, and uses Eq. (2.7), one gets 
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The symmetric part of this equation in al, cl, reads 

The completeness of Z$ implies then the existence of functions B:b, (q) such that 

D&,e + D;;b,e= Br;:c,s’ ’ 2 (3.3) 

the right-hand side of this equation being absent for reducible theories of order L= 1. 

B. The BRST generator 

The identities (3.1)-(3.3) are only a few of a long list, which can be obtained by further 
differentiation. The most powerful way to capture all these identities is to introduce the BRST 
generator.16 The identities are then contained in a unique equation, namely 

mn3=0, (3.4) 

where R = a( d;pi ,r]‘k, L?bJ, the BRST generator, is a fermionic function in an extended 
phase space $ including canonically conjugate pairs of ghosts (@, 9’=,), k=O,..., L, besides 
the original canonical variables, 

C9+lbk3= -s$ (3Sa) 

gh(q”k) = -gh( Yak) =k+ 1. (3Sb) 

In Eq. (3.4) the bracket is the Poisson bracket in $; we remark that the nilpotency 
condition (3.4) is not trivial because the Poisson bracket for fermionic quantities is symmetric. 

The BRST generator is unique, up to canonical transformations in 8. For reducible 
theories, Cl has the form1’.i8 

. 

L-l 

(3.6) 

where “more” does not contains terms of the already indicated form. 
In our case the Gs and the Z’s are bosonic; in order that R be fermionic, the ghosts 

belonging to an even generation (v%, YaO ,77’2, Ylaz ,... ) must be fermionic, while those belong- 
ing to an odd generation must be bosonic. Due to the choice (2.11), n turn out to be real if 

q”k*=q’k, Pak*= (- )k+‘.yak. (3.7) 

The generator CE can be built by means of a recursive method (see Ref. 1): 

(P) 
n= 2 f-k, 

P>O 
(3.8) 

(p+l) 
where R solves the equation 
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(p+l) (P) 
S R +A=O, (3.9) 

with 

(P) 1 P (p-k) (k) k--l (p--k+s-tl) (k) 

A =zj kzo { i-k 9 fi),ti,+; &, szo c i-i ’ i-l 3?7%9,*’ (3.10a) 

(0) 
CI = q="G,o. (3.10b) 

In Eq. (3.10) {,30rig is the bracket with respect to the original canonical variables, while 
C~3?“&,~ is the bracket with respect to the pair (+,LF~~). In Eq. (3.9) S is the Koszul-Tate 
operator. In our case S reads explicitly 

(3.11a) 

6q="=O, S.P',= -G,,, (3.11b) 

Sqak=O, Spa,= -~:-‘Puk-,, k= l,..., L, (3.11c) 

and is clearly nilpotent (S2=O), because the reducibility Bq. (2.9a) holds strongly when the 
constraints are linear in the momenta [in the general case, additional terms are needed in 
(3.11) to achieve nilpotency]. 

The existence of 0 is established in Ref. 18. Its explicit form for arbitrary L is cumbersome 
and will not be needed here. We shall only need: (i) the crucial fact that Q is linear in the 
momenta (pi,Ya,) (Proposition 1); and (ii) the identities in Propositions 2, 3, and 4 below. 

Proposition I: In the case of constraints linear in the momenta Pj, the BRST generator R 
can be taken to be linear in the momenta (pi, pp,,). 

Prooj One has 

(0) (0) (0) (1) 
A =i~~,~3,,,=~“q60{G~o,Gbo~=~~q~~~boG~o~ CI =@“q60~obob~o. 

So let (;; suppose that all the Cl’s for k<p are linear in the momenta (this is true for p= 1). 

Then A is linear in the momenta from (3.10). Because of the definition ( 3.11) for 6, we find 
(p+l) 

then that R in Bq. (3.9) can be taken to be linear in the momenta. 0 
By expanding out {Cl,Ll)=O, one finds at the lowest orders in the ghosts and their mo- 

menta the identities (2.5), (2.7), and (2.9), since cobo/2 is the coefficient of ~‘%7~Yiao in R, 
as we just got. Similarly, by calling b@’ aoboCo/3, the coefficient of v%~$~‘JY~, , one finds the 
identity (3.1). In addition one has the following. 

Proposition 2: There exist functions DFflk such that 

(3.12) 

Proposition 3: There exist functions Bz;l such that 
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D~~=~~-~bk-,~-l=B~~l~:+,, k=l,..., L-l, (3.13a) 

(3.13b) 

Proposition 4: There exist functions @tboCk-r such that 

(3.14b) 

The proof of these propositions goes as follows. Define Dzbozz - eb , and B&,/2 to be 
the coefficient of vdiqCr 9 b2 in 0. Similarly, define - Dbk 

00 
bO=k ’ 

Bbk+2 and &fk+l 
d ck+l 

respective coefficients of $Or]“kYbk, ~dl@k+rPbk+z and ?,r‘%l Ll 
aObOck ( k#O 1 to be the 

ishing of the coefficients of ~“k@9’u,-, , rldl$kCFo,, 
@Yak+, in a. Then, the van- 

and ~“k$%l~Ps in {C&Cl) yield respec- 
tively (3.12), (3.13), and (3.14). Note that since the ghosts 7’1 are bosonic, the coefficients 
qfd, are symmetric in (cr ,dl), 

Bu2 =p2 
4 dlcl* 

(3.15) 

Note also that the identity (3.12) reduces to the identity (3.2) for k= 1, and (3.13) (with 
Bc’ = 

=lbO 
-D&,) becomes (3.3) for k= 1. 

It is of interest to write explicitly the BRST charge for a reducible theory of order L= 1. 
One gets 

IV. REDUCED PHASE SPACE QUANTIZATION 

Because the gauge transformations are defined within the space 9 of the q’s, one can 
introduce the reduced configuration space 9 E 9/Y as the quotient of the configuration space 
9 by the gauge orbits in 9. Let ya, a= 1 ,...,N, be coordinates in the reduced configuration 
space. N is equal to n minus the number m of independent constraints. One has 

(4.1) 

Let rra(q,p) be the gauge invariant momenta conjugate to y”, 

C7wX,,3dh W,~~NS;. (4.2) 

The variables y* and rr, define a standard unconstrained system, the “reduced system” asso- 
ciated with the original gauge system. The reduced phase space quantization consists in quan- 
tizing this reduced system without worrying about its origins. 

So, let us consider a nonconstrained system described classically by coordinates and mo- 
menta (y*,rJ, a= l,...,N. At a given time, the quantum state of the system is given by a wave 
function cp(y”) belonging to a Hilbert space. It is convenient to define the inner product in this 
space as: 
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(p4) = J dNyq* (Y”) $CY” 1, (4.3) 

In order that the inner product (4.3) be invariant under coordinate changes, the wave func- 
tions must behave as scalar densities of weight l/2: 

v”-y’a=y’“(ya) =hp(y”) -qJ’(y’“) = 6 “2dYa(Y’a~~. 
I I 

(4.4) 

The product CP*$ is then a density of weight 1, i.e., dNyrp*$ is a N-form in 9. Since the integral 
of a N-form over a N-dimensional manifold is intrinsically defined (does not require an extra 
integration measure), the convention of taking the wave functions to be densities of weight l/2 
is convenient in the absence of a natural integration measure. (In practice, however, the 
manifold comes equipped with an integration measure Y. For instance, if it is a Riemannian 
manifold, one can take ,=gln. In that case, one can replace the wave functions by scalars, by 
redefining them as q-+~ -“‘q. Of course, this procedure also requires a redefinition of the 
operators in order to keep the matrix elements unchanged.) 

The observables that are linear in the momenta TV conjugate to ya, 

a=a”(y)7ra (classically), (4.5) 

possess a natural geometric interpretation since they define vector fields on the manifold of the 
y’s. Their quantum version reads 

a=&fYy)7ra+7r&Yy)), (4.6) 

and is formally Hermitian for the scalar product (4.3) whenever a” is real. The action of a on 
a wave function yields --i times its Lie derivative (as a density of weight l/2), 

W)(y)=---y,q, (4.7a) 

= --i(aafpa+$+p). (4.7b) 

V. DIRAC QUANTIZATION 

We now turn to the Dirac quantization, where the wave funtions are taken to depend on 
all the coordinates qi and not just on the gauge invariant ones. In order to remove the unphys- 
ical degrees of freedom, one imposes on the physical states the condition 

G7Jml) =o, (5.1) 

where &% is the realization of each constraint as an operator in the space of the wave functions. 
Since the quantum realization of any classical $nction is ambiguous (factor ordering prob- 
lem), we should carefully define the operator Guo. Because the constraints are linear in the 
momenta, it is natural to take Guo+ to be the Lie derivative of 4 along guo. However, the Lie 
derivative of 1c, is ill-defined as long as one does not give the transformation rules for $. So the 
question is: which object is $? In order to gain insight into this question, let us first consider the 
simple abelian case, with a configuration space isomorphic to R”. 

A. Abelian case 

Let us thus assume that the coordinates 4 can be split as a’= (y”,&), in such a way that 
the constraints G% z 0 are equivalent to 
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GA=PAzO, (5.2) 

PA being the momenta conjugate to @. (For an arbitrary gauge system, this can always be 
achieved lovally.’ ) The reduced phase space for the system is then the space of the y” and the 
rra. The discussion pf Sec. IV shows that the physical wave functions depend only on y*, i.e., 
are annihilated by P,, . Furthermore, the scalar product (4.3) can be rewritten as 

(qd) = J dNrd”Q ii W%p*(~“)~(v”). 
A=1 

(5.3) 

This expression is invariant if we transform the wave functions not only as densities of weight 
l/2 under changes of the physical coordinates y” (as we already pointed out), but also as 
scalars under changes of the pure gauge coordinates @. 

This asymmetric behavior of the wave functions under change of coordinates is undesirable 
since in practice, one cannot split the qi into the y” and the @. It is thus necessary to 
reformulate the transformation properties of the wave functions in a manner that treats the 
coordinates more uniformly. To that end, we rewrite (5.3) as 

(5.4) 

where f =0 define good gauge conditions. The inclusion of the “Faddeev-Popov” determinant 
det@,GB) makes (5.4) independent of 1(‘, and equal to (5.3) (to see this, take f= @). We 
then observe that under a redefinition of the Q’s, 

Q%P=P(~A,Y~), (5.5) 

the momenta PA conjugate to & transform as 

(5.6) 

Hence, the original constraints (5.2) are not identical with PL but differ from the constraints 
G;=P:, z 0 adapted to the Q’A-description by a q’-dependent linear transformation. In other 
words, in order to reach the description of the system in terms of the new pure gauge variables 
Q rA, one must supplement the change (5.5) by a redefinition of the constraints. 

Now, the scalar product (5.4) is invariant under 

GA-+G;=A~~G~, (5.7) 

if and only if the wave functions transforms as densities of weight - l/2 for (5.7). Accord- 
ingly, we shall postulate that the wave functions transforms as densities of weight l/2 for 

qi+qti=qli(qj) (5.8) 

and as densities of weight - l/2 for (5.7), 

$(q)+$‘(q’)= IdetA]-‘” $ 
I I 

l/2 

*cd. (5.9) 
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This automatically guarantees that Ic, is a scalar under changes of coordinates along the gauges 
orbits, since the redefinition of the constraints (5.6) (PA -+ Ph = (a&/Q’ B, PA) compensates 
the Jacobian coming from the density weight of $, 

The conclusion is that in order to treat uniformly the coordinates, one must require the Dirac 
wave functions to transform non trivially as in (5.9) under a redefinition of the constraints. 

B. General case-Definition of Lie derivative of 9 

In the general case (2.1)-(2.9) of reducible constraints, not only can one “rotate” the 
constraints, 

Go- G&(q) =4,,boWb,,Wt (5.10) 

but one can also transform the reducibility functio? Fat-’ as 

q-w -+Z~yl) =A,,bk(P)~-‘(q)(A-l)bk_,.k-1(9). (5.11) 

We shall generalize the previous transformation laws by requiring that the Dirac wave func- 
tions transform as 

$(q)-+$‘(q’)= kc0 ]detA,~j(-)kf1’2 $ 
I I 

I/2 

$(Q)* 

under (5. lo), (5.11) and coordinate transformations (5.8). [Given the new and the old con- 
straints and reducibility functions, one cannot read off uniquely the matrices Aakbk. For in- 
stance, A,& is determined up to $e. However, it is easy to convince oneself that this 
ambiguity in the A’s does not affect $’ in (5.12).] The law (5.12) reduces to (5.9) for 
irreducible constraints. Furthermore, it has a clear, intrinsic geometrical meaning. 

We shall show in Sec. VI that this is the correct choice in that it yields a Dirac quantization 
equivalent to the reduced phase space one. In this section, we shall verify that the Dirac 
quantization based on ( 5.12) is consistent. Namely, that it leads to quantum constraints (5.1) 
that are still first class, 

(in that order) and that fulfill 

(5.13) 

(5.14) 

(in that order). Equation (5.13) expre%ses the absence of anomalies and guarantees the corn- 
patibility of the quantum conditions GaO$ = 0. Equation (5.14) means that among GaO$ 
= 0, there are only m independent equations. [Since the Z’s involve only the coordinates in the 
models discussed here, the quantum fulfillment of (2.9a) is obvious.] 

To prove (5.13) and (5.14)) one must compute the Lie derivative Zg%JI of the Dirac wave 
functions. Now, an infinitesimal diffeomorphism generated by &0 induces not only a linear 
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transformation of the coordinate tangent frames, but also a redefinition (5.10), (5.11) of the 
constraints and of the reducibility functions. Indeed one gets from (2.5) and (3.12) 

-!$‘,fbo = - ~a;b,Gco 9 (5.15a) 

(5.15b) 

Therefore, the Lie derivative of $ involves not only the term ( 1/2)c&$, reflecting the weight 
of t/ under coordinate changes, but also terms arising from its vanance under (5.10) and 
(5.11). Let R be the point of coordinates qi and S the point of coordinates 

q’+ ego. (5.16) 

(for fixed ac). The Jacobian matrix of (5.16) is 

while the matrices Aakbk induced by (5.16) are 

Ab co=@-E@ 
0 b0 =obo ’ 

Abkck=6;+ED~, , 
Ok 

k= l,..., L, 

(G;o=c,,+E~g,$bo~ 
ZLF-’ ‘24-l + E{io24-‘,i) a 

Thus one gets 

tc, R-S= I+; -~;oi+@bo- ii (dk$bk 
( ’ 

$2 
k=l )I 

where $s is the wave function at S’, $R the wave function at R and $R4S the transformed (at 
S) of the wave function at R under the diffeomorphism (5.16) mapping R in S. This yields 
finally 

(5.17) 

The functions C@ 
QObO 

and Dzbk are not completely defined by (2.3)) (3.2)) and (3.12). However, 
the alternating trace in (5.17) is unambiguous, so that (5.17) is well defined. (For instance, if 

c” aobo + qbo = c:bo -k pzboq ? then DzLb, + e b = Dzb - p~~bo~, and eobo •t Dzib, 
0 1 0 1 

+~bo+<;bl=~o$+D~b .) 
0 1 
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C. General case-Consistency of Dirac quantization 

In view of the above discussion, we take the operator Gao in (5.1) to be - iL?‘g%, i.e., 

&%+ -iYg%$=O, (5.18) 

or 
L 

&ffosi-~bo+ kgl (-)kfi$,k . (5.19) 

Because the second term in the right-hand side of (5.19) is multiplied by fi (set eqFa1 to one 
here), one can-view it as arising from an ordering ambiguity. [For any operator A, one has 
fL4 = ti4 1 = - ZA ($-@) . So, one can always view +iA as arising from an ordering ambiguity 
in the classically equal to zero observable 0= - ZA (pq-qp) .] In the limit fi-0, Go0 goes over 
into Qi and so, possesses the correct classical limit. 

To verify the consistency of the Dirac quantization, one must check (5.13) and (5.14). 
This is direct because the Lie derivative (5.17) has the following crucial properties: 

(i) Yk$ transforms as +. (5.20) 

(ii> ~,g~*=pYgsJ, for any p(q). (5.21) 

(iii) [~~~,~ql~=~[~~,~~~l~. (5.22) 

The property (5.20) follows from the definition (5.17) of the Lie derivative since in 
Y6%$, one takes the difference of two objects that transform in the same manner at S. It can 
be checked straightforwardly. The property (5.21) follows from the fact that $ is in essence a 
scalar under changes of coordinates along the gauge orbits and can be verified by using 
Propositions 2 and 3 above. Finally the property (5.22) reflects the fact that $ provides a 
representation of the diffeomorphism group, i.e., $ R+ = ($Rwsl) -s,. It can be established by 
using Proposition 4. We leave the details of the calculations to the reader. 

From (5.21), one gets 

qeao$= -ic-F6%$= -iLYqgs+O, I 

and from (5.22) and (5.21), 

This proves (5.13) and (5.14). [Because of (5.21), one can interpret “6% as a kind of 
covariant derivative. This derivative has flat connection due to (5.22) .] In addition, the prop- 
erty (5.20) guarantees the covariance of the Dirac conditions under changes of coordinates and 
redefinitions of the constraints and of the reducibility functions. 

D. Observables linear in the momenta 

The quantum definition of an observable A(q,p) linear in the momenta 

(5.23) 
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CA,Gao~ ~0, (5.24) 

can be done along the same geometrical lines. Indeed, it follows from (5.23) and (5.24) that 

(5.25) 

and thus also 

(5.26) 

where a is the vector field on 9 defined by 

a&(q) a 
dq’ - (5.27) 

The functions X$ ) q are subject to indentities similar to that fulfilled by D$,. By repeating 
the steps leading to (5.17), one gets, for any vector field a 

(5.28) 

The group property of diffeomorphisms implies 

L-G-q3l~==qa,p]~ 
and 

(5.29) 

[-C’~5pollc1=~[CX$llcI= -Q=Q$ (5.30) 

[from (5.25) and (5.21)]. Note that Y,,$#pY,1F, in general (unless a = CA&~). 
One can take for the quantum operator 2 associated with A minus i times the Lie derivative 

along a, 

A^$= -iA?,*. (5.31) 

Because of (5.30), A^ maps Dirac states on Dirac states so that (5.31) is consistent, 

E. Conclusions 

In this section, we have shown that the transformation law (5.12) for the Dirac wave 
functions leads to a quantization procedure that is consistent. The absence of anomaly in the 
algebra of the quantum constraints would not have been achieved had we taken $(q> to be 
merely a density of weight one-half in 9, without weight for the redefinitions of the con- 
straints. Indeed for densities of weight l/2, one does not have YPgOO1c) = &Ys. Ic, (unless 
ria& = 0) and thus, (5.13) and (5.14) would fail. The extra terms in (5.17) con?aining the 
structure functions are therefore crucial. 

The quantization procedure allows also for a geometrical consistent definition of the ob- 
servables that are linear in the momenta. The resulting expression for A is not formally 
Hermitian in the scalar product sdq x*( q)$(q). However, this is no harm because 
J-4 xYq)$(cl) is not the physical scalar product. We shall derive the correct physical scalar 
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product and prove its equivalence with the reduced phase space quantization scalar product in 
the next section. This requires a better understanding of the transformation law (5.12). 

VI. EQUIVALENCE OF THE REDUCED PHASE SPACE AND DIRAC QUANTIZATIONS 

A. Equivalence of physical spectrum 

The reduced configuration space &3’2/.9 is the quotient of the configuration space 9 by the 
gauge orbits. There is a natural map n-:9 + S/Y that maps any point of 9’ on its equivalence 
class in 3’/9. If the wave functions of the reduced phase space quantization were scalars in 
9/Y, they would induce by pull-back scalars in 9 that are constants along the gauge orbits: 

However, the wave functions of the reduced phase space quantization are not scalars in S/.9. 
Rather, they are densities of weight l/2. We show here that they induce objects on 9 with the 
transformation law ( 5.12) which have, furthermore, zero Lie derivative (5.17) along the gauge 
generators &. 

Consider the vectors a/ay” tangent to the coordinate lines (y”) in a local chart of 9/Y. 
Let (Say”) R =Y, be vector fields in g that project down to a/aya. At each point of 9, the 
vectors Y, and go0 provide an overcomplete set of vectors, which is a basis if and only if the 
constraints are independent. Among the gao, one can choose locally m independent vectors &, 
which, together, with the Y, , form a basis of the tangent space to 9. Let us expand the vectors 
a/aqi in terms of ( Y, &), 

(6.1) 

and let us define 

p(q)= Idet(pY,p?) I, (6.2) 

Even though the vectors Y, are not unique (Y,-+ Y, + k$&), the determinant is unambiguous 
since the ambiguity in Y, simply modifies the rows pg by linear combinations of the rows ,uf. 

Proposition 5: The determinant ,u(Q) transforms as 

P’h’(q))=det g det $ (det AAB)-‘p(q) (6.3) 

under the transformations 

(6.4) 

r”-r’“=Y’“(yB), (6.5) 

Ci-4=4iB~~. (6.6) 

Proofi This simply follows from standard properties of determinants. 
Corollary: Let q( y ) be a density of weight one-half in the reduced configuration space, and 

r:q’-*y”=y”(q) the projection from 9 to 3)/Y. Then, the function e(q) = Ip (q) 1 ‘I2 
c&f(q)) is a density of weight l/2 in q-space that transforms with ldet AABI -‘I2 under 
LP~T,=~~~B- 

Prooj Obvious. 
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If the vectors & are independent (i.e., mo=m and &=&;r) the analysis is done. But if 
they are dependent, this is not the whole story. In that case, the dimension m of the tangent 
space Ty to the orbits is given by Eq. (2.10), which can be written as 

m=mo- (ml-(mz- (...-mt)...)), 

so strongly suggesting that Ty , should be regarded as a multiple quotient space. 
Let us begin by considering the simplest case L= 1. In this case we regard TY , at each 

point q E 2, as a quotient space V,J Vi, where dim V. = m. and dim Vi = m i ; then m = m. - m 1 
in agreement with Eq. (2.10). We define the space V. as a vector space generated by m. 
linearly independent vectors {EaO}, uo= l,...,mo. In Vo, the {E:,} forms a basis. We demand 
that in the quotient Vc/V, , the vectors 8, are mapped on the vectors &, 

=fZol Ty=Lo. (6.7) 

This is the case if we take Vi to be the space generated by the vectors &, =qE%, aI = l,...,mi. 
Indeed, these vectors are mapped on zero, 

&zl I Ty =qpo I Ty =qao=4 (6.8) 

as they should. Since the order of reducibility is L = 1, then Eq. (2.9b) tell us that {$,i} is a 
set of ml linearly independent vectors. So we can replace the basis {ZaO} by {ZA ,&}, where 
the EA’s are the m vectors associated with the basis {&A) of T3 via Eq. (6.7). Therefore it is 
clear that Ty can be regarded as Vd VI, where the equivalence relation is such that the vectors 
w -“, E VI are identified with zero. One has 

Define 

Ma) = ldeWf,,,p~) I. (6.10) 

Again PO(q) does not depend on how one chooses to lift &. 
Proposition 6: The determinant PO(q) transforms as 

,-+,u(,= 1 det AABlldet A,,bllldet A,bIpo, (6.11) 

under a redefinition 

&+G=AA~~CB, (6.12) 

e, --+ woo - W’ - A$“QO, (6.13) 

w +g’ 
-1 ~, =Aalbl&, I (6.14) 

[which are equivalent to the transformation laws (5.7), (5.10), and (5.11) for k= 11. 
Pro& Obvious. 
Corollary: The function $(q) =~1’2~~“2~(ycr(q)) is a density of weight l/2 in 2 that 

transforms with I det Aalbl I 1’2 I det A,b I - ‘I2 under redefinitions of the constraints and of the 
E,, . In particular, it does not depend on the choice of the intermediate vectors 2,. 
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This corollary is a direct consequence of Propositions 5 and 6, and of the fact that a 
redefinition of the constraints GaO yields a redefinition of the vectors 4%. 

For L= 1 the analysis is done. If the q are, however, not independent, one should keep 
going and regard the vector space VI itself as a quotient, etc..., until one reaches the last 
reducibility stage. For L > 1 the set {E’,,} is not linearly independent, so no longer we define VI 
to be the space that they generate. Rather, we denote that subspace of V. by II’,. Let {=A~} be 
a basis for Wo; then Pq. (6.9) now reads, 

Eao=p$,4 +pp,4,. (6.15) 

The relations (2.9) among the Z’s mean 

dim Wo=ml- (m2-(m3- (....... -mL)...)) =mo-m, 

which suggests again to regard W. as a multiple quotient space. So, define a vector space V,, 
dim VI = ml, with basis {Jyh,}, and consider the subspace WI C V, generated by the vectors 

JV~~=~~JV~, , a2= l,..., m2. (6.16) 

These are not linearly independent if L > 2. The dimension of WI is, according to Eq. (2.9b), 
dim W,=m2-(m3-(ma.....- mL)...)=ml-mo+m. Let {NA,} be a basis for WI. The quo- 
tient space VI/ WI can be identified with W,, and the image of “yh, in the mapping V, + Wo 
(which we denote by Jyh, I WO) can be identified with &, since one has 

Then a basis for VI is {NAO ,.N”,}, where NAO is any vector projecting to BAO in the mapping 
V, + Wo. The Jyh,‘s can be expanded in this basis: 

K7,‘Ppc4,t-PpY4, - (6.17) 

By using the same argument for WI and so on, we will obtain 

TY = Vd( VI/( V,/... V,)...). 

One can define 

p= Idet(p?y?) 1, 

po- Idet(~$~@ I, 

pl= Idet(v~,p~~) 1, 

(6.18a) 

(6.18b) 

(6.18c) 

(6.18d) 
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where the p’s are the coefficients that appear in the equations generalizing (6.17). These 
determinants do not depend on how one lifts the basis vectors of W, to V,,,. One has the 
following. 

Proposition 7: Let I be a density of weight one-half on the reduced configuration space 
92/Y, and let $(q) be defined through 

(6.19) 

Then + (q) transforms as in (5.12) and fulfills 

(6.20) 

ProoJ The first part is obvious, so let us prove only (6.20). It is enough to check (6.20) in 
a particular coordinate system and with a particular choice of the constraints and of the 
reducibility functions. We take the 6’ coordinates to split into gauge invariant coordinates ya 
and pure gauge invariant &, as in Sec. IV, q’= (y”,&>. The constraints can then be taken to 
be 

Gu,,= G,GzJ, 

with GA=PA, G%=O. Similarly, the reducibility functions can be taken to be zero or one.‘**’ 
With that choice, the Lie derivative of $ reduces to 

(6.21b) 

Furthermore, the vectors CA, &,, E,, , XuZ, etc., can be taken in such a way that the deter- 
mnants z-4 pop z.h,..., pL- i, are all equal to one. Hence $(q> =$(y”> does not depend on &, 
establishing (6.20) [e( 6.21)]. This proves Proposition 7. 

Conversely, let $(a) be an object that transforms as in (5.12) and that fulfills (6.20). Then 
$(ci) IcLI-1’21~011’2...I~L-11(-) L+1’2 depends only on ya and defines a density of weight l/2 
on the reduced configuration space. 

We thus conclude that a density of weight l/2 in 3/Y induces naturally a Dirac state as 
defined in Sec. V and vice versa. The Dirac and reduced phase-space quantizations give the 
same spectrum of physical states. 

B. Observables 

Similarly, the action of the observables that are linear in the momenta are equivalent in 
both quantization methods. Namely, if Ic, is a reduced phase space state and q. the corre- 
sponding Dirac state, and if a is a vector field in s/Y and aD a vector field that project down 
to a (fulfilling accordingly [aD,&J - ‘&), then (y,$)D = &#D. This Simply fOllOWS 
from the group property of mappings and the commutativity of the following 

.9 A 22 
+ 

7T.l 1lr (6.22) 

-Q/Y r’ , iJ2/9, 
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in which g and y$, are elements of the one-parameter group of diffeomorphisms generated 
respectively by a and aD . The equivalence of the linear observables was already pointed out by 
Tuynmang in the irreducible case. 

C. Scalar product 

Finally, we turn to the scalar product. One defines the scalar product of two Dirac states 
as 

&1cI*(s)dq) i SO$(q))ldetCG~,xB}II~oll~lI-1I~2I...I~~-lI(-)Lf1, (6.23) 
A=1 

where fl =0 are gauge conditions and GA a subset of irreducible constraint functions. [If there 
is no such subset that is globally defined, one must introduce a partition of unity and generalize 
(6.23) in the standard manner.] The expression (6.23) is: (i) invariant under redefinitions of 
the constraints and of the reducibility functions; this is because one has included the factors 
l~ollCL~I-11~21~~~l~FL-~l~--L+’ besides the usual Fadeev-Popov determinant; and (ii) invari- 
ant under changes of coordinates. By choosing the coordinates and the constraints as in the 
proof of the Proposition 7, one can rewrite (6.23) as 

s 
tcI*(Y”)p(Y”>, (6.24) 

thereby proving the equivalence of the scalar products in the Dirac and reduced phase space 
quantizations. 

VII. BRST QUANTIZATION 

A. BRST charge 

In the standard BRST method for quantizing a constrained system, the classical BRST 
generator is realized as an Hermitian operator on the Hilbert space of the functions depending 
on the original variables q: and the ghosts 7 “k. We say that the theory is free from BRST 
anomalies, if a realization Sz = fit can be found such that the classical property (3.4) becomes 

[&ii] =o, 

i.e., 

d2=0 (7.1) 

(remember that the graded commutator is symmetric for fermionic quantities). 
As it was already proved in Sec. III, the BRST generator is linear in the original momenta 

and the ghost momenta, when the constraints are linear in the momenta. So it has the generic 
structure 

with 

fi=k*=(-)k+la=k, 

(7.2) 

(7.3) 

since a is real. We will prove that the Hermitian ordering 
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(7.4a) 

f&s 2 f2=k.+ak, ’ 
k=-1 

(7.4b) 

leads to a theory free from BRST anomalies. In fact, 

so that 

[&fi] = [6,,6,] -i ,i-, 12ak@ak, ,I L a(1eft) Rb. 
J=--1 

a176’ I* 1 

(7.k) 

(7.5) 

(7.6) 

The first term in the right-hand side of (7.6) is zero (it is the same calculation as in the classical 
case). Hence one gets 

a2 ( left ) 

[si.ril=-ikj~el n”kaquka?7bjn6,. (7.7) 

Now the odd vector field Pk, defined on the configuration space of the q’s and the T’S, has 
vanishing Lie bracket with itself, 

(7.8) 

This is just the expression of the classical nilpotency of CI, {&n}=O. 
Proposition 8: Let RLIk be an odd vector field that has vanishing Lie bracket with itself. Then 

k,j=-1 
arluk avbj nbJ=o. i n=k 

a2(left) 

Pro& By differentiating (7.8) with respect to qbj, 

#left) 

O= i (-)jg Q’ka170knb/ 
k,j=-I ( 

= kj$ml c-,i(~~“k~~bj+c-,k(j+l~~=ka~~~‘~~,~bj) 

= ,P, Oi(~~“‘~~bj+()k(j+‘)~‘ka~~~‘~~ jabjc-,(k+lj[j+lJ) 

&left) &left) a;?(left) 
= ( - 1’ v fYk w nbj + flak a77uk a?lbj flbj . 

(7.9) 
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But it is easy to prove that the first term in the right-hand side of this equation is zero by itself: 

kjiel (-)j$f)~kf$-$‘j= i (-)~(-)j+*+~~~b~!!.$~~k 
k,j=-1 

=- Lj$M, (-)kqfibjgaak 

=- kjiml (-)‘~~ak$~bja 

This proves Proposition 8, and as a corollary, the nilpotency of the quantum A [Eq. (7.1)]. 
Let us now expand explicitly (7.5). One finds (recall that - D$, is the coefficient of 

$@$kp bk in R, see proof of Proposition 2 in Sec. III), 

~=7j=$uo+ i fi=k@ak, 
k=O 

with the same operator GO0 as in the Dirac quantization method [Eq. (5.19)]. That is, &% is the 
coeficient of 71% in the q- 9 ordering of the Hermitian BRST charge (7.4). In this view, the 
term rioi comes from the reordering of the original degrees of freedom [ ( l/2) ( cbi + p&i, 

’ 
= Qi - (i/2) go), the term @p comes from the reordering of the ghosts degrees of freedom 
(qq,Y%), while the terms D hk comes from the reordering of the ghosts of ghosts 
($k, Pa,). Thus each generation of ghosts contributes to the Dirac constraint operators &‘uO. 

The consistency of the Dirac quantization scheme-i.e., no anomaly in (5.13) and fulfill- 
ment of (5.14)-tan also be viewed as a direct consequence of the absence of BRST anomaly. 
Indeed, the nilpotency of (7.1) implies straightforwardly (5.13) and (5.14) as one can see by 
examining the first terms of h2. One can thus say that the absence of anomaly in the algebra 
of the Dirac constraints follows from the inclusion in 2% of the ghost contribution as well as 
of the contribution from the ghosts of ghosts. It should be noted in that respect that one could 
have achieved the classical nilpotency condition {Qa}=O without the ghosts of ghosts. But 
then, one would not have found [6$]=0 quantum mechanically, since the D2bk -terms in 
euO are essential. (For a different approach to the BRST quantization of reducible systems with 
linear constraints, see Ref. 19.) 

We leave to the reader to check that similar considerations apply to thepbservables that are 
linear in the momenta, which, in the BRST quantization scheme, fulfill [A,fl] =0, see, e.g., Ref. 
1. 

B. BRST physical states 

In the BRST method, the physical states are annihilated by the BRST charge, 

&=o. (7.11) 

The link with the Dirac method as developed in the previous sections, is obtained by demand- 
ing, in addition, that the physical states be annihilated by the ghost momenta 

.&,,JI=O, k=O ,..., L. (7.12a) 
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Then the physical wave functions $(qi,$k) do not depend on the ghosts, 

f!=+(Q). (7.12b) 

When (7.12) is inserted in (7.1 l), one gets 

7p&ao$bo, (7.13a) 

i.e., 

eTo* = 0, (7.13b) 

which are exactly the Dirac physical state conditions. Hence the BRST physical states fulfilling 
(7.11) are exactly the same as the Dirac physical sta@. 

Since we have adopted a Hermitian ordering for 0, adapted to the formal scalar product 
Sdq dr] ~(q,~)x(q,~), we shall require the BRST wave functions to transform as superden- 
sit& of weight l/2 under changes of coordinates in the configuration space of the q’ and the 
ghosts, 

4’,+Lq’i,fak, (7.14a) 

+$‘=$(sdet %I 1’2. 
, 

(7.14b) 

This leaves the integral Sdq dv +*x invariant. For the states (7.11>, the rule (7.14) exactZy 
yields the transformation law (5.12) for the Dirac states. Indeed, the redefinition G& 
= A,bG,, induces the transformation go0 = A,bOq’b of the ghosts, in order to leave G,o@ 
invariant, G%@ = Gi q“Q. Similarly, the redefinitions of the reducibility functions are equiv- 
alent to a transformati& of the higher order ghosts. Hence, the transformation law (5.12) has 
a very direct explanation in terms of the BRST quantization. 

We again leave it to the reader to check that the BRST observables that are linear in the 
momenta reproduce correctly the Lie derivative when acting on the states (7.11) and (7.13). 

C. BRST inner product 

To complete the proof of equivalence of the BRST method with the Dirac method, it 
remains to discuss the scalar product. 

Now, if one computes the integral Jdq dr] $P(q,q)x(q,v) for the BRST physical states 
(7.11), (7.12), one obtains an ill-defined result. The way out is to introduce a so-called 
“nonminimal sector” (i.e., further variables that do not chtnge the physics) and to regularize 
[dq dq ~(q,~)x(q,~) by inserting the operator exp- [K,n] between $* and x, and integrat- 
ing also over the nonminimal variables, with the natural measure dq dv d (nonminimal vari- 
ables) . Here, j? is a ghost minus one operator depending on all the variables and chosen so that 
the intcgr-al Jdqdr] d (nonminimal) $*(q,~)exp[K,fi]x(q,~) is well defined. The operttor 
exp - [K,fi] is (formally) equivalent to the unit operator between physical states because R is 
(formally) Hermitian with that natural measure. When this regularization is appropriately 
carried through, one finds that the BRST scalar product coincides with the Dirac scalar 
product for the states obeying (7.11) and (7.12). 

This result is derived in detail in Ref. 1 for the irreducible case (Chap. 14). It is easy to see, 
by using the invariance of the scalar product under changes of coordinates d,qak -+ q’i,r]‘ak, that 
the same result applies to the reducible case as well. 
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VIII. CONCLUSIONS 

In this paper we have established the equivalence of the reduced phase space, Dirac and 
BRST quantization methods for reducible gauge systems described by constraints linear in the 
momenta. We have shwon that densities of weight one-half in the reduced configuration space 
define densities of weight one-half in the original configuration space, which have a nontrivial 
weight under redefinitions of the constraints and of the reducibility functions. Because of this 
extra variance, the Lie derivative of the Dirac wave functions contains extra terms besides those 
characteristic of ordinary density of weight one-half. These terms guarantee the absence of 
anomalies in the Dirac quantization scheme, as well as the reducibility of the quantum con- 
straints. Finally, we have given a BRST interpretation of the Dirac analysis. In particular, we 
have shown that the extra anomaly cancelling terms in the quantum constraints could be 
thought of as arising from the ghosts and the ghosts of ghosts, which play thus a fundamental 
role. 
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