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Arbitrary powers of D’Alembertians and the Huygens’ 
principle 

C. G. Bollinia) and J. J. Giambiagib) 
Centro Brasileiro de Pesquisas Fhicas-CBPF/CNPq, Rua Dr. Xavier Sigaud, 1.50, 
22290-Rio de Janeiro, RJ-Brasil 

(Received 16 October 1991; accepted for publication 20 April 1992) 

By means of some reasonable rules the operators that can represent arbitrary 
powers of the D’Alembertian and their corresponding Green’s functions are 
defined. It is found which powers lead to the validity of Huygens’ principle. The 
specially interesting case of powers that are half an odd integer in spaces of odd 
dimensionality, obey Huygens’ principle, and can be expressed as iterated 
D’Alembertians of the retarded potential are discussed. Arbitrary powers of the 
Laplacian operator as well as their corresponding Green’s functions are also 
discussed. 

I. INTRODUCTION 

The ordinary wave equation, as well as its relation to the Huygens’ principle (HP), has 
received considerable attention, and has also been the object of some beautiful works. We 
would like to mention the classical book on the subject by Baker and Copson,’ and the elegant 
analytic continuation method of Riesz.2 It is well known that HP is valid for the usual wave 
equation when the number n of space-time dimensions is even, but not when it is odd. 

Nowadays some physicists are not happy living in a world of only four dimensions. Fur- 
thermore, second-order wave equations are no longer mandatory for the description of the 
evolution of physical particles or fields. For example, in gravitational theories, terms quadratic 
in the curvature tensor are sometimes introduced in the Lagrangian. Then, in some approxi- 
mation the iterated D’Alembertian (lZ12) is found to operate on the field.3 There are also 
examples, in particular, for the bosonization in 2 + 1,4 in which the equation of motion involves 
the square root of the Alembertian ( q “2) . 

The observations lead us to consider the general problem of constructing arbitrary powers 
of the Lorentz invariant differential operator q i, and then of finding, in any number of dimen- 
sions, their relation to a general HP that we are going to specify later. 

In Sec. II, with the aid of some reasonable rules, we find the general form of Da, which, 
although dependent somewhat on the boundary conditions, it is almost completely specified. 

In Sec. III we define the Green’s functions Gca) and find some of their properties. 
In Sec. IV we introduce the Huygens’ principle. In Sec. V we study the analytic distribution 

Q’+. In Sec. VI, the relations of Gcn) with HP are expressed in terms of the properties found in 
previous paragraphs. In Sec. VII we study, in particular, the interesting and less-known case of 
space-time with odd dimensionality (n=odd). Finally, in Sec. VIII, we introduce and discuss 
arbitrary powers of the Laplacian operator and their Green’s functions. 

In an appendix we show how to evaluate the Fourier transform of Riesz’s classical retarded 
Green’s function. 
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C. G. Bollini and J. J. Giambiagi: Arbitrary powers of D’Alembertians 611 

II. DEFINITION OF q a 

We suppose that space-time has d+ 1 =n dimensions, d being the number of Euclidean 
space dimensions. 

The D’Alembertian operator is 

d 

q =d;- 1 d;=c+A. (1) 
i=l 

For the operator OS (s=positive integer) the Fourier transform will be 

fLF{OS)=( -l)VP++Ko-, (2) 

where, in general, 

K”+ = (ki- k2)a, if ki > k2, zero otherwise, 

P- = ( k2- ki)“, if ki < k2, zero otherwise, 

we now define q a (any a) to be such that 

~=F{CP}=f(a)Ka++P-, with f(s) = (- lY, 

and impose the condition 

q “*p=o”+~ , 

which is equivalent to 

$. $,Ea+B. 

But p+K$ =K”+f@; K”_@- =P-+p; and K”+@- =O. 
For (6’) to hold we must impose 

(3) 

(4) 

(5) 

(6) 

(6’) 

f(a)f(P) =f(a+P) :.f(a) =da. 
And, due to (5), we must have 

f(a) =@a, 

where e is -1-1 or -1. 
It is now easy to see that there are essentially four Lorentz-invariant solutions for q a, 

namely, 

o”* =fFar+ +fl, (7) 

0” ,&~~‘&p+ +p-, 
R (8) 
A 

where in (8) sgko is Lorentz invariant as K”+ is zero outside the light one [cf. (3)]. 
If we compare (7) with the definition for (K-i-iO)= given in Ref. 5, we find that 

(9) 
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612 C. G. Bollini and J. J. Giambiagi: Arbitrary powers of D’Alembertians 

so that fi”, is the causal D’Alembertian already discussed in Ref. 6. From (7) and (8) is easy 
to see that we have the relations 

O*,=e(k,)i;+e(-kk,)~~, 

o”_=e(k,)@+e( -ko,oIs;, 
O(x) being Heaviside’s step function. 

(10) 

(11) 

The operators Cl”, are then not independent of 01. They can be contructed by taking the 

positive frequency part of 0: (resp., 0:) and the neiative frequency part of 0: (resp., Cl;). 
For the explicit form of 0% we take the anti-Fourier transform of (7) or (9)) by using the 

results of Ref. 5, 

0: = *iie*irr(a+n/2)4a(4~)n/2 
r(a+n/2) 

r( -a) 
(Q+ i0) -a-n’2, (12) 

where Q is the quadratic form 

Q=x;- ii, X;=tb+ 

In the Appendix we show how to evaluate the anti-Fourier transform of (8). The result is 

2 . 4aQ;a-"/2e( F t) q :=7Plr( 1 -ci-d2)r( -a) . 
A 

(13) 

This is the operator found by Riesz by a generalization of the Rieman-Liouville complex 
integral (cf. Ref. 2). 

Note that the by taking half the sum of the retarded plus the advanced solutions ( 13), we 
obtain an operator whose Fourier transform is 

which for a =s= integer coincides with (2) but does not satisfy (6). 
We will show below that for cr=s=positive integer ( 12) and ( 13) reduce to 

q ~=o;==m(x), 
A 

(14) 

(15) 

so that in a convolution El* acts effectively as a differential operator when Q=S: 

q “*fIa,,=Us6*f(X) =CYf(X), s=positive integer. 

III. THE GREEN’S FUNCTION G(“) 

The Green’s function for the operator q a is the fundamental solution of the equation 

q %f=g, (16) 

i.e., 
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q “*G(“)=S(x). 
By taking the Fourier transform, we find 

+ . Z;(a) = 1 , 

so that 

Z;(a) =0-o 

We then have [cf. (7) and (8)] 

G” =,=+%bK;a+K~a. 
R 
A 

And, of course [cf. (12) and (13)], 

G(a)= fiehbdd2-U) (4Ty r(n/2-a) 
~ f 4” r(a) (QdW+n’2, 

(a) 
GR = 

2 * 4-ffp+-“‘%( F t) 

A #‘2-11(1+a--n/2)r(a) * 

613 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

If we take into account ( 10) and ( 1 1 >, we can write Gy) in terms of G 
(a) 

as 
Pi 

G’“‘=~**Gk”‘+~T*&) * A ) (23) 

where 

s*=k-ye( do). (24) 

So that the GF’ Green’s functions propagate the positive (negative) frequencies with the 
retarded Gp) Green’s function and the negative (positive) frequencies with the advanced one. 

For the ordinary wave equation (a = 1) in four dimensions (n =4), Eq. (21) gives the 
massless Feynman propagator in coordinate space, 

while Eq. (22) gives the usual retarded (advanced) potential (see Sec. V): 

6(r* t) 
G(l)=& 6(Q)tI( rt) =- 

;: 4m 
(n=4). 

The Fourier transform of (25) is given by (9) with a= - 1: 

(25) 

(26) 

z;(l)=- * &o (n=4). (27) 
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The Fourier transform of (26) can be found from (8) if care is taken with the poles of K”, 
at a= - 1 (see below). The result is 

41) 1 
GA =- 

Krsgk&l (n=4). 
R 

IV. THE HUYGENS’ PRINCIPLE 

The equation corresponding to the pseudodifferential operators introduced in the next 
paragraph are of the form 

q *f=g. (29) 

The solution f can be found by using the Green’s function G’“‘, defined by ( 17) (also see 
Ref. 7), 

f = G’“‘*g. (30) 

Note that (29) and (30) are dual to each other, as GCn) is the operator Elma, and (30) can 
be considered to be an equation for the determination of g, if f is given. 

There are several statements that can be considered to represent the principle that Huygens 
introduced to describe the propagation of light waves (see Ref. 1 for a discussion of this point). 
We are going to adopt the following statement. 

The solution (30) of Eq. (29) is said to obey Huygens’ principle (HP) if the Green’s 
function GCn) has its support on the surface of the light cone. 

This HP implies that the signals generated by the source propagate with one sharp velocity, 
that of the light. 

Due to Eq. (23), we see that the properties of GCa) 
(a) 

k can be deduced from those of GR . In 

fact, Gy’ propagates the positive frequencies of the source by means of Gp) and the neiative 
frequencies by means of Gy’. In this sense, we can say that G$$ obeys HP if Gp’ and Gp’ do 
so. It is then enough to examine GR (cx) (Gy’ is similar) to find out when HP is satisfied. 

From (26) we see immediately that GR (a) obey HP in n = 4, as S(Q) has its support on the 
light cone Q=O. For n =odd number, it follows from (22) for a = 1 that 

Gkl)yQl-d2 
+ ’ 

which is well defined and zero outside the light cone [cf. (3)], but it is different from zero 
everywhere inside the light cone, and so, as is well known, the solutions of the ordinary wave 
equation obey HP for n = 4 (n = even), but do not obey HP for n = odd. 

In the general case, we have to examine the singularities of the functions on which Gp) 
depends [cf. (22)]. The positions and residues of the poles, of Eulers l? functions, are well 
known. For Q’+, as an analytic function of A, we transcribe the results found in Ref. 5. 

V. THE ANALYTIC DISTRIBUTION Q”+ 

In the following it will be evident that the structure of the singularities of e”; determine the 
relation of the Green’s function Gg’ with HP. 

We are considering only one time and d space coordinate in the quadratic form Q=?-- 3; 
then, according to Ref. 5, the distribution Q+ is an analytic function of /z for which the 
following occurs. (a) Here n=odd has simple poles at A= - 1, -2,...,-k,..., and at A= -n/2, 
-n/2-1, -1, -n/2-2,...,-n/2-k ,... . 
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The residues are 

Res d = (- 1)k-VP-” 
+ I-(k) 

CC?> (k= LL.), 
A=-k 

Res @+= 
(- l)?-I”‘20%(X) 

4V(k+ l)r(n/2+k) 
(k=0,1,2 ,... ). 

A= -n/2-k 

(31) 

(32) 

(b) Here n = euen has simple poles at A = - 1, -2,...,2-n/2,1-n/2 and double poles at 
A= -n/2, -n/2- l,..., -n/2-k ,..., 

Res (&=(i$-’ 6(k-1)(Q) (k= 1,2 ,..., n/2- 1). 
A=-k 

Near A= -n/2-k, the double poles have the form 

Q:= 
( _ 1y2l-pZ-l Elks(x) 

4kr(k+l)r(n/2+k) (A+n/2+k)‘+“’ 
(k=0,1,2 ,... ). (34) 

We now observe that Q”; has the types of singularities that are present in the product 
I( 1 +A)r(A+nn/2). In fact, when n=odd, this product has simple poles at ;1 
= - k (k = positive integer), and at A = -n/2-k (k = positive integer or zero), just as in (a). 
Further, when n =even (as in (b), the product presents simple poles for A = -k (0 < k < n/2), 
and double poles for A= -k, if k>n/2. 

For these reasons, if we divide e”; by that product, we obtain 

Qt Q'ca)=r(l+,)r(n/2+,)' 
and Q’(A) is an entire analytic function of A. 

Furthermore, Q’(A) has the following properties. 
(a) For n=odd and A= -k (k=positive integer), 

Q’( -k)= r(ni-k) Sck-‘)(Q)* 

For n=odd and A=-n/2-k (k=0,1,2 ,... ), 

nn/2- 1 

= 4k oka( 

(b) For n=even and A= -k (k=1,2,...&2-1), 

Q’( -k)= r(n;-k) S(k-l)(Q). 

For n=even and A= -n/2-k (k=O,l,...), 

Q( e-5-k) ==n’2-’ 7 q kNx). 

(35) 

(36) 

(37) 

(38) 

(39) 
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VI . THE ck”’ THAT OBEY HP 

We first observe that 0; [Eq. ( 13)] and Gp’ [Eq. (22)] can be expressed in terms of Q’(L) 
[Eq. (3511 as 

2 * 4a Q,“-“‘28( -t) 2 * 4” 

‘:=F r( -a)r( l-a-r/2) =xQ n” (40) 

and 

Gf)=mia=gf Q’ a-z fj( -t). i ) (41) 

As a consequence of the properties of Q’(L) pointed out in Sec. V, we have that 0: and, 
of course, Gp’ are entire analytic functions of a (also see Ref. 7). 

For any n and a=-k (k=0,1,2,...), it follows from (37)) (39), and (41) that 

G~-k’=17;=OkS(x) (k=0,1,2 ,... ), (42) 

where, due to the presence of the factor 6( -t), the contribution of the retarded cone is only 
a half the quoted value in (37) and (39). 

It is now easy to see when the Green’s function GR (n) obeys HP. The only cases for which 
Q’(A) has its support on the light cone are those for which (36) and (38) are valid, i.e., for 
a=n/2-k. 

From (41) we then obtain 

&t/2-k) = 
2.4k-n/2 

R rl “/2-1r(n/2-k) 
e( -t)Sck-‘j(Q) (k=positive integer), (43) 

when n is even the values of k are restricted to be less than n/2 (k < n/2), but for n =odd, k 
is an unrestricted positive integer. 

For n=4 we have the usual retarded potential (26). Further, this kind of potential holds 
in any number of dimensions for k= 1: 

&d-l) = w -tM(Q) S(r+t) 
(4a)“‘2-1r(n/2-l)=(4~)“‘2-1r(n/2-l) .r’ 

•2-1*G~/2-1)=S(x). (45) 

Equations (44) and (45) are true for any n (even or odd). 
The usual wave equation Of =g is the only one whose solution obeys HP in any 

number of dimensions (n > 2). 
The once iterated D’Alembertian equation, 

even 

oaf =02f =g, 

does not obey HP in four dimensions, but it does satisfy that principle for n=6,8, IO,... . 
In general, for q ‘f=g to obey HP it is necessary that n=2(s+k)>2(s+ 1) (k=1,2,...) 

[see Sec. V and (41)]. 
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VII. THE CASE n=ODD 

The results found in Sec. VI, Eq. (43), do not seem to be well known for n =odd, and they 
are interesting enough to deserve explicit mention, at least for low values of n (also see Ref. 8). 
For any odd n there are an infinite number of convolution operators whose Green’s function 
obeys HP. They are 

rJ”“- 1 n/2-2 
R ,o, ,w.,@~-~ ,... . (46) 

From (36) and (40) we get 

q n/Z-k 
2 . @2-k 

R = n”/2-tr(kAn,2) e(-t>~c”-k-l’(Q>, k<n, 

q R 
n/2-k= 

2 ;;yiyn,2, rcy\if)n, &“, km. l-p/2- 

(47) 

(48) 

For k <n, we can also write 

n/2-k 
0, 

=nn-k-1+142- _On-k-l~~--“/2=~“-k-lGk”/2-1) 
f (49) 

where Gg’2-1) is the usual retarded potential given by (44). With the aid of (49) we can 
compute the action of the operator q i’2-k on a function f, as 

(50) 

In this way, the action of q 2-k 
q “-k-if. 

on f is represented by the retarded potential produced by 

For example, in n=3, we have 

q ln=-,e,-t,,,,,,=ae(-t)s(Q), 

LJp2=; e( -t)6(Q>, 

q i3/2=$ et -tje(Qj, 

(51) 

(52) 

(53) 

cl~5/2=~--$ e( - t)Q+ . (54) 

Also note that the operator Ui”2 depends on n: 

q k/2=[7;f:2-(n--1)/2=0kn-1)/2G(n/2-1) 
R * (55) 

where use has been made of (49) and Gg”-” is proportional to (l/r)S(r+ t) for any n. 
The Green’s functions corresponding to the operators (46) can also be expressed in terms 

of the retarded potential (44): 

(56) 
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[compare with (49)], so that the causal solution of 

qy*f =g, 

is 

[compare with (50)]. 

(57) 

VIII. ARBITRARY POWERS OF THE LAPLACIAN 

Just as for the D’Alembertian, we can define arbitrary powers of the Laplacian operator A 
(also see Ref. 7). 

For the d-dimensional Euclidean space we define 

R=?= ix;, 
1 

(58) 

d 

tek2= c #. 
1 

For s= positive integer, 

F{AS)=k= (- l)SKs. 

We generalize this formula to 

F{Aa)=@q.iuaK”. 

This definition satisfies 

A”&=Aa+~; ho&j(x), 

and gives for ha the expression (see Ref. 5) 

A”= 
eira4T (a + d/2) 

rrdj2r( -a) 
R--a-d/2 

(59) 

(60) 

(61) 

(62) 

(63) 

The Green’s function corresponding to ha is 

Aa*G’“‘=&x) * @=‘=A-= . . , (64) 

G(=) =e -‘“‘T(d/2-a) 

4TId’2r(a) 
Ra-d/2 (65) 

According to Ref. 5, the distribution R* has simple poles for ,I= -s-d/2 (s=O,1,2,...) 
with residues 

Res 
l-Id’2ASS(~) 

A= --s-d/2 R”=4qys+ l)r(s+d/2) ’ (66) 

so that, from (63) and (66), we obtain 
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A”*f=A%(x)*f=A’f (s=O,1,2,...). (67) 

In expression (65), the poles of RaMd” are compensated or neutralized by the poles of 
T(a). 

However, the Green’s function G (a) has simple poles for a=d/2+s (s=O,1,2,...), which 
are due to the presence of I’( d/2-a). The residues of GCa) at these poles are proportional to 
R’ (a polynomial in XT), and they are solutions of the homogeneous equation 

Ad/2+s*Rs,0. (68) 

This is trivial for d=even, but it is also true for d=odd, as can be proved by computing 
RwSmd*R’ (see Ref. 5, p. 361). 

For this reason we can drop the poles of GCa) and define, for a = d/2 +s, 

G(d’2+r) = Pf G@) , acd,3+r=$ 
(( a-‘-s)G’a)~a~~,~+s’ 

G(d/Z+s) = 
e-idd/2)RS In R 

4d’“+SIId’2r(s+ l)r(s+d/s) 
(s=O,1,2 ,... ), 

where we have dropped terms proportional to RS (residues). 
In particular, for d=2, and s=O we have the well-known logarithmic potential: 

A,$“=6 G”‘=-!!!! 
4?r * 

(69) 

(70) 

As a matter of fact, the logarithmic potential is the Green’s function corresponding to the 
operator AdI in any number of dimensions: 

Ad’2*ln R - 6 (x ) - . 

In four dimensions, for example (d=4), the iterated Laplacian has a logarithmic potential 
as a fundamental solution, 

AAG’2’=6(x), Gc2)=$ (d=4). 

We may ask, in general, which is the operator that has a potential of the form Rp in a 
d-dimensional Euclidean space. The answer is given by (63) and (65) (see Ref. 7). 

For the Green’s function to be proportional to RB, we must have a-d/2=P, so that the 
operator is 

A&-d/2= 
,i~(8+d/2)qP+d/Zy(p+d) 

7P12r( -p-d/2) 
R-8-d 

and 

,$B+d/Z) = 
e-idB+d/2)r( -p) 

4~+d’2rId’2r(p+d/2) 
RF 

The logarithmic potential corresponds to /3=0. 
For the Newtonian potential t-1=R-1’2, fl= -f and (73) and (74) give 

(73) 

(74) 
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620 C. G. Bollini and J. J. Giambiagi: Arbitrary powers of D’Alembertians 

eirr[(d--1)/214(d-11)/2r(d_5) 
A’d-1)/2-e - 

ndi2r(( 1 -dV2) 
R’/2-d , 

@d-1)/2)= 

(75) 

(76) 

For odd-dimensional spaces, (75) is just the Laplacian iterated (d- 1)/2 times. In d= 3 it 
is the usual Laplacian A. In d=5 it is A2=AA, etc. 

For even-dimensional spaces (70) gives an exponent that is half an odd integer. 

APPENDIX: 

To evaluate the Fourier transform of Gg’ [Eq. (22)], we start with 

F{e”,13( -t)}= 
s 

d”-‘x erksr 
s 

-’ dt(?-?)Ae-ibf, 
--oD 

and use the table of integral transforms’ to write 

(Al) 

s 
-’ dt(f?-j?)Ae-ikot, 

.1/22A-l/2r( 1 +a)#+112 

-co sin z-(/z+ l/2) ]k0]L+“2 

~{e~g~(~+“‘)~~-~_~,~( jkojr)--J ,4+1/2( IkoIdI. (A21 

We must also take into account that the angular integral in (Al) gives 

s 
do eikrcos 6= 

2rp-lV2 

(,,k,2)‘“-3’/2 J(n-3)/2(k’)- (A3) 

We now need integrals of the form 

s m drf’2+AJJ( -3),2(kr)J*(~+1,2)(kOr) n , 
0 

which are found in a table of integrals (Ref. 10, p. 692). 
Replacing now in (Al ) , we obtain 

C-44) 

FC@+eC -t)l= 
2U+"-1r(n/2+~2)r(~+i)n"'2-* 

sin 7r(n+f) I 
ei77(A+1/2)&~~A-nn/2 sin p 

-K-A-n/2 sin n + (n-1)/2+K~A-“/2 sin n a+: 
( 11 

Now we write 

sin(*+g)r=sin II(q)cos ,(,+i)+sin II(A+f)cos II(y), 

cos(A+f)a=e-i(A+1’2)sg~+isgk0 sin(il+i)rr, 

and using these equalities in (A5), 

(A5) 
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X{ei”(a+“/2)SgkoK-~-“/2+Kr~--n/2}. 
+ (-46) 

So we have for Rierz’s Green’s function [Eq. (22)]: 

t-47) 
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