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The complete set of concomitants is given of the metric, a scalar function, and their 
derivatives in six dimensions without imposing conditions on the order of the derivatives and 
their properties are studied under conformal transformations. These results are useful in 
several physical problems, like finding (9’)“” and ( F”)“’ in any geometry. 

I. INTRODUCTION 

Conformal invariance plays an important role in the 
theory of massless fields. It is well known that in the 
quantum domain this invariance is violated due to the 
presence of divergences that are to be removed by a 
renormalization procedure. Among the most important 
examples are conformal trace anomalies, i.e., arising of 
the nonzero values of ( Fp)ren for conformally invariant 
theories. To study conformal anomalies in a conformal 
scalar massless field theory it is often instructive to con- 
sider a “poor man” version of this effect and to discuss 
the behavior of the quantity (P~)~“‘, which describes the 
quantum fluctuations of the field. According to the clas- 
sical theory g”4rp2 is invariant under the conformal trans- 
formations while g1’4(p2)“e” does not possess this prop- 
erty. 

In order to find out the necessary transformation law, 
it is possible to consider the behavior of the renormaliza- 
tion procedure under the conformal transformations. The 
corresponding calculations were done in four-dimen- 
sional space by Page.’ In higher dimensions, these direct 
calculations become highly complicated. On the other 
hand, the terms that are to be added to g1’4(q2)ren in 
order to restore its conformal invariance are local and are 
to be constructed from the metric and its derivatives up to 
a given order which can be easily defined by dimensional 
arguments. In other words, under the conformal trans- 
formation 

2 
&Y+&=* t&v 

the transformation of the (~2)“” must be of the form 

c&#J2)“” - @Y”=mqL,v,~), 

where j3 = 1 - n/2 and n is the space-time dimension. 

A powerful method for obtaining the most general 
structure of 3 is provided by the concomitants theory. 
The main aim of this paper is to demonstrate the appli- 
cation of the concomitants theory to the particular prob- 
lem of the study of the conformal anomalies of the con- 
formal massless field in six dimensions. The main result is 
the complete list of the invariants that can be used for the 
construction of 3. 

This paper is organized as follows: first we briefly 
summarize the properties of conformal spaces, conformal 
transformations (CT), and conformal theories (Sec. II). 
Then we establish the problem we are interested in (Sec. 
III). Section IV is a comment on the case in four dimen- 
sions. In Sec. V we demonstrate the theorem from which 
the complete set of concomitants follow; in Sec. VI con- 
ditions on them to represent (9’) are given. Section VII 
is a discussion. 

II. CONFORMAL SPACES, CONFORMAL 
TRANSFORMATIONS, AND CONFORMAL THEORIES 

Two spaces, V, and v,, are said to be conformal 
spaces if the metric tensors gpv and & are related by 

g&4 =~2wgp,(x), (1) 

where w ,@ a scalar function.2 Of course, we assume that 
V, and I’, are globally hyperbolic space-times of n di- 
mensions, one temporal, and (n - 1) spatial ones. We 
also assume that the metrics and w2 are C”. 

In order to preserve the relation g,,,&‘P = @‘,, the 
contravariant components of the metric tensor must 
transform like 

p(x)=w-2(x)gc(y(x). (2) 
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The following relation is obtained for the Christoffel sym- 
bols: 

This tensor is called conformal a curvature tensor or a 
Weyl tensor. It may also be proved that any space with a 
null Weyl tensor is conformal to a flat space (n > 3 ). 

~~~=r~~+w-‘(~w,+~~p-gp,~~,), (3) 

where o, stands for a&ax”. With frO we define V, the 
conformally transformed covariant derivative: 

v, A,=VP A,, - o - ’ ( s;o, + s$w, - gp;Ly L?%) f 
(4) 

V~Ay=~~~v---l(~~,+~~~-g~,~~~w,). (5) 

Fields with special properties under CT-Weyl 
fields-may be also defined via the behavior of their co- 
variant components. When one is dealing with massless 
fields, the action-functional S is required to be confor- 
mally invariant: S = S. The action S is 

S= 
s 

=Jf’W,V’Wrl, 

The covariant derivatives indicated by; or V (we use the 
notation that is more convenient in each case) are those 
determinated by the untransformed metric gP,,. 

Calculation of the Riemann tensor of j$,, gives 

@” 
PU 

= w - 2RPv pL7 + q3q9 (6) 

where flz is given by the definition 

n~=4w-‘(w-‘),p,gny-22W;p - ‘co;; lp?;, 

and [ ] means antisymmetrization: 

@bl =i( T”b - I-b”). 

where L is the Lagrangian density, Y is the field, and 

dv= Fgd”x=; FgeP,,,. .~n dtil dxp2. . .dxcl, 

As S = w2”g, then dq = w” dq. So L satisfies 

P=W-“Y, (10) 

and from this requirement Weyl fields are defined: let Y 
have weight r under CT and m indices. A Weyl field 
satisfies VI = (w2)‘Y. To find r we write this condition as 

~~,~2...Pm=02YI~,CL2...Pm’ 

The case n = 1 is evidently of no interest. In two 
dimensions, any metric is reducible to A[(~x’)~ 
f (dx2)2]. It means that any V2 is conformal to flat space 
in two dimensions. So, we will suppose that n > 2. Then, 
the Ricci tensor of the transformed metric is 

%‘,,=w-~R~,,+ (n - 2)0-‘(w-‘);,&~ 

- (n - 2)-1w-“(w”-2),P,&%$, (7) 

and its scalar curvature is 

R=w-2R -2(n - l)w-%O;P,,gl.rv- (n - 1) 

x (n - 4)w-4m;p,w;,p. (8) 

Using these tensors we may write another one as 

Ctpo= Rtp,, + ( n - 2 I- ’ ($R, - @$, + gvSpp 

-gv$vg+ (n- l)-i(n-2>-‘R 

x ceJLp - qkc7)~ (9) 

and we can see that cpO is invariant under CT, 

CPU= Gpe 

and pay attention to the fact that in the Lagrangian den- 
sity we have a kinetic term like 

VpYp,p,2.. .pmV4!~~fQ’ “Pm, 

so (10) will give 

~=(@2)2r-m-l~* (11) 

Considering ( 10) and ( 11) we see that a Weyl field sat- 
isfies 

r=2(m + 1) - n/4+?/2. (12) 

Here we are interested in scalar fields. Then we have 
m = 0 in (12), i.e., 

@=dq, with fl= 1 - n/2. (13) 

We will need to consider the propagator G, G being 

G(x,x’) = (am), (14) 

where ( ) means vacuum expectation value (vev). It is 
immediate from ( 13) that G transforms as 

@x,x’) =&(x)G(x,x’)d(x’), (15) 

or briefly 

z;=cc$Go’? 
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III. STATEMENT OF THE PROBLEM 

We want to use geometrical tools for the discussion of 
the properties of the renormalized value of the mean 
squared massless scalar field (~1~). The mean square 
(9’) is related to the propagator 

G(w’) = (cp(~)q~b’)). (16) 

When performing the coincidence limit x-+x’, (p2) is 
generally divergent and we may write its renormalized 
expression as 

(qj2pn= (ql(x)rp(x’))m”=(T”. (17) 

Here P is obtained by substracting the divergent terms 
Gdiy from the full propagator G, 

Gm=G- GdiV. (18) 

When one performs a CT ( 11) on the ST metric, the 
.s+ar field transforms as ( 13) says. So the transformed 
G rm will be 

fj=n=g- Gdiv. (19) 

Combining (18) and (19) and recalling that G = w”G 
because G = (carp), we find that the transformed (p)- 
must satisfy: 

oqp2>“” - (~)=&~div-,-pGdiv,y-. (3-j) 

But the divergent terms are geometric objects, so F must 
be a function of them, i.e., 9 must be a function of the 
relevant geometrical objects of the ST: The metric and the 
conformal factor, plus their derivatives, because we are 
dealing with a conformally invariant theory. The deriva- 
tives must be taken up to the necessary order to give P- 
the right units. Taking all we have said about transfor- 
mation rules for ((p2) into account, we see that F must 
satisfy 

~@sw = - ~2pm&wv,a, (21) 

where& is defined by (l), v by (41, (5), and Z = l/o. 
Equation (2 1) is an anticonformal transformation. 

IV. (q?) IN FOUR DIMENSIONS 

First we pay attention to the simple case in n = 4. In 
this case, the only functions of (g,,,,V,,o) with the cor- 

I 

rect units are the scalar curvature R (this is the Weyl 
theorem3) and the contractions of two derivatives (each 
one gives one I- ’ ) : VW VW and VVw. We recall that we 
are working in natural units c = fi = 1 and that we 
choose 

kpl= 4 so [w]=l. 

Requiring the action S to be dimensionless as usual im- 
plies [a21 = I2 - n that in n = 4 gives [p2] = I- 2. 

If we want 9 to satisfy condition (21), which is the 
same as wanting it to be anticonformal, we get, 

9-(4)=a(vpv~w/w3), (22) 

where a is some coefficient that has to be obtained from 
comparison with a known example. This is the correct 
expression for F and a is 1/48d.’ 

If we had wanted 9 to satisfy the CT condition, we 
would have obtained 

cgW=,~[,-Z R - 3 ( VpV%do3) ] + /3’( VhG’po/w4), 
(23) 

with a’ and fl two arbitrary coefficients. 

V. THE CONCOMITANTS IN SIX DIMENSIONS 

Now we look for F in six dimensions. Conditions we 
require are the following. 

(i) Function 9 will depend only on geometrical ob- 
jects, i.e., the metric gP,,, the conformal factor w, and their 
derivatives. 

(ii) We assume natural units and we give length units 
to the ST coordinates, so [g,,,] = [w] = 1. We require the 
action S to be dimensionless, as it must be to be able to 
construct the generating functional with it, so in n dimen- 
sions- [Y] = I- n and [q’] = I’ - n + 2). In six dimen- 
sions, [p*] = [G(x,x’)] = Zm4. So we are looking for a 
function 9, 

3- =~(g~~g~Y,p1pI)8c(v,p,p*~...~g~Y,p,,p2 ,..., pp’W~p*‘...‘ql ,,“‘, pq 1, 
(24) 

which has dimensions of I - 4. Because of its dimensions, 
by a change of scale ;1 in 9, we have 

~(g~~~g~v~,‘~2g~v,P,~~...~~pg~~,p*~~ ,..., p ‘~l~%,‘*.*‘~q%* ,..., pq) P =~4~(g~~~~v,p,pl,g~~,p~pIpz’...‘8~y,p,,p* ,...) p P ,w+ ,‘...’ ql ,‘“‘, /&) * 
(25) 

Following the procedure developed by Aldersley,4 we differentiate (25) four times with respect to ,l and make ,‘l 
+ 0 + . Thus we obtain 
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3- = Ay@y‘&pgc$3,ys + A, pvpu~y~&,p&&gwy,B + ~~poa%pv,p&kz,f3a + wpasaSg,v,poGOa,p + wp’p”“BsT~p,yop,~~rP~,~ 
+ A~vpaa~~~P,~p,~,,p + AIC”“a%r,~p,~ + A~pu%+,,w,,8 + AYpuac+,,,poa + A’;o’pp”6’gP~,W~r + ( * + . ). 

(26) 

Here ( . * * ) indicates terms containing gP,,p 
theorem,5 which allows us to replace g 

and A;’ are scalar concomitants of gP,, and oF Now we apply the replacement 
~‘y,p by zero, higher derivatives of g,,, by adequate simetrizations of the curvature 

tensor and its covariant derivative, and partial derivatives of o by its covariant derivatives. On the other hand, A;:” have 
recently been found.6 Replacing all of this in (26) and performing standard calculations, we obtain 

F=a&dhJ2 + u2(d$,” + u3R2 + u4Rp”Rp, + a~R,+~,t + ejR““9pv + a&f,, 

+ a8Rdwp + agdpw”q, + a,&~,,, + ullcP’cob, + u12UR + u13R,d + u~4R~VP%pvpo 

+ %~pUc7 + ~,~w”“#4, + ul@fvpy + %~p”&n 
oPvp means VpVVPo. 

(27) 

VI. PROPERTIES OF THE CONCOMITANTS UNDER ANTI-CONFORMAL TRANSFORMATIONS 

In order to repeat the program that was showed in Sec. IV to obtain (q2)” in four dimensions, we first find the 
conformally transformed quantity that corresponds to each one of the concomitants of the previous section. The result 
of the long but simple computation is the following: 

(iPwp)*=w - ‘2(09hp>2, 

(iQ2= - 0 -40w - (n - 4)w%,w”, 

l?=,-4R2+4(n- ~)*w-~(cLPJ~+ (n- 1)2(n-4)2~-8(~%J2-4(n- lW5R$, 

-2(n- 1)(n--4)c~-~Ro%,+4(n-- 1)2(n-4)~-7WI;~a~W 

f+$,,=, - “@‘Wp,, - 2w - ‘Roug - 2(n-2)w-5R~v~~,+4(,-2),-6R”v~~~,-2(,-3),-6R~u~Wo 

+ (n - 2)%&!P%+,- 4(n-2)%C7CiY%#B,+ (3n-44)w-6(cf&)2+ (4n2-20n+20)0-7w~/P 

+ (n3 - 6n2 + 13n - 8)0-~(w%,)~, 

ii~““ir,,, = c~vwp,, + 4( n - 2) - *a - *RpRP, - 8c1- ‘RF+, + 160 - 6R~“~Pw, - 4w - 6Ro*w, 

+4(n-2)w-6~vo,,+8(~-2)-1w-6(~0,)2-16(n-2)~-7~vo~~,+16(n-3) 

~(n-2)-‘w-~ciPp%,-2(n- l)-‘(n-2)-‘ci1-~R~- [2n3-34n2+ 128n- 1441 

X(n-2)-‘w-8(W%,)2, 

6fyn= - w -“dy* - 2(n-4)0-7Wp~W,,+40-77(W~~)*-(~-10)0-7W~~~cr-2(n-4)w-7~~0;, 

+(9n-48)w-8~a~u~o,-2(,-4)(,-12)~-8~vw,w,+5(n-4)(n-8)~-9(~u~0,)2, 

@‘v;pv= -~--R~vq,y-~-7Rwo~,+ (n-2)~-7~~~+~-7(~u~)2+4W-7R~v~~~~-66(n-2)~-8~v~~~, 

+[(n-2)+(n-3)+(n-4)]w-8~u~~p+[6(n-22)+(n-33)(n--4)lw-9(wuw0~2, 

@v$~w,= w - 8 R P ~+a,,+ (n- 1)o-10(~~P)2-w-9~U&‘~P- (n-2)w-9c+%,~, 
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~~~~-~-6R~,-(,-4)~-7Ro”o,+2(,-1),-7(,u~)2+3(,-l)(n-4)~-8ou~~p+(n-1) 

x (n - 4)%0 - 9(dfqJ2, 

&&-p-8R&o+,-2(n- 1)w-9c#c+c+‘P- (n- l)(n-4)@-‘“(cY’~p)2, 

p -o- p co,= - w - ‘“coQLPw, - (n - 4)0- “(wpwp)2, 

Pv~~y=O -8d%pv- 80-9cP’opo,+ 2co-9wPpw*w,+ (n - ~)o-‘~(w*w,)~ , 

z%&= - 0 - ~“oPv~pw, + 3w - ” ( doJ2, 

@=a-klR - ~u-~R~, + (n - ~)w-~oYR;~ - 2(n - l)w-‘wPppP - 2(n - ~)w-~Rw~w, 

+ 6(n - 1)0-~(wP~)* - 2(n2 - 9n + ~)w-~O”OY’~~ - 2(n - l)(n - 4)w-%P’o,,,- 2(n - 1) 

~(n-4)w~~H-‘~co,+2(5n*-31n+26)w-~WP~o”o,-2(n- l)(n-4)(n- lO)~-~cP’c+,o, 

+ 4(n - l)(n - 4)(n - 7)o-8(woic),)2, 

j& = -o-6~~‘o 
P P 

+zo-7 Rw’-‘w,+ 2(n - l)o-70Pp~o+, - 6(n - l)w-800@& + 2(n - 1) 

X (n - 4)w-8w%,pp - 4(n - l)(n - 4)w-9(waco,)2, 

ip~,,&,=~-~wc(~,p,-- 50-~&@ti~+ (n - ~)w-~GP’w,w,- (4n - 19)o-‘“(c+‘wP)2, 

iPpv= - ~-%Pvp,- 2(n - 6)w-70Pwvp,+ 5co-70P~v,,p- (n - ~)w-~W”“W,,,+ 50-~(usL,)~ 

+ 9(n - ~)o-~LPJo”w,- (n* - 21n + 80)w-8~ovo,v+ (n - 8)(4n - 19)oT9(c+VQ2, 

iPpuG~=o-80C;oo,+2(n -4)w~9wcLwv~~v-4w~9~~wvw,- 5(n -4)o-‘“(~cop)2. 

Imposing the fact that a linear combination with coefficients allowed by Eq. (27)-for example, a number by a power 
of o, i.e., Am=--must be antisymmetric with respect to the corresponding conformally transformed one and also that the 
linear combination must be multiplied by w2 - n to satisfy Rq. (21), one gets an expression like 

ad& + Wvpv + ccHpv~v + do”‘;, o, + e(oPp)2 + fctYvcoP, + go$w”w,, + hcP’a+,w, + jRafp + kRp”o,, + IR,& 

+mRo%,+ nR~“o,p,+p(cAop)*+qUR +sR2+ fR”‘R,,+ u[C~vf’uCp,,-4(n - 2)-‘R”yR,,, 

+2(n- l)-‘(n-2)-‘R2] 

Z-&j (29 -,~-&,yv- . . . -~&~-Q,F;~- . . . +co~-8~pyw~+ . . . +do-#‘pov+ . . . 

+ed’-8(d‘,,2+ *a- +fov-8d‘vcoP,+ *** -gd’-‘“d’a~P+ *** -hho*-‘O&‘copo,+ *a* - jd- 6R~E 

+ kw”-6Rpvw,,+ .*a - Ico~-~R;~o+ + **. + mw~-8Ra+‘op + *.. + nw~-8R~VtiPo,+ *** +p~“-‘~(dc+)~ 

+q&ti + ..* +sI$-~R*+ *.ao”-4Rf%p,+ *.* +uwXC~“W&~+ *.* . 
Joining together coefficients multiplying each concomitant, the set of equations that the coefficients and the expo- 

nents of o must satisfy is obtained. When considering them, it may trivially be seen that there are many possible sets of 
solutions for the equations, for example, 

function F =go14[ w”,wuO + $LP~,], 
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function 9 = Uw’“~PoO +bwlO&‘;,,+ [ -2u-~b-5Z]w9dp”w,+ [ -2u+ (n-6)blco9c$“@,+ [ -2a-zb 

+a(n-h)b- 5j]w9(Oo)2+ [2u+s(n -6)b]~9~v~,v+g~‘4~~~u~~+h~14~v~~~~ 

+j~1oR(~~)+k~1oR~v~~v+Z~1oR~~'o,+3(n-6)bW9R'Lv~~Wv+ [j-Z-%n-6)~1~9R~@p 

+ cg _ $h)w*5(&-,,p)2 + [ - 3~ + {b - y(n - 6)b - lOZ+ 5j - 15k]W’3(~~,)2[plus2u(n - 6) 

+ b(n - 6)2 - 4b(n - 6) =O]. 

One may also admit that the coefficients are of the 
type Aw” In w and obtain another set of equations and 
their respective set of solutions. Morover, one may im- 
pose that coefficients were of a different type than Awa or 
Ad In w. 

VII. DISCUSSION 

We have given the complete set of concomitants of 
the metric, a scalar function, and their derivatives. We 
have not imposed the order of the derivatives because it 
turns out in turn from dimensional considerations. Then 
we have studied their properties under conformal and 
anticonformal transformations. We have given the equa- 
tions that the coefficients must satisfy and some examples 
of the possible solutions. We have shown that-though 
the coefficients for F(4) that give the divergent terms of 
(pz) in four dimensions can be easily obtained (Sec. 
IV)-this is not the case in six dimensions. Comparison 
with the results found for different examples in the 
literature718 does not single out a set of equations for the 
coefficients that determines them completely. We have 

obtained mathematical results on the problem that may 
be useful in several physical problems concerning the 
computing of P” or (q*), even the actual applications 
are not inmediate because finding the constraints that 
another physical requirements-for example, the correct 
value for the trace anomaly-would impose on P”’ or 
(p2) in any geometry, obviously involves extremely long 
calculations. 
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