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A necessary and sufficient condition is established for a state to converge to equilibrium in a 
dynamical system described as a Kolmogorov system. Because the time reversal of a state 
converging to equilibrium does not necessarily share this property, this opens the possibility of 
spontaneous breaking of time reversal symmetry. 

I. INTRODUCTION 

According to the conventional view, the physical Uni- 
verse is composed of two tiers, a microscopic level described 
by deterministic, time reversal invariant laws, and a macro- 
scopic level described in probabilistic, time directed terms. 
The former is the sphere of Classical Mechanics and its heirs, 
such as Quantum Mechanics and Quantum Field Theory, 
while the latter is the preserve of Equilibrium and Nonequi- 
librium Statistical Mechanics. The borderline between the 
two levels was considered observer dependent, in the sense 
that it was the ignorance (on the part of the observer) of the 
true microscopic state of a physical system which caused the 
breakdown of the deterministic description, and its neces- 
sary replacement by the nondeterministic point of view- 
here, of course, we regard Quantum Mechanics as determin- 
istic, in the sense that the time evolution of the state of an 
isolated system is both deterministic and time reversal invar- 
iant. 

It is by now well established that this view of Nature is 
oversimplified. There is a well-known set of dynamical sys- 
tems whose trajectories, while being deterministic, are so 
complex that they cannot be distinguished in any significant 
way from those resulting from stochastic processes.’ In 
some of these systems we even observe two phenomena long 
thought incompatible with deterministic, time reversal in- 
variant dynamics: convergence to equilibrium and spontane- 
ous time symmetry breaking.’ By this last phenomenon we 
mean the existence of states converging to equilibrium only 
when time flows in some well-defined sense. The ensuing 
breaking of time reversal invariance-the two directions of 
time can now be physically distinguished-is spontaneous, 
in the same sense that we apply this word to the breaking of 
rotation invariance in a ferromagnet. 

The implications of the existence of spontaneous time 
symmetry breaking are far reaching. If it were possible to 
show that the Universe itself, considered as a dynamical sys- 
tem, is “chaotic” enough, it could even lead to a new under- 
standing of the second law of thermodynamics, in which this 
law is deduced from time symmetry breaking occurring on a 
cosmic scale.3 It is therefore interesting to point out as clear- 
ly as possible which dynamical systems and what classes of 
states may manifest behavior of this kind. 

In this paper we shall study time symmetry breaking in 

the class of Kolmogorov systems.4 The existence of time 
asymmetric states in these systems has been shown by Cour- 
bage.’ We shall continue his investigation by stating a condi- 
tion which is both necessary and sufficient for a state to con- 
verge to equilibrium (in a sense to be specified below). The 
class of states satisfying this condition is not closed under 
time reversal, in agreement with earlier results. 

The remainder of this paper is organized as follows. We 
have included in the next section some of the necessary back- 
ground on Dynamical Systems theory. In Sec. III we state 
and prove our main results. We also compare our proposed 
condition for convergence to equilibrium with earlier work 
by Courbage.’ We conclude in Sec. IV with some brief re- 
marks on the physical relevance of our results. 

II. DYNAMICAL SYSTEMS 

The statement of our main results in the next section 
requires the introduction of some concepts from ergodic the- 
ory.4 We have included in this section a brief review of this 
background material. 

Following Arnold and Avez,4 we shall call a triad 
(M,,@) an “abstract dynamical system” (ADS), provided 
p is a probability measure on the space M and 4 is a measure 
preserving automorphism (we shall state the relevant defini- 
tions and theorems in the discrete case only; the generaliza- 
tion to the continuous case is more or less immediate). We 
may define several functional spaces, such as the space L ’ of 
summable functions with respect to the measurep, the space 
L ’ of square integrable functions, the space L m of functions 
bounded almost everywhere (a.e. ), etc. The automorphism 
4 induces a transformation U in these spaces, according to 
the rule [ Uf ] (x) = f [ 4(x> 1. Upreserves the natural norm 
on each of these spaces, and in particular it is unitary on L 2. 

An “observable” shall be any real, bounded function on 
M, and a “state” a probability measure. We may use two 
different representations of the dynamics. In the “Heisen- 
berg picture,” the state of the system is given once and for all, 
and observables evolve in (discrete) time according to the 
transformation U. In the “Schrodinger picture” the observa- 
bles remain constant, but states evolve. Namely, the state p 
evolves into the measure Utp, defined as 
U +p (A) = p (4 - ‘A ) for every measurable set A. 

2903 J. Math. Phys. 32 (lo), October 1991 0022-2488/91 /102903-04$03.00 @  1991 American Institute of Physics 2903 



An ADS is called “mixing” if for any measurable sets A 
and 3, 

p(+~Aw-p(mm. (1) 
When n -+ CO. If a system is mixing, then we find 

s 
dp(U”f k- I s &f dpg. (2) 

M M M 

For large enough n whenever f and g belong to L ’ or 
else iff d, ’ and g 6, ~. 

Mixing systems are “chaotic” enough to allow us to dis- 
cuss convergence to equilibrium in a certain sense, within the 
framework of the deterministic evolution of the ADS. Effec- 
tively, consider a state defined by a measure p of the form 
p(A) = J,p(x)dp, wherep(x) is some L ’ function (these 
measures are called “absolutely continuous” with respect to 
p). Then it follows immediately from (2) that 
( U +)“p(A ) -,u (A) for any measurable set A if n is large 
enough. More physically, this means that after a long 
enough time, the probability of finding the system within a 
subset A of M converges to its equilibrium value. The same 
holds for the mean value of any observable. We shall call this 
way of approaching equilibrium “convergence in the weak- 
star ( W * ) sense.” 

We must stress that the convergence to equilibrium of 
certain (“fuzzy” enough) states in this sense is a result of the 
dynamics itself, even if this dynamics is time reversal invar- 
iant, and involves no approximations nor “coarse graining” 
of the space M. On the other hand, the existence of states 
converging to equilibrium in the W * sense does not guaran- 
tee time symmetry breaking. An absolutely continuous state, 
for example, will converge to equilibrium as discrete time 
goes to infinity in either sense. 

Ill. CONDITIONS FOR TIME SYMMETRY BREAKING 

In this section we show the necessary and sufficient con- 
dition for a state p to converge to equilibrium (condition 
TSB below), and the relationship of this condition to sponta- 
neous time symmetry breaking. We also compare these re- 
sults to earlier work by Courbage.’ 

To state our main result we must restrict ourselves to a 
subclass of mixing systems with stronger unstability proper- 
ties. These are the so-called Kolmogorov ( K) systems.4 

An ADS is called a K system if there exists a G algebra 
&’ with f,he following properties: (i) &C&G/ (ii) 
n,c,P4CO (iii) The CT algebra generated by all the #“J& 
equals 1. 

Here 6 and i are the @algebras generated by the measure 
0 sets and the measurable sets, respectively. 

With respect to this definition, we observe that Arnold 
and Avez4 actually require equality in (ii); we adopt this 
more relaxed definition as we think it simplifies the proofs 
below with no significant loss of generality. 

Any K system is mixing,4 and so there are states that 
converge to equilibrium. Courbage’ has shown that, if the 
restriction pM of p to -tp,,,, = 4 - M&’ is absolutely contin- 
uous for some M, then the statep converges to the equilibri- 
um distribution ,u in the W * sense. 

Moreover, if a state p satisfies Courbage’s criterion for 

convergence, then there is a summable functionp, (x) asso- 
ciated with any of its absolutely continuous restrictions. 
Then, after choosing some 44, we can associate top the non- 
equilibrium entropy 

Sk] =JdirpM(x) Inp,(x). (3) 

Courbage’ has shown that S is nondecreasing. How- 
ever, we must point out that there may be absolutely contin- 
uous states with infinite entropy which nevertheless con- 
verge to equilibrium. 

Courbage’s criterion for convergence may be stated for- 
mally as “a statep will converge top in the W * sense if there 
is an N such that, for any set AGY’~, p(A) = 0 implies 
p(A) = 0.” This condition, however, is not necessary. We 
now proceed to state a necessary and sufficient condition for 
convergence. This is: (TSB) “A statep will converge top in 
the W* sense if and only if for every E)O there is an Nsuch 
that, for any set AE&‘,,~(A) = 0 impliesp(A)<e.” 

To see that condition (TSB) is necessary, suppose that, 
for some E)O, we could choose, in each &,,, (N >O), a set AN 
such that ,u(AN) = 0 but ~(A,)>E. Let A = U,qP%,, 
Then,u(A) =O,but UtNp(A)>p(A,,,)>e.Therefore,pcan- 
not possibly converge to equilibrium. 

To see that condition (TSB) is sufficient we must recall 
the following facts. We shall call a real, bounded, g additive 
function on the measurable subsets of M a “charge.” Of 
course, a positive charge is simply a measure. Given a charge 
CT, Mean be decomposed into two sets A and B such that, for 
any set C, a( CfL4) 20, and (T( CC7B) GO. The sets A and 3 
are called positive and negative, respectively. The separation 
ofMinto these two sets is called the “Hahn decomposition.” 

We can show that, for any measurep, there is a set B 
such thatp (B) = 0, and the measurep, (C) = p( CnB ‘) is 
absolutely continuous [that is, ,u ( C) = 0 jp, (C) = 01. 

In effect, consider the Hahn decomposition of A4 into 
sets A, and B,, positive and negative for the charges 
pN = Np - p, N 2 1. Let B = fU?,. Then for every N we 
find ~(B><(l/N)p(B)~(l/N), so p(B) =O. Moreover, 
for every set C we find 

p(ci-w) =p(u(cnBg)) 

Thusp(C) = O=+p,(C) = 0. 
This result can be phrased as: every measure p can be 

Written in the formp = ,oR + ps, wherep, is absolutely con- 
tinuous andp,(C) =p(CnB), wherep(B) = 0. 

If moreover p satisfies condition (TSB) above, we ob- 
tain that for every E there is an N such that ps (C) GE for any 
CE.d;4pN. 

Now letp satisfy condition (TSB), choose E)O and let N 
be the corresponding integer, Let Gd,. For n>N-- &f, 
c, = $75 - “CE.dN, and p(Cd =pN(C,,) =pNR(Cn) 
-l- pNS (C,, ) <pNR (C,, 1 + E. On the other hand, sincep,, is 

absolutely continuous, PNR (C, ) -+pNR (M),u ( C) when 
n-co. NOW clearly 1 >pNR (M) > 1 - E. Therefore, 
p(Cm)-p(C). 

If the set C does not belong to any &,, there is never- 
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theless some N and sets EC CCF in d, such that 
p (F - E) (E. Applying the above result to E and F we find 
that p(@ - “(C)) -+p (C) as n -* 01) also in this case. 

This concludes the proof of the sufficiency of condition 
(TSB) for convergence to equilibrium. We stress the time- 
asymmetric character of this condition, as only the behavior 
of the measure p on the 0 algebras d9, for large N is in- 
volved. Thus it is easy to construct states which satisfy the 
condition above, while their time reversal does not. 

(TSB) actually reduces to Courbage’s condition for 
convergence to equilibrium in the important class of K sys- 
tems known as “Bernoulli shifts.“6*7 

A Bernoulli shift is an ADS where Mis the set of infinite 
sequences {kj, - CO Qj<a} of elements of the set 
Z N+ 1 = {O,L...,N}. 

To define a measure ,u on M we introduce a measure 
(~~,~,,...,p~)onZ,+,. Then the measure of the “cylinder” 
set A j = Ck,/k, = i) is defined asp,, the measure of a non- 
empty finite intersection of cylinders (these sets are also 
called cylinders) as the product of the measures, and the 
measure of disjoint unions is gefined by additivity. The cylin- 
ders generate the 0 algebra 1 of measurable sets. The Ber- 
noulli shift corresponding to this choice of measure is identi- 
fied as B(P~,...,P,~ 1. 

Finally the automorphism 4 is the shift ( q5k)j = kj + 1 . 
The u algebra which makes a Bernoulli shift a K-system 

is the g algebra .@‘O generated by the cylinders Ai withj>O. 
As above, we shall call .d, = 4 - M&o. This is also the 0 
algebra generated by the cylinders withj>M.4 

If a given set C’E&‘~ and p(C) = 0, we may define the 
new set C, of those sequences which differ from the elements 
of C at most in their Nth entry. It is clear that C,E&‘~+ 1, 
,u (C, ) = 0, and CC C, . Recursively, we may define a whole 
increasing sequence C,, of measure zero sets, such that 
C”E.dN + n for each n. If the restriction to &, of a measure 
p is not absolutely continuous, then there is a set C in &,., 
such that ,u ( C) = 0 and p( C) #O. But then in each &,+ )1 
we find the corresponding set C,, and p( C, ) >p ( C), so con- 
dition (TSB) is not satisfied. This shows the equivalence 
between this condition and absolute continuity. 

We shall conclude this section with a concrete example, 
the Bernoulli shift B( l/2,1/2). This is the set of doubly infi- 
nite sequences of coin flips, with heads and tails having the 
same probability. Clearly, all the theory we have developed 
thus far can be immediately applied to this case. 

The B( l/2,1/2) furthermore has an interesting geomet- 
ric interpretation. Consider the sequence 

(...A - , ,k,,k, ,...I 
and form the two real numbers 

(4) 

x=.&~ 
y&L. 91 2j 
Equations (5) and (6) define a transformation from M 

to the unit square, under which the equilibrium measure ,u 
becomes the Lebesgue measure. The shift 4 becomes the 
transformation 

&GY) = (2~ (mod 1 A(y + [2x] )/2). (7) 

(Where [ ] denotes the integer part). This transforma- 
tion is known as the “Baker’s transformation.“2*8 

The cylinders A i are sets of horizontal stripes if j(0; 
there are 2 -j- ’ equally spaced stripes of width 2j. If&O, the 
stripes are vertical. As $(A;) = Ai-, , the Baker’s trans- 
form turns “fences” into “ladders.” The time reversal oper- 
ation is the exchange of x and y. 

Points along a vertical line tend to converge under the 
evolution; these are the so-called “contracting fibers.” On 
the contrary, points along a horizontal line tend to be scat- 
tered all over the square; these are the “dilating fibers.” 
States concentrated on dilating fibers (but smooth in the x 
direction) converge to equilibrium. States concentrated on 
contracting fibers do not tend to equilibrium. This, there- 
fore, shows that time symmetry can be spontaneously 
broken in this dynamical system. 

IV. FINAL REMARKS 

In this paper we have stated a necessary and sufficient 
condition for convergence to equilibrium in a Kolmogorov 
system. The condition obtained is time asymmetric. Indeed, 
time symmetry is spontaneously broken by states converging 
to equilibrium only in a given sense of time. 

It seems fair to say that for the time being the relevance 
of these results to physics is mainly conceptual, in that they 
highlight an aspect of the relationship between irreversible 
behavior and the microscopic laws of motion which has been 
unduly neglected in the past. The states which actually break 
time symmetry are highly singular with respect to the equi- 
librium measure of the dynamical system, and therefore it is 
not clear that they play a major role in ordinary irreversible 
behavior as it is studied in Thermodynamics. States which 
are absolutely continuous with respect to the equilibrium 
measure satisfy condition TSB above, and therefore con- 
verge to equilibrium in the weak-star sense, but they do so in 
either time direction. 

In this connection it is worth noting another remarkable 
characteristic of Kolmogorov systems, that they allow for 
the definition of a (Kolmogorov) “entropy” depending on 
the dynamics of the system alone, without invoking either 
coarse graining or lack of knowledge on the part of the ob- 
server. The exact relationship of Kolmogorov entropy to the 
usual thermodynamical one is a subject of active research.’ 

Moreover, Kolmogorov systems are worth studying on 
their own right, as many chaotic systems contain invariant 
subsystems belonging to this class.” 

To conclude, we would like to suggest an important but 
somewhat unconventional field in which spontaneous time 
symmetry breaking may be relevant. This is the origin of 
irreversible evolution in Cosmology. 

As we mentioned in the Introduction, spontaneous time 
symmetry breaking may have occurred in the early stages of 
the cosmic evolution. It is well known that according to pres- 
ent observations our Universe appears to be highly homoge- 
neous and isotropic now, but it was not necessarily so earlier 
in its evolution. If one relaxes the requirement of isotropy, 
while considering only homogeneous Universes, there are 
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strong theoretical arguments” leading to the conclusion 
that, close enough to the initial singularity or Big Bang, the 
Universe may be described by a so-called Bianchi type IX 
model.12 These models are known to be chaotic, and indeed 
they can be closely approximated by a Bernoulli shift. I3 

Through spontaneous time symmetry breaking, chaos 
in the Bianchi type IX models may be responsible for a new 
“arrow of time” alongside the already known cosmological, 
electromagnetic and thermodynamical ones. l4 Moreover, if 
a connection between this “chaotic” arrow of time and the 
other ones could be demonstrated, this would give new con- 
tent to Penrose’s conjecture that the direction of time flow 
has been determined by the state of the Universe in its earli- 
est stages of development. I5 We shall delve into this topic in 
greater detail elsewhere.3 
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