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1. Introduction and preliminaries

Given a bounded linear operator T on a separable Banach space B, the fact that an operator has invariant subspaces may
not tell you much about the operator. On the other hand, knowing that an operator has a large number of invariant closed
subspaces, and, in particular, a structured family, may make it possible to obtain a lot of information about the action of
the operator on B. In this context, it is helpful to focus on the behavior of the cyclic subspaces generated by the elements
of B under T ; in other words, focusing on the subspace

Kx = span
{

T nx: n � 0
}B,

where x ∈ B. Here T 0 denotes the identity operator I and T n = T ◦ n times· · · ◦T .
It turns out that knowing the cyclic subspaces of concrete operators on an infinite dimensional separable Hilbert space H

(operators that are universal) would solve the long-standing open question known as the Invariant Subspace Problem. Recall
that an operator U on H is called universal, in the sense of Rota [14], if for any bounded linear T on H, there exist
a complex constant λ �= 0 and a closed invariant subspace M of U such that U |M is similar to λT .

Note that every bounded linear operator on an infinite dimensional separable Hilbert space H would have a non-trivial
(closed) invariant subspace M, that is, M �= {0} and M �= H, if and only if the minimal invariant subspaces of a universal
operator U on H are just one-dimensional. In the eighties, Nordgren, Rosenthal and Wintrobe [13] proved that if ϕ is
a hyperbolic automorphism of the unit disc and λ is in the interior of the spectrum of the composition operator Cϕ acting
on the classical Hardy space H2, then Cϕ − λI is a universal operator on H2 (see also [12]). Of course, the lattice of
the closed invariant subspaces of Cϕ − λI coincides with that of Cϕ . Thus, it is important to study the closed invariant
subspaces of Cϕ in H2 and, in particular, the cyclic subspaces generated by H2 functions.

Our discussion turns naturally to the factorization of f ∈ H p into its inner and outer factor. The inner factor can be
factored further, into a piece carrying all of its zeros (the Blaschke factor) and one with no zeros (the singular inner factor).
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If the zero sequence of the Blaschke product is an interpolating sequence, the Blaschke product is said to be interpolating.
An important subclass of the interpolating Blaschke products is the set of thin Blaschke products; recall that a Blaschke
product B with zeros {zn}n�1 is said to be thin if∏

n �=k

ρ(zn, zk) → 1

as k → ∞, where ρ denotes the pseudo-hyperbolic distance in the open unit disc D. When this holds, {zn} is called a thin
sequence. Thin Blaschke products have the closest behavior to finite Blaschke products that we can expect from infinite
ones.

When ϕ is a non-elliptic automorphism, in [8] the first two authors exhibited Blaschke products that are cyclic for
Cϕ by showing that the closed linear span of the limit points of their orbits is the whole space H2. Clearly, this forces
such Blaschke products to be infinite, since the limit points of orbits of finite Blaschke products are constant functions of
modulus 1. Here, we consider an arbitrary thin Blaschke product and characterize the closed linear span of limit points of
its orbit, which is trivially invariant for Cϕ . Concretely, we prove the following (see Theorem 2.4): Let Lϕ(B) denote the set
of limit points, in the H2 norm, of the orbit of a thin Blaschke product B under the composition operator Cϕ where ϕ is a
non-elliptic automorphism. Then the H2-closure of the linear span of Lϕ(B) is either

H2 or
(
zbH2)⊥

,

where b is a Blaschke product with simple (or no) zeros that satisfies b ◦ϕ = γ b for some γ ∈ ∂D. We then proceed to show
that the same result holds for the Hardy spaces H p when 1 � p < ∞. We find the appearance of model spaces surprising,
and we also see from this result that a natural question follows: What are the eigenfunctions of Cϕ? It is easy to see that
f is an eigenfunction if and only if the same is true for its Blaschke, singular and outer factors.

In [4] Cowen studied eigenfunctions for composition operators. Later, Matache [10] characterized the singular inner
eigenfunctions of Cϕ in terms of the behavior of pull-back measures (see also [11] for discrete singular inner functions).
Our approach provides separate characterizations for Blaschke products, singular inner functions and outer functions in H p

that are eigenfunctions. The basic idea is the same in each of the three cases, but some of the technicalities are differ-
ent.

The rest of the paper is organized as follows. Section 2 is devoted to studying the orbit of thin Blaschke products. In
Section 3 we characterize the eigenfunctions of composition operators induced by non-elliptic disc automorphisms. Finally,
and for the sake of completeness, we end this preliminary section by recalling some basic results and notation.

1.1. Notation and basic results

Throughout this paper the open unit disc of the complex plane will be denoted by D and ∂D will stand for its boundary.
We will denote the space of holomorphic functions on D endowed with the topology of uniform convergence on compacta
by H(D).

Recall that the Hardy space H p , 1 � p < ∞, consists of holomorphic functions f on D for which the norm

‖ f ‖p =
(

sup
0�r<1

2π∫
0

∣∣ f
(
reiθ )∣∣p dθ

2π

)1/p

is finite. The space consisting of bounded analytic functions on D endowed with the sup-norm will be denoted by H∞ .
A classical result due to Fatou states that every Hardy function f has non-tangential limit at eiθ ∈ ∂D, except possibly on
a set Lebesgue measure zero (see [6], for instance). Throughout this work, f (eiθ ) will denote the non-tangential limit of f
at eiθ .

Recall that an automorphism ϕ of D can be expressed in the form

ϕ(z) = eiθ p − z

1 − pz
(z ∈ D),

where p ∈ D and −π < θ � π . Recall that ϕ is called hyperbolic if |p| > cos(θ/2) (thus, ϕ fixes two points on ∂D); parabolic
if |p| = cos(θ/2) (so, ϕ fixes just one point, located on ∂D) and elliptic if |p| < cos(θ/2) (therefore, ϕ fixes two points in the
Riemann sphere, one in D and the other outside D, see [1], for example).

Throughout this paper, the involution that interchanges 0 and w will be denoted by

ϕw(z) = w − z

1 − wz
,

where z ∈ D. For w ∈ D, we shall always denote this automorphism by ϕw . The pseudo-hyperbolic and hyperbolic metrics
for z, w ∈ D are given, respectively, by
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Fig. 1. A possible choice of Dϕ when ϕ is a hyperbolic automorphism.

Fig. 2. A possible choice of Dϕ when ϕ is a parabolic automorphism.

ρ(z, w) = ∣∣ϕw(z)
∣∣ and β(z, w) = log

1 + ρ(z, w)

1 − ρ(z, w)
,

and we will denote by Dρ(z, r) and Dβ(z, R) the respective closed balls of center z and radius r, with 0 � r < 1 and
R � 0.

If ϕ is a non-elliptic automorphism and n ∈ Z (an integer), we denote by ϕ(n) the |n|-th iterate of ϕ if n > 0, of ϕ−1 if
n < 0, and the identity map if n = 0. The action on D of the group Gϕ = {ϕ(n): n ∈ Z} leads naturally to the consideration
of the quotient space D/Gϕ , where we are identifying points z, w ∈ D such that ϕ(n)(z) = w for some n ∈ Z.

Since the class of z ∈ D in D/Gϕ is the bilateral orbit oϕ(z) = {ϕ(n)(z): n ∈ Z}, we can represent D/Gϕ by any sub-
set Dϕ ⊂ D such that oϕ(z) ∩ Dϕ is a singleton for every z ∈ D. Figs. 1 and 2 show reasonable choices of Dϕ when ϕ
is hyperbolic and parabolic, respectively. We can transfer the quotient topology of D/Gϕ to Dϕ , so that the one-to-one
correspondence becomes a homeomorphism.

This identification allows us to think of the quotient map P : D → D/Gϕ � Dϕ as a map onto Dϕ ; that is, P (z) =
oϕ(z) ∩ Dϕ , defines a continuous map from D onto Dϕ , where Dϕ has the quotient topology. So, Dϕ can be identi-
fied with a subset of D, but endowed with the topology where a base of neighborhoods of a point z ∈ Dϕ is given by
{w ∈ Dϕ : infn∈Z |w − ϕ(n)(z)| < ε}, for ε > 0. From Figs. 1 and 2 it is not difficult to see that in both cases Dϕ is homeo-
morphic to a two-sided truncated cylinder without the upper and lower boundaries.
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2. Orbits of thin Blaschke products

We study the orbit of thin Blaschke products under composition operators induced by non-elliptic automorphisms, char-
acterizing the closed set of its limit points (in the H2 norm).

If ϕ is a self-map of D and f is analytic in D, that is, f ∈ H(D), the orbit of f is defined by Oϕ( f ) = { f ◦ ϕ(n): n � 0}.
When f is a bounded analytic function, that is, f ∈ H∞ , the orbit Oϕ( f ) is precompact in the compact-open topology of
H(D), so it makes sense to define the limit set

Lϕ( f ) = {
g ∈ H∞: f ◦ ϕ(nk) → g in H(D) for some subsequence {nk}

}
.

By the corollary that follows Proposition 2 in [2], any sup-norm bounded sequence that converges in H(D) also converges
weakly in H p for 1 < p < ∞. Thus the points in Lϕ( f ) belong to the H p -closure of the convex hull of Oϕ( f ). As we will
show later, more can be said in case f is a thin Blaschke product. We proceed with a technical lemma that will be needed
for our description of Lϕ(B) when B is a thin Blaschke product.

Lemma 2.1. Let {zn} in D be a sequence such that |zn| → 1, 0 � rk < 1 be any sequence and 0 < δk < 1 be a sequence that tends to 1.
Then there is a subsequence {znk } of {zn} such that any sequence of points ξk ∈ Dρ(znk , rk) satisfies∏

j �=k

ρ(ξ j, ξk) > δk.

In particular, {ξk} is thin.

Proof. Let x j ∈ (0,1) be a thin sequence such that
∏

j �=k ρ(x j, xk) > δk . It will be enough to choose the points znk so that

ρ(Dρ(znk , rk), Dρ(zn j , r j)) � ρ(xk, x j)
def= αk, j for all k �= j or, equivalently,

β
(

Dβ(znk , Rk), Dβ(zn j , R j)
)
� βk, j for j < k,

where

Rk = log
1 + rk

1 − rk
and βk, j = log

1 + αk, j

1 − αk, j
.

This is quite easy to do inductively. Once zn1 , . . . , znk−1 are chosen, simply take znk such that β(znk , {zn1 , . . . , znk−1 }) > Rk +∑k−1
j=1(R j + βk, j). �
The preceding lemma resembles that of Wolff and Sundberg [15, Lemma 5.4], though we do not need to control the

pseudo-hyperbolic distance from our given sequence as they do. Instead, we pass to a subsequence to obtain the properties
we need. Our next result provides a description of all the sets in H(D) of the form Lϕ(B), where B is a thin Blaschke prod-
uct. The description contains some undetermined constants that will be irrelevant later when we take linear combinations
(in the proof of Theorem 2.4).

Proposition 2.2. Let ϕ be a non-elliptic automorphism. If B is a thin Blaschke product, then there exists a nonempty set V ⊆ ∂D such
that

Lϕ(B) = {λϕw : w ∈ E, for some λ ∈ ∂D} ∪ V , (2.1)

where E ⊂ D is closed in D with ϕ(E) = E. Conversely, given any such set E, there is a thin product B and a set V such that Lϕ(B) is
given by (2.1). Also, given B,

E = {
w ∈ D: ∃z j ∈ Z(B) and integers m j → +∞ such that ϕ(−m j)(z j) → w

}
.

Proof. Observe in advance that for B thin, every H(D)-convergent subsequence of {B ◦ ϕ(n)} tends either to λϕw or λ,
for some λ ∈ ∂D and w ∈ D. This is because if B ◦ ϕ(nk) → f in H(D), there are three possible situations: in the first
one, | f (0)| = 1 and consequently B ◦ ϕ(nk) → λ ∈ ∂D. If f (0) = 0, then the definition of thin Blaschke product along with
Schwarz’s lemma shows that there exists λ ∈ ∂D such that f (z) = λz (see [9, Proposition 2.3], for instance). Finally, if
ξ = f (0) �= 0 and |ξ | < 1, then a computation shows that ϕξ ◦ B is thin and ϕξ ◦ B ◦ ϕ(nk) → γ z for some γ ∈ ∂D. Thus,
B ◦ ϕ(nk) → ϕξ (γ z) = λϕw(z), for some λ ∈ ∂D and w ∈ D.

First we show that if B is a thin product, there is some λ ∈ ∂D that is a limit point of {B ◦ϕ(n)}. Otherwise, the maximum
modulus principle implies that supn�0 |B(ϕ(n)(0))| < α for some α < 1. Thus, there exists R > 0 such that

ϕ(n)(0) ∈ {
z:

∣∣B(z)
∣∣ < α

} ⊂
⋃

Dβ(v, R)
v∈Z(B)



E.A. Gallardo-Gutiérrez et al. / J. Math. Anal. Appl. 388 (2012) 1013–1026 1017
for all n � 0. This is true because a thin product B satisfies |B(z)| → 1 as β(z, Z(B)) → ∞ (see [7, Chapter X, Lemma 1.4]).
Since {ϕ(n)(0)} is an interpolating sequence (see Section 3), the number of points contained in each of these balls, Dβ(v, R),
must be bounded independently of the ball, say by m. Consider only the zeros vk of B such that Dβ(vk, R) contains some
point ϕ(nk)(0). Thus, at least one of the points ϕ(nk)(0),ϕ(nk+1)(0), . . . , ϕ(nk+m)(0) must be contained in a different ball,
Dβ(v j, R), with j �= k. Hence,

β(vk, v j) � β
(

vk,ϕ
(nk)(0)

) +
m−1∑
l=0

β
(
ϕ(nk+l)(0),ϕ(nk+l+1)(0)

) + R

� R +
m−1∑
l=0

β
(
ϕ(0)(0),ϕ(1)(0)

) + R

= 2R + mβ
(
0,ϕ(0)

)
,

where the second inequality holds because β is ϕ-invariant, and this happens for every k. On the other hand, since {vk} is
a thin sequence, β(vk, {v j: j �= k}) → ∞ as k → ∞, a contradiction.

Now suppose that w ∈ E = {w ∈ D: λϕw ∈ Lϕ(B) for some λ ∈ ∂D}. Then there is a sequence {nk} such that B ◦ ϕ(nk) →
λϕw . So, for any m ∈ Z, B ◦ ϕ(nk+m) → λ(ϕw ◦ ϕ(m)). Now, ϕw ◦ ϕ(m) vanishes at ϕ(−m)(w), so taking m = −1,1 we see
that ϕ(1)(w),ϕ(−1)(w) ∈ E . Thus, ϕ(E) = E . The fact that E is closed in D follows from a diagonal argument: indeed, if
ws ∈ E is a sequence that tends to w ∈ D, then for each s there exists a sequence {nk(s)} such that B ◦ ϕ(nk(s)) → λsϕws for
some λs ∈ ∂D, when k → ∞. We may assume that the sequence λs converges to some λ0 ∈ ∂D, and then we can extract a
sequence from B ◦ ϕ(nk(s)) that tends to λ0ϕw , so w ∈ E .

To prove the converse, first consider the case in which E = ∅. Since ϕ(n)(0) → γ ∈ ∂D, the attractive fixed point of ϕ , for
every Blaschke product B with zeros that do not accumulate at γ we have B ◦ ϕ(n) → B(γ ) ∈ ∂D in H(D).

If E �= ∅, choose a sequence {α j} that is dense in E and change it to {wk}k�1, given by

α1,α1,α2,α1,α2,α3,α1, . . . ,

so that, as sets {wk}k�1 = {α j} j�1, and the set of limit points in D of the sequence {wk} is E . Write ϕ(n) = λnϕzn , where
|λn| = 1 and zn ∈ D (every automorphism can be written in this form), and observe that |zn| → 1. Now use Lemma 2.1 to
choose a subsequence {z−nk } of {z−n}n�0 such that any sequence with one point in each Dρ(z−nk , |wk|) is thin. Consider

B(z) =
∏
k�1

γk
(
ϕwk ◦ ϕ(−nk)

)
(z) =

∏
k�1

γkϕwk

(
λ−nkϕz−nk

(z)
)
,

where γk ∈ ∂D are chosen so that either each factor is positive at the origin or it is z. The zeros of B are ϕz−nk
(λ−nk wk) ∈

Dρ(z−nk , |wk|). If w ∈ E , there is a subsequence wk j → w , and

B ◦ ϕ
(nk j

) = ϕwk j
γk j

∏
k �=k j

γk
(
ϕwk ◦ ϕ

(−nk+nk j
))

.

Since every H(D)-convergent subsequence of {B ◦ ϕ
(nk j

)} tends either to λϕz∗ or λ, for some λ ∈ ∂D and z∗ ∈ D, and in our

case ϕwk j
→ ϕw , it follows that the convergent subsequences of {B ◦ ϕ

(nk j
)} tend to automorphisms of the form λϕw , for

some λ ∈ ∂D. On the other hand, if there is λ ∈ ∂D such that λϕw ∈ Lϕ(B), we will show that w ∈ E . For any integer m:

Z
(

B ◦ ϕ(m)
) = ϕ(−m)

(
Z(B)

) = {
ϕ(−m+nk)(wk): k � 1

} ⊂ E,

where the last inclusion holds because {wk}k�1 ⊂ E and ϕ(E) = E . If λϕw ∈ Lϕ(B) for some λ ∈ ∂D then 0 =
infm�0 ρ(w, Z(B ◦ ϕ(m))) � ρ(w, E), and consequently w ∈ E because E is closed.

For the last assertion of the proposition, suppose that B is a thin product with associated set E . Then w ∈ E if and only
if there exists a sequence m j → +∞ such that B ◦ ϕ(m j) → λϕw for some λ ∈ ∂D. This means that B(ϕ(m j)(w)) → 0, and
since B is an interpolating Blaschke product, this holds if and only if ρ(ϕ(m j)(w), Z(B)) → 0 (see [7, p. 395]). That is, there
is a sequence {z j} in Z(B) such that ρ(ϕ(m j)(w), z j) = ρ(w,ϕ(−m j)(z j)) → 0, or equivalently, w = limϕ(−m j)(z j). �
Lemma 2.3. Let B be a thin Blaschke product. Then the H2-limit points of Oϕ(B) are precisely the functions in Lϕ(B).

Proof. If g is an H2-limit point of Oϕ(B), there is a sequence B ◦ ϕ(nk) → g in H2. It is clear that g ∈ H∞ and bearing in
mind that norm convergence in H2 implies uniform convergence on compacta, it follows that g ∈ Lϕ(B).

Conversely, if g ∈ Lϕ(B), there is a sequence B ◦ϕ(nk) → g uniformly on compacta. This, plus the fact that ‖B ◦ϕ(nk)‖2 = 1,
implies that B ◦ ϕ(nk) → g weakly in H2. By Proposition 2.2, we have that either g = λϕw or g = λ, for some λ ∈ ∂D and
w ∈ D. Hence,
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∥∥B ◦ ϕ(nk) − g
∥∥2

2 = 2 − 2 Re
〈
B ◦ ϕ(nk), g

〉 → 2
(
1 − ‖g‖2) = 0 (2.2)

as k → ∞, and the lemma follows. �
Now, we are in position to state the main result of this section. If N ⊂ H2 is a closed subspace, we denote its orthogonal

complement by N⊥ .

Theorem 2.4. Let ϕ be a non-elliptic automorphism and B be a thin product. Write H = span Lϕ(B) for the closure in H2 of the linear
span of Lϕ(B). Then

H = H2 or H = (
zbH2)⊥

,

where b is a Blaschke product with simple (or no) zeros that satisfies b ◦ ϕ = γ b for some γ ∈ ∂D. Conversely, if H is either of the
above spaces, there is a thin product B such that span Lϕ(B) = H.

Proof. Since Proposition 2.2 says that Lϕ(B) contains a non-null constant and for w ∈ D \ {0},

wϕw(z) = w
w − z

1 − wz
= 1 − 1 − |w|2

1 − wz
, (2.3)

the same proposition tells us that a subspace H ⊂ H2 has the form H = span Lϕ(B) for B thin if and only if there is a
relatively closed set E ⊂ D, with ϕ(E) = E , such that

H = spanH2

[
{1} ∪

{
1

1 − wz
: w ∈ E

}
∪ {z: if 0 ∈ E}

]
.

We recall that the function K w(z) = (1 − wz)−1 is the reproducing kernel in H2 for w ∈ D, meaning that 〈 f , K w〉 = f (w)

for all f ∈ H2. So, a function f is orthogonal to H if and only if f (0) = 0, f (w) = 0 for all w ∈ E , and f ′(0) = 0 when
0 ∈ E . That is,

H⊥ = {
f ∈ H2: f ∈ zH2, f ≡ 0 on E and f ∈ z2 H2 if 0 ∈ E

}
.

There are four possibilities: E = ∅, E �= ∅ is not a Blaschke sequence, or E is a Blaschke sequence, in which case we
distinguish temporarily between the cases 0 /∈ E and 0 ∈ E . If E = ∅, then H⊥ = zH2. Since the zeros of a non-null function
in H2 form a Blaschke sequence, when E is not such sequence we have H⊥ = {0}. If E is a Blaschke sequence, let b and
b0 be Blaschke products that satisfy Z(b) = E and Z(b0) = E \ {0}. If 0 /∈ E , we get H⊥ = zH2 ∩ bH2 = zbH2. On the other
hand, if 0 ∈ E we get H⊥ = b0 H2 ∩ z2 H2 = z2b0 H2 = zbH2. Summing up,

1. H = H2 ⇔ E is not a Blaschke sequence.
2. H = C ⇔ E = ∅.
3. H = (zbH2)⊥ , with Z(b) = E ⇔ E is a Blaschke sequence, whether 0 ∈ E or not.

Finally, in the last case we have Z(b ◦ ϕ) = ϕ−1(Z(b)) = ϕ−1(E) = E = Z(b). Therefore b ◦ ϕ and b are Blaschke products
with the same zeros, which means that b ◦ ϕ = γ b for some unimodular constant γ . �

By Theorem 2.4, the equality is attained in the inclusion span Lϕ(B) ⊆ span Oϕ(B) if and only if span Lϕ(B) = H2 or
span Lϕ(B) = (zbH2)⊥ , where b is a non-constant Blaschke product as in the theorem, and B ∈ (zbH2)⊥ . This means that
zbB = zv , where v ∈ H2 is inner, or equivalently, that B divides b. Our next example shows that span Lϕ(B) can be much
smaller than span Oϕ(B).

Example 2.5. There exist thin Blaschke products B such that

span Oϕ(B) = H2 and span Lϕ(B) = C.

Proof. Let {wk} be a sequence in Dϕ such that |wk| → 1 and whose set of non-tangential accumulation points has positive
measure. We show the existence of such a sequence as follows: take any maximal sequence in D that satisfies β(w j, wk) �
δ > 0 if k �= j. Since the sequence is hyperbolically separated, it does not accumulate on D. We claim that it accumulates
non-tangentially at every point of ∂D.

Otherwise, for every angle 0 < α < π/2, there is a point ξ ∈ ∂D such that some non-tangential sector with vertex ξ

and half opening α does not contain any point wk . If α is big enough we have that the hyperbolic distance of rξ to the
sequence is larger than δ when r < 1 is close to 1. This contradicts the maximality of the sequence. Hence, the intersection
of this sequence with Dϕ satisfies the desired condition.
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As we did in the proof of Proposition 2.2, we can use Lemma 2.1 to pick nk → +∞ so that the Blaschke product

B(z) =
∏
k�1

γk
(
ϕwk ◦ ϕ(−nk)

)
(z)

with zeros ϕ(nk)(wk) is thin. Moreover, by Lemma 2.1 we can choose nk → ∞ so fast that B is as ‘thin’ as we wish, meaning
that if j � 1 and B j := ∏

k �= j γk(ϕwk ◦ϕ(−nk)), then |B j(ϕ
(n j)(w j))| is so close to 1 as we predefine (by choosing δ j → 1 fast

enough in Lemma 2.1). Furthermore, since for every h ∈ H∞ , with ‖h‖∞ � 1, and w ∈ D, the Schwarz–Pick inequality easily
yields ρ(|h(w)|, |w|) � |h(0)| (see [7, Chapter I, Corollary 1.3]), taking h = B j ◦ ϕ(n j) and w = w j , we can ensure that the
right-hand side of

ρ
(∣∣B j ◦ ϕ(n j)(w j)

∣∣, |w j|
)
�

∣∣B j ◦ ϕ(n j)(0)
∣∣

is as close to 1 as desired. In particular, we can impose the condition

(1 − |B j ◦ ϕ(n j)(0)|2) 1
2

1 − |w j|2 → 0. (2.4)

We will check that span Oϕ(B) = H2. Suppose that f ∈ H2 is orthogonal to Oϕ(B). By Proposition 2.2, f ⊥ C. So, using (2.3),
f ⊥ (B ◦ ϕ(nk)), f ⊥ C and

B ◦ ϕ(nk) = (
Bk ◦ ϕ(nk)

)
γkϕwk (k � 1),

successively in the following chain of equalities, we get

γk Bk
(
ϕ(nk)(0)

)
f (wk) = 1

1 − |wk|2
〈
f , (1 − wkϕwk )γk

(
Bk ◦ ϕ(nk)

)
(0)

〉
= 1

1 − |wk|2
〈
f , wk

(
B ◦ ϕ(nk)

) + (1 − wkϕwk )γk
(

Bk ◦ ϕ(nk)
)
(0)

〉
=

〈
f ,

wk

1 − |wk|2
(

B ◦ ϕ(nk)
) − γk wk

1 − |wk|2 ϕwk

(
Bk ◦ ϕ(nk)

)
(0)

〉

= wk

1 − |wk|2
〈
f , γkϕwk

[(
Bk ◦ ϕ(nk)

) − (
Bk ◦ ϕ(nk)

)
(0)

]〉
.

Consequently

∣∣Bk
(
ϕ(nk)(0)

)∣∣∣∣ f (wk)
∣∣ � |wk|

1 − |wk|2 ‖ f ‖2
∥∥(

Bk ◦ ϕ(nk)
) − (

Bk ◦ ϕ(nk)
)
(0)

∥∥
2

= |wk|
1 − |wk|2 ‖ f ‖2

(
1 − ∣∣(Bk ◦ ϕ(nk)

)
(0)

∣∣2) 1
2 → 0

by (2.4); that is, f (wk) → 0. Since the sequence {wk} accumulates non-tangentially on a set of positive measure in ∂D, the
non-tangential limits of f must vanish on a set of positive measure, implying that f = 0. This proves our claim.

The equality span Lϕ(B) = C will follow from the last assertion of Proposition 2.2 if we show that the set E associated
with B is empty. So, suppose that w ∈ E . Since the zeros of B are ϕ(nk)(wk), the proposition says that there are integers

m j,k j → +∞ such that ϕ(−m j)(ϕ
(nk j

)
(wk j )) → w . Applying the quotient map P : D → Dϕ , we obtain

lim wk j = lim P
(
ϕ

(−m j+nk j
)
(wk j )

) = P (w) ∈ Dϕ,

where the limit is taken in the Dϕ topology. This is not possible, because |wk j | → 1. �
2.1. Generalization to Hardy spaces

The proof of Theorem 2.4 is more natural and transparent in the context of the Hilbert space H2, but with very minor
modifications we can see that both Lemma 2.3 and Theorem 2.4 are valid for H p when 1 � p < ∞. We recall that the
composition operator Cϕ is bounded on H p for p � 1 (see [5, p. 121]). To see that the lemma holds simply replace (2.2) by∥∥B ◦ ϕ(nk) − g

∥∥p
p �

∥∥B ◦ ϕ(nk) − g
∥∥p−1

2(p−1)

∥∥B ◦ ϕ(nk) − g
∥∥

2 � 2p−1
∥∥B ◦ ϕ(nk) − g

∥∥
2,

which by (2.2) tends to 0 as k → ∞, where the first inequality is the Cauchy–Schwarz inequality and the second holds
because |B ◦ ϕ(nk) − g| � 2.
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Let 1 < p < ∞ and N ⊂ H p be a subspace. The annihilator of N is

N⊥ = {
f ∈ Hq: 〈h, f 〉 = 0 for all h ∈ N

}
,

where 1/p + 1/q = 1. Mimicking the proof of Theorem 2.4 we see that if ϕ is a non-elliptic automorphism and B is a thin
product, a space H ⊂ H p has the form H = spanH p Lϕ(B) if and only if it is closed and H⊥ = {0} ⊂ Hq or H⊥ = zbHq ,
where b is a Blaschke product as in Theorem 2.4. This is the same as saying that

H = H p or H = (
zbHq)⊥ = H p ∩ bH p,

where the bar means complex conjugation. This is the H p version of Theorem 2.4 for 1 < p < ∞. The result for H1 requires
a different argument. Since the first of the following spaces

span Lϕ(B) ⊂ spanH2 Lϕ(B) ⊂ spanH1 Lϕ(B) := H

is dense in the latter, so is the one in middle, which by Theorem 2.4, is either H2 or H2 ∩bH2, with both cases occurring. In
the first case H = H1 and in the second, H is the H1-norm closure of H2 ∩bH2, which by Lemma 5.8.14 of [3] is H1 ∩bH1.
This gives Theorem 2.4 for H1.

3. A constructive characterization of eigenvectors

While our work in this section is related to those in [4, Section 4], our approach to the problem is quite different.
The function h(z) = i 1+z

1−z maps D onto C+ = {v ∈ C: Im v > 0}, with h−1(v) = v−i
v+i . If ϕ is a hyperbolic automorphism of D,

by conjugating Cϕ with an invertible operator, we can assume that its fixed points are −1 and 1, where 1 is the attractive
point. Thus, ϕ = h−1 ◦ ϕ̃ ◦ h, where ϕ̃ : C+ → C+ is ϕ̃(w) = αw , with α > 1 (see [1], for instance). A straightforward
calculation shows that

ϕ(z) = −ϕ 1−α
1+α

(z) and ϕ(n)(z) = −ϕ 1−αn

1+αn
(z), ∀n ∈ Z. (3.5)

The same argument with ϕ : D → D parabolic, where we now assume that its fixed point is 1, and therefore ϕ̃(w) =
w + t , with t ∈ R \ {0}, shows that

ϕ(z) =
(

t − 2i

t + 2i

)
ϕ t

t−2i
(z) and ϕ(n)(z) =

(
nt − 2i

nt + 2i

)
ϕ nt

nt−2i
(z), ∀n ∈ Z. (3.6)

We can further assume that t > 0, since otherwise the treatment is analogous.
From the above expressions for ϕ̃ , it is easy to see in both cases that if w0 ∈ C+ then {ϕ̃(n)(w0): n ∈ Z} is an interpolat-

ing sequence for H∞(C+) (see [7, Chapter VII]), so {ϕ(n)(z0): n ∈ Z} is an interpolating sequence for H∞(D) for any fixed
z0 ∈ D.

3.1. Blaschke product eigenvectors

It is clear that a Blaschke product b satisfies b ◦ ϕ = γ b for some γ ∈ ∂D if and only if b and b ◦ ϕ have the same
zeros. This means that for every zero w of b, {ϕ(n)(w): n ∈ Z} are zeros of b, each one with the same multiplicity as w .
Hence, b is solely determined by the sequence of its zeros in Dϕ . So, a characterization of the Blaschke products that are
eigenvectors is tantamount to a characterization of the Blaschke sequences {zk}k�1 in Dϕ such that {ϕ(n)(zk): k � 1, n ∈ Z}
is also a Blaschke sequence. We have to distinguish between the hyperbolic and the parabolic case.

Theorem 3.1. Let {zk}k�1 be Blaschke sequence in Dϕ . Then {ϕ(n)(zk): k � 1, n ∈ Z} is a Blaschke sequence

(1) always when ϕ is hyperbolic,
(2) if and only if {zk} stays outside of some horocycle tangent to ∂D at the fixed point of ϕ , when ϕ is parabolic.

Proof. Geometrically, it will be more convenient to look at things in the upper half-plane C+ = {z ∈ C: Im z > 0}. Hence,
the Blaschke condition for the sequence zk = xk + iyk is

∑ yk
1+|zk |2 < ∞. To prove (1) we can assume that ϕ is a hyperbolic

automorphism that fixes 0 and ∞, and therefore has the form ϕ(w) = αw with 1 �= α > 0. We can also assume that α > 1,
since the proof is the same in both cases. In this case, we can take Dϕ = {z ∈ C+: 1 � |z| < α}, and we must show that if
{zk}k�1 in Dϕ is a Blaschke sequence then so is {αnzk: k � 1, n ∈ Z}. Hence,
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∑
k�1,n∈Z

αn yk

1 + |αnzk|2 �
∑
n�0

∑
k�1

αn yk

α2n|zk|2 +
∑
n<0

∑
k�1

αn yk

�
[ ∑

n�0

1

αn
+

∑
n<0

αn
]∑

k�0

yk
(
since |zk| � 1

)

�
[
α + 1

α − 1

]∑
k�0

yk(1 + α2)

1 + |zk|2 < ∞ (
since |zk| < α

)
.

To prove (2) we can assume that ϕ is a parabolic automorphism that fixes ∞, and therefore has the form ϕ(w) = w + t ,
where t ∈ R, and we can also assume that t > 0, since the proof is the same in both cases.

In the case at hand, we take Dϕ = {z ∈ C+: 0 � Re z < t}, and show that given a Blaschke sequence {zk}k�1 in Dϕ ,
{zk + nt: k � 1, n ∈ Z} is a Blaschke sequence if and only if the sequence {yk} is bounded.

First suppose that there is some constant C > 0 such that yk � C for all k � 1. Since |xk + nt| � |n|t − xk � (|n| − 1)t , we
have that (xk + nt)2 � (|n| − 1)2t2 for all n �= 0. Consequently, if n ∈ Z \ {0},

1 + |zk|2
1 + |zk + nt|2 � 1 + t2 + C2

1 + (|n| − 1)2t2
,

leading to

∑
k�1,n∈Z\{0}

yk

1 + |zk + nt|2 =
∑

k�1,n∈Z\{0}

yk

1 + |zk|2
1 + |zk|2

1 + |zk + nt|2

�
∑
k�1

yk

1 + |zk|2
∑

n∈Z\{0}

1 + t2 + C2

1 + (|n| − 1)2t2
,

which is convergent. Obviously, the sum is also bounded for n = 0.
If the sequence {yk} is not bounded, fix an arbitrary yk � t + 1 and consider all the values of n ∈ Z such that − yk

t �
−[ yk

t ] � n � [ yk
t ] � yk

t , where [a] denotes the largest integer � a. Since 0 � xk < t , we have

−yk � xk − yk � xk + nt � xk + yk � t + yk � 2yk,

and consequently (xk + nt)2 � (2yk)
2. Thus,

∑
−[ yk

t ]�n�[ yk
t ]

yk

1 + |zk + nt|2 � 1

yk

∑
−[ yk

t ]�n�[ yk
t ]

y2
k

1 + 5y2
k

(yk�1)

� 1

yk

∑
−[ yk

t ]�n�[ yk
t ]

1

6

= 1

6yk

(
2

[
yk

t

]
+ 1

)

� 1

6yk

(
yk

t

)
= 1

6t
.

Consequently,∑
k�1,n∈Z

yk

1 + |zk + nt|2 �
∑

yk�t+1

∑
−[ yk

t ]�n�[ yk
t ]

yk

1 + |zk + nt|2 �
∑

yk�t+1

1

6t
,

which is infinite if there are infinitely many yk � t + 1. �
3.2. Outer eigenfunctions

If ϕ is given by (3.5) (the hyperbolic case) consider the circular intervals J = (ϕ(i), i] ∪ [−i,ϕ(−i)) of ∂D, and if ϕ is
given by (3.6) (the parabolic case) consider J = [−1,ϕ(−1)) (see Figs. 1 and 2).

Lemma 3.2. If ϕ is given by (3.5) then

1
α−|n| �

∣∣ϕ(n)′(w)
∣∣ � (α + 1)2α−|n|, ∀w ∈ J , ∀n ∈ Z. (3.7)
4
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If ϕ is given by (3.6) then there is a constant c(t) > 0 such that

1

n2t2 + 4
�

∣∣ϕ(n)′(w)
∣∣ � c(t)

n2t2 + 4
, ∀w ∈ J , ∀n ∈ Z. (3.8)

Proof. If ϕ comes from (3.5),

∣∣ϕ(n)′(w)
∣∣ = 1 − | 1−αn

1+αn |2
|1 − 1−αn

1+αn w|2 =
4αn

(1+αn)2

|1 − 1−αn

1+αn w|2 .

When w ∈ J and n ∈ Z, 1−αn

1+αn w remains in the angular sector {reiθ : 0 � r � 1, argϕ(i) < θ < argϕ(−i)}. Since D ∩ ∂ Dϕ is
orthogonal to ∂D (see Fig. 1), it follows that

22

(α + 1)2
= ∣∣1 − ϕ(0)

∣∣2 �
∣∣∣∣1 − 1 − αn

1 + αn
w

∣∣∣∣
2

� 22.

For n ∈ Z,

α−|n| � 4αn

(1 + αn)2
� 4α−|n|,

so combining the above inequalities we obtain the desired result. If ϕ comes from (3.6),

∣∣ϕ(n)′(w)
∣∣ = 1 − | nt

nt−2i |2
|1 − nt

nt−2i w|2 =
4

n2t2+4

|1 − nt
nt−2i w|2 .

When w ∈ [−1,ϕ(−1)), Fig. 2 shows that

2 �
∣∣∣∣w − nt

nt − 2i

∣∣∣∣ �
∣∣ϕ(−1) − 1

∣∣ −
∣∣∣∣1 − nt

nt − 2i

∣∣∣∣
= 2

[
1

(t2 + 1)1/2
− 1

(n2t2 + 4)1/2

]
if n �=0
� 2

[
1

(t2 + 1)1/2
− 1

(t2 + 4)1/2

]
.

The claim follows for n �= 0 by inserting the above inequalities in the expression of |ϕ(n)′ (w)|. Since |ϕ(0)′ (w)| = 1, it also
follows for n = 0 by taking c(t) > 4. �
Lemma 3.3. Let 1 � p < ∞ and ϕ be a non-elliptic automorphism. If f0 � 0 belongs to L p( J ) and log f0 ∈ L1( J ) with respect to the
linear Lebesgue measure |dz|, then for λ > 0,

f (z) :=
∑
n∈Z

χϕ(n)( J )(z)λn f0
(
ϕ(−n)(z)

)

is in L p(∂D) and log f ∈ L1(∂D) if and only if

(1) 1
p√α

< λ < p
√

α in the hyperbolic case (i.e.: when ϕ is given by (3.5)),

(2) λ = 1 in the parabolic case (i.e.: when ϕ is given by (3.6)).

Furthermore, f ◦ ϕ = λ f on ∂D in both cases.

Proof. Clearly f is defined almost everywhere on ∂D so that f | J = f0 and ( f ◦ ϕ(n))(z) = λn f (z) for all n ∈ Z (see Figs. 1
and 2). Thus,∫

ϕ(n)( J )

f (z)p |dz| =
∫
J

f
(
ϕ(n)(w)

)p∣∣ϕ(n)′(w)
∣∣ |dw|

=
∫

λpn f (w)p
∣∣ϕ(n)′(w)

∣∣ |dw|. (3.9)
J
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In the hyperbolic case we insert the inequalities (3.7) in the above expression to obtain a constant C(α) > 0 such that

1

4

λpn

α|n|

∫
J

f (w)p |dw| �
∫

ϕ(n)( J )

f (z)p |dz| � C(α)
λpn

α|n|

∫
J

f (w)p |dw|.

Summing over n ∈ Z,

1

4

∑
n∈Z

λpn

α|n|

∫
J

f p �
∫
∂D

f p � C(α)
∑
n∈Z

λpn

α|n|

∫
J

f p.

For the convergence of the sum it is necessary and sufficient that λp/α < 1 and λpα > 1; that is, 1
p√α

< λ < p
√

α. The same

idea, with f p replaced by log f , gives

1

4

∑
n∈Z

1

α|n|

∫
J

(log f + n log λ) �
∫
∂D

log f � C(α)
∑
n∈Z

1

α|n|

∫
J

(log f + n log λ),

which converges because α > 1.
In the parabolic case we insert the inequalities (3.8) in (3.9) to obtain a constant c(t) > 0 such that

λpn

n2t2 + 4

∫
J

f (w)p|dw| �
∫

ϕ(n)( J )

f (z)p|dz| � c(t)
λpn

n2t2 + 4

∫
J

f (w)p|dw|.

Summing over n ∈ Z,

∑
n∈Z

λpn

n2t2 + 4

∫
J

f p �
∫
∂D

f p � c(t)
∑
n∈Z

λpn

n2t2 + 4

∫
J

f p.

The sum converges if and only if λ = 1. Finally, observing that for λ = 1 we have log( f ◦ ϕ) = log f , the same proof, with
f p replaced by log f , gives

∑
n∈Z

1

n2t2 + 4

∫
J

log f �
∫
∂D

log f � c(t)
∑
n∈Z

1

n2t2 + 4

∫
J

log f ,

which converges. �
Theorem 3.4. Let 1 � p < ∞ and ϕ be a non-elliptic automorphism. There is an outer function

F (z) = exp

(∫
eiθ + z

eiθ − z
log f

(
eiθ ) dθ

2π

)
∈ H p

such that F ◦ ϕ = γ λF for λ > 0 and some γ ∈ ∂D if and only if

(1) 1
p√α

< λ < p
√

α in the hyperbolic case (where ϕ is given by (3.5)),

(2) λ = 1 in the parabolic case,

and f is given by Lemma 3.3. Moreover, γ depends on ϕ and f0 but it is independent of λ in both cases.

Proof. Since |F (ξ)| = f (ξ) for almost every ξ ∈ ∂D, we also have |F (ϕ(ξ))| = f (ϕ(ξ)) = λ f (ξ), where the last equality
comes from the lemma. That means that the outer functions F ◦ϕ and λF have the same modulus on ∂D, and consequently
they differ by a multiplicative constant of modulus one (see [7, Chapter II, Theorem 4.6]). To complete the proof, notice that

γ λ = F (ϕ(0))

F (0)
= exp

( π∫
−π

[
eiθ + ϕ(0)

eiθ − ϕ(0)
− 1

]
log f

(
eiθ ) dθ

2π

)

= exp

( ∫
∂D

2ϕ(0)

eiθ − ϕ(0)
log f

(
eiθ ) |d(eiθ )|

2π

)
.

So, if we partition ∂D = ⋃
n∈Z

ϕ(n)( J ) and change variables (as in (3.9)), we obtain
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γ = exp

(
i

∫
∂D

Im
2ϕ(0)

eiθ − ϕ(0)
log f

(
eiθ ) |d(eiθ )|

2π

)

= exp

(
i2ϕ(0)

∫
J

∑
n∈Z

Im
|ϕ(n)′(eiθ )|

ϕ(n)(eiθ ) − ϕ(0)

[
log f0

(
eiθ ) + n log λ

] |d(eiθ )|
2π

)

= exp

(
i2ϕ(0)

∫
J

log f0
(
eiθ )∑

n∈Z

Im
|ϕ(n)′(eiθ )|

ϕ(n)(eiθ ) − ϕ(0)

|d(eiθ )|
2π

)
,

where the last equality holds in the hyperbolic case because J is symmetric with respect to the real axis, ϕ(0) ∈ R and
ϕ(n)(e−iθ ) = ϕ(n)(eiθ ), and in the parabolic case because λ = 1. �
Remark 3.5. The case p = ∞ is easier. If a bounded function is an eigenvector corresponding to an eigenvalue a, then
|a| = 1. On the other hand, if f0 ∈ L∞( J ), log f0 ∈ L1( J ) and λ = 1 in Lemma 3.3, it is clear that the function f of the
lemma is bounded and the same proof shows that log f ∈ L1(∂D). Thus, Theorem 3.4 holds for p = ∞ with λ = 1 in both
the hyperbolic and parabolic case.

3.3. Singular inner eigenvectors

For μ a positive, finite, singular measure on ∂D, its associated singular inner function is

Sμ(z) = exp

(
−

∫
eiθ + z

eiθ − z
dμ

(
eiθ )).

The following lemma was proved by Matache in [10] as a means to characterize the singular inner eigenfunctions in
terms of pull-back measures. We give a different proof.

Lemma 3.6. Let ϕ be any automorphism and ν be a (finite positive) singular measure on ∂D. Then there exists a unique singular
measure μ that satisfies |Sν(ϕ−1(z))| = |Sμ(z)| for z ∈ D, and it is given by

μ(E) =
∫

ϕ−1(E)

∣∣ϕ′∣∣dν (3.10)

for Borel sets E ⊂ ∂D.

Proof. The existence holds because Sν(ϕ−1(z)) is a singular inner function, so there must exist a singular measure μ
and λ ∈ ∂D such that Sν(ϕ−1(z)) = λSμ(z). The uniqueness follows because two singular inner functions with the same
modulus have the same associated measure (see [7, p. 70]). To prove the last statement consider first the case ν = δξ , the
Dirac measure concentrated at a point ξ ∈ ∂D. If μξ is the measure that satisfies |Sδξ (ϕ

−1(z))| = |Sμξ (z)|, the first function
extends continuously to ∂D \ {ϕ(ξ)} as the constant 1, and thus the same holds for |Sμξ (z)|, which means that μξ = cδϕ(ξ)

for some constant c > 0. Moreover,

c = μξ (D) = − log
∣∣Sμξ (0)

∣∣ = − log
∣∣Sδξ

(
ϕ−1(0)

)∣∣ = 1 − |ϕ−1(0)|2
|ξ − ϕ−1(0)|2 = ∣∣ϕ′(ξ)

∣∣.
So, μξ = |ϕ′(ξ)|δϕ(ξ) , which is the measure defined by (3.10) for ν = δξ . For an arbitrary singular measure ν , write ν =∫

δξ dν(ξ) and consider the singular measure μ := ∫
μξ dν(ξ), where the integrals converge weak-∗ in the space of finite

Borel measures. Since μξ is the measure that satisfies (3.10) for δξ , then μ is the measure that satisfies (3.10) for ν .
Moreover, since the map σ �→ P z(σ ) = − log |Sσ (z)| (the Poisson integral of σ ) is linear,

− log
∣∣Sν

(
ϕ−1(z)

)∣∣ = Pϕ−1(z)(ν) =
∫

Pϕ−1(z)(δξ )dν(ξ) =
∫

P z(μξ )dν(ξ) = P z(μ) = − log
∣∣Sμ(z)

∣∣,
where we can take the integral of measures outside of the Poisson integral because the kernel of P w is continuous on ∂D

for every w ∈ D, and the equality in the middle is proved above. �
In order to present a statement that is as clear as possible, we allow the possibility of ν ≡ 0 as a singular measure in

the next corollary, and we interpret this to mean that Sν ≡ 1.

Corollary 3.7. Let ϕ be a non-elliptic automorphism and ν be a non-negative measure supported on the fixed points of ϕ . Then
|Sν(ϕ−1(z))| = |Sν(z)| for z ∈ D if and only if
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(1) ν ≡ 0 in the hyperbolic case,
(2) ν = aδ1 in the parabolic case, where δ1 is the Dirac measure at 1 and a � 0.

Proof. By (3.10), |Sν(ϕ−1(z))| = |Sν(z)| if and only if ν({ξ}) = |ϕ′(ξ)|ν({ξ}) for any fixed point ξ of ϕ . So, ξ ∈ {−1,1} when
ϕ is hyperbolic, and since |ϕ′(1)| = α−1 and |ϕ′(−1)| = α, where α �= 1, then ν({ξ}) = 0. If ϕ is parabolic, we have that
ξ = 1 and |ϕ′(1)| = 1, which means that ν({1}) can be any non-negative number. �

Now we are in position to state the result concerning singular inner functions.

Theorem 3.8. Let ϕ be a non-elliptic automorphism and J ⊂ ∂D be the set associated with ϕ by the paragraph that precedes
Lemma 3.2. If ν0 is a singular measure on ∂D with mass concentrated in J , write

dν :=
∑
n∈Z

dνn, where νn(G) =
∫

ϕ(−n)(G)

∣∣ϕ(n)′(eiθ )∣∣dν0
(
eiθ ). (3.11)

Then Sν is a singular inner function that satisfies Sν(ϕ(z)) = γ Sν(z) for some γ ∈ ∂D. If ϕ is parabolic, the same holds for Sν+aδ1 for
any a � 0. Conversely, every singular inner eigenvector Sμ has this form, with ν0 = χ J μ and, if ϕ is parabolic, a = μ({1}).

Proof. First we prove that ν is a finite measure. Observe that the whole mass of νn is concentrated in ϕ(n)( J ) and that
these sets are pairwise disjoint. Hence,

ν(∂D) =
∑
n∈Z

νn(∂D) =
∫
∂D

∑
n∈Z

∣∣ϕ(n)′(eiθ )∣∣dν0
(
eiθ ) =

∫
J

∑
n∈Z

∣∣ϕ(n)′(eiθ )∣∣dν0
(
eiθ ).

It follows from Lemma 3.2 that the above quantity is finite.
By (3.10), |Sν0(ϕ

(−n)(z))| = |Sνn (z)|, and consequently,∣∣Sνn−1(z)
∣∣ = ∣∣Sν0

(
ϕ(−[n−1])(z)

)∣∣ = ∣∣Sν0

(
ϕ(−n)

(
ϕ(z)

))∣∣ = ∣∣Sνn

(
ϕ(z)

)∣∣.
Therefore

log
∣∣Sν(z)

∣∣ =
∑
n∈Z

log
∣∣Sνn−1(z)

∣∣ =
∑
n∈Z

log
∣∣Sνn

(
ϕ(z)

)∣∣ = log
∣∣Sν

(
ϕ(z)

)∣∣,
which means that Sν(ϕ(z))/Sν(z) is some constant of modulus 1. Corollary 3.7 says that we can add to ν an atom at 1
when ϕ is parabolic.

To prove the converse, suppose that Sμ is a singular inner eigenvector and write νn = χϕ(n)( J )μ. If we fix n ∈ Z, for any

Borel set G ⊂ ϕ(n)( J ), the equality |Sμ(ϕ−(n)(z))| = |Sμ(z)| together with (3.10) yields

νn(G) = μ(G) =
∫

ϕ(−n)(G)

∣∣ϕ(n)′(eiθ )∣∣dμ
(
eiθ ) =

∫
ϕ(−n)(G)

∣∣ϕ(n)′(eiθ )∣∣dν0
(
eiθ ).

Thus, μ = ν + μ∞ , where ν is given by (3.11), with ν0 = χ J μ and μ∞ supported on the fixed points of ϕ . But since Sν

and Sμ are both eigenvectors, the same holds for Sμ∞ . The theorem now follows from Corollary 3.7. �
We can summarize this discussion by saying that if 1 � p < ∞, and h = F B S ∈ H p , where F is outer, B is a Blaschke

product and S is a singular inner function, then h is an eigenvector of Cϕ if and only if F , B and S are respectively given
by Theorems 3.4, 3.1 and 3.8. The same holds for p = ∞, with F given by Remark 3.5.
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