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This article generalizes recent results in the extra invariance for shift-invariant spaces to
the context of LCA groups. Let G be a locally compact abelian (LCA) group and K a closed
subgroup of G . A closed subspace of L2(G) is called K -invariant if it is invariant under
translations by elements of K . Assume now that H is a countable uniform lattice in G
and M is any closed subgroup of G containing H . In this article we study necessary and
sufficient conditions for an H-invariant space to be M-invariant. As a consequence of our
results we prove that for each closed subgroup M of G containing the lattice H , there exists
an H-invariant space S that is exactly M-invariant. That is, S is not invariant under any
other subgroup M ′ containing H . We also obtain estimates on the support of the Fourier
transform of the generators of the H-invariant space, related to its M-invariance.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a locally compact abelian (LCA) group and K a closed subgroup of G . For y ∈ G let us denote by t y the
translation operator acting on L2(G). That is, t y f (x) = f (x − y) for x ∈ G and f ∈ L2(G).

A closed subspace S of L2(G) satisfying that tk f ∈ S for every f ∈ S and every k ∈ K is called K -invariant.
In the case that G is Rd and K is Zd the subspace S is called shift-invariant. Shift-invariant spaces are central in several

areas such as approximation theory, wavelets, frames and sampling.
The structure of these spaces for the group Rd and Zd-translations has been studied in [8,15,10,13,3–5] and in the

context of general LCA groups, in [12,6].
Independently of their mathematical interest, they are very important in applications. They provide models for many

problems in signal and image processing.
A relevant question in the study of shift-invariant spaces in the line is whether the functions belonging to the space

remain in the space when translated by a non-integer real number τ . It is easy to see that the set of parameters τ that
leave the space invariant under translations by τ (the invariance set), forms a subgroup M of G . Clearly this subgroup
contains the group Z.

Spaces that are invariant under a subgroup M containing Z, are easy to obtain. For example, if g is any function in
L2(R), the space

S = span
{

g(x − m): m ∈ M
}
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is a shift-invariant space that is M-invariant. However, the interest here is the more subtle question of recognizing when a
given shift-invariant space is M-invariant.

Shift-invariant spaces that are M-invariant were completely characterized by Aldroubi et al. in [1], for every subgroup M
such that Z ⊆ M ⊆ R.

More recently, the results have been extended to several variables by Anastasio et al. in [2].
The aim of this paper is to investigate whether these characterizations are still valid for the general context of LCA

groups. This is important in order to obtain general conditions that can be applied to different cases, as, for example, the
case of the classic groups such as the d-dimensional torus Td , the discrete group Zd , and the finite group Zd .

More precisely let H ⊆ G be a countable uniform lattice and M be any closed subgroup of G satisfying that H ⊆ M ⊆ G .
We want to study necessary and sufficient conditions in order that an H-invariant space S ⊆ L2(G) is M-invariant.

This article is organized as follows. In Section 2 we set the notation and give some definitions. We study the properties
of the invariance set in Section 3. In Section 4 we describe the structure of M-invariant spaces and range functions in
the context of LCA groups. The characterizations of M-invariance for H-invariant spaces are given in Section 5. Finally in
Section 6 we give some applications.

2. Notation

Let G be an arbitrary locally compact Hausdorff abelian group (LCA) written additively. We will denote by mG its Haar
measure. The dual group of G , that is, the set of continuous characters on G , is denoted by Ĝ . The value of the character
γ ∈ Ĝ at the point x ∈ G , is written by (x, γ ).

The Fourier transform of a Haar integrable function f on G , is the function f̂ on Ĝ defined by

f̂ (γ ) =
∫
G

f (x)(x,−γ )dmG(x), γ ∈ Ĝ.

When the Haar measures mG and mĜ are normalized such that the Inversion Formula holds (see [14]), the Fourier transform

on L1(G)∩ L2(G) can be extended to a unitary operator from L2(G) onto L2(Ĝ), the so-called Plancharel transformation. We
also denote this transformation by “∧”.

Note that the Fourier transform satisfies t̂x f (·) = (−x, ·) f̂ (·).
For a subgroup K of G , the set

K ∗ = {
γ ∈ Ĝ: (k, γ ) = 1, ∀k ∈ K

}
is called the annihilator of K . Since every character in Ĝ is continuous, K ∗ is a closed subgroup of Ĝ .

We will say that a closed subspace V ⊆ L2(G) is K -invariant if

f ∈ V ⇒ tk f ∈ V , ∀k ∈ K .

For a subset A ⊆ L2(G), define

E K (A) = {tkϕ: ϕ ∈ A, k ∈ K } and S K (A) = span E K (A).

We call S K (A) the K -invariant space generated by A. If A = {ϕ}, we simply write S K (ϕ), and we call S K (ϕ) a principal
K -invariant space.

Let L be a subset of G . We will say that a function f defined on G is L-periodic if t� f = f for all � ∈ L. A subset B ⊆ G
is L-periodic if its indicator function (denoted by χB ) is L-periodic.

When two LCA groups G1 and G2 are topologically isomorphic we will write G1 ≈ G2.

3. The invariance set

Here and subsequently G will be an LCA group and H a countable uniform lattice in G , that is, a countable discrete
subgroup of G with compact quotient group G/H .

For simplicity of notation throughout this paper we will write Γ instead of Ĝ .
The aim of this work is to characterize the extra invariance of an H-invariant space. For this, given S ⊆ L2(G) an

H-invariant space, we define the invariance set as

M = {x ∈ G: tx f ∈ S, ∀ f ∈ S}. (1)

If A is a set of generators for S , it is easy to check that m ∈ M if and only if tmϕ ∈ S for all ϕ ∈ A.
In case that M = G , Wiener’s theorem (see [8,15,10]) states that there exists a measurable set E ⊆ Γ satisfying

S = {
f ∈ L2(G): supp( f̂ ) ⊆ E

}
.

We want to describe S when M is not all G . We will first study the structure of the set M .
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Proposition 3.1. Let S be an H-invariant space of L2(G) and let M be defined as in (1). Then M is a closed subgroup of G containing H.

For the proof of this proposition we will need the following lemma. Recall that a semigroup is a nonempty set with an
associative additive operation.

Lemma 3.2. Let K be a closed semigroup of G containing H, then K is a group.

Proof. Let π be the quotient map from G onto G/H . Since K is a semigroup containing H , we have that K + H = K , thus

π−1(π(K )
) =

⋃
k∈K

k + H = K + H = K . (2)

This shows that π(K ) is closed in G/H and therefore compact.
By [9, Theorem 9.16], we have that a compact semigroup of G/H is necessarily a group, thus π(K ) is a group and

consequently K is a group. �
Proof of Proposition 3.1. Since S is an H-invariant space, H ⊆ M .

We first proceed to show that M is closed. Let x0 ∈ G and let {xλ}λ∈Λ be a net in M converging to x0. Then

lim
λ

‖txλ f − tx0 f ‖2 = 0.

Since S is closed, it follows that tx0 f ∈ S , thus x0 ∈ M .
It is easy to check that M is a semigroup of G , hence we conclude from Lemma 3.2 that M is a group. �

4. The structure of principal M-invariant spaces

4.1. Preliminaries

Shift-invariant spaces in L2(Rd) are completely characterized using fiberization techniques and range functions (see [5]).
This theory has been extended to general LCA groups in [6]. In what follows we state some definitions and properties given
in that work.

We will assume that G is a second countable LCA group and H a countable uniform lattice in G .
The fact that G is second countable, G/H is compact and Ĝ/H ≈ H∗ , implies that H∗ is countable and discrete. Moreover,

since Γ/H∗ ≈ Ĥ , H∗ is a countable uniform lattice in Γ . Therefore, there exists a measurable section Ω of Γ/H∗ with finite
mΓ -measure (see [11] and [7]).

Let L2(Ω,�2(H∗)) be the space of all measurable functions Φ : Ω → �2(H∗) such that

‖Φ‖2
2 :=

∫
Ω

∥∥Φ(ω)
∥∥2

�2(H∗) dmΓ (ω) < ∞.

The following proposition shows that the space L2(Ω,�2(H∗)) is isometric (up to a constant) to L2(G).

Proposition 4.1. The mapping T H : L2(G) → L2(Ω,�2(H∗)) defined as

T H f (ω) = {
f̂
(
ω + h∗)}

h∗∈H∗

is an isomorphism that satisfies ‖T H f ‖2 = ‖ f ‖L2(G) .

For f ∈ L2(G), the sequence T H f (ω) = { f̂ (ω+h∗)}h∗∈H∗ is the H-fiber of f at ω. Given a subspace V of L2(G) and ω ∈ Ω ,
the H-fiber space of V at ω is

J H (V )(ω) = {
T H f (ω): f ∈ V

}
,

where the closure is taken in the norm of �2(H∗).
The map that assigns to each ω the fiber space J H (V )(ω) is known in the literature as the range function of V .
The following proposition characterizes H-invariant spaces in terms of range functions and fibers.

Proposition 4.2. If S is an H-invariant space in L2(G), then

S = {
f ∈ L2(G): T H f (ω) ∈ J H (S)(ω) for a.e. ω ∈ Ω

}
.

Moreover, if S = S H (A) for a countable set A ⊆ L2(G), then, for almost every ω ∈ Ω ,

J H (S)(ω) = span
{

T Hϕ(ω): ϕ ∈ A
}
.
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In this article we will use fiberization techniques for a more general case, since the subspaces will be invariant under a
closed subgroup which is not necessarily discrete.

The above results from [6] can be extended straightforwardly to the case that the spaces are invariant under a closed
subgroup M of G containing a countable uniform lattice H as follows.

Since H ⊆ M , we have that M∗ ⊆ H∗ and, in particular, M∗ is discrete. Thus, there exists a countable section N of
H∗/M∗ . Then, the set given by

D =
⋃

σ∈N
Ω + σ (3)

is a σ -finite measurable section of the quotient Γ/M∗ . Using this section of Γ/M∗ it is possible to obtain, in a way
analogous to the discrete case, the following:

Proposition 4.3.

(i) The mapping TM : L2(G) → L2(D, �2(M∗)) defined as

TM f (δ) = {
f̂
(
δ + m∗)}

m∗∈M∗

is an isomorphism that satisfies ‖TM f ‖2 = ‖ f ‖L2(G) .
(ii) Let S be an M-invariant space generated by a countable set A. For each δ ∈ D, define the M-fiber space of S at δ as

J M(S)(δ) = span
{

TMϕ(δ): ϕ ∈ A
}
.

If P and Pδ are the orthogonal projections onto S and J M(S)(δ) respectively, then, for every g ∈ L2(G),

TM(P g)(δ) = Pδ

(
TM g(δ)

)
a.e. δ ∈ D.

(iii) If S is an M-invariant space in L2(G), then

S = {
f ∈ L2(G): TM f (δ) ∈ J M(S)(δ) for a.e. δ ∈ D

}
.

4.2. Principal M-invariant spaces

We prove now the following characterization of principal M-invariant spaces. This result extends the Rd case.

Theorem 4.4. Let f ∈ L2(G) and let M be a closed subgroup of G containing H. If g ∈ SM( f ), then there exists an M∗-periodic function
η such that ĝ = η f̂ .

Conversely, if η is an M∗-periodic function such that η f̂ ∈ L2(Γ ), then the function g defined by ĝ = η f̂ belongs to SM( f ).

Proof. Let us call S = SM( f ) and let P and Pδ be the orthogonal projections onto S and J M(S)(δ) respectively. Given g ∈ S ,
we first define ηg in D as

ηg(δ) =
{ 〈TM g(δ),TM f (δ)〉

‖TM f (δ)‖2
2

if δ ∈ E f ,

0 otherwise,

where E f is the set {δ ∈ D: ‖TM f (δ)‖2
2 �= 0}. Then, since {D + m∗}m∗∈M∗ forms a partition of Γ , we can extend ηg to all Γ

in an M∗-periodic way.
Now, by Proposition 4.3 we have that

TM g(δ) = TM(P g)(δ) = Pδ

(
TM g(δ)

) = ηg(δ)TM f (δ).

Since ηg is an M∗-periodic function, ĝ = ηg f̂ as we wanted to prove.

Conversely, if ĝ = η f̂ , with η an M∗-periodic function, then TM g(δ) = η(δ)TM f (δ). By Proposition 4.3, g ∈ S . �
5. Characterization of M-invariance

If H ⊆ M ⊆ G , where H is a countable uniform lattice in G and M is a closed subgroup of G , we are interested in
describing when an H-invariant space S is also M-invariant.

Let Ω be a measurable section of Γ/H∗ and N a countable section of H∗/M∗ . For σ ∈ N we define the set Bσ as

Bσ = Ω + σ + M∗ =
⋃

m∗∈M∗
(Ω + σ) + m∗. (4)

Therefore, each Bσ is an M∗-periodic set.
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Since Ω tiles Γ by H∗ translations and N tiles H∗ by M∗ translations, it follows that {Bσ }σ∈N is a partition of Γ .
Now, given an H-invariant space S , for each σ ∈ N , we define the subspaces

Uσ = {
f ∈ L2(G): f̂ = χBσ ĝ, with g ∈ S

}
. (5)

5.1. Characterization of M-invariance in terms of subspaces

The main theorem of this section characterizes the M-invariance of S in terms of the subspaces Uσ .

Theorem 5.1. If S ⊆ L2(G) is an H-invariant space and M is a closed subgroup of G containing H, then the following are equivalent.

(i) S is M-invariant.
(ii) Uσ ⊆ S for all σ ∈ N .

Moreover, in case any of these hold we have that S is the orthogonal direct sum

S =
⊕̇
σ∈N

Uσ .

Now we state a lemma that we need to prove Theorem 5.1.

Lemma 5.2. Let S be an H-invariant space and σ ∈ N . Assume that the subspace Uσ defined in (5) satisfies Uσ ⊆ S. Then, Uσ is an
M-invariant space and in particular is H-invariant.

Proof. Let us prove first that Uσ is closed. Suppose that f j ∈ Uσ and f j → f in L2(G). Since Uσ ⊆ S and S is closed,
f must be in S . Further,

‖ f̂ j − f̂ ‖2
2 = ∥∥( f̂ j − f̂ )χBσ

∥∥2
2 + ∥∥( f̂ j − f̂ )χBc

σ

∥∥2
2 = ‖ f̂ j − f̂ χBσ ‖2

2 + ‖ f̂ χBc
σ
‖2

2.

Since the left-hand side converges to zero, we must have that f̂ χBc
σ

= 0 a.e. γ ∈ Γ . Then, f̂ = f̂ χBσ . Consequently
f ∈ Uσ , so Uσ is closed.

Now we show that Uσ is M-invariant. Given m ∈ M and f ∈ Uσ , we will prove that (m, ·) f̂ (·) ∈ Ûσ .
Since f ∈ Uσ , there exists g ∈ S such that f̂ = χBσ ĝ . Hence,

(m, ·) f̂ (·) = (m, ·)(χBσ ĝ)(·) = χBσ (·)((m, ·)ĝ(·)). (6)

If we were able to find an H∗-periodic function �m verifying

(m, γ ) = �m(γ ) a.e. γ ∈ Bσ , (7)

then, we can rewrite (6) as

(m, ·) f̂ (·) = χBσ (·)(�m ĝ)(·).
Theorem 4.4 can then be applied for the uniform lattice H . Thus, since �m is H∗-periodic, we obtain that �m ĝ ∈ Ŝ H (g) ⊆ Ŝ
and so, (m, ·) f̂ (·) ∈ Ûσ .

Now we define the function �m as follows. For each h∗ ∈ H∗ , set

�m
(
ω + h∗) = (m,ω + σ) a.e. ω ∈ Ω. (8)

It is clear that �m is H∗-periodic.
Since (m, ·) is M∗-periodic,

(m,ω + σ) = (
m,ω + σ + m∗) a.e. ω ∈ Ω, ∀m∗ ∈ M∗.

Thus, (7) holds.
Note that, since H ⊆ M , the H-invariance of Uσ is a consequence of the M-invariance. �

Proof of Theorem 5.1. (i) ⇒ (ii): Fix σ ∈ N and f ∈ Uσ . Then f̂ = χBσ ĝ for some g ∈ S . Since χBσ is an M∗-periodic
function, by Theorem 4.4, we have that f ∈ SM(g) ⊆ S , as we wanted to prove.

(ii) ⇒ (i): Suppose that Uσ ⊆ S for all σ ∈ N . Note that Lemma 5.2 implies that Uσ is M-invariant, and we also have
that the Uσ are mutually orthogonal since the sets Bσ are disjoint.
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Suppose that f ∈ S . Then, since {Bσ }σ∈N is a partition of Γ , it follows that f̂ = ∑
σ∈N f̂ χBσ . This implies that f ∈⊕̇

σ∈N Uσ and consequently, S is the orthogonal direct sum

S =
⊕̇
σ∈N

Uσ .

As each Uσ is M-invariant, so is S . �
5.2. Characterization of M-invariance in terms of H-fibers

In this section we will first express the conditions of Theorem 5.1 in terms of H-fibers. Then, we will give a useful
characterization of the M-invariance for a finitely generated H-invariant space in terms of the Gramian.

If f ∈ L2(G) and σ ∈ N , we define the function f σ by

f̂ σ = f̂ χBσ .

Let Pσ be the orthogonal projection onto Sσ , where

Sσ = {
f ∈ L2(G): supp( f̂ ) ⊆ Bσ

}
.

Therefore

f σ = Pσ f and Uσ = Pσ (S) = {
f σ : f ∈ S

}
.

Moreover, if S = S H (A) with A a countable subset of L2(G), then

J H (Uσ )(ω) = span
{

T H
(
ϕσ

)
(ω): ϕ ∈ A

}
. (9)

Remark 5.3. Note that the fibers

T H
(
ϕσ

)
(ω) = {

χBσ

(
ω + h∗)ϕ̂(

ω + h∗)}
h∗∈H∗

can be described in a simple way as

χBσ

(
ω + h∗)ϕ̂(

ω + h∗) =
{
ϕ̂(ω + h∗) if h∗ ∈ σ + M∗,
0 otherwise.

Therefore, if σ �= σ ′ , J H (Uσ )(ω) and J H (Uσ ′ )(ω) are orthogonal subspaces for a.e. ω ∈ Ω .

Combining Theorem 5.1 with Proposition 4.2 and (9) we obtain the following result.

Proposition 5.4. Let S be an H-invariant space generated by a countable set A ⊆ L2(G). The following statements are equivalent.

(i) S is M-invariant.
(ii) T H (ϕσ )(ω) ∈ J H (S)(ω) a.e. ω ∈ Ω for all ϕ ∈ A and σ ∈ N .

Let Φ = {ϕ1, . . . , ϕ�} be a finite collection of functions in L2(G). Then, the Gramian GΦ of Φ is the � × � matrix of
H∗-periodic functions[

GΦ(ω)
]

i j = 〈
T H (ϕi)(ω), T H (ϕ j)(ω)

〉
=

∑
h∗∈H∗

ϕ̂i
(
ω + h∗)ϕ̂ j

(
ω + h∗) (10)

for ω ∈ Ω .
Given a subspace V of L2(G), the dimension function is defined by

dimV : Ω → N0 ∪ {∞}, dimV (ω) := dim
(

J H (V )(ω)
)
.

We will also need the next result which is a straightforward consequence of Propositions 4.1 and 4.2.

Proposition 5.5. Let S1 and S2 be H-invariant spaces. If S = S1 ⊕̇ S2 , then

J H (S)(ω) = J H (S1)(ω) ⊕̇ J H (S2)(ω), a.e. ω ∈ Ω.
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The converse of this proposition is also true, but will not be needed.
Now we give a slightly simpler characterization of M-invariance for the finitely generated case.

Theorem 5.6. If S is an H-invariant space, finitely generated by Φ , then the following statements are equivalent.

(i) S is M-invariant.
(ii) For almost every ω ∈ Ω , dimS (ω) = ∑

σ∈N dimUσ (ω).
(iii) For almost every ω ∈ Ω , rank[GΦ(ω)] = ∑

σ∈N rank[GΦσ (ω)], where Φσ = {ϕσ : ϕ ∈ Φ}.

Proof. (i) ⇒ (ii): By Theorem 5.1, S = ⊕̇
σ∈N Uσ . Then, (ii) follows from Proposition 5.5.

(ii) ⇒ (i): Since {Bσ }σ∈N is a partition of Γ , S ⊆ ⊕̇
σ∈N Uσ . Then, by Remark 5.3 we have that

J H (S)(ω) ⊆
⊕̇
σ∈N

J H (Uσ )(ω).

Using (ii), we obtain that J H (S)(ω) = ⊕̇
σ∈N J H (Uσ )(ω). The proof follows as a consequence of Proposition 5.4.

The equivalence between (ii) and (iii) follows from (9). �
6. Applications of M-invariance

In this section we estimate the size of the supports of the Fourier transforms of the generators of a finitely generated
H-invariant space which is also M-invariant.

We will not include the proof of the result stated bellow, since it follows readily from the Rd case (see [2, Section 6]).

Theorem 6.1. Let S be an H-invariant space, finitely generated by the set {ϕ1, . . . , ϕ�}, and define

E j = {
ω ∈ Ω: dimS(ω) = j

}
, j = 0, . . . , �.

If S is M-invariant and D′ is any measurable section of Γ/M∗ , then

mΓ

({
y ∈ D′: ϕ̂i(y) �= 0

})
�

�∑
j=0

mΓ (E j) j � �,

for each i = 1, . . . , �.

Corollary 6.2. Let ϕ ∈ L2(G) be given. If S H (ϕ) is M-invariant for some closed subgroup M of G such that H � M, then ϕ̂ must vanish
on a set of positive mΓ -measure.

Furthermore, if mΓ (Γ ) = +∞, ϕ̂ must vanish on a set of infinite mΓ -measure.

Proof. Let

D =
⋃

σ∈N
Ω + σ .

Then, D is a section of Γ/M∗ .
By Theorem 6.1, we have that

mΓ

({
y ∈ D: ϕ̂(y) �= 0

})
� 1,

thus

mΓ

({
y ∈ Γ : ϕ̂(y) = 0

}) =
∑

m∗∈M∗
mΓ

({
y ∈ D: ϕ̂(y) = 0

})
� #

(
M∗)#(N − 1). (11)

Since H � M , it follows that #N > 1, so mΓ ({y ∈ Γ : ϕ̂(y) = 0}) > 0.
If mΓ (Γ ) = +∞, then either mΓ (D) = +∞ or #M∗ = +∞. In case that #M∗ = +∞, by (11), ϕ̂ must vanish on a set of

infinite mΓ -measure. If mΓ (D) = +∞, since mΓ (Ω) = 1, it follows that #N = +∞. Then, using again (11), we can conclude
the same as before. �

As a consequence of Theorem 6.1, in case that M = G , we obtain the following corollary.
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Corollary 6.3. If ϕ ∈ L2(G) and S H (ϕ) is G-invariant, then

mΓ

(
supp(ϕ̂)

)
� 1.

6.1. Exactly M-invariance

Let M be a closed subgroup of G containing a countable uniform lattice H . The next theorem states that there exists an
M-invariant space S that is not invariant under any vector outside M . We will say in this case that S is exactly M-invariant.

Note that because of Proposition 3.1, an M-invariant space is exactly M-invariant if and only if it is not invariant under
any closed subgroup M ′ containing M .

Theorem 6.4. For each closed subgroup M of G containing a countable uniform lattice H, there exists a shift-invariant space of L2(G)

which is exactly M-invariant.

Proof. Suppose that 0 ∈ N and take ϕ ∈ L2(G) satisfying supp(ϕ̂) = B0, where B0 is defined as in (4). Let S = S(ϕ).
Then, U0 = S and Uσ = {0} for σ ∈ N , σ �= 0. So, as a consequence of Theorem 5.1, it follows that S is M-invariant.
Now, if M ′ is a closed subgroup such that M � M ′ , we will show that S cannot be M ′-invariant.
Since M ⊆ M ′ , (M ′)∗ ⊆ M∗ . Consider a section C of the quotient M∗/(M ′)∗ containing the origin. Then, the set given by

N ′ := {σ + c: σ ∈ N , c ∈ C}
is a section of H∗/(M ′)∗ and 0 ∈ N ′ .

If {B ′
σ ′ }σ ′∈N ′ is the partition defined in (4) associated to M ′ , for each σ ∈ N it holds that {B ′

σ+c}c∈C is a partition of Bσ ,
since

Bσ = Ω + σ + M∗ =
⋃
c∈C

Ω + σ + c + (
M ′)∗ =

⋃
c∈C

B ′
σ+c. (12)

We will show now that U ′
0 � S , where U ′

0 is the subspace defined in (5) for M ′ . Let g ∈ L2(G) such that ĝ = ϕ̂χB ′
0
. Then

g ∈ U ′
0. Moreover, since supp(ϕ̂) = B0, by (12), ĝ �= 0.

Suppose that g ∈ S , then ĝ = ηϕ̂ where η is an H∗-periodic function. Since M � M ′ , there exists c ∈ C such that c �= 0.
By (12), ĝ vanishes in B ′

c . Then, the H∗-periodicity of η implies that η(γ ) = 0 a.e. γ ∈ Γ . So ĝ = 0, which is a contradiction.
This shows that U ′

0 � S . Therefore, S is not M ′-invariant. �
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