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In this paper we study the behaviour of the solutions to the eigenvalue problem
corresponding to the p(x)-Laplacian operator{− div(|∇u|p(x)−2∇u) = Λp(x)|u|p(x)−2u, in Ω,

u = 0, on ∂Ω,

as p(x) → ∞. We consider a sequence of functions pn(x) that goes to infinity uniformly
in Ω . Under adequate hypotheses on the sequence pn , namely that the limits

∇ ln pn(x) → ξ(x), and
pn

n
(x) → q(x)

exist, we prove that the corresponding eigenvalues Λpn and eigenfunctions upn verify that

(Λpn )
1/n → Λ∞, upn → u∞ uniformly in Ω,

where Λ∞, u∞ is a nontrivial viscosity solution of the following problem{
min{−�∞u∞ − |∇u∞|2 log(|∇u∞|)〈ξ,∇u∞〉, |∇u∞|q − Λ∞uq∞} = 0, in Ω,

u∞ = 0, on ∂Ω.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In this work we analyze the behaviour of the solutions to the eigenvalue problem corresponding to the p(x)-Laplacian
operator as p(x) → ∞. More precisely, we consider the following problems{

−div(|∇u|pn(x)−2∇u) = Λpn |u|pn(x)−2u, in Ω,

u = 0, on ∂Ω,
(1.1)

with Ω ⊂ R
N being a bounded smooth domain, and the sequence of functions pn :Ω → R such that pn ∈ C(Ω) and

pn(x) > 1, for every n � 1 and every x ∈ Ω .
For n fixed, solutions to the eigenvalue problem (1.1) have been analyzed in [10]. Our purpose in this work is to study

how the solutions to (1.1) behave when we consider a sequence of functions such that pn(x) → ∞ for every x ∈ Ω , as
n → ∞.
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To give some motivation for this study, let us recall briefly what happens when p is constant in Ω . In this case, the
limit of (1.1) as p → ∞ has been studied in [4,14,15], see also the survey [2], and leads naturally to the infinity Laplacian
eigenvalue problem

min
{|∇u|(x) − Λ∞u(x),−�∞u(x)

} = 0, (1.2)

where the infinity Laplacian, �∞ , is given by

�∞u := (
D2u∇u

) · ∇u =
N∑

i, j=1

∂u

∂xi

∂u

∂x j

∂2u

∂xix j
.

In fact, it is proved there that the limit as p → ∞ exists both for the eigenfunctions, up → u∞ uniformly, and for the
eigenvalues (Λp)1/p → Λ∞ , where the pair u∞ , Λ∞ is a nontrivial solution to (1.2).

Solutions to −�∞u = 0 (that are called infinity harmonic functions) solve the optimal Lipschitz extension problem (see
[1] and the survey paper [2]) and are used in several applications, for example, in optimal transportation, image processing
and tug-of-war games (see, e.g., [3,20,9,11,5,23,24] and the references therein). On the other hand, problems related to PDEs
involving variable exponents became popular recently due to applications in elasticity and the modeling of electrorheological
fluids. The functional analytical tools needed for the analysis have been extensively developed, see [17] and [8] and also
the recent survey [12] and references therein. Although a natural extension of the theory, the problem addressed here is
a natural continuation of recent papers. In [21], the authors treat the case of a variable exponent that equals infinity in a
subdomain of Ω and in [19,22], the limit of p(x)-harmonic functions is studied, that is, the limit as p(x) → ∞ of solutions
to �p(x)u = 0 with u = g on ∂Ω .

Here we will assume that pn(x) is a sequence of C1 functions in Ω such that

pn(x) → +∞, uniformly in Ω, (1.3)

∇ ln pn(x) → ξ(x), uniformly in Ω, (1.4)
pn

n
(x) → q(x), uniformly in Ω. (1.5)

For the limit functions ξ and q we assume that ξ ∈ C(Ω : R
N) and that q ∈ C(Ω : R) is strictly positive.

Under these assumptions we have the following result.

Theorem 1.1. For any sequence pn(x) satisfying (1.3)–(1.5) let Λpn and upn be the corresponding first eigenvalues and eigen-
functions of the problem −�pn(x)upn = Λpn |upn |pn(x)−2upn in Ω with Dirichlet boundary conditions, upn |∂Ω = 0, normalized by∫
Ω

|u|pn(x)

pn(x) dx = 1. Then, there is a subsequence such that

upi → u∞ in Cβ(Ω), for some 0 < β < 1,

and

(Λpi )
1/ni → Λ∞,

where u∞ is nontrivial and u∞ , Λ∞ verify, in the viscosity sense,{
min{−�∞u∞ − |∇u∞|2 log(|∇u∞|)〈ξ,∇u∞〉, |∇u∞|q − Λ∞uq∞} = 0, in Ω,

u∞ = 0, on ∂Ω.
(1.6)

Remark 1.1. Note that hypothesis (1.5) can be replaced by pn(x)/an → q(x) for any sequence an → ∞ as n → ∞. The
corresponding statements can be rewritten in terms of an (instead of n) but we prefer to simplify notation.

Remark 1.2. Comparing the limit problem (1.6) with (1.2), we note the dependence on x of the sequence pn . In fact, two
limits play a role here, ∇ ln pn(x) → ξ(x) and pn

n (x) → q(x).

We now present some examples of possible sequences pn(x). We are specially interested in understanding (1.4) and (1.5)
and hope the examples shed some light on the meaning of this assumption.

(1) pn(x) = n; we have ξ = 0 and q = 1.
(2) pn(x) = p(x) + n; we get again ξ = 0 and q = 1.
(3) pn(x) = np(x); now we get a nontrivial vector field ξ(x) = ∇(ln(p(x))) and a nontrivial q, q(x) = p(x).
(4) pn(x) = na p(x/n) [scaling in x]; in this case, we have

∇(
ln pn(x)

) = ∇p

p
(x/n)

1

n
→ 0

and so ξ = 0. Moreover, we have q(x) = p(0) if and only if a = 1.
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These calculations also hold for pn(x) = n + p(x/n), we have ξ = 0 and q(x) = 1.
(5) pn(x) = na p(nx); we get

∇(
ln pn(x)

) = n∇p

p
(nx),

which does not have a limit as n → ∞. The same happens with pn(x) = n + p(nx), for which

∇(
ln pn(x)

) = n∇p(nx)

n + p(nx)
,

that does not have a uniform limit (although it is bounded).
(6) We can modify the previous example to get a nontrivial limit. Assume that r = r(θ) is a function of the angular variable

and that 0 /∈ Ω; then consider pn(x) = n + r(nx) to obtain

∇(
ln pn(x)

) = n∇r(nx)

n + r(nx)
→ ∇r(θ).

In this case we get q(x) = 1.
(7) Finally, we can combine examples (3) and (6). Let pn(x) = np(x) + r(nx), with q and Ω as in (6). We get

∇(
ln pn(x)

) = n∇p(x) + n∇r(nx)

np(x) + r(nx)
→ ∇p(x) + ∇r(θ)

p(x)
.

In this case q(x) = p(x).

2. Preliminaries

We introduce now some notation and preliminary results. See [7,8,10,17] and the survey [12] for more details. The
variable exponent Lebesgue space L p(x)(Ω) is defined as follows

Lp(x)(Ω) =
{

u such that u :Ω → R is measurable and
∫
Ω

∣∣u(x)
∣∣p(x)

dx < +∞
}
,

and is endowed with the norm

|u|p(x) = inf

{
τ > 0 such that

∫
Ω

∣∣∣∣u(x)

τ

∣∣∣∣p(x)

dx � 1

}
.

The variable exponent Sobolev space W 1,p(x)(Ω) is given by

W 1,p(x)(Ω) = {
u ∈ Lp(x)(Ω) such that |∇u| ∈ Lp(x)(Ω)

}
,

with the norm

‖u‖ = inf

{
τ > 0 such that

∫
Ω

∣∣∣∣∇u(x)

τ

∣∣∣∣p(x)

+
∣∣∣∣u(x)

τ

∣∣∣∣p(x)

dx � 1

}
.

Let us denote by W 1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(x)(Ω). The following result holds.

Proposition 2.1.

(i) The spaces (L p(x)(Ω), | · |p(x)), (W 1, p(x)(Ω),‖ · ‖) and (W 1, p(x)
0 (Ω),‖ · ‖) are separable, reflexive and uniformly convex Banach

spaces.
(ii) Hölder inequality holds, namely∫

Ω

|uv|dx � 2|u|p(x)|v|q(x), ∀u ∈ Lp(x)(Ω), ∀v ∈ Lq(x)(Ω),

where 1
p(x) + 1

q(x) = 1.

(iii) If q ∈ C(Ω) and 0 < q(x) < p∗(x) for every x ∈ Ω , then the imbedding from W 1,p(x)(Ω) to Lq(x)(Ω) is compact and continuous,
where p∗(x) is given by

p∗(x) =
{

Np(x)
N−p(x) , p(x) < N,

∞, p(x) � N.
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(iv) There exists a constant C > 0 such that

|u|p(x) � C |∇u|p(x), for every u ∈ W 1,p(x)
0 (Ω).

Therefore, |∇u|p(x) and ‖u‖ are equivalent norms on W 1,p(x)
0 (Ω).

Let us introduce now some results concerning to problem (1.1) for fixed n. Namely, we consider the problem{
−div(|∇u|p(x)−2∇u) = Λp(x)|u|p(x)−2u, in Ω,

u = 0, on ∂Ω.
(2.1)

Definition 2.1. Let Λp(x) ∈ R and u ∈ W 1,p(x)
0 (Ω). We say that (Λp(x), u) is a solution to the eigenvalue problem (2.1) if∫

Ω

|∇u|p(x)−2∇u∇v dx = Λp(x)

∫
Ω

|u|p(x)−2uv dx, ∀v ∈ W 1,p(x)
0 (Ω).

As usual, we call Λp(x) an eigenvalue of (2.1) and u an eigenfunction corresponding to Λp(x) .

Let us denote X = W 1,p(x)
0 (Ω). We define the following functionals F , G : X → R by

F (u) =
∫
Ω

1

p(x)
|∇u|p(x) dx, G(u) =

∫
Ω

1

p(x)
|u|p(x) dx,

and, for α > 0, the C1-submanifold of X ,

Mα = {
u ∈ X such that G(u) = α

}
.

It is well known that (Λp(x), u) solves problem (2.1) if and only if u is a critical point of the functional F̃ := F |Mα :
Mα → R. In order to determine the critical points of this functional let us introduce the following sets

Σ = {
A ⊂ X \ {0} such that A is compact and A = −A

}
,

Σk = {
A ∈ Σ such that γ (A) � k

}
,

where γ (A) denotes the genus of A. The values defined by

ck,α = sup
A∈Σk, A⊂Mα

inf
u∈A

F (u), k = 1,2, . . . ,

are critical values of F on Mα verifying c1,α � c2,α � · · · � ck,α � ck+1,α � · · · and ck,α → 0 as k → ∞. Then, if uk ∈ Mα is a
critical point of F , its corresponding eigenvalue is given by

Λp(x),k =
∫
Ω

|∇uk|p(x) dx∫
Ω

|uk|p(x) dx
� p−α

p+ck,α
,

where

p− = min
x∈Ω

p(x), p+ = max
x∈Ω

p(x). (2.2)

If we denote Λ = {Λp(x) ∈ R such that Λp(x) is an eigenvalue of (2.1)}, we have that Λ is a nonempty infinite set such that
supΛ = +∞. It is also known that in general infΛ = 0, unless the function p is monotone in at least one direction, in
which case inf Λ > 0, see [10].

3. The limit problem as pn(x) → ∞

Our interest in this section is to analyze the behaviour of the first eigenvalue (and its corresponding eigenfunctions) of
problem (1.1) when pn(x) → +∞. To this end, we note that from the previous section we have that the first eigenvalue
for pn(x) is given by

Λpn =
∫
Ω

|∇upn |pn(x) dx∫
Ω

|upn |pn(x) dx
. (3.1)

The function upn is the critical point for

cn
1,1 = sup inf

u∈A
F (u),
A∈Σ1, A⊂M1
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where we have fixed the parameter α = 1. Note that the definition above is equivalent to

cn
1,1 = inf

u∈B

∫
ω

|∇u|pn(x)

pn(x)
dx, with B =

{
u ∈ X:

∫
Ω

|u|pn(x)

pn(x)
dx = 1

}
. (3.2)

It is known (see [10] for details) that for each n fixed upn (x) > 0 for every x ∈ Ω or upn (x) < 0 for every x ∈ Ω . In the sequel
we will consider for each n the positive solution

upn (x) > 0, for every x ∈ Ω. (3.3)

Our purpose is to study the pair (upn ,Λpn ), given by (3.1) and (3.2), as the function pn(x) goes to infinity as n → ∞. Next,
we introduce the following notation: we define

p−
n = min

x∈Ω

pn(x), p+
n = max

x∈Ω

pn(x). (3.4)

By (1.5) it is clear that there exist the limits

lim
n→∞

p−
n

n
= q−, lim

n→∞
p+

n

n
= q+, (3.5)

for some q− , q+ .
Our next aim is to find an upper bound for (Λpn )

1/n .

Lemma 3.1. Let Λpn be the first eigenvalue of problem (1.1) given in (3.1). There exists a positive constant K , independent of n, such
that

(Λpn )
1/n � K . (3.6)

Proof. We begin with a uniform bound for (cn
1,1)

1/n . Let us consider the function u(x) = aδ(x), with δ(x) = dist(x, ∂Ω) and
the constant a > 0 such that u ∈ B , that is, we chose a verifying∫

Ω

(aδ(x))pn(x)

pn(x)
dx = 1.

Let us show that a is uniformly bounded. Let us denote Ω1 = {x ∈ Ω: ε � δ(x) � 1} and Ω2 = {x ∈ Ω: δ(x) > 1}. Then,
taking into account the definitions (3.4) and (3.5) we have

1 �
( ∫

Ω1∪Ω2

(aδ(x))pn(x)

pn(x)
dx

)1/n

�
(

max
{

ap+
n ,ap−

n
}
μ(Ω)

εp+
n + 1

p+
n

)1/n

� max
{

aq+−ε,aq−+ε
}( 1

p+
n

)1/n

� 1

2
max

{
aq+−ε,aq−+ε

}
,

for n sufficiently large and ε > 0 small, and the uniform bound on a follows.
Using u as test function in

cn
1,1 = inf

u∈B

∫
ω

|∇u|pn(x)

pn(x)
dx, with B =

{
u ∈ X:

∫
Ω

|u|pn(x)

pn(x)
dx = 1

}
we get that

(
cn

1,1

)1/n �
(∫

Ω

apn(x)

pn(x)
dx

)1/n

�
(

max{ap+
n ,ap−

n }
p−

n
μ(Ω)

)1/n

� max
{

aq++ε,aq−−ε
}(μ(Ω)

p−
n

)1/n

.

Since (
μ(Ω)

p−
n

)1/n → 1 as n → ∞, it holds that (cn
1,1)

1/n � C for n large.

We proceed now with the bound on the first eigenvalue. Let upn be the point at which cn
1,1 reaches its infimum. We

observe that(∫
Ω

|∇upn |pn(x) dx

)1/n

�
(

p+
n

∫
Ω

|∇upn |pn(x)

pn(x)
dx

)1/n

� 2
(
cn

1,1

)1/n � 2C . (3.7)

On the other hand
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(∫
Ω

|∇upn |pn(x) dx

)1/n

= (Λpn )
1/n

(∫
Ω

|upn |pn(x) dx

)1/n

� (Λpn )
1/n

(
p−

n

∫
Ω

|upn |pn(x)

pn(x)
dx

)1/n

� c(Λpn)
1/n,

which together with (3.7) gives the uniform bound on the first eigenvalue (3.6). �
The previous result allows us to consider a subsequence ni → ∞ such that (Λpni

)1/ni → Λ∞ and, as we see in the next

lemma, we can also extract a subsequence upni
→ u∞ in Cβ(Ω).

Lemma 3.2. There exists a subsequence {upni
} converging to some nontrivial function u∞ in Cβ(Ω), for some 0 < β < 1.

Proof. Let us take m < n. Then by (3.7) we get∫
Ω

(|∇upn |
pn(x)

n
)m

dx �
(∫

Ω

|∇upn |pn(x) dx

)m/n(
μ(Ω)

)1−m/n � K ,

thus |∇upn |
pn(x)

n is uniformly bounded in Lm(Ω), which implies that |∇upn | is uniformly bounded in L
mpn(x)

n (Ω) ⊂
Lm(q−(x)−ε)(Ω), by Hölder inequality (we take ε such that q−(x) − ε > 1, ∀x ∈ Ω). If we take now m such that

m(q−(x) − ε) � N , then by the continuous embedding in (iii) of Proposition 2.1 we have that W 1,m(q−(x)−ε)
0 (Ω) ⊂ Cβ(Ω),

0 < β < 1. Therefore, there exists a subsequence {upni (x)} such that

upni (x) ⇀ u∞, weakly in W 1,m(q−(x)−ε)(Ω) and upni (x) → u∞, strongly in Cβ(Ω). (3.8)

Note that we have the normalization(∫
Ω

1

pn(x)
|upn |pn(x) dx

)1/n

= 1,

hence (
1

p−
n

)1/n(∫
Ω

|upn |pn(x) dx

)1/n

� 1,

and then we have that(
μ(Ω)

p−
n

)1/n

max
{(‖upn‖∞

)p+
n ,

(‖upn‖∞
)p−

n
}1/n � 1.

If we pass to the limit as n → ∞ in the previous estimate, taking into account (1.5) and (3.8) we get that

max
{(‖u∞‖∞

)q+
,
(‖u∞‖∞

)q−}
� q+,

and thus u∞ is nontrivial. �
In order to identify the limit problem satisfied by any cluster point u∞ we introduce the concept of viscosity solutions

to problem (1.1). Assuming that upn are smooth enough to differentiate (1.1), we get

−|∇upn |pn(x)−2

(
�upn + log

(|∇upn |
) N∑

i=1

∂upn

∂xi

∂ pn(x)

∂xi

)

− (
pn(x) − 2

)|∇upn |pn(x)−4
N∑

i, j=1

∂upn

∂xi

∂upn

∂x j

∂2upn

∂xi∂x j
= Λpn |upn |pn(x)−2upn . (3.9)

We recall that the last operator involving the second derivatives is denoted as �∞ , that is

�∞u =
N∑ ∂u

∂xi

∂u

∂x j

∂2u

∂xi∂x j
.

i, j=1
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Eq. (3.9) is nonlinear but elliptic (degenerate), thus it makes sense to consider viscosity subsolutions and supersolutions of
it. Let y ∈ R, z, θ ∈ R

N , and S be a real symmetric matrix. We define the following continuous function

H pn(x)(y, z, θ, S) = −|z|pn(x)−2(trace(S) + log
(|z|)〈z, θ〉)

− (
pn(x) − 2

)|z|pn(x)−4〈S · z, z〉 − Λpn |y|pn(x)−2 y. (3.10)

To define the notion of viscosity solution we are interested in viscosity super- and subsolutions of the partial differential
equation{

H pn(x)(upn ,∇upn ,∇pn, D2upn ) = 0, in Ω,

upn = 0, on ∂Ω.
(3.11)

Definition 3.1. An upper semicontinuous function u defined in Ω is a viscosity subsolution of (3.11) if, u|∂Ω � 0 and, when-
ever x0 ∈ Ω and φ ∈ C2(Ω) are such that

(i) u(x0) = φ(x0),
(ii) u(x) < φ(x), if x = x0,

then

H pn(x)
(
φ(x0),∇φ(x0),∇pn(x0), D2φ(x0)

)
� 0.

Definition 3.2. A lower semicontinuous function u defined in Ω is a viscosity supersolution of (3.11) if, u|∂Ω � 0 and, when-
ever x0 ∈ Ω and φ ∈ C2(Ω) are such that

(i) u(x0) = φ(x0),
(ii) u(x) > φ(x), if x = x0,

then

H pn(x)
(
φ(x0),∇φ(x0),∇pn(x0), D2φ(x0)

)
� 0.

We observe that in both of the above definitions the second condition is required just in a neighbourhood of x0 and the
strict inequality can be relaxed. We refer to [6] for more details about general theory of viscosity solutions, and [13,16,18]
for viscosity solutions related to the ∞-Laplacian and the p-Laplacian operators. The following result can be shown as
in [15], we include the proof for convenience of the reader.

Lemma 3.3. A continuous weak solution to Eq. (1.1) is a viscosity solution to (3.11).

Proof. The proof is analogous to this one of Proposition 2.4 in [21]. We reproduce it here for the sake of completeness and
readability.

We omit the subscript n in this proof. Let us show that if u is continuous weak supersolution, then it is a viscosity
supersolution. Let x0 ∈ Ω and let φ be a test function such that u(x0) = φ(x0) and u − φ has a strict minimum at x0. We
want to show that

−�p(x0)φ(x0) = −∣∣∇φ(x0)
∣∣p(x0)−2

�φ(x0) − (
p(x0) − 2

)∣∣∇φ(x0)
∣∣p(x0)−4

�∞φ(x0)

− ∣∣∇φ(x0)
∣∣p(x0)−2

ln
(|∇φ|)(x0)

〈∇φ(x0),∇p(x0)
〉

� Λp(x)|φ|p(x)−2φ(x0).

Assume, ad contrarium, that this is not the case; then there exists a radius r > 0 such that B(x0, r) ⊂ Ω and

−�p(x)φ(x) = −∣∣∇φ(x)
∣∣p(x)−2

�φ(x) − (
p(x) − 2

)∣∣∇φ(x)
∣∣p(x)−4

�∞φ(x)

− ∣∣∇φ(x)
∣∣p(x)−2

ln
(|∇φ|)(x)

〈∇φ(x),∇p(x)
〉

< Λp(x)|φ|p(x)−2φ(x),

for every x ∈ B(x0, r). Set

m = inf|x−x0|=r
(u − φ)(x)

and let Φ(x) = φ(x) + m/2.
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This function Φ verifies Φ(x0) > u(x0), Φ < u on ∂ B(x0, r) and

−�p(x)Φ = −div
(|∇Φ|p(x)−2∇Φ

)
< Λp(x)|φ|p(x)−2φ, in B(x0, r). (3.12)

Multiplying (3.12) by (Φ − u)+ , which vanishes on the boundary of B(x0, r), we get∫
B(x0,r)∩{Φ>u}

|∇Φ|p(x)−2∇Φ · ∇(Φ − u)dx <

∫
B(x0,r)∩{Φ>u}

Λp(x)|φ|p(x)−2φ(Φ − u)dx.

On the other hand, taking (Φ − u)+ , extended by zero outside B(x0, r), as test function in the weak formulation of the
eigenvalue problem, we obtain∫

B(x0,r)∩{Φ>u}
|∇u|p(x)−2∇u · ∇(Φ − u)dx =

∫
B(x0,r)∩{Φ>u}

Λp(x)|u|p(x)−2u(Φ − u)dx.

Upon subtraction and using a well-know inequality, we conclude

0 >

∫
B(x0,r)∩{Φ>u}

(|∇Φ|p(x)−2∇Φ − |∇u|p(x)−2∇u
) · ∇(Φ − u)dx

� c

∫
B(x0,r)∩{Φ>u}

|∇Φ − ∇u|p(x) dx,

a contradiction.
This proves that u is a viscosity supersolution. The proof that u is a viscosity subsolution runs as above and we omit the

details. �
We have all the ingredients to compute the limit of the equation

H pn(x)
(
upn ,∇upn ,∇pn, D2upn

) = 0

as pn(x) → ∞ in the viscosity sense, that is to identify the limit equation verified by any u∞ as in (3.8).
In the sequel we assume that we have a subsequence pni (x) → ∞ with the assumptions stated in the introduction such

that

lim
i→∞

upni
= u∞

uniformly in Ω and (Λpni
)1/ni → Λ∞ . We denote as upn and Λpn such subsequences for readable reasons.

We define for y ∈ R, z, θ ∈ R
N and S a symmetric real matrix,

H∞(y, z,q, θ, S) = min
{−〈S · z, z〉 − log

(|z|)〈θ, z〉, |z|q − Λ∞ yq}. (3.13)

Note that H∞(u,∇u,q, ξ, D2u) = 0 is the equation that appears in (1.6).

Theorem 3.1. A function u∞ obtained as a limit of a subsequence of {upn } is a viscosity solution of the equation

H∞
(
u,∇u,q, ξ, D2u

) = 0,

with H∞ defined in (3.13), and ξ and q given by (1.4) and (1.5) respectively.

Proof. Consider φ ∈ C2(Ω) such that u∞(x0) = φ(x0) and u∞(x) > φ(x) for every x ∈ B(x0, R), x = x0, with R > 0 fixed and
verifying that B(x0,2R) ⊂ Ω . For 0 < r < R it holds that

inf
{

u∞ − φ in B(x0, R) \ B(x0, r)
}

> 0.

Since upn → u∞ uniformly in B(x0, R), for n � n0 the function upn − φ attains its minimum value in B(x0, r). Let us denote
by xn ∈ B(x0, r) such a point. By letting r → 0 we get a subsequence such that xnr → x0 as nr → ∞. To simplify we denote
such subindexes by xn and upn .

On the other hand we have that upn is a viscosity supersolution of (3.11). Then,

−∣∣∇φ(xn)
∣∣pn(xn)−2(

�φ(xn) + log
(∣∣∇φ(xn)

∣∣)〈∇pn(xn),∇φ(xn)
〉)

− (
pn(xn) − 2

)∣∣∇φ(xn)
∣∣pn(xn)−4〈∇φ(xn)D2φ(xn),∇φ(xn)t 〉

� Λpn

∣∣φ(xn)
∣∣pn(xn)−2

φ(xn). (3.14)
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We observe that, at the point xn

Λpn

∣∣φ(xn)
∣∣pn(xn)−2

φ(xn) = Λpn

∣∣upn (xn)
∣∣pn(xn)−2

upn (xn) > 0,

if we assume that u∞(x0) > 0. In consequence, by (3.14) we deduce that |∇φ(xn)| > 0 and we can multiply this inequality
by (pn(xn) − 2)−1|∇φ(xn)|−(pn(xn)−4) , to obtain that

−|∇φ(xn)|2(�φ(xn) + log(|∇φ(xn)|)〈∇pn(xn),∇φ(xn)〉)
pn(xn) − 2

− 〈∇φ(xn)D2φ(xn),∇φ(xn)t 〉
�

(
Λ

1/n
pn φ(xn)

pn
n (xn)

|∇φ(xn)| pn
n (xn)

)n |∇φ(xn)|4φ(xn)

(pn(xn) − 2)|φ(xn)|2 .

If we take limit as n → ∞ in the previous inequality, taking into account (1.4) we have that

−�∞φ(x0) − |∇φ(x0)|2 log
(∣∣∇φ(x0)

∣∣)〈ξ(x0),∇φ(x0)
〉

� lim
n→∞

[(
Λ

1/n
pn φ(xn)

pn
n (xn)

|∇φ(xn)| pn
n (xn)

)n |∇φ(xn)|4φ(xn)

(pn(xn) − 2)|φ(xn)|2
]
. (3.15)

For any φ,

lim
n→∞

|∇φ(xn)|4φ(xn)

(pn(xn) − 2)|φ(xn)|2 = 0.

By (1.5) it also holds that

lim
n→∞

Λ
1/n
pn φ(xn)

pn
n (xn)

|∇φ(xn)| pn
n (xn)

→ Λ∞φ(x0)
q(x0)

|∇φ(x0)|q(x0)
. (3.16)

Now, we claim that the previous limit is smaller than one, namely,∣∣∇φ(x0)
∣∣q(x0) − Λ∞φ(x0)

q(x0) � 0. (3.17)

To prove this claim we argue by contradiction. Assume that

Λ∞φ(x0)
q(x0)

|∇φ(x0)|q(x0)
> 1.

Then, from (3.16) we conclude that there exists θ > 1 such that

Λ
1/n
pn φ(xn)

pn
n (xn)

|∇φ(xn)| pn
n (xn)

� θ > 1

for n large. Therefore,

lim
n→∞

[(
Λ

1/n
pn φ(xn)

pn
n (xn)

|∇φ(xn)| pn
n (xn)

)n |∇φ(xn)|4φ(xn)

(pn(xn) − 2)|φ(xn)|2
]

� lim
n→∞

θn

n

[ |∇φ(xn)|4φ(xn)

(pn(xn)−2)
n |φ(xn)|2

]
= ∞.

Hence the limit in (3.15) diverges, but the left hand side is bounded, so we reach a contradiction.
Now, if u∞(x0) = 0 and ∇φ(x0) = 0 we can use the same arguments to conclude that (3.17) holds, and if ∇φ(x0) = 0,

then (3.17) holds trivially.
On the other hand, it always holds that

−�∞φ(x0) − |∇φ(x0)|2 log
(∣∣∇φ(x0)

∣∣)〈ξ(x0),∇φ(x0)
〉
� 0. (3.18)

Thus, we can combine the two equations (3.17) and (3.18) into the following

min
{−�∞φ(x0) − |∇φ(x0)|2 log

(∣∣∇φ(x0)
∣∣)〈ξ(x0),∇φ(x0)

〉
,
∣∣∇φ(x0)

∣∣q(x0) − Λ∞φ(x0)
q(x0)

}
� 0. (3.19)

To complete the proof it just remains to see that u∞ is a viscosity subsolution. Let us consider a point x0 ∈ Ω and a
function φ ∈ C2(Ω) such that u∞(x0) = φ(x0) and u∞(x) < φ(x) for every x in a neighbourhood of x0. We want to show
that

H∞
(
φ(x0),∇φ(x0),q(x0), ξ(x0), D2φ(x0)

)
� 0.
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We first observe that if ∇φ(x0) = 0 the previous inequality trivially holds. Hence, let us assume that ∇φ(x0) = 0. Now, we
argue as follows: assuming that∣∣∇φ(x0)

∣∣q(x0) − Λ∞φ(x0)
q(x0) > 0, (3.20)

we will show that

−�∞φ(x0) − |∇φ(x0)|2 log
(∣∣∇φ(x0)

∣∣)〈ξ(x0),∇φ(x0)
〉
� 0. (3.21)

As before, we get a sequence of points xn → x0 such that

−|∇φ(xn)|2(�φ(xn) + log(|∇φ(xn)|)〈∇pn(xn),∇φ(xn)〉)
pn(xn) − 2

− 〈∇φ(xn)D2φ(xn),∇φ(xn)t 〉
�

(
Λ

1/n
pn φ(xn)

pn
n (xn)

|∇φ(xn)| pn
n (xn)

)n |∇φ(xn)|4φ(xn)

(pn(xn) − 2)|φ(xn)|2 .

Taking limit as n → ∞ in the above inequality we get an equation similar to (3.15), namely

−�∞φ(x0) − |∇φ(x0)|2 log
(∣∣∇φ(x0)

∣∣)〈ξ(x0),∇φ(x0)
〉

� lim
n→∞

[(
Λ

1/n
pn φ(xn)

pn
n (xn)

|∇φ(xn)| pn
n (xn)

)n |∇φ(xn)|4φ(xn)

(pn(xn) − 2)|φ(xn)|2
]
.

Now, we observe that the limit above is equal to zero, since we are assuming (3.20). Thus (3.21) holds and the proof is
complete. �
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