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price dependent. We deduce it from a relation that seems to be of interest on its own.
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1. Introduction

A fundamental problem in Financial Mathematics is that of calibrating the underlying model from market data. This is
crucial, for example, in hedging and portfolio optimization. Such data may consist of underlying asset prices, or, as in many
applications, derivative prices on such assets. An example, of central importance herein is an European call option. It gives
the bearer the right, but not the obligation, of buying an asset B for a given strike price K at a certain maturity date T .

In the present work we are concerned with the problem of determining the model’s volatility based on the quoted
prices of a basket option for arbitrary values of the strike, the weights, and the maturity. Although, this is a highly idealized
situation, it already poses some very interesting mathematical challenges, as we shall see in the sequel. The results presented
here should be valuable for the development of effective methods to estimate the local volatility in multi-asset markets
where a sufficiently large set of basket options is traded.

In the standard Black and Scholes [2] model for option pricing, the underlying asset is assumed to follow a dynamics
described by the stochastic differential equation

dS

S
= μdt + σ dW ,

where W is a Brownian motion, μ is a drift coefficient, and σ is the volatility of the underlying asset. In the classical Black–
Scholes theory, σ is assumed to be constant. Despite the enormous success of such model, it is known that in practice it
cannot consistently price options with different strike prices and maturity dates, as the volatility empirically appears not
to be constant over time. Furthermore, if one computes the implied volatility from the quoted price one verifies empirically
that different strikes and maturities lead to different implied volatilities for options on a given asset. This is known as the
smile effect and was discussed in a pioneering paper by B. Dupire [5].

Due to the smile effect, volatility estimates based on historical data are considered not to be reliable. Another approach
consists in trying to determine the volatility from the option prices in the market. This leads to a challenging inverse
problem. See, for example, [1,3,6,10].
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In [5], Dupire considered a model for the dynamics of the underlying asset in which the volatility depends both on the
time t and on the stock price S . More precisely,

dS

S
= μdt + σ(t, S)dW . (1)

This type of model is known as a local volatility model. Other approaches have been proposed in which the volatility follows
another stochastic process.

Dupire has shown that in the local volatility model, the volatility can, in principle, be recovered from market data if the
price of European options on the underlying asset were known for all the strike prices K and maturity dates T .

The celebrated Dupire equation for the case of a single asset reads as follows

∂C

∂T
= σ 2(K , T )K 2

2

∂2C

∂ K 2
+ (

r(T ) − D(T )
)(

C − K
∂C

∂ K

)
,

or in other words

σ =
√√√√ ∂C

∂T − (r(t) − D(t))(C − K ∂C
∂ K )

K 2

2
∂2C
∂ K 2

.

Here, C(t, St , T , K ) is the undiscounted European call option price, r(t) is the risk-free interest rate and D(t) is the dividend
rate. The price C satisfies, under the usual assumptions of liquidity, absence of arbitrage, and transaction costs (perfect
market), the Black–Scholes equation⎧⎨

⎩
∂C

∂t
+ 1

2
σ 2(t, S)S2 ∂2C

∂ S2
+ r

(
S
∂C

∂ S
− C

)
= 0, S > 0, t < T ,

C(S, T ) = (S − K )+.

(2)

In practice, however, the option prices are known only for a few maturity dates and strike prices and some interpolation
is needed. The computed volatility depends strongly on the interpolation used. Due to the ill-posed character of this inverse
problem, some regularization strategy has to be used to ensure the numerical stability of the reconstruction. See [3,6]. In
any case, Dupire’s formula plays a fundamental role in several methods that have been proposed to tackle this problem.

Let us now consider, the multi-asset situation, which is very important in practice. In particular, it could be applied to
index options.

Here, the dynamics is given by

dSi

Si
= μi dt +

N∑
j=1

σi j dW j, (3)

where W denotes the N-dimensional Brownian motion with respect to the risk-neutral measure. Here σi j = σi j(t, S) is the
volatility matrix μi = μi(t) is the risk-neutral drift, with μi(t) = r(t) − Di(t) where Di is the dividend rate of the ith asset,
and W = (W1, . . . , W N ) is a standard N-dimensional Brownian motion.

For technical reasons, we shall assume throughout this paper that the volatility matrix ((σi j(t, S))) and the drift vector
μ j(t) are smooth and bounded, i.e.,∣∣μ j(t)

∣∣ � C and
∣∣σi j(t, S)

∣∣ � C . (4)

Furthermore, we shall assume that the matrix A = (aij) = 1
2 σσ t satisfies the uniform ellipticity condition: there exist

constants λ,Λ > 0 such that

λ|y|2 �
N∑
i, j

ai j(t, S)yi y j � Λ|y|2. (5)

Given a vector of weights w = (w1, w2, . . . , w N ) with wi � 0, we consider an European basket option, that is, a contract
giving the holder the right to buy a basket composed of wi units of the ith asset at a maturity date T upon paying a strike
price K .

Here, the value

B =
N∑

j=1

w j S j

is called the basket price (or index) composed of the stocks Si .
The fair price of such an option is

P (St , t, K , T ) = e− ∫ T
t μi(τ )dτ E∗

t

[(
N∑

wi Si,T − K

)+]

i=1
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where E∗
t denotes the expected value at time t under the so-called risk-neutral probability. It turns out to be simpler to

work with the undiscounted call-price

C w = e
∫ T

t μi(τ )dτ P = E∗
t

[(
N∑

i=1

wi Si,T − K

)+]
.

Our goal is to address the following natural question:
Is there a generalization of Dupire’s equation for the multi-asset context?
We have a partial answer to this question, under additional assumptions, the most restrictive of all being that of having

an asset-price independent volatility. More precisely, our main result reads as follows:

Theorem 1. Assume that the volatility matrix σi j is a deterministic locally integrable function of time. Then the fair price C w of the
European basket call option satisfies

∂C w

∂T
=

N∑
i=1

μi wi
∂C w

∂ wi
+

N∑
i, j=1

aij wi w j
∂C2

w

∂ wi∂ w j
, (6)

where A = (aij) denotes the matrix given by A = 1
2 σσ t .

The proof of this result will be the subject of Section 3 as well as that of Appendix A.
Let p denote the transition probability density corresponding to the stochastic process defined by Eq. (3), and let s

denote the surface measure in the set

Lw
def=

{
(S1, . . . , SN )

∣∣∣ N∑
j=1

w j S j = K , S j � 0

}
. (7)

Theorem 1 relies on the following remarkable relation, that seems to be of interest in its own:

N∑
i=1

μi wi
∂C w

∂ wi
= ∂C w

∂T
−

N∑
i, j=1

∫
Lw

ai j Si,T S j,T p(St , t, ST , T )
wi w j

|w| ds. (8)

Remark 2. If no dividends are paid then μi = r for all i, and using the Euler’s equation (12) we can re-write (6) as

∂C w

∂T
= r

(
C w − K

∂C w

∂ K

)
+

N∑
i, j=1

aij wi w j
∂C2

w

∂ wi∂ w j
.

2. Review of Dupire’s equation and related facts

A key point in the derivation of the one-dimensional Dupire’s equation is that one may express the price of an European
call option as

C(t, St , T , K ) =
∞∫

−∞
p(St , t, ST , T )(S − K )+ dST

where p(t, St , t̃, St̃) is the transition probability density corresponding to the stochastic process defined by Eq. (1). From the
PDE viewpoint, p is fundamental solution associated to the N-dimensional Black–Scholes equation (2). Using the fundamen-
tal theorem of calculus we deduce that

∂C

∂ K
= −

∞∫
K

p(St , t, ST , T )dST .

Hence, we may recover the transition probability by computing the second derivative of the call price with respect to K

∂2C

∂ K 2
= p. (9)

For comparison with the multi-dimensional case, it is convenient to consider a more general (discounted) call option C w

for buying w units of the stock with strike price K . Then

C w = E∗
t

[
(w ST − K )+

]
.

0
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Thus, C w is plainly a homogeneous function of degree one, with respect to the variables K and w . Hence, it satisfies Euler’s
equation, namely

K
∂C w

∂ K
+ w

∂C w

∂ w
= C w .

Differentiating this equation with respect to K and w we get

K
∂2C w

∂ K 2
+ w

∂2C w

∂ w∂ K
= 0

and

K
∂2C w

∂ K∂ w
+ w

∂2C w

∂ w2
= 0.

Hence,

K 2 ∂C w

∂ K 2
= w2 ∂2C w

∂ w2
,

and we conclude that Dupire’s equation can be written in an equivalent form as

∂C w

∂T
= μw

∂C w

∂ w
+ 1

2
σ 2 w2 ∂2C w

∂ w2
.

3. The multi-asset case

We now present a proof of Theorem 1. As before, the price of the basket option can be written as

C w(St , t, K , T ) =
∫

R
N+

p(St , t, ST , T )

(
N∑

i=1

wi Si,T − K

)+
dST ,

where p(t, St , t̃, St̃) is now the transition probability density associated to the stochastic process defined by (3), or from the
PDE’s viewpoint the fundamental solutions to the multi-dimensional Black–Scholes equation:

∂C

∂T
+

N∑
i

μi(t, S)Si
∂C

∂ Si
+

N∑
i, j=1

aij(t, S)Si S j
∂2 S

∂ Si∂ S j
= 0. (10)

The standard theory of parabolic equations does not apply directly to (10). However, under the usual change of variables
τ = T − t and Xi = log Si, Eq. (10) transforms into a non-degenerate parabolic equation.

Under the technical conditions (4) and (5), it can be proved that (10) admits a fundamental solution p that is at least of
class C1,2 and decays exponentially when ‖S‖ → ∞, together with its first and second order derivatives. This fact will be
crucial in the following computations, since this ensures that all the boundary terms at infinity vanish.

The proof of the existence of the fundamental solutions under these assumptions can be done by using the so-called
parametrix method, introduced by E. Levi [9] in 1907. We remark that our technical conditions (4) and (5), and the smooth-
ness requirement on the coefficients could be certainly relaxed. See, for example, [4] for a construction of the fundamental
solution in the unbounded coefficient case, using Levi’s method. However, as our main interest in this paper is the financial
significance of our results, we do not intend to state the most general conditions under which our computations are still
valid.

We introduce the region

H w
def=

{
S ∈ R

N+
∣∣∣ N∑

i=1

wi Si � K

}
.

Thus,

C w(St , t, K , T ) =
∫

H w

p(St , t, ST , T )

(
N∑

i=1

wi Si,T − K

)
dST . (11)

We note that C w is homogeneous of degree one in the variables (w1, w2, . . . , wn, K ). Hence, it satisfies Euler equation

N∑
wi

∂C w

∂ wi
+ K

∂C w

∂ K
= C w . (12)
i=1
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In order to be able to compute the derivatives of C w , it is convenient to re-write Eq. (11) as an integral over a region
independent of w . For this purpose, we introduce the change of variables

B =
N∑

i=1

wi Si,T ,

and

Q i = wi Si,T∑N
i=1 wi Si,T

for i = 1, . . . , N − 1. Therefore, Q ∈ ΔN where

ΔN =
{

Q = (Q 1, Q 2, . . . , Q N−1): Q i � 0,

N−1∑
i=1

Q i � 1

}

is the (N − 1)-dimensional simplex. Thus,

ST := S(Q , B) =
(

Q 1 B

w1
, . . . ,

Q N−1 B

w N−1
,
(1 − ∑N−1

i=1 Q i)B

w N

)
.

The Jacobian of the change of variables

(S1,T , . . . , SN,T ) �−→ (Q 1, . . . , Q N−1, B)

is given by

J = ∂(S1,T , . . . , SN,T )

∂(Q 1, . . . Q N−1, B)
= BN−1

w1 w2 . . . w N
.

Thus, we obtain:

C w(St , t, K , T ) =
∞∫

K

∫
ΔN

p
(

St , t, S(Q , B), T
)
(B − K )

BN−1

w1 w2 . . . w N
dQ dB.

Hence

∂C w

∂ K
=

∫
ΔN

[
p
(

St , t, S(Q , B), T
)
(B − K )

BN−1

w1 w2 . . . w N

]
B=K

dQ −
∞∫

K

∫
ΔN

p
(

St , t, S(Q , B), T
) BN−1

w1 w2 . . . w N
dQ dB

= −
∞∫

K

∫
ΔN

p
(

St , t, S(Q , B), T
) BN−1

w1 w2 . . . w N
dQ dB,

and

∂2C w

∂ K 2
=

∫
ΔN

p
(

St , t, S(Q , K ), T
) K N−1

w1 w2 . . . w N
dQ .

Going back to the ST -coordinates we easily obtain the following identity:

∂2C w

∂ K 2
= 1

|w|
∫

Lw

p(St , t, ST , T )ds, (13)

where Lw is defined as in the introduction. This identity relates the second derivative of the call price C w with respect to
strike price K , to the integral of the probability density p over the set Lw .

Eq. (13) is the multi-dimensional analogue of Eq. (9); in probabilistic terms, the integral term expresses the probability
that the basket B has a price K at the maturity date T , given that the price vector has the value St at time t , namely

∂2C w

∂ K 2
= 1

|w| P [BT = K | St].

However, this relationship does not seem to yield a suitable multi-dimensional generalization of Dupire’s equation. For this
reason, we also compute the derivatives ∂C w to get
∂ wi



P. Amster et al. / J. Math. Anal. Appl. 355 (2009) 170–179 175
wi
∂C w

∂ wi
= −

∞∫
K

∫
ΔN

∂ p

∂ Si,T

(
St , t, S(Q , B), T

)
(B − K )

Q i B

wi

BN−1

w1 w2 . . . w N
dQ dB

−
∞∫

K

∫
ΔN

p
(

St , t, S(Q , B), T
)
(B − K )

BN−1

w1 w2 . . . w N
dQ dB (14)

for i = 1, . . . , N − 1. It is straightforward to notice that upon extending the above notation so that Q N = 1 − ∑N−1
i=1 Q i ,

relation (14) also holds for i = N . Then,

N∑
i=1

μi wi
∂C w

∂ wi
= −

∫
H w

N∑
i=1

μi

[
Si,T

∂ p

∂ Si,T
+ p

](
N∑

i=1

wi Si,T − K

)
dST

= −
∫

H w

N∑
i=1

∂

∂ Si,T
[μi Si p]

(
N∑

i=1

wi Si,T − K

)
dST .

Now, we use the fact that p satisfies the multi-dimensional Fokker–Planck equation (see e.g. [11]):

∂ p

∂T
+

N∑
i=1

∂

∂ Si
[μi Si p] −

N∑
i, j=1

∂2

∂ Si∂ S j
[aij Si S j p] = 0.

Thus we obtain

N∑
i=1

μi wi
∂C w

∂ wi
=

∫
H w

{
∂ p

∂T
+

N∑
i, j=1

∂2

∂ Si,T ∂ S j,T
[aij Si,T S j,T p]

}(
N∑

i=1

wi Si,T − K

)
dST .

On the other hand, we compute the derivative of C w with respect to the maturity date

∂C w

∂T
=

∫
H w

∂ p

∂T
(St , t, ST , T )

(
N∑

i=1

wi Si,T − K

)
dST ,

and then

N∑
i=1

μi wi
∂C w

∂ wi
= ∂C w

∂T
+

∫
H w

N∑
i, j=1

∂2

∂ Si,T ∂ S j,T
[aij Si,T S j,T p]

(
N∑

i=1

wi Si,T − K

)
dST .

Upon applying the divergence theorem, and using the fact that the boundary integral over ∂ H w vanishes, we get

N∑
i=1

μi wi
∂C w

∂ wi
= ∂C w

∂T
−

∫
H w

N∑
i, j=1

∂

∂ S j,T
[aij Si,T S j,T p]wi dST .

As the exterior normal vector to Lw is given by −w
|w| , we obtain:

N∑
i=1

μi wi
∂C w

∂ wi
= ∂C w

∂T
−

N∑
i, j=1

∫
Lw

ai j Si,T S j,T p(St , t, ST , T )
wi w j

|w| ds. (15)

On the other hand, after changing variables and integrating by parts identity (14) we also deduce that

∂C w

∂ wi
=

∫
H w

p(St , t, ST , T )Si,T dST .

Then

wi w j
∂2C w

∂ w j∂ wi
= −

∞∫
K

∫
ΔN

∂ p

∂ S j,T

(
St , t, S(Q , B), T

)
Q i B

Q j B

w j

BN−1

w1 . . . w N
dQ dB

− (1 + δi j)

∞∫ ∫
p
(

St , t, S(Q , B), T
)

Q i B
BN−1

w1 . . . w N
dQ dB,
K ΔN
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where δi j is the Kronecker’s delta. As before, using the fact that ∂
∂ S j,T

(pSi,T S j,T ) = ∂ p
∂ S j,T

Si,T S j,T + p(1 + δi j)Si,T , we deduce

that

∂2C w

∂ wi∂ w j
= 1

|w|
∫

Lw

pSi,T S j,T ds. (16)

Thus, if aij are time-dependent-only, we obtain:

∂C w

∂T
=

N∑
i=1

μi wi
∂C w

∂ wi
+

N∑
i, j=1

aij wi w j
∂2C w

∂ wi∂ w j
.

This concludes the proof of Theorem 1.

4. Conclusions

The problem of calibrating the model parameters so that pricing of different derivative instruments would be consistent
with the market observed prices is a crucial one in financial mathematics. Basket options play an increasingly important
role in many markets. One reason being that several indices and bench-marks are defined in terms of baskets. Assuming
the well-known multi-asset Black–Scholes model with volatility that varies with time only, the present work provides a
theoretical answer to the calibration problem of the volatility matrix by using basket option prices for arbitrary weights
and times in the region under consideration. This solution is achieved by means of Eq. (6). The latter is one possible multi-
dimensional generalization of Dupire’s seminal equation [5]. As is well known, not even in the one-dimensional situation
Dupire’s equation should be confused with Kolmogorov’s backward equation. Yet, many of the one-dimensional derivations
pass through such equation by using the fact that the fundamental solution of Black–Scholes equation is given by the second
derivative with respect to the strike of the call price. See, for example, Section 2 of [3]. In more than one dimension, the
fundamental solution is not characterized by the second derivative with respect to the strike and this is the main difficulty
we had to overcome in proving the result.

As in the one-dimensional Dupire approach, the practical implementation of the ideas presented herein would have to
face the usual difficulties in inverse problems. Namely, the need for regularization and the scarcity of data. The need for
regularization arises because one has to deal with derivatives and has been the subject of a large number of articles. See, for
example, [7] and references therein. The scarcity of data, which is already a problem in the one-dimensional case, could not
possibility be better here. Although the results are rather restricted in two ways, first, the volatility matrix must be constant
with respect to the asset, second, the result (1.6) requires one to be able to observe basket options with several weights
(yet a finite number). More precisely, if we want to theoretically reconstruct the volatility matrix we need the prices and its
derivatives with respect to the weights up to second order at the time interval under consideration. This coincides with the
one-dimensional case that theoretically needs the prices and the derivatives of the prices with respect to the strikes up to
second-order. In our multi-asset case, the derivatives with respect to the strikes are replaced by the derivatives with respect
to the weights. Despite the difficulty that the number of basket options with different weights is still rather limited, as more
financial products become available, such as different options on commodity indices, currency indices, and exchange-traded
funds (ETFs), we believe the first step provided by our generalization of Dupire’s formula could become of some practical
relevance.

Although the assumption of time-dependence-only for the volatility might seem artificial we remark that this is an
important step in dealing with such problems. Indeed, in [6] the time dependence of volatility was used as a simplifying
assumption. Later on, in [7] such approach was extended to a more realistic context associated with a volatility and term
structure. In particular, they assumed a multiplicative structure for the local volatility, which was motivated by the specific
data situation, and showed that the inverse problem could be decomposed into two separate sub-problems. In this respect,
we feel that the result presented here is relevant to further developments.

One way of geometrically interpreting Dupire’s equation is the following: If one looks at the surface generated by the
call option prices as the strike and the maturity vary, then such surface is subject to a constraint which determines uniquely
the volatility at each point in the (K , T ) plane. Furthermore, the volatility depends only on the local behavior of the prices
and its derivatives of order up to 2. Our generalization says that if we now consider time-dependent-only volatility for the
multi-asset case and look at basket options parameterized by the relative weights and the time to maturity, then once again
the (symmetric) volatility tensor is uniquely determined by each point (w, T ). Such determination is unique provided a
sufficiently large yet finite number of weights are chosen and the volatility depends only on the derivatives up to order 2
of the prices.

A natural continuation of the present work would be to extend the results presented herein to a situation where σ
depends also on the underlying asset prices. Although at this moment we do not have such generalization, we believe
that it should somehow rely on Eqs. (15) and (16). One might even speculate that it would involve a non-local operator.
Another idea would be to consider contracts whose payoff is max(S1 − K1, S2 − K2, . . . , SN − KN )) and join such ideas with
the present results. Yet another natural continuation of the present work would be to use the results obtained herein to
develop effective numerical methods to compute the matrix A = 1

2 σσ t . In this respect, the numerical ideas presented in [8]
might be very helpful.
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Appendix A. An alternative derivation

In this appendix we present yet another derivation of the main result. We believe that the techniques employed herein
provide a complementary view of the problem. For simplicity, throughout this section we shall write S to denote the stock
price at time t .

Consider as before a basket option, with a pay-off function given by:

f =
(

N∑
j=1

w j S j − K

)+
.

Ito–Tanaka formula [12] reads as

df =
N∑

i=1

∂ f

∂ Si
dSi +

N∑
i, j=1

aij Si S j
∂2 f

∂ Si S j
dt

with A = (aij) as before. Note that

∂ f

∂ Si
= H

(
N∑

j=1

w j S j − K

)
wi,

where H denotes the Heaviside function given by H(s) = 1 if s > 0 and zero otherwise. Furthermore,

∂2 f

∂ Si∂ S j
= δ

(
N∑

j=1

w j S j − K

)
wi w j .

Hence,

f (T ) = f (t0) +
N∑

i=1

T∫
t0

H

(
N∑

j=1

w j S j − K

)
wi Siμi dt +

N∑
i, j=1

T∫
t0

H

(
N∑

j=1

w j S j − K

)
wiσi j dW j

+
N∑

i, j=1

T∫
t0

δ

(
N∑

j=1

w j S j − K

)
aij Si S j wi w j dt.

Now we take the expected value E∗
t0

at time t0 to get

C w(t0) = f (t0) +
N∑

i=1

T∫
t0

E∗
t0

[
H

(
N∑

j=1

w j S j − K

)
wi Siμi

]
dt +

N∑
i, j=1

wi w j

T∫
t0

E∗
t0

[
δ

(
N∑

j=1

w j S j − K

)
aij Si S j

]
dt. (A.1)

In the sequel, we make use of the following

Lemma 3. Let g : R
N+ → R. Then,

∫
R

N+

g(S)δ

(
N∑

j=1

w j S j − K

)
p(St0 , t0, S, t)dS = 1

|w|
∫

Lw

g(S)p(St0 , t0, S, t)ds.

Proof. Let us define, in a similar way to that of Section 3, B and Q by

B =
N∑

i=1

wi Si,

and

Q i = wi Si∑N

i=1 wi Si
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for i = 1, . . . , N − 1. Then

∫
R

N+

g(S)δ

(
N∑

j=1

w j S j − K

)
p(St0 , t0, S, t)dS =

∞∫
K

∫
ΔN

g
(

S(Q , B)
)
δ(B − K )

BN−1

w1 w2 . . . w N
dB dQ

=
∫

ΔN

g
(

S(Q , K )
)

p(St0 , t0, S, t)
K N−1

w1 w2 . . . w N
dQ

= 1

|w|
∫
Ln

g(S)p(St0 , t0, S, t)dS. �

Back to Eq. (A.1), we get

E∗
t0

[
δ

(
N∑

j=1

w j S j − K

)
aij Si S j

]
=

∫
R

N+

aij Si S jδ

(
N∑

j=1

w j S j − K

)
p(St0 , t0, S, t)dS

where, as before, p denotes the transition probability density. From the previous lemma,

E∗
t0

[
δ

(
N∑

j=1

w j S j − K

)
aij Si S j

]
= 1

|w|
∫

Lw

ai j Si S j p(St0 , t0, S, t)dS.

Furthermore,

E∗
t0

[
H

(
N∑

j=1

w j S j − K

)
wi Siμi

]
=

∫
R

N+

μi w Si,tH

(
N∑

j=1

w j S j − K

)
p(St0 , t0, S, t)dS.

On the other hand, upon computing the derivatives

∂C w

∂ wi
=

∫
R

N+

H

(
N∑

j=1

w j S j − K

)
Si p(St0 , t0, S, t)dS,

we deduce that

E∗
t0

[
H

(
N∑

j=1

w j S j − K

)
wi Siμi

]
= μi wi

∂C w

∂ wi
.

Finally, from the identity

C w(t0) = f (t0) +
N∑

i=1

μi wi

T∫
t0

∂C w

∂ wi
dt +

N∑
i, j=1

wi w j

|w|
T∫

t0

∫
Lw

ai j Si S j p(St0 , t0, S, t)ds dt,

we get

∂C w

∂T
=

N∑
i=1

μi wi
∂C w

∂ wi
+

N∑
i, j=1

wi w j

|w|
∫

Lw

ai j Si S j p(St0 , t0, S, t)ds.

Now, since

∂2C w

∂ wi∂ w j
=

∫
R

N+

δ

(
N∑

j=1

w j S j − K

)
Si S j p(St0 , t0, S, t)dS = 1

|w|
∫

Lw

Si S j p(St0 , t0, S, t)ds,

we deduce once again that if the diffusion coefficients aij are deterministic functions depending only on time, then the
generalized Dupire’s equation (6) holds.
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