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Abstract

We consider the optimization problem of minimizing
∫
Ω G(|∇u|) dx in the class of functions W1,G(Ω), with a constraint on

the volume of {u > 0}. The conditions on the function G allow for a different behavior at 0 and at ∞. We consider a penalization
problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove
that every solution u is locally Lipschitz continuous and that the free boundary, ∂{u > 0} ∩ Ω is smooth.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We begin with a few historical remarks. In the paper [1], Aguilera, Alt and Caffarelli study an optimal design
problem with a volume constraint. The authors prove the regularity of minimizers by introducing a penalization term
in the energy functional (the Dirichlet integral) and minimizing the penalized functional without the volume constraint.
The authors start by observing that, for fixed values of the penalization parameter, the penalized functional is very
similar to the one considered in the paper [3] and they obtain the regularity results by using techniques very similar
to the ones in [3]. Then, they prove that for small values of the penalization parameter, the constrained volume is
attained. In this way, all the regularity results apply to the solution of the optimal design problem.

The method we have just described has been applied to other problems with similar success. See, for instance,
[2,9,12,18] where the differential equation satisfied by the minimizers is nondegenerate, uniformly elliptic, and [8],
where the equation involved may be degenerate or singular elliptic, but it still has the property of being homogeneous.

In this article we show that the same kind of results can be obtained for problems where the differential equation
satisfied by the minimizers is nonlinear degenerate or singular elliptic, and possibly not homogeneous. More precisely,
the operator we study here has the form Lu = div(g(|∇u|) ∇u

|∇u| ) where g satisfies the natural conditions introduced
by Lieberman in [14]. These conditions generalize the so-called natural conditions of Ladyzhenskaya and Ural’tseva.
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0022-247X/$ – see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2007.09.061



1408 S. Martínez / J. Math. Anal. Appl. 340 (2008) 1407–1421
In [14] the author studies the regularity of weak solutions of the equation

Lu = 0, (1.1)

and proves that, under his conditions, the solutions of (1.1) are C1,β .
The conditions imposed to g are the following: g ∈ C1(R�0), g(t) > 0 for t > 0 and

0 < δ � tg′(t)
g(t)

� g0, ∀t > 0, (1.2)

for certain constants δ and g0. Observe that δ = g0 = p − 1 when g(t) = tp−1, and conversely, if δ = g0 then g is a
power. For more examples of functions satisfying (1.2) see [15].

Condition (1.2) ensures that Eq. (1.1) is equivalent to a uniformly elliptic equation in nondivergence form with
ellipticity constants independent of the solution u on sets where ∇u �= 0. This condition does not imply any kind of
homogeneity on the function G (the primitive of g) and, moreover, it allows for a different behavior of the function g

when |∇u| is close to zero or infinity.
We describe now, more precisely, the problem that we study.
Let Ω be a smooth bounded domain in R

N and 0 � ϕ0 ∈ W 1,G(Ω) a Dirichlet datum, with ϕ0 � c0 > 0 in Ā,
where A is a nonempty relatively open subset of ∂Ω such that A ∩ ∂Ω is C2. Here W 1,G(Ω) is a Sobolev–Orlicz
space (see Appendix A). Let 0 < α < |Ω| and

Kα = {
u ∈ W 1,G(Ω)/

∣∣{u > 0}∣∣ = α, u = ϕ0 on ∂Ω
}
.

Our problem is to minimize J (u) = ∫
Ω

G(|∇u|) dx in Kα , with g = G′ satisfying (1.2).
One difficulty for the proof of the regularity of the minimizers in these type of problems, is that it is hard to make

enough volume preserving perturbations without an a priori knowledge of the regularity of ∂{u > 0}.
In order to solve our original problem using nonvolume preserving perturbations we follow the idea of [1] and

consider the following penalized problem: We let

K = {
u ∈ W 1,G(Ω)/u = ϕ0 on ∂Ω

}
and

Jε(u) =
∫
Ω

G
(|∇u|)dx + Fε

(∣∣{u > 0}∣∣), (1.3)

where

Fε(s) =
{

ε(s − α) if s < α,
1
ε
(s − α) if s � α.

Then, the penalized problem is:

find uε ∈K such that Jε(uε) = inf
v∈K

Jε(v). (Pε)

To prove the existence of minimizers we use compact immersion theorems in Sobolev–Orlicz spaces and direct
minimization. The regularity of the minimizers and of their free boundaries ∂{uε > 0} follows by showing that any
minimizer uε is a solution of the free boundary problem⎧⎨

⎩
Luε = 0 in {uε > 0} ∩ Ω,

uε = 0,
∂uε

∂ν
= λε on ∂{uε > 0} ∩ Ω,

(1.4)

in the sense defined in [15], where λε is a positive constant. The properties of the definition of weak solution are not
difficult to establish since the minimization problem studied in [15] is very similar to (Pε). The only difference is that
in (Pε) the functional is linear in |{u > 0}| while here the term Fε is piecewise linear and zero at the value α. With
these properties we have that the free boundary is locally a C1,β surface in a neighborhood of HN−1—almost every
point (see Corollary 2.1).

For a subclass of functions satisfying (1.2) we improve the regularity result for the case N = 2. Indeed, in that case
the whole free boundary is regular. Full regularity of the free boundary in dimension 2 was proved in [1] and [4] in the
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case of uniformly elliptic operators, in [6] for the p-laplacian with 2 − δ � p < ∞ for a small δ > 0, and also in [12]
for a penalization problem. In dimension 3 for p close to 2 a similar result was proved by A. Petrosyan (see [17]).

As in [1], the reason why this penalization method is so useful is that there is no need to pass to the limit in
the penalization parameter ε for which regularity estimates uniform in ε would be needed. In fact, we show that for
small values of ε the right volume is already attained. That is, |{uε > 0}| = α for small ε. This step is where the
proof is different from previous work on similar problems, since here the function g may not be homogeneous (see
Lemma 3.3).

Finally, the fact that for small ε any minimizer of Jε satisfies |{uε > 0}| = α implies that any minimizer of our
original optimization problem is also a minimizer of Jε and, therefore, that it is locally Lipschitz continuous with
smooth free boundary.

The paper is organized as follows: We begin our analysis of problem (Pε) for fixed ε in Section 2 where we prove
the existence of a minimizer, local Lipschitz regularity and nondegeneracy near the free boundary (Theorem 2.1) and
we also prove that minimizers are weak solutions of a free boundary problem—as defined in [15]—(Remark 2.1).
As a consequence, the free boundary is a C1,β surface in a neighborhood of HN−1—almost every point in the free
boundary (Corollary 2.1). For the case N = 2 and for the subclass of functions satisfying (1.2) we prove that their
whole free boundary is regular (Corollary 2.2). In Section 3 we show that for small values of ε we recover our original
optimization problem.

At the end of the paper we include three appendices with auxiliary results on Orlicz spaces, L-subharmonic func-
tions and blow-up sequences.

2. The penalized problem

2.1. Regularity of minimizers and their free boundaries

We begin by discussing the existence of extremals and their regularity. Next, we give some properties of the
minimizers. Since the functional Jε is very similar to the one in [15], some of the proofs follow as in [15] so we skip
them altogether. Then, we prove that any minimizer of Jε is a weak solution of (1.4), as defined in [15]. From this
result we establish that the free boundary is smooth.

Theorem 2.1. Let Ω ⊂ R
N be bounded. Then there exists a solution to the problem (Pε). Moreover, any solution uε

has the following properties:

(1) uε is locally Lipschitz continuous in Ω and, for D � Ω , ‖∇u‖L∞(D) � C with C = C(N,g0, δ,dist(∂Ω,D), ε).
(2) Luε = 0 in {uε > 0}.
(3) There are constants 0 < cmin � Cmax and γ � 1 such that, for balls Br(x) ⊂ D with x ∈ ∂{uε > 0},

cmin � 1

r

(
−
∫

Br(x)

uγ
ε dx

)1/γ

� Cmax.

(4) For every D � Ω there exist constants C,c > 0 such that, for every x ∈ D ∩ {uε > 0},
c dist

(
x, ∂{uε > 0}) � uε(x) � C dist

(
x, ∂{uε > 0}).

(5) For every D � Ω there exists a constant c > 0 such that, for x ∈ ∂{uε > 0} and Br(x) ⊂ D,

c � |Br(x) ∩ {uε > 0}|
|Br(x)| � 1 − c.

The constants may depend on ε.

Proof. Observe that if A � B then, ε(B − A) � Fε(B) − Fε(A) � 1
ε
(B − A). Then, the proof follows as in Sec-

tions 3–5 in [15]. �
From now on we drop the subscript ε and denote by u (instead of uε) a solution of (Pε).
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Theorem 2.2 (Representation Theorem). Let u ∈K be a solution of (Pε). Then,

(1) HN−1(D ∩ ∂{u > 0}) < ∞ for every D � Ω .
(2) There exists a Borel function qu such that

Lu = quHN−1�∂{u > 0}.
(3) For D � Ω there are constants 0 < c � C < ∞ depending on N , Ω , D and ε such that, for Br(x) ⊂ D and

x ∈ ∂{u > 0},
c � qu(x) � C, crN−1 � HN−1(Br(x) ∩ ∂{u > 0}) � CrN−1.

(4) HN−1(∂{u > 0} \ ∂red{u > 0}) = 0.

Proof. For the proof, see Sections 6 and 7 in [15]. Observe that D ∩ ∂{u > 0} has finite perimeter, thus, the reduce
boundary ∂red{u > 0} is defined as well as the measure theoretic normal ν(x) for x ∈ ∂red{u > 0} (see [7]). �
Lemma 2.1. Let x0, x1 ∈ ∂{u > 0} and ρk → 0+. For i = 0,1, let xi,k → xi with u(xi,k) = 0 such that Bρk

(xi,k) ⊂ Ω

and such that the blow-up sequence

ui,k(x) = 1

ρk

u(xi,k + ρkx)

has a limit ui(x) = λi(x · νi)
−, with 0 < λi < ∞ and νi a unit vector. Then λ0 = λ1.

Proof. It follows as in [8] by using the results in Appendix C. �
Lemma 2.2. Let x0 ∈ Ω ∩ ∂{u > 0} and let

λ = λ(x0) := lim sup
x→x0
u(x)>0

∣∣∇u(x)
∣∣.

Then, there exist sequences yk ∈ Ω ∩ ∂{u > 0}, dk → 0, and a unit vector ν such that the blow-up sequence with
respect to Bdk

(yk) has a limit u0 with

u0(x) = λ(x · ν)−.

Proof. It follows as the proof of Theorem 2.3 in [8] by using the results in Appendices B and C. �
Lemma 2.3. For HN−1-a.e. x0 ∈ ∂red{u > 0}, there exists a sequence γn → 0 such that, if un is the blow-up sequence
with respect to Bγn(x0), we have that

un → λ∗(x · ν(x0)
)−

with ν(x0) the outward unit normal to ∂{u > 0} at x0 in the measure theoretic sense and λ∗ = g−1(qu(x0)).

Proof. Suppose that ν(x0) = eN . As in Theorem 3.5 in [4] and Theorem 5.5 in [5] we can prove, by using the
boundary regularity results of solutions of Lv = 0 (see [14]) that, for HN−1-a.e. x0 ∈ ∂red{u > 0}, any blow-up limit
of u with respect to sequences of balls Bρk

(x0), ρk → 0, satisfies{Lu0 = 0 in {xN < 0},
u0 = 0, g

(|∇u0|
) = qu(x0) on {xN = 0}. (2.1)

In particular, u0(x) = λ∗x−
N + o(|x|) with λ∗ = g−1(qu(x0)).

Take now u0,j , a blow-up sequence of u0 with respect to balls Bμj
(0). We may assume that u0,j → u00. Then,

u00 = λ∗x−.
N
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Now, we want to construct a blow-up sequence of u with limit u00. Observe that∣∣∣∣ 1

ρkμj

u(x0 + ρkμjx) − u00(x)

∣∣∣∣ � 1

μj

∣∣uk(μjx) − u0(μjx)
∣∣ + ∣∣u0,j (x) − u00(x)

∣∣.
Since uk → u0 and u0,j → u00 uniformly on compacts sets we have that for j � jn, |u0,j (x) − u00(x)| < 1/n and,
for k � kj,n, |uk(μjx) − u0(μjx)| < μj/n if |x| � n. We may suppose that jn � n and kj,n � n. Now, taking j = jn,
k = kjn,n, and γn = ρkjn,n

μjn , we have that γn → 0 and |uγn(x) − u00(x)| < 2/n in Bn. The result follows. �
Theorem 2.3. Let u ∈ K be a solution to (Pε) and qu the function in Theorem 2.2. Then there exists a constant λu

such that

lim sup
x→x0
u(x)>0

∣∣∇u(x)
∣∣ = λu for every x0 ∈ Ω ∩ ∂{u > 0}, (2.2)

qu(x0) = g(λu), HN−1-a.e. x0 ∈ Ω ∩ ∂red{u > 0}. (2.3)

Proof. It follows as in [12] by using Lemmas 2.1, 2.2 and 2.3. �
Now we can prove the asymptotic development of minimizers, namely,

Theorem 2.4. For every x0 ∈ ∂red{u > 0},
u(x0 + x) = λu

(
x · ν(x0)

)− + o
(|x|) as x → 0.

Proof. The proof follows as that of Theorem 7.1 in [15]. We let u0 a blow-up limit of u at the point x0 ∈ ∂red{u > 0}.
Assume ν(x0) = eN . First, by the definition of normal direction in the measure theoretic sense and the uniform
nondegeneracy of u (Theorem 2.2(3)) we deduce that u0 = 0 in {xN > 0} and u0 > 0 in {xN < 0}. So that, Lu0 = 0
in {xN < 0}. Then, by the regularity results in [14] and the nondegeneracy property (Theorem 2.2(3)) we have, for a
positive constant λ∗,

u0(x) = λ∗x−
N + o

(|x|).
By making a second blow up as in Lemma 2.3 and applying Lemmas 2.1 and 2.2 and Theorem 2.3 we deduce that

λ∗ = λu.
On the other hand, by (2.2), |∇u0| � λu. Thus,

u0(x) � λux
−
N .

Now, by a careful application of the strong maximum principle (see the proof of Theorem 7.1 in [15]) we conclude
that

u0(x) = λux
−
N .

The proof is complete. �
Remark 2.1. Now we have that, by Theorems 2.1(1)–(3), 2.2(2) and 2.3, any minimizer satisfies all the properties
of the definition of weak solution I in [15]. Moreover, by Theorem 2.4, the free boundary is flat at every point in
∂red{u > 0}. Therefore, by Theorem 9.3 and Remark 9.2 in [15], we obtain the following regularity result for the free
boundary ∂{u > 0}:

Corollary 2.1. Let u ∈ K be a solution to (Pε). Then, A = ∂red{u > 0} is relatively open with respect to ∂{u > 0}, A is
a C1,β surface and the remainder of the free boundary has zero HN−1-measure.
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2.2. Full regularity in the case N = 2

We will prove that in dimension two, for the subclass of functions satisfying (1.2) and (2.4), the whole free boundary
is a C1,β surface.

The class that we consider consists of those functions satisfying condition (1.2) and such that

there exist constants t0 > 0 and k > 0 so that g(t) � kt for t � t0. (2.4)

Observe that this condition is satisfied, for example, if δ � 1. Also (2.4) holds when g0 � 1 and there exists a
constant C such that lim supt→0

g(t)
tg0 = C.

To prove the full regularity, we will use the following two lemmas. These lemmas hold for any dimension and for
any δ and g0.

Lemma 2.4. Let u ∈K be a local minimizer. Given D � Ω , there exist constants C = C(N,D,λu), r0 = r0(N,D) > 0
and γ = γ (N,D) > 0 such that, if x0 ∈ D ∩ ∂{u > 0} and r < r0, then

sup
Br (x0)

|∇u| � λu + Crγ .

Proof. The proof is similar to the proof of Theorem 7.1 in [5]. Here we make a little modification by using a result in
[13] to avoid adding any new hypothesis to the function g.

Let Uρ = (G(|∇u|) − G(λu) − ρ)+ and U0 = (G(|∇u|) − G(λu))
+. By Theorem 2.3 we know that Uρ vanishes

in a neighborhood of the free boundary. Since Uρ > 0 implies that G(|∇u|) > G(λu) + ρ, the closure of {Uρ > 0} is
contained in {G(|∇u|) > G(λu) + ρ/2}.

Let v = G(|∇u|). By Lemma 1 in [13] we have that v satisfies

Mv := Di

(
bij (∇u)Djv

)
� 0 in

{
G

(|∇u|) > G(λu) + ρ/2
}
,

where bij is defined in (B.1).
Hence Uρ satisfies

MUρ � 0 in
{
G

(|∇u|) > G(λu) + ρ/2
}
.

Now, extend the operator M to a uniformly elliptic operator in divergence-form,

M̃w := Di

(
b̃ij (x)Djw

)
in Ω,

with measurable coefficients such that

b̃ij (x) = bij (∇u) in
{
G

(|∇u|) > G(λu) + ρ/2
}
.

Then, we have

M̃Uρ � 0 in Ω.

Let D � Ω and let r0 = dist(D, ∂Ω), x0 ∈ D ∩ ∂{u > 0}. For 0 < r < r0, let

hρ(r) = sup
Br(x0)

Uρ, h0(r) = sup
Br (x0)

U0.

Then, hρ(r) − Uρ is a M̃-supersolution in the ball Br(x0) and

hρ(r) − Uρ � 0 in Br(x0),

= hρ(r) in Br(x0) ∩ {u = 0}.
By Theorem 2.1, |Br(x0) ∩ {u = 0}| � crN . Then, applying the weak Harnack inequality (see [10, Theorem 8.18])
with 1 � p < N/(N − 2), we get

inf
Br/2(x0)

(
hρ(r) − Uρ

)
� cr−N/p

∥∥hρ(r) − Uρ

∥∥
Lp(Br (x0))

� chρ(r).

Letting now ρ → 0 we obtain

inf
B (x )

(
h0(r) − U0

)
� ch0(r),
r/2 0
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for some 0 < c < 1. Or, equivalently,

sup
Br/2(x0)

U0 � (1 − c)h0(r).

Therefore,

h0

(
r

2

)
� (1 − c)h0(r),

from which it follows that h0(r) � Crγ for some C > 0, 0 < γ < 1. That is

G
(|∇u|) � G(λu) + Crγ in Br(x0)

and, therefore,

|∇u| � λu + Crγ in Br(x0).

The conclusion of the lemma follows. �
Lemma 2.5. Let x1 be a regular free boundary point.

Take

τρ(x) =
{

x + ρ2φ(
|x−x1|

ρ
)νu(x1) for x ∈ Bρ(x1),

x elsewhere,

where φ ∈ C∞
0 (−1,1) with φ′(0) = 0.

Let

δ = ρ2
∫

Bρ(x1)∩∂{u>0}
φ

( |x − x1|
ρ

)
dHN−1, (2.5)

and let vρ(x) = u(τ−1
ρ (x)). Then,∫

Bρ(x1)

(
G

(|∇vρ |) − G
(|∇u|))dx = −lρN+1Φ(λu) + o

(
ρN+1), (2.6)

where l = limρ→0
δ

ρN+1 and Φ(t) = g(t)t − G(t).

Proof. The proof follows the lines of Theorem 3.1 in [8]. �
It is in the following lemma where we need to impose condition (2.4).

Lemma 2.6. Let Φ(t) = g(t)t − G(t), and g satisfying condition (2.4). Let D � Ω , x0 ∈ ∂{u > 0} such that
Bμ(x0) ⊂ D. Take v = max(u − tη,0), where t > 0, η ∈ C∞

0 (Ω), η = 0 in Ω \ Bμ(x0) and |∇η| � C/t . Then,∫
Bμ(x0)∩{u>0}

(
G

(|∇v|) − G
(|∇u|))dx �

∫
Bμ(x0)∩{0<u�tη}

Φ
(|∇u|)dx + C0t

2
∫

Bμ(x0)∩{u>tη}
|∇η|2 dx

for C0 = C0(N, δ, g0,dist(∂Ω,D), ε,C).

Proof. The proof follows as in Theorem 4.3 in [4]. We only have to make the following observations. First, for
0 � t � 1, we have that |∇u − t∇η| � |∇u| + C � C1 + C, where C1 is the constant in Theorem 2.1(1). On the other
hand, if g satisfies (2.4) and if F(s) = g(s)

s
, then for 0 � s � C1 + C, there exists a constant C0 such that F(s) � C0.

Therefore, we have that F(|∇u − t∇η|) is bounded by C0. The rest of the proof follows as in [4]. �
Now, following ideas from [12], using Lemmas 2.4–2.6, we prove, for N = 2 and g satisfying (2.4), the following:
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Theorem 2.5. Let N = 2, g satisfying (2.4) and u a minimizer. Then, for any ball Br centered at the free boundary we
have

−
∫

Br∩{u>0}

(
Φ(λu) − Φ

(|∇u|))+ → 0 as r → 0,

where Φ(t) = g(t)t − G(t).

Proof. Let 0 < r < μ � 1, t > 0 and v0 be the function defined in Lemma 2.6. By Theorem 2.1, u � Cr in Br(x0).
Take t = Cr and let δt = |{0 < u � tη} ∩ Bμ(x0)|.

Now, let us take x1 far from x0 and such that ∂{u > 0} ∩ Br1(x1) is regular for small r1. Let ρ be such that (2.5) is
satisfied for δ = δt , and consider v1 = vρ defined in Br1(x1) as in Lemma 2.5. Then, the function

v =
⎧⎨
⎩

v0 in Bμ(x0),

v1 in Br1(x1),

u elsewhere
is admissible for our minimization problem and |{v > 0}| = |{u > 0}|. Therefore, by Lemmas 2.5 and 2.6, we have

0 � Jε(v) −Jε(u) =
∫

Bρ(x0)

(
G

(|∇v|) − G
(|∇u|))dx +

∫
Br1 (x1)

(
G

(|∇v|) − G
(|∇u|))dx

�
∫

Bμ(x0)∩{0<u�tη}
Φ

(|∇u|) + Ct2
∫

Bμ(x0)∩{u>tη}
|∇η|2 dx − lρ3Φ(λu) + o

(
ρ3).

By the definition of δt we have∫
Bμ(x0)∩{0<u�tη}

(
Φ(λu) − Φ

(|∇u|))dx � Ct2
∫

Bμ(x0)∩{u>tη}
|∇η|2 dx + o

(
ρ3) + (

δt − lρ3)Φ(λu).

Now choose

η(x) =

⎧⎪⎨
⎪⎩

log(μ/|x−x0|)
log(μ/r)

in Bμ(x0) \ Br(x0),

1 in Br(x0),

0 in Ω \ Bμ(x0).

Observe that the condition |∇η| � C/t is satisfied if we choose μ such that μ � 2r .
By our election of t and η, we have∫

Br(x0)∩{u>0}

(
Φ(λu) − Φ

(|∇u|))+
dx �

∫
Bμ(x0)

(
Φ

(|∇u|) − Φ(λu)
)+

dx + Cr2

log(μ/r)

+ o
(
ρ3) + (

δt − lρ3)Φ(λu).

By Lemma 2.4, we have that Φ(|∇u|) − Φ(λu) � Φ(λu + Crγ ) − Φ(λu) = Φ ′(ξ)Crγ for some λu � ξ � λu + Crγ .
As Φ ′(t) = g′(t)t � g0g(t), and g is nondecreasing, we have Φ ′(ξ) � g0g(ξ) � g0g(λu + Crγ ).

Therefore, by the definition of l, we have

−
∫

Br (x0)∩{u>0}

(
Φ(λu) − Φ

(|∇u|))+
dx � C

(
(μγ+2 + o(ρ3))

r2
+ 1

log(μ/r)

)
,

where C = C(λu). As, by Theorem 2.1(5), δt � cμ2 we have that o(ρ3) = o(μ2). Taking r = μh(μ)β , where h(μ) =
max(μ,

o(μ2)

μ2 ) with β < min{γ /2,1/2}, we obtain the desired result. �
Corollary 2.2. Let N = 2, g satisfying (2.4) and u ∈ K be a solution to (Pε). Then ∂{u > 0} is a C1,β surface locally
in Ω .
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Proof. The proof follows now as in [3], we give the proof here for the readers’ convenience. Let uk be a blow-up
sequence converging to u0. Since, ∇uk → ∇u0 a.e. in R

N , we conclude from Theorems 2.3 and 2.5 that |∇u0| = λu

in B1 ∩ {u0 > 0}. And then

0 = Lu0 = div

(
g(|∇u0|)
|∇u0| ∇u0

)
= g(λε)

λu

�u0 in {u0 > 0}.

Therefore, u0 is harmonic in {u0 > 0}. On the other hand, if we take v = |∇u0|2, we have that v = λ2
u in {u0 > 0}

and, in particular, �v = 0 in {u0 > 0}. Since �v = |D2u0|2, we conclude that ∇u0 is constant in each connected
component of {u0 > 0}. Therefore, by Lemma C.1(6) and (8), we have

u0 = λu(x · ν0)
− + q

(
(x · ν0) − s

)+

for some ν0 and q, s � 0. Since {u0 = 0} has positive density at the origin, we have that s > 0 or q = 0. Therefore, we
have proved that any blow-up sequence has a subsequence that converges to the half-linear function u0 = λu(x ·ν0)

− in
some neighborhood of the origin. Then, applying Theorem 9.3 and Remark 9.2 in [15] we have the desired result. �
Remark 2.2. Since the functional in [15] is linear in |{u > 0}|, we can also prove, for the minimizers of the problem
treated in [15], the full regularity of the free boundary when N = 2. We only have to use Theorem 2.4, Lemma 2.6 (to
treat the first term of the functional) and the result follows as in [3].

3. Behavior of the minimizer for small ε

Since we want to analyze the dependence of the problem with respect to ε, we will again denote by uε a solution
to problem (Pε).

To complete the analysis of the problem, we will now show that if ε is small enough, then∣∣{uε > 0}∣∣ = α.

To this end, we need to prove that the constant λε := λuε is bounded from above and below by positive constants
independent of ε. We perform this task in a series of lemmas.

Lemma 3.1. Let uε ∈K be a solution of (Pε). Then, there exists a constant C > 0 independent of ε such that

λε � C.

Proof. The proof is similar to the one of Theorem 3 in [1].
First, we will prove that there exist C,c > 0, independent of ε, such that

c �
∣∣{uε > 0}∣∣ � Cε + α.

In fact, by taking ū ∈ W 1,G(Ω) such that |{ū > 0}| � α we have that Jε(uε) � Jε(ū) � C. Hence, Fε(|{uε > 0}|) � C.
Thus we obtain the bound from above. We also have that

∫
Ω

G(|∇uε|) is bounded.
As uε = ϕ0, on ∂Ω by Lemma A.3, we have ‖∇uε − ∇ϕ0‖G � C and, by Lemma A.4, we also have

‖uε − ϕ0‖G � C. Then, ‖uε‖W 1,G(Ω) � C. Using the Sobolev trace theorem, Hölder inequality and the embedding
Theorem A.1, we have, for q < δ + 1,∫

∂Ω

ϕ
q

0 dHN−1 � C
∣∣{uε > 0}∣∣ δ+1−q

δ+1 ‖uε‖q

W 1,δ+1(Ω)
� C

∣∣{uε > 0}∣∣ δ+1−q
δ+1 ‖uε‖q

W 1,G(Ω)
� C

∣∣{uε > 0}∣∣ δ+1−q
δ+1 ,

and thus we obtain the bound from below.
The rest of the proof follows as in Lemma 3.1 in [8]. �

Lemma 3.2. Let uε ∈K be a solution of (Pε), Br � Ω and v a solution of

Lv = 0 in Br, v = uε on ∂Br .
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Then, there exists a positive constant γ = γ (δ, g0,N) such that∫
Br

∣∣∇(uε − v)
∣∣q dx � C

∣∣Br ∩ {uε = 0}∣∣(1

r

(
−
∫
Br

uγ
ε dx

)1/γ )q

for all q � 1, where C is a constant independent of ε.

Proof. The proof follows the lines of the proof of Lemma 3.2 in [8]. The only difference is that in the present situation
we have to use the weak Harnack inequality for solutions of Lv = 0 (see [14, Theorem 1.3]). �

Without loss of generality, from now on we will suppose that g0 � 1.

Lemma 3.3. Let uε and v be as in Lemma 3.2. Then, if r is small enough (depending on ε), we have∫
Br

(
G

(|∇uε|
) − G

(|∇v|))dx � C

∫
Br

|∇uε − ∇v|g0+1 dx (3.1)

for some constant C independent of ε.

Proof. First, we will use an inequality proved in [15] (see Theorem 2.3). Let

A1 = {
x ∈ Br : |∇uε − ∇v| � 2|∇uε|

}
, A2 = {

x ∈ Br : |∇uε − ∇v| > 2|∇uε|
}
,

then Br = A1 ∪ A2 and we have that∫
Br

(
G

(|∇uε|
) − G

(|∇v|))dx � C

(∫
A2

G
(|∇uε − ∇v|)dx +

∫
A1

F
(|∇uε|

)|∇uε − ∇v|2 dx

)
. (3.2)

Therefore, by using that g0 � 1 and property (g1) in Lemma A.1, we have

G
(|∇uε − ∇v|) � C|∇uε − ∇v|g0+1,

F
(|∇uε|

)
� C|∇uε|g0−1 � C|∇uε − ∇v|g0−1 in A1, (3.3)

if |∇uε| � 1 and |∇v − ∇uε| � 1.

On the other hand, by Lemma 3.1 and (2.2), we have that for small r (depending on ε), |∇uε| is bounded by a
constant independent of ε. By Lemma 5.1 in [14] there exist C0,C1 = C0,C1(N,g0, δ) such that

sup
Br

G
(|∇v|) � C0

rN

∫
B2r

G
(|∇v|)dx � C1

rN

∫
B2r

(
1 + G

(|∇uε|
))

dx � C̄

with C̄ is independent of ε if r is small (depending on ε). Therefore, (3.3) holds for every x ∈ Br with a constant C

independent of ε. Combining (3.2) and (3.3) we obtain the desired result. �
Lemma 3.4. For every ε > 0 there exists a neighborhood of A in Ω such that uε > 0 in this neighborhood.

Proof. The proof follows the lines of that of Lemma 3.4 in [8]. However, one observation is in order. When applying
Schwartz symmetrization, we use the fact that this symmetrization preserves the distribution function and strictly
decreases the functional

∫
B

G(|∇u|) dx, unless the function is already radially symmetric and radially decreasing.
These facts hold by Corollary 2.35, in Section II.8 of [11]. The rest of the proof follows without changes. �
Lemma 3.5. Let uε ∈K be a solution of (Pε). Then,

λε � c > 0

where c is independent of ε.
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Proof. The proof follows as in [8] by using Lemmas 3.2–3.4 and Lemma C.1. �
With these uniform bounds on λε , we can prove the main result in this section:

Theorem 3.1. Under the hypotheses of Lemma 3.5, there exists ε0 > 0 such that, for ε < ε0, |{uε > 0}| = α. Therefore,
uε is a minimizer of J in Kα .

Proof. It follows as in Theorem 3.1 in [8] by using Lemmas 3.1 and 3.5. �
As a corollary we have

Corollary 3.1. Any minimizer u of J in Kα is a locally Lipschitz continuous function, ∂red{u > 0} is a C1,β surface
locally in Ω and the remainder of the free boundary has vanishing HN−1-measure. Moreover, if N = 2 and g satisfies
(2.4), ∂{u > 0} is a C1,β surface locally in Ω .

Proof. Let u be a minimizer of J in Kα . Let ε > 0 small. Then, there exists a solution uε to (Pε) and |{uε > 0}| = α.
Hence, Jε(u) = J (u) � J (uε) = Jε(uε). Therefore, u is a solution of (Pε), and the regularity result follows from
Corollary 2.1. �
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Appendix A. Properties of G and Orlicz spaces

The following results are all included in [15].

Lemma A.1. Let g � 0 satisfy (1.2). Then, if G(t) = ∫ t

0 g(s) ds,

(g1) min{sδ, sg0}g(t) � g(st) � max{sδ, sg0}g(t),
(g2) G is convex and C2,
(g3) tg(t)

1+g0
� G(t) � tg(t), ∀t � 0.

Lemma A.2. If G̃ is such that G̃′(t) = g−1(t), then

(1 + δ)

δ
min

{
s1+1/δ, s1+1/g0

}
G̃(t) � G̃(st) � δ

1 + δ
max

{
s1+1/δ, s1+1/g0

}
G̃(t). (G̃1)

We recall that the functional

‖u‖G = inf

{
k > 0:

∫
Ω

G

( |u(x)|
k

)
dx � 1

}

is a norm in the Orlicz space LG(Ω), which is the linear hull of the Orlicz class

KG(Ω) =
{
u measurable:

∫
Ω

G
(|u|)dx < ∞

}
.

Observe that this set is convex since G is a convex function (property (g2)). The Orlicz–Sobolev space W 1,G(Ω)

consists of those functions in LG(Ω) whose distributional derivatives ∇u also belong to LG(Ω). And we have that
‖u‖W 1,G = max{‖u‖G,‖∇u‖G} is a norm in this space.

Theorem A.1. LG(Ω) ↪→ L1+δ(Ω) continuously.
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Lemma A.3. There exists a constant C = C(g0, δ) such that

‖u‖G � C max

{(∫
Ω

G
(|u|)dx

)1/(δ+1)

,

(∫
Ω

G
(|u|)dx

)1/(g0+1)}
.

Lemma A.4. If u ∈ W 1,1(Ω) with u = 0 on ∂Ω and
∫
Ω

G(|∇u|) dx is finite, then∫
Ω

G

( |u|
R

)
dx �

∫
Ω

G
(|∇u|)dx for R = diamΩ.

Appendix B. Some results on L-solutions with linear growth

In this section we will state some properties of L-subsolutions. From now on, we note B+
r = Br(0) ∩ {xN > 0}.

Remark B.1. Let u be such that Lu = 0. Then, in the set {|∇u| > 0}, u satisfies a linear nondivergence uniformly
elliptic equation, T u = 0, where

T v = bij (∇u)Dij v = 0 (B.1)

with

bij = δij +
(

g′(|∇u|)|∇u|
g(|∇u|) − 1

)
DiuDju

|∇u|2 ,

and the matrix bij (∇u) is β-elliptic in {|∇u| > 0}, where β = max{max{g0,1},max{1,1/δ}}.

Lemma B.1. Let 0 < r � 1. Let u ∈ C(B+
r ) be such that Lu = 0 in B+

r and 0 � u � αxN in B+
r , u � δ0αxN on

∂B+
r ∩ Br0(x̄) with x̄ ∈ ∂B+

r , x̄N > 0 and 0 < δ0 < 1.
Then, there exist 0 < γ < 1 and 0 < ε � 1, depending only on r and N such that

u(x) � γ αxN in B+
εr .

Proof. See Lemma B.1 in [16]. �
Theorem B.1. Let u be a Lipschitz function in R

N with Lipschitz constant L such that

(1) u � 0 in R
N , Lu = 0 in {u > 0}.

(2) {xN < 0} ⊂ {u > 0}, u = 0 in {xN = 0}.
(3) There exists 0 < λ0 < 1 such that |{u=0}∩BR(0)|

|BR(0)| > λ0, ∀R > 0.

Then u = 0 in {xN > 0}.

Proof. The proof will be divided into several steps.

Step 1. Let u0(x) = u(T x)
T

, with T > 0, to be chosen later.

Then, the function u0 satisfies the same properties as u with the same constants L and λ0.
Let β = λ0

2N−1 < 1. Then, by properties (2) and (3) with R = 1, we have that there exists x0 ∈ B1(0), with x0,N > β

such that u0(x0) = 0. Since u0 is Lipschitz with constant L, we have u0(x) � L|x − x0|. Thus, if we take r0 = β
4 , we

have u0(x) � Lβ
4 for |x − x0| < r0. There holds that xN � 3β

4 in Br0(x0). Hence, we have

u0(x) � LxN

3
on ∂B+

R1
∩ Br0(x0),

where R1 = |x0| > β .
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By property (1) and Lemma 8.1 in [15], Lu0 � 0. By property (2), 0 � u0(x) � LxN .
Taking δ0 = 1/3, x̄ = x0, α = L and r = R1 in Lemma B.1, we have that there exist 0 < γ1 < 1 and 0 < ε1 � 1,

depending only on r0 and x0,N , such that

0 � u0(x) � γ1LxN in B+
R1ε1

. (B.2)

Observe that, since x0,N > β , γ1 and ε1 depend only on λ0.
Now, take u1(x) = u0(R1ε1x)

R1ε1
. Then, u1 satisfies the properties of u0 with the same constants L and λ0.

Therefore, there exists x1 ∈ B1(0), with x1,N > β such that u1(x1) = 0. By (1), u1(x) � L|x −x1|. Thus, if we take
r1 = γ1β

4 , we have u1(x) � γ1Lβ
4 for |x − x1| < r1. As γ1 � 1, there holds that xN � 3β

4 in Br1(x1). Thus, we have that

u1(x) � γ1LxN

3
on ∂B+

R2
∩ Br1(x1),

where R2 = |x1| > β .
By property (1), Lu1 � 0. And, by (B.2), 0 � u1(x) � γ1LxN in B+

1 .
Taking δ0 = 1/3, x̄ = x1, α = γ1L and r = R2 in Lemma B.1, we have that there exist 0 < γ2 < 1 and 0 < ε2 � 1,

depending only on λ0 such that u1(x) � γ2γ1LxN in B+
R2ε2

.
Inductively, we construct a sequence uk , such that uk satisfies the same hypotheses as u0 with the same constants

L and λ0 and such that

0 � uk−1 � αkxN in B+
Rkεk

, (B.3)

where αk = L
∏k

i=1 γi , and 0 < γi , εi < 1 depend only on λ0. From the construction we have uk(x) = uk−1(Rkεkx)

Rkεk
.

Therefore, for any k � 1,

u0 � αkxN in B+
δk

, (B.4)

where δk = ∏k
i=1 Riεi .

Step 2. Let us see that αk → 0 as k → ∞. Suppose, by contradiction, that this does not hold. Then, since αk is
decreasing, there exists α0 > 0 such that αk � α0 for k � 1. We have αk+1 = γk+1αk , and rk = β

4 αk � β
4 α0. Thus,

we can take in Lemma (B.1) u = uk , r0 = β
4 α0 γ = γk . We can think that γk+1 was taken as the minimum over the

γ ’s such that the conclusion of the lemma is satisfied. Therefore, γk+1 � γ1 < 1 for every k. Then, αk � Lγ k
1 for all

k � 1. Therefore, αk → 0; a contradiction.

Step 3. Now we can prove that u(x) = 0 in {xN > 0}. Suppose that there exists ξ with ξN > 0 such that u(ξ) > 0.
Then, since αk → 0, there exists k � 1 such that u(ξ) > αkξN . Now, for this fixed k, take T > |ξ |β−k(

∏k
i=1 εi)

−1.
Then, since Ri > β , we have that |ξ | < T δk . Thus, if we take ξ̄ = ξ

T
we have that u0(ξ̄ ) > αkξ̄N . But, on the other

hand, since |ξ̄ | < δk by (B.4), we have u0(ξ̄ ) � αkξ̄N , which is a contradiction. �
Appendix C. Blow-up limits

Now we give the definition of blow-up sequence, and we collect some properties of the limits of these blow-up
sequences for certain classes of functions that are used throughout the paper.

Let u be a function with the following properties:

(C1) u is Lipschitz in Ω with constant L > 0, u � 0 in Ω and Lu = 0 in Ω ∩ {u > 0}.
(C2) Given 0 < κ < 1, there exist two positive constants Cκ and rκ such that, for every ball Br(x0) ⊂ Ω and 0 <

r < rκ ,

1

r

(
−
∫

Br(x0)

uγ dx

)1/γ

� Cκ implies that u ≡ 0 in Bκr(x0).
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(C3) There exist constants r0 > 0 and 0 < λ1 � λ2 < 1 such that, for every ball Br(x0) ⊂ Ω x0 on ∂{u > 0} and
0 < r < r0,

λ1 � |Br(x0) ∩ {u > 0}|
|Br(x0)| � λ2.

Definition C.1. Let Bρk
(xk) ⊂ Ω be a sequence of balls with ρk → 0, xk → x0 ∈ Ω and u(xk) = 0. Let

uk(x) := 1

ρk

u(xk + ρkx).

We call uk a blow-up sequence with respect to Bρk
(xk).

Since u is locally Lipschitz continuous, there exists a blow-up limit u0 : R
N → R such that for a subsequence,

uk → u0 in Cα
loc

(
R

N
)

for every 0 < α < 1,

∇uk → ∇u0 ∗ -weakly in L∞
loc

(
R

N
)
,

and u0 is Lipschitz in R
N .

Lemma C.1. If u satisfies properties (C1)–(C3), then

(1) u0 � 0 in Ω and Lu0 = 0 in {u0 > 0}.
(2) ∂{uk > 0} → ∂{u0 > 0} locally in Hausdorff distance.
(3) χ{uk>0} → χ{u0>0} in L1

loc(R
N).

(4) If K � {u0 = 0}, then uk = 0 in K for k big enough.
(5) If K � {u0 > 0} ∪ {u0 = 0}◦, then ∇uk → ∇u0 uniformly in K .
(6) There exists a constant 0 < λ < 1 such that

|BR(y0) ∩ {u0 = 0}|
|BR(y0)| � λ, ∀R > 0, ∀y0 ∈ ∂{u0 > 0}.

(7) ∇uk → ∇u0 a.e. in R
N .

(8) If xk ∈ ∂{u > 0}, then 0 ∈ ∂{u0 > 0}.

Proof. The proof follows as in [8] and [12]. �
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