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Abstract

We consider the optimization problem of minimizing fQ G(|Vu|)dx in the class of functions WG (£2), with a constraint on
the volume of {u > 0}. The conditions on the function G allow for a different behavior at 0 and at co. We consider a penalization
problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove
that every solution u is locally Lipschitz continuous and that the free boundary, d{u > 0} N £2 is smooth.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We begin with a few historical remarks. In the paper [1], Aguilera, Alt and Caffarelli study an optimal design
problem with a volume constraint. The authors prove the regularity of minimizers by introducing a penalization term
in the energy functional (the Dirichlet integral) and minimizing the penalized functional without the volume constraint.
The authors start by observing that, for fixed values of the penalization parameter, the penalized functional is very
similar to the one considered in the paper [3] and they obtain the regularity results by using techniques very similar
to the ones in [3]. Then, they prove that for small values of the penalization parameter, the constrained volume is
attained. In this way, all the regularity results apply to the solution of the optimal design problem.

The method we have just described has been applied to other problems with similar success. See, for instance,
[2,9,12,18] where the differential equation satisfied by the minimizers is nondegenerate, uniformly elliptic, and [8],
where the equation involved may be degenerate or singular elliptic, but it still has the property of being homogeneous.

In this article we show that the same kind of results can be obtained for problems where the differential equation
satisfied by the minimizers is nonlinear degenerate or singular elliptic, and possibly not homogeneous. More precisely,
the operator we study here has the form Lu = diV(g(|Vu|)%) where g satisfies the natural conditions introduced
by Lieberman in [14]. These conditions generalize the so-called natural conditions of Ladyzhenskaya and Ural’tseva.

* Supported by ANPCyT PICT No. 03-13719, UBA X052 and X066 and CONICET PIP5478.
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In [14] the author studies the regularity of weak solutions of the equation
Lu =0, (1.1)

and proves that, under his conditions, the solutions of (1.1) are clh,
The conditions imposed to g are the following: g € C! (R>0), g(t) > 0 for ¢t > 0 and

<go, Vt>0, (1.2)

for certain constants § and go. Observe that § = go = p — 1 when g(¢) = t”~!, and conversely, if § = g¢ then g is a
power. For more examples of functions satisfying (1.2) see [15].

Condition (1.2) ensures that Eq. (1.1) is equivalent to a uniformly elliptic equation in nondivergence form with
ellipticity constants independent of the solution u on sets where Vu # 0. This condition does not imply any kind of
homogeneity on the function G (the primitive of g) and, moreover, it allows for a different behavior of the function g
when |Vu| is close to zero or infinity.

We describe now, more precisely, the problem that we study.

Let £2 be a smooth bounded domain in RY and 0 < g9 € WC(£2) a Dirichlet datum, with g > ¢o > 0 in A,
where A is a nonempty relatively open subset of 32 such that A N 32 is C2. Here W!¢(£2) is a Sobolev—Orlicz
space (see Appendix A). Let 0 < o < [§2| and

Ko=1{ueW"%(2)/|{u>0}|=a, u=goni}.

Our problem is to minimize J (1) = f_Q G(|Vul)dx in Ky, with g = G’ satisfying (1.2).

One difficulty for the proof of the regularity of the minimizers in these type of problems, is that it is hard to make
enough volume preserving perturbations without an a priori knowledge of the regularity of d{u > 0}.

In order to solve our original problem using nonvolume preserving perturbations we follow the idea of [1] and
consider the following penalized problem: We let

K={uew"%(£2)/u=¢ooni}

and

@(u):/G(|Vu|)dx+Fs(|{u>0}), (1.3)

2

where

F e(s—a) ifs<a,

e(5) = { é(s—oc) ifs > a.

Then, the penalized problem is:

find u, € £ suchthat J.(ug) = inlfcjg(v). (Pe)

ve

To prove the existence of minimizers we use compact immersion theorems in Sobolev—Orlicz spaces and direct
minimization. The regularity of the minimizers and of their free boundaries d{u, > 0} follows by showing that any
minimizer u, is a solution of the free boundary problem

Lu, =0 in {u, >0} N 2,
Oue (1.4)

u, =0, 5 =X, onofu,>0}N§L,

in the sense defined in [15], where A, is a positive constant. The properties of the definition of weak solution are not
difficult to establish since the minimization problem studied in [15] is very similar to (P;). The only difference is that
in (P,) the functional is linear in |[{z# > 0}| while here the term F; is piecewise linear and zero at the value «. With
these properties we have that the free boundary is locally a C!-# surface in a neighborhood of H™~!—almost every
point (see Corollary 2.1).

For a subclass of functions satisfying (1.2) we improve the regularity result for the case N = 2. Indeed, in that case
the whole free boundary is regular. Full regularity of the free boundary in dimension 2 was proved in [1] and [4] in the



S. Martinez / J. Math. Anal. Appl. 340 (2008) 1407-1421 1409

case of uniformly elliptic operators, in [6] for the p-laplacian with 2 —§ < p < oo for a small § > 0, and also in [12]
for a penalization problem. In dimension 3 for p close to 2 a similar result was proved by A. Petrosyan (see [17]).

As in [1], the reason why this penalization method is so useful is that there is no need to pass to the limit in
the penalization parameter ¢ for which regularity estimates uniform in &€ would be needed. In fact, we show that for
small values of ¢ the right volume is already attained. That is, |{u, > 0}| = « for small ¢. This step is where the
proof is different from previous work on similar problems, since here the function g may not be homogeneous (see
Lemma 3.3).

Finally, the fact that for small ¢ any minimizer of 7, satisfies |{#, > 0}| = « implies that any minimizer of our
original optimization problem is also a minimizer of J, and, therefore, that it is locally Lipschitz continuous with
smooth free boundary.

The paper is organized as follows: We begin our analysis of problem (P, ) for fixed € in Section 2 where we prove
the existence of a minimizer, local Lipschitz regularity and nondegeneracy near the free boundary (Theorem 2.1) and
we also prove that minimizers are weak solutions of a free boundary problem—as defined in [15]—(Remark 2.1).
As a consequence, the free boundary is a C!-# surface in a neighborhood of H"~!—almost every point in the free
boundary (Corollary 2.1). For the case N = 2 and for the subclass of functions satisfying (1.2) we prove that their
whole free boundary is regular (Corollary 2.2). In Section 3 we show that for small values of &€ we recover our original
optimization problem.

At the end of the paper we include three appendices with auxiliary results on Orlicz spaces, £-subharmonic func-
tions and blow-up sequences.

2. The penalized problem
2.1. Regularity of minimizers and their free boundaries

We begin by discussing the existence of extremals and their regularity. Next, we give some properties of the
minimizers. Since the functional 7, is very similar to the one in [15], some of the proofs follow as in [15] so we skip
them altogether. Then, we prove that any minimizer of 7, is a weak solution of (1.4), as defined in [15]. From this
result we establish that the free boundary is smooth.

Theorem 2.1. Let 2 C RN be bounded. Then there exists a solution to the problem (P;). Moreover, any solution u,
has the following properties:

(1) ug is locally Lipschitz continuous in $2 and, for D @ §2, |Vu|p~py < C with C = C(N, go, 8, dist(3§2, D), ).
) Lus=0in{u, > 0}.
(3) There are constants 0 < cmin < Cmax and y > 1 such that, for balls B, (x) C D with x € 0{u, > 0},

1 1/y
Cmin < ;( ][ uz dx) < Crax-

By (x)
(4) For every D € §2 there exist constants C, ¢ > 0 such that, for every x € D N {u, > 0},
cdist(x, d{ue > 0}) < ue(x) < Cdist(x, 0{u, > 0}).
(5) For every D € S2 there exists a constant ¢ > 0 such that, for x € {u, > 0} and B,(x) C D,
< 1B 0 e > 0]
| B (x)]

<1l-—c.

The constants may depend on ¢.

Proof. Observe that if A < B then, e(B — A) < F.(B) — F.(A) < %(B — A). Then, the proof follows as in Sec-
tions 3-51in[15]. O

From now on we drop the subscript ¢ and denote by u (instead of u,) a solution of (P;).
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Theorem 2.2 (Representation Theorem). Let u € K be a solution of (P.). Then,
(1) HN=Y(D N d{u > 0}) < oo for every D € £2.
(2) There exists a Borel function q, such that

Lu=q,H""0{u > 0}.

(3) For D € £2 there are constants 0 < ¢ < C < 0o depending on N, $2, D and ¢ such that, for B.(x) C D and
x € o{u > 0},

c<@u<C e <HY (B ) Nofu > 0)) < CrtL

@ H¥ 1 @{u > 0} \ dreafu > 0}) =0.

Proof. For the proof, see Sections 6 and 7 in [15]. Observe that D N d{u > 0} has finite perimeter, thus, the reduce
boundary 0deq{z > 0} is defined as well as the measure theoretic normal v(x) for x € dreq{u > 0} (see [7]). O

Lemma 2.1. Let xo, x1 € 3{u > 0} and py — 0. Fori =0, 1, let Xi k — x; with u(x; ) = 0 such that By, (x; ) C £2
and such that the blow-up sequence

1
ujp(x) = —u(x g + prx)
Pk
has a limit u; (x) = ;i (x - v;)~, with 0 < A; < o0 and v; a unit vector. Then Lo = A1.
Proof. It follows as in [8] by using the results in Appendix C. O

Lemma 2.2. Let xo € 2 N d{u > 0} and let
A =A(xg) := limsup|Vu(x)|.
xX—XQ
u(x)>0

Then, there exist sequences y; € §2 N d{u > 0}, dr — 0, and a unit vector v such that the blow-up sequence with
respect to By, (yx) has a limit ug with

upg(x) =r(x-v)".
Proof. It follows as the proof of Theorem 2.3 in [8] by using the results in Appendices Band C. O

Lemma 2.3. For HN"!-a.e. xo € dreq{u > 0}, there exists a sequence y, — 0 such that, if u, is the blow-up sequence
with respect to By, (xo), we have that

n = ¥ (x - v(xp))”

with v(xg) the outward unit normal to 9{u > 0} at xq in the measure theoretic sense and \* = g_l (qu (x0)).

Proof. Suppose that v(xg) = ey. As in Theorem 3.5 in [4] and Theorem 5.5 in [5] we can prove, by using the
boundary regularity results of solutions of Lv = 0 (see [14]) that, for HN=1ae. xp € dpea{u > 0}, any blow-up limit

of u with respect to sequences of balls B, (xo), px — 0, satisfies
{£u0=0 in {xy < 0}, @1
uo=0, g(IVuol) = qu(xo) on {xy =0}. '

In particular, ug(x) = )L*xg, + o(]x|) with A* = g_1 (qu(x0)).
Take now ug_;, a blow-up sequence of uo with respect to balls Bﬂj (0). We may assume that ug ; — ugo. Then,

Uup) = )»*x]\_, .
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Now, we want to construct a blow-up sequence of u with limit ugg. Observe that

1
u(xo + pejx) — uoo(x)| < — |ug (jx) — uo(ujx)| + [uo, j(x) — ugo(x)|.
Pl j Hj

Since ux — ug and ug,; — uoo uniformly on compacts sets we have that for j > jy, ug, j(x) — ugo(x)| < 1/n and,
for k > kj n, lug(ujx) —uo(u;jx)| < p;/nif |x| < n. We may suppose that j, > n and k; , > n. Now, taking j = jy,
k=kj, n,and y, = Pk nHjy s WE have that y,, — 0 and |u,, (x) —upo(x)| <2/n in B,. The result follows. O

Theorem 2.3. Let u € K be a solution to (P.) and q, the function in Theorem 2.2. Then there exists a constant Ay

such that
lim sup|Vu(x)| = Ay forevery xg € £2 N d{u > 0}, 2.2)
U =0
gu(x0) =gh), HN -aie xo € 2 N Brea{u > 0}. (2.3)

Proof. It follows as in [12] by using Lemmas 2.1, 2.2 and 2.3. O
Now we can prove the asymptotic development of minimizers, namely,

Theorem 2.4. For every xo € Ored{u > 0},

u(xg+x) =Xy (x . v(xo))_ + 0(|x|) asx — 0.

Proof. The proof follows as that of Theorem 7.1 in [15]. We let ug a blow-up limit of u at the point xq € Oreq{t > 0}.
Assume v(xp) = ey. First, by the definition of normal direction in the measure theoretic sense and the uniform
nondegeneracy of u (Theorem 2.2(3)) we deduce that ug =0 in {xy > 0} and ug > 0 in {xy < 0}. So that, Lug =0
in {xy < 0}. Then, by the regularity results in [14] and the nondegeneracy property (Theorem 2.2(3)) we have, for a
positive constant A*,

uo(x) =A%xy + o(lxl).

By making a second blow up as in Lemma 2.3 and applying Lemmas 2.1 and 2.2 and Theorem 2.3 we deduce that
AF =2y
On the other hand, by (2.2), |[Vug| < A. Thus,

up(x) < )mx;/-

Now, by a careful application of the strong maximum principle (see the proof of Theorem 7.1 in [15]) we conclude
that

up(x) = Ayxy.

The proof is complete. O

Remark 2.1. Now we have that, by Theorems 2.1(1)—(3), 2.2(2) and 2.3, any minimizer satisfies all the properties
of the definition of weak solution I in [15]. Moreover, by Theorem 2.4, the free boundary is flat at every point in
dred{u > 0}. Therefore, by Theorem 9.3 and Remark 9.2 in [15], we obtain the following regularity result for the free
boundary d{u > 0}:

Corollary 2.1. Let u € IC be a solution to (Pg). Then, A = 0req{u > 0} is relatively open with respect to 3{u > 0}, A is
a CYP surface and the remainder of the free boundary has zero HN ~'-measure.
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2.2. Full regularity in the case N =2

We will prove that in dimension two, for the subclass of functions satisfying (1.2) and (2.4), the whole free boundary
isa C1# surface.
The class that we consider consists of those functions satisfying condition (1.2) and such that

there exist constants 7o > 0 and k > O so that g(z) <kt fort < 1. 2.4)

Observe that this condition is satisfied, for example, if § > 1. Also (2.4) holds when go > 1 and there exists a

constant C such that limsup,_, fé—f)) =C.

To prove the full regularity, we will use the following two lemmas. These lemmas hold for any dimension and for
any 6 and go.

Lemma 2.4. Let u € K be a local minimizer. Given D E $2, there exist constants C = C(N, D, ), ro=ro(N, D) >0
and y =y (N, D) > 0 such that, if xo € D N d{u > 0} and r < ro, then

sup |Vul| <Ay +Cr?.
By (x0)

Proof. The proof is similar to the proof of Theorem 7.1 in [5]. Here we make a little modification by using a result in
[13] to avoid adding any new hypothesis to the function g.

Let Uy = (G(IVul) — G(Ay) — o)t and Uy = (G(|Vul) — G(Ay))*. By Theorem 2.3 we know that U, vanishes
in a neighborhood of the free boundary. Since U, > 0 implies that G(|Vu|) > G(1,) + p, the closure of {U, > 0} is
contained in {G(|Vul|) > G(A,) + p/2}.

Let v=G(|Vul). By Lemma 1 in [13] we have that v satisfies

Mv:=D;(bjj(Vu)D;jv) >0 in{G(|Vul) > G(A,) + p/2},

where b;; is defined in (B.1).
Hence U, satisfies

MU, >0 in{G(|Vul) > G+ p/2}.
Now, extend the operator M to a uniformly elliptic operator in divergence-form,
Mw := D;(b;j(x)Djw) in £2,
with measurable coefficients such that
bij(x) =bi;(Vu) in{G(|Vul) > G(h) + p/2}.
Then, we have
MU, >0 inQ.
Let D € §2 and let ro = dist(D, 952), xg € D N d{u > 0}. For 0 < r < ro, let

hy(r) = sup U, ho(r) = sup Up.
By (x0) By (x0)

Then, h,(r) — Uy isa M—supersolution in the ball B, (xg) and

hp(r)=U, >0 inB,(xo),
= h,(r) in B,(xo) N {u=0}.

By Theorem 2.1, |B,(xp) N {u =0}| > crN. Then, applying the weak Harnack inequality (see [10, Theorem 8.18])
with 1 < p < N/(N —2), we get

inf (ho(r) —Up) = er NP |h,(r) = U,|

chy(r).
By 2(x0)

LP (B (x0)) %

Letting now p — 0 we obtain

inf (ho(r) — Up) > cho(r),
By j2(x0)
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for some 0 < ¢ < 1. Or, equivalently,

sup Up < (1 —c)ho(r).

By 2(x0)

Therefore,

ho(%) < (1= )ho(r),

from which it follows that 2o (r) < Cr? for some C > 0,0 < y < 1. That is
G(IVul) < G(ry) + Cr¥  in B,(xo)

and, therefore,
|Vu| <Ay +Cr? in B,(xq).

The conclusion of the lemma follows. O

Lemma 2.5. Let x| be a regular free boundary point.
Take

Tp(x) = {

where ¢ € C3°(—1, 1) with ¢'(0) =
Let

x+ 2=l (x1) - forx € By (x),
X elsewhere,

5= p? f s _px”)dHN—l, (2.5)
B, (x1)Nd{u>0}

and let vy (x) = u(t, ' (x)). Then,
/ (G(IVvpl) = G(1Vul)) dx = —lp" T @ (1) +0(pN ), (2.6)
By (x1)

where | =1im,_.¢ ﬁ and @(t) = g(t)t — G(1).
Proof. The proof follows the lines of Theorem 3.1 in [8]. O
It is in the following lemma where we need to impose condition (2.4).

Lemma 2.6. Let @(t) = g(t)t — G(t), and g satisfying condition (2.4). Let D € §2, xo € d{u > 0} such that
By, (x0) C D. Take v =max(u — tn,0), where t >0, n € C5°(£2), n =0in 2\ By(x,) and |Vn| < C/t. Then,

/ (G(1Vvl) — G(IVul)) dx < / ®(|Vul)dx + Cot? f V| dx
By, (x0)N{u>0} By (x)N{O<u<tn} By, (xo)M{u>tn}
for Co = Co(N, 8, go, dist(3$2, D), e, C).
Proof. The proof follows as in Theorem 4.3 in [4]. We only have to make the following observations. First, for
0 <t <1, wehave that |Vu —tVn| < |Vu|+ C < Cy + C, where C is the constant in Theorem 2.1(1). On the other

hand, if g satisfies (2.4) and if F(s) = &2 (S) , then for 0 < s < C1 + C, there exists a constant Cy such that F(s) < Cy.
Therefore, we have that F(|Vu — tVn|) 1s bounded by Cp. The rest of the proof follows as in [4]. O

Now, following ideas from [12], using Lemmas 2.4-2.6, we prove, for N = 2 and g satisfying (2.4), the following:
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Theorem 2.5. Let N = 2, g satisfying (2.4) and u a minimizer. Then, for any ball B, centered at the free boundary we
have
(@) —@(IVul)) " =0 asr—0,
B,N{u>0}
where @ (t) = g(t)t — G(2).
Proof. Let 0 <r < u < 1, ¢t > 0 and vg be the function defined in Lemma 2.6. By Theorem 2.1, u < Cr in B, (xg).
Take t = Cr and let §; = [{0 < u < tn} N By (xo)].

Now, let us take x; far from xo and such that d{u > 0} N B, (x) is regular for small ;. Let p be such that (2.5) is
satisfied for 6 = &, and consider v; = v, defined in B, (x1) as in Lemma 2.5. Then, the function

vo in By (xo),
v=1uv in B (x1),
u  elsewhere
is admissible for our minimization problem and |[{v > 0}| = |{u > 0}|. Therefore, by Lemmas 2.5 and 2.6, we have

0< e () — Je(u) = / (G(IVvl) = G(IVul)) dx + / (G(IVvl) = G(IVul)) dx
B, (x0) By, (x1)

< / @(|Vul) + Cr? / IVl dx —1p°® () + 0(p?).
By (x0)N{0<u<tn} By (xo)N{u>tn}

By the definition of §; we have

f (@ (i) — ®(IVul)) dx < Ct? / IVil2dx +o(p?) + (8 — 1p) @ (hu).

By (x0){O<u<itn} By, (xo)N{u>1n}
Now choose
1 - .
el D in By, (x0) \ B (x0),
nx)=11 in B, (xgp),

0 in 2\ By (xp).
Observe that the condition |Vn| < C/t is satisfied if we choose w such that u > 2r.
By our election of t and 7, we have

Cr?

/ (@ () = D(IVul)) " dx < / (@(1Vul) = @) " dx + e

B (x0)N{u>0} B/L(XO)
+0(p%) + (8 = 10°) @ ().
By Lemma 2.4, we have that @ (|Vu|) — @(h,) < @ (A, +Cr?) — @ (A,) = ' (£)CrY for some A, <& <Ay +CrY.

As @'(r) = g’ (1)t < gog(t), and g is nondecreasing, we have @' (&) < gog(€) < gog(Ay + Cr?).
Therefore, by the definition of /, we have

(® () — & (1Vue])) T dx < c(
B, (x0)N{u>0}
where C = C(%,). As, by Theorem 2.1(5), §; < ciu> we have that 0(p>) = o(u?). Taking r = ph(n)?, where h() =
2
max (i, %) with 8 < min{y /2, 1/2}, we obtain the desired result. O

1+ +o0(p?) 1 )
r? log(u/r) )’

Corollary 2.2. Let N =2, g satisfying (2.4) and u € K be a solution to (P;). Then 3{u > 0} is a C' surface locally
in $2.
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Proof. The proof follows now as in [3], we give the proof here for the readers’ convenience. Let u; be a blow-up
sequence converging to uq. Since, Vuy — Vug a.e. in RV, we conclude from Theorems 2.3 and 2.5 that |Vug| = A,
in By N {up > 0}. And then

g(IWol)V > g(he)
CAUMLILVE VA
V| Au

0= Lug= div( Aug in {ug > 0}.

Therefore, ug is harmonic in {ug > 0}. On the other hand, if we take v = |Vu|?, we have that v = A2 in {ug > 0}
and, in particular, Av =0 in {ug > 0}. Since Av = |D2u0|2, we conclude that Vi is constant in each connected
component of {#y > 0}. Therefore, by Lemma C.1(6) and (8), we have

o =y (x - v0)~ +q((x-vp) =)™

for some vg and g, s > 0. Since {ug = 0} has positive density at the origin, we have that s > 0 or ¢ = 0. Therefore, we
have proved that any blow-up sequence has a subsequence that converges to the half-linear function ug = 1, (x - vg) ™ in
some neighborhood of the origin. Then, applying Theorem 9.3 and Remark 9.2 in [15] we have the desired result. O

Remark 2.2. Since the functional in [15] is linear in |{# > 0}|, we can also prove, for the minimizers of the problem
treated in [15], the full regularity of the free boundary when N = 2. We only have to use Theorem 2.4, Lemma 2.6 (to
treat the first term of the functional) and the result follows as in [3].

3. Behavior of the minimizer for small

Since we want to analyze the dependence of the problem with respect to €, we will again denote by u, a solution
to problem (P;).
To complete the analysis of the problem, we will now show that if ¢ is small enough, then

[{ue > 0} = a.

To this end, we need to prove that the constant A, := A, is bounded from above and below by positive constants
independent of ¢. We perform this task in a series of lemmas.

Lemma 3.1. Let u, € K be a solution of (Py). Then, there exists a constant C > 0 independent of € such that

Ae <C.

Proof. The proof is similar to the one of Theorem 3 in [1].
First, we will prove that there exist C, ¢ > 0, independent of &, such that

¢ < |{ue >0} < Ce +a.

In fact, by taking u € WG (£2) such that [{u > 0}| < o we have that T, (1) < J.(u) < C.Hence, Fo(|{u, > 0}|) <C.
Thus we obtain the bound from above. We also have that f o G(|Vuel) is bounded.

As u, = ¢p, on 982 by Lemma A.3, we have |Vu, — Vgpllg < C and, by Lemma A.4, we also have
lue — @ollg < C. Then, |lus|lw1.6(p) < C. Using the Sobolev trace theorem, Holder inequality and the embedding
Theorem A.1, we have, forg <4 + 1,

q 39 /N—1 Slg q sl q s41—g
/% dHN ' < Cl{ue > 0} 77 et 11541 ) < C |{ue > 0} 7T e lYy1.60) < C|{ue > 0} 7T,

a2

and thus we obtain the bound from below.
The rest of the proof follows as in Lemma 3.1 in [8]. O

Lemma 3.2. Let u, € K be a solution of (P.), B, € §2 and v a solution of

Lv=0 inB,, v=u, ondB,.
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Then, there exists a positive constant y =y (8, go, N) such that

1/y\4
/]V(ug—v)‘qu>C‘Brﬂ{u€=0}‘<%<][u;’dx> )
B.

B,
forall g > 1, where C is a constant independent of .

Proof. The proof follows the lines of the proof of Lemma 3.2 in [8]. The only difference is that in the present situation
we have to use the weak Harnack inequality for solutions of Lv = 0 (see [14, Theorem 1.3]). O

Without loss of generality, from now on we will suppose that gg > 1.

Lemma 3.3. Let u, and v be as in Lemma 3.2. Then, if r is small enough (depending on ¢), we have
/(G(|wg|) —G(IVv]))dx > C/ |Vue — Vol dx 3.1
B, B,

for some constant C independent of .

Proof. First, we will use an inequality proved in [15] (see Theorem 2.3). Let
A1 ={x € B,: |[Vu, — Vv| <2|Vu,l}, Ay ={x € B;: |Vu, — Vv| > 2|Vu,l},
then B, = A; U A, and we have that
/(G(|wg|) —G(IVv]))dx > c(f G(IVus — V) dx + / F(IVug|)|Vu, — Vv|2dx>. (3.2)
B, Az Al
Therefore, by using that go > 1 and property (gl) in Lemma A.1, we have
G(IVus — Vv|) = C|Vu, — Vo[$ot!,
F(IVuel) = CIVue |97 > C|Vu, — Vol in Ay, (3.3)

if [Vu,| <1and |[Vv — Vu,| < 1.
On the other hand, by Lemma 3.1 and (2.2), we have that for small » (depending on ¢), |Vu,| is bounded by a
constant independent of £. By Lemma 5.1 in [14] there exist Cy, C1 = Co, C1(N, go, 8) such that

sup G(|Vv]) < C—A‘j / G(IVv])dx < % /(1 +G(|Vuel))dx < C
B, r r
By, By,

with C is independent of ¢ if 7 is small (depending on ). Therefore, (3.3) holds for every x € B, with a constant C
independent of ¢. Combining (3.2) and (3.3) we obtain the desired result. O

Lemma 3.4. For every € > 0 there exists a neighborhood of A in §2 such that u; > 0 in this neighborhood.

Proof. The proof follows the lines of that of Lemma 3.4 in [8]. However, one observation is in order. When applying
Schwartz symmetrization, we use the fact that this symmetrization preserves the distribution function and strictly
decreases the functional | 5 G(IVu|)dx, unless the function is already radially symmetric and radially decreasing.
These facts hold by Corollary 2.35, in Section II.8 of [11]. The rest of the proof follows without changes. 0O
Lemma 3.5. Let u, € KC be a solution of (Pg). Then,

Ae=c>0

where c is independent of e.
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Proof. The proof follows as in [8] by using Lemmas 3.2-3.4 and Lemma C.1. O
With these uniform bounds on X., we can prove the main result in this section:

Theorem 3.1. Under the hypotheses of Lemma 3.5, there exists ey > 0 such that, for ¢ < g, |{us > 0}| = «. Therefore,
ug is a minimizer of J in KCy.

Proof. It follows as in Theorem 3.1 in [8] by using Lemmas 3.1 and 3.5. O

As a corollary we have
Corollary 3.1. Any minimizer u of J in Ky is a locally Lipschitz continuous function, dreq{u > 0} is a C'P surface
locally in 2 and the remainder of the free boundary has vanishing HN~'-measure. Moreover, if N = 2 and g satisfies
(2.4), 3{u > 0} is a CVP surface locally in £2.
Proof. Let u be a minimizer of 7 in ICy. Let & > 0 small. Then, there exists a solution u, to (P.) and |{u; > 0}| = «.
Hence, J: (1) = J (1) < J(ug) = Je(ue). Therefore, u is a solution of (P,), and the regularity result follows from

Corollary 2.1. O
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Appendix A. Properties of G and Orlicz spaces
The following results are all included in [15].
Lemma A.1. Let g > 0 satisfy (1.2). Then, if G(t) = fé g(s)ds,

(g1) min{s®, s80}g(r) < g(st) < max{s’®, s%0}g(r),
(g2) G is convex and c?,

(@3) {2 <G <ig), Vi 0.

Lemma A.2. If G is such that G'(t) = g~ (1), then

1+36 o 5 ~ ~
(SL) min{s' 1/ s1H1/801G (1) < G(st) < —— max{s' 1/ s T84 G ). (G1)

We recall that the functional

lull =inf{k>0: /G(lu(kx)l)dx < 1}
2

is a norm in the Orlicz space LY (£2), which is the linear hull of the Orlicz class

KG(2) = {u measurable: /G(|u|)dx < oo}.

Observe that this set is convex since G is a convex function (property (g2)). The Orlicz—Sobolev space W!-C (£2)
consists of those functions in LY (§2) whose distributional derivatives Vu also belong to L (£2). And we have that
llu|lw1.¢ =max{||ullg, |Vu|lg} is a norm in this space.

Theorem A.1. LE(2) — L'*3(82) continuously.
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Lemma A.3. There exists a constant C = C(go, 8) such that

lull < Cmax{(/G(|u|)dx)l/(a+l), </G(|u|)dx>l/(go+l)}.

Lemma A4. If u € W'(2) withu=00n 32 and [, G(|Vul) dx is finite, then

/G(%)dngG(WuDdx for R =diam £2.
2 2

Appendix B. Some results on L£-solutions with linear growth
In this section we will state some properties of £-subsolutions. From now on, we note B;" = B,(0) N {xy > 0}.

Remark B.1. Let u be such that Lu = 0. Then, in the set {|Vu| > 0}, u satisfies a linear nondivergence uniformly
elliptic equation, Tu = 0, where

Tv =b;j(Vu)D;jv =0 (B.1)
with
"(|Vul)|Vu DiuD;u
b,~,-=6,~j+(g(| DI |_1> Dy
g(Vul) |Vl

and the matrix b;;(Vu) is B-elliptic in {|Vu| > 0}, where 8 = max{max{go, 1}, max{1, 1/8}}.

Lemma B.1. Let 0 <7 < 1. Let u € C(B_r+) be such that Lu =0 in B;f and 0 < u < axy in B, u < §paxy on
dB;F N B,y (X) withx € 9B, xy > 0and 0 < §y < 1.
Then, there exist 0 <y <1 and 0 < ¢ < 1, depending only on r and N such that

ulx) <yaxy in B;.
Proof. See Lemma B.1in [16]. O
Theorem B.1. Let u be a Lipschitz function in RN with Lipschitz constant L such that

(D) u>0inRY, Lu=0in{u> 0}
() {xy <0} C{u>0}, u=0in{xy =0}

(3) There exists 0 < Ag < 1 such that =008z O)] Xo, VR > 0.
[Br(0)]

Then u =0 in {xy > 0}.
Proof. The proof will be divided into several steps.

Step 1. Let ug(x) = “(?), with T > 0, to be chosen later.

Then, the function u satisfies the same properties as u with the same constants L and Xo.
Let g = 2,%,—‘11 < 1. Then, by properties (2) and (3) with R = 1, we have that there exists xo € B1(0), with xo y >

such that ug(xp) = 0. Since u¢ is Lipschitz with constant L, we have ug(x) < L|x — xo|. Thus, if we take ro = g, we
have ug(x) < I‘4—ﬂ for |x — xg| < rg. There holds that xy > % in By, (xo). Hence, we have

Lxy "
up(x) < ? on 8BR1 r.]Br()(x())»

where Ry = |xo| > B.



S. Martinez / J. Math. Anal. Appl. 340 (2008) 1407-1421 1419

By property (1) and Lemma 8.1 in [15], Lug > 0. By property (2), 0 < up(x) < Lxy.
Taking 69 = 1/3, x = x9, « = L and r = Ry in Lemma B.1, we have that there exist 0 < y; <1l and 0 < &1 < 1,
depending only on rp and xo, 5, such that

0<uo(x) <yilLxy inBF, . (B.2)

Observe that, since xp y > B, y1 and &1 depend only on Ag.
Now, take u(x) = ”0(571;”‘). Then, u; satisfies the properties of uo with the same constants L and Ag.
Therefore, there exists x; € B1(0), with x; xy > B such that u;(x1) =0.By (1), u1(x) < L|x —x1|. Thus, if we take

r = %, we have u1(x) < # for |x —x1| < rq. As y; < 1, there holds that xy > % in B, (x1). Thus, we have that

viLxy

u1(x) < on 8B;{20Brl(x1),

where Ry = |x1| > B.

By property (1), Lu; > 0. And, by (B.2), 0 <u(x) < y1Lxy in BFL-

Taking 6o = 1/3, x =x1, ¢« = y1L and r = R in Lemma B.1, we have that there exist 0 < y» <1 and 0 <&, < 1,
depending only on ¢ such that u;(x) < y2y1Lxy in Bzz &

Inductively, we construct a sequence uy, such that uy satisfies the same hypotheses as 1 with the same constants
L and Ag and such that

0<up—1 <ogxy inBf ., (B.3)
where o = L ]_[fle yi,and 0 < y;, & < 1 depend only on Ag. From the construction we have uy(x) = %ﬁ":m
Therefore, for any k > 1,
up <oxy  in By, (B.4)

where §; = ]_[le R;s;.

Step 2. Let us see that oy — 0 as k — oo. Suppose, by contradiction, that this does not hold. Then, since oy is
decreasing, there exists cg > 0 such that oy > g for k > 1. We have a1 = ykt+10k, and ry = %ak > gao. Thus,

we can take in Lemma (B.1) u = uy, ro = %ao y = Y. We can think that y,4 was taken as the minimum over the

y’s such that the conclusion of the lemma is satisfied. Therefore, yx+1 < y1 < 1 for every k. Then, oy < Lylk for all
k > 1. Therefore, oy — 0; a contradiction.

Step 3. Now we can prove that u(x) = 0 in {xy > 0}. Suppose that there exists & with &y > 0 such that u(¢) > 0.
Then, since ay — 0, there exists k > 1 such that u(§) > ay&yx. Now, for this fixed k, take T > |z§|,3_k(]_[f=l &)L

Then, since R; > 8, we have that |&| < T'8;. Thus, if we take & = % we have that ug(§) > ax€x. But, on the other
hand, since |£| < 8; by (B.4), we have u((£) < axéy, which is a contradiction. O

Appendix C. Blow-up limits

Now we give the definition of blow-up sequence, and we collect some properties of the limits of these blow-up
sequences for certain classes of functions that are used throughout the paper.
Let u be a function with the following properties:

(C1) u is Lipschitz in 2 with constant L > 0, u > 0in £2 and Lu =0 in £ N {u > 0}.
(C2) Given 0 < k < 1, there exist two positive constants C, and r, such that, for every ball B, (xg) C £2 and 0 <
r <rg,

1 1/y
—< ][ u’ dx) < C¢ implies that u =0 in By, (xp).
.

By (x0)
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(C3) There exist constants o > 0 and 0 < A1 < A2 < 1 such that, for every ball B, (xg) C £2 xo on 9{u > 0} and
0<r<ry,
| B, (x0) N {u > 0}|

)Nl X \)\2-
| B (x0)|

Definition C.1. Let B, (x;) C £2 be a sequence of balls with pr — 0, xx — xo € £2 and u(xy) = 0. Let

1
up(x) := —u(xg + pix).
Pk
We call uy a blow-up sequence with respect to B, (xx).

Since u is locally Lipschitz continuous, there exists a blow-up limit uo : RY — R such that for a subsequence,

ug — uo in CE (RY) forevery 0 <a < 1,
Vug — Vug  x-weakly in L{o (RV),

and u is Lipschitz in RV,
Lemma C.1. If u satisfies properties (C1)—(C3), then

(1) ug =0in 2 and Lug =0 in {ug > 0}.
(2) d{ur > 0} — 9{ug > 0} locally in Hausdorff distance.
() Xug=0} = Xfuo>0} in Ll (RY).
@) If K €{ug =0}, then uy =0 in K for k big enough.
) If K €{ug > 0} U {ug =0}°, then Vuy — Vug uniformly in K.
(6) There exists a constant 0 < A < 1 such that
|Br (y0) N {uog = 0}
|Br (o)
(7) Vug = Vugae inRY,
(8) If xy € 0{u > 0}, then 0 € d{ug > 0}.

>X, VYR>0, Vyge d{ug > 0}.

Proof. The proof follows as in [8] and [12]. O

References

[1] N. Aguilera, H.-W. Alt, L.A. Caffarelli, An optimization problem with volume constraint, STAM J. Control Optim. 24 (2) (1986) 191-198.
[2] N.E. Aguilera, L.A. Caffarelli, J. Spruck, An optimization problem in heat conduction, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 14 (3) (1987)
355-387.
[3] H.W. Alt, L.A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981) 105-144.
[4] HW. Alt, L.A. Caffarelli, A. Friedman, A free boundary problem for quasilinear elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci.
(4) 11 (1) (1984) 1-44.
[5] D. Danielli, A. Petrosyan, A minimum problem with free boundary for a degenerate quasilinear operator, Calc. Var. Partial Differential
Equations 23 (1) (2005) 97-124.
[6] D. Danielli, A. Petrosyan, Full regularity of the free boundary in a Bernoulli-type problem in two dimensions, Math. Res. Lett. 13 (4) (2006)
667-681.
[7] H. Federer, Geometric Measure Theory, Grundlehren Math. Wiss., vol. 153, Springer-Verlag New York Inc., New York, 1969.
[8] J. Fernandez Bonder, S. Martinez, N. Wolanski, An optimization problem with volume constraint for a degenerate quasilinear operator,
J. Differential Equations 227 (1) (2006) 80-101.
[9] J. Fernandez Bonder, J.D. Rossi, N. Wolanski, Regularity of the free boundary in an optimization problem related to the best Sobolev trace
constant, SIAM J. Control Optim. 44 (5) (2005) 1612-1635.
[10] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss., vol. 224, Springer-Verlag,
Berlin, 1983.
[11] B. Kawohl, Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Math., vol. 1150, Springer-Verlag, New York, 1985.
[12] C. Lederman, A free boundary problem with a volume penalization, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 23 (2) (1996) 249-300.



S. Martinez / J. Math. Anal. Appl. 340 (2008) 1407-1421 1421

[13] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (11) (1988) 1203-1219.

[14] G.M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations, Comm. Partial
Differential Equations 16 (2-3) (1991) 311-361.

[15] S. Martinez, N. Wolanski, A minimum problem with free boundary in Orlicz spaces, arXiv: math. AP/0602388.

[16] S. Martinez, N. Wolanski, A singular perturbation problem for a quasilinear operator satisfying the natural growth conditions of Lieberman,
in preparation.

[17] A. Petrosyan, On the full regularity of the free boundary in a class of variational problems, Proc. Amer. Math. Soc., in press.

[18] E.V. Teixeira, The nonlinear optimization problem in heat conduction, Calc. Var. Partial Differential Equations 24 (1) (2005) 21-46.



