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Abstract

A result of Godefroy and Shapiro states that the convolution operators on the space of entire functions
on Cn, which are not multiples of identity, are hypercyclic. Analogues of this result have appeared for
some spaces of holomorphic functions on a Banach space. In this work, we define the space holomorphic
functions associated to a sequence of spaces of polynomials and determine conditions on this sequence
that assure hypercyclicity of convolution operators. Some known results come out as particular cases of
this setting. We also consider holomorphic functions associated to minimal ideals of polynomials and to
polynomials of the Schatten–von Neumann class.
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0. Introduction

This note deals with convolution operators on Fréchet spaces of holomorphic functions asso-
ciated to certain classes of polynomials. In particular, we are interested in determining when such
operators are hypercyclic. Recall that convolution operators are those that commute with trans-
lations. Also, an operator T :X → X is hypercyclic if there exists x ∈ X such that {T nx: n � 1}
is dense in X.

In a seminal work, Godefroy and Shapiro [18] show that every convolution operator in H(Cn)

which is not a scalar multiple of identity is hypercyclic. In this way, they generalize classical
results of Birkhoff [5] and MacLane [23] on the hypercyclicity of the translation and differentia-
tion operators on H(C). Analogues of Godefroy and Shapiro’s result for some particular spaces
of holomorphic functions on Banach spaces are proved in [1,26,27].

Let E be a Banach space. Given a coherent sequence A(E) = {Ak(E)}k of Banach spaces
of k-homogeneous polynomials (see the definitions below), we define a Fréchet space HbA(E)

of holomorphic functions of bounded type associated to A(E), much in the spirit of holomorphy
types introduced by Nachbin [25] (see also [13]). Under fairly general conditions, we charac-
terize the convolution operators on this spaces of holomorphic functions and show that they are
hypercyclic whenever they are not scalar multiples of the identity. We obtain some results of
[1,26,27] as particular cases. Also, we see that spaces of holomorphic functions generated by
polynomial minimal ideals are covered by our settings, if the dual space E′ has the approxima-
tion property. We finally consider polynomials of the Schatten–von Neumann class in the sense
of [11] and the associated space of holomorphic functions.

In the first section, we give the notions of coherence that will be used throughout and show
some general properties. We define the Fréchet space HbA(E) of A-holomorphic functions of
bounded type and present examples related to some common classes of homogeneous polynomi-
als. The second section deals with duality questions for these spaces. Based on duality properties
for each space Ak(E), we characterize the dual of HbA(E) as the space of holomorphic functions
of exponential type ExpB(E′) associated to some sequence B of Banach spaces of polynomials.
Minimal ideals of polynomials are particularly considered. Under certain hypotheses, ExpB(E′)
is an algebra and its product can be identified with the convolution product in HbA(E)′ (Sec-
tion 3). In the fourth section, we characterize the convolution operators on HbA(E) and show
that they are hypercyclic unless they are scalar multiples of the identity. We apply these results to
the spaces of holomorphic functions of compact bounded type and of nuclearly entire functions of
bounded type to obtain some results of [1,27]. We also consider holomorphic functions generated
by coherent minimal ideals of polynomials. The last section deals with Schatten–von Neumann
functions of bounded type, that is, those associated to the Schatten–von Neumann homogeneous
polynomials defined by Cobos, Kühn and Peetre [11]. We use interpolation theory to show that
these spaces satisfy our hypotheses. In particular, we obtain the hypercyclicity of convolution
operators on the space of holomorphic function of Hilbert–Schmidt type [26].

We refer to [14,24] for notation and results regarding polynomials and holomorphic functions
in general, and to [15,16] for polynomial ideals. For generalities on hypercyclic operators, we
refer to the survey [19] and the references therein.

1. Definitions and properties

Throughout, E will denote a Banach space, E′ its dual and Pk(E) the space of continuous
k-homogeneous polynomials on E, with the usual norm. Also, for each k, Ak(E) and Bk(E)
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will be Banach spaces of k-homogeneous polynomials on E containing the finite type polyno-
mials and continuously contained in Pk(E). In the sequel, all polynomials will be assumed to be
continuous.

For P ∈ Pk(E), P̌ will denote the symmetric k-linear form associated to P . Also, if a ∈ E

and r ∈ N, Par is the (k − r)-homogeneous polynomial on E defined by

Par (x) = P̌ (a, . . . , a︸ ︷︷ ︸
r

, x, . . . , x).

In [9] we introduced the notion of coherent sequence of polynomial ideals. Here, we are
interested in polynomials and analytic functions defined on a fixed Banach space. Therefore, we
adapt the definition of coherence to our setting.

Definition 1.1. We say that the sequence A(E) = {Ak(E)}k is coherent if there exist positive
constants C and D such that the following conditions hold for all k:

(i) For each P ∈ Ak+1(E) and a ∈ E, Pa belongs to Ak(E) and

‖Pa‖Ak(E) � C‖P ‖Ak+1(E)‖a‖.
(ii) For each P ∈ Ak(E) and γ ∈ E′, γP belongs to Ak+1(E) and

‖γP ‖Ak+1(E) � D‖γ ‖‖P ‖Ak(E).

Clearly, if some Ak(E) is nonempty, then, by condition (i), A0(E) is the 1-dimensional space
of constant functions on E. Note that the fact that Ak(E) contains the finite type polynomials can
be deduced from condition (ii). Also, condition (i) assures that Ak(E) is continuously embedded
in Pk(E) for every k.

Condition (ii) states that the product of a polynomial in A(E) by a linear functional remains
in A(E). This is not necessarily the case if we multiply two polynomials in A(E). Thus, we
introduce the following:

Definition 1.2. A coherent sequence A(E) = {Ak(E)}k is multiplicative if there exists M > 0
such that for each P ∈ Ak(E) and Q ∈ Al (E), we have PQ ∈ Ak+l (E) and

‖PQ‖Ak+l (E) � Mk+l‖P ‖Ak(E)‖Q‖Al (E).

It is not difficult to see that not every coherent sequence is multiplicative (see [10]).
The space of holomorphic functions of bounded type Hb(E) is, in some sense, associated to

the sequence {Pk(E)}k of all homogeneous polynomials. Analogously, we can define the space
of holomorphic functions of bounded type associated to any coherent polynomial sequence:

Definition 1.3. Let A(E) = {Ak(E)}k be a coherent sequence. We define the space of A-
holomorphic functions of bounded type on E by

HbA(E) =
{
f ∈ H(E):

dkf (0)

k! ∈ Ak(E) for all k and

∥∥∥∥dkf (0)

k!
∥∥∥∥

1
k

Ak(E)

−−−→
k→∞ 0

}
.

Although the definition of HbA(E) involves the derivatives at 0, the same condition holds for
the derivatives at any point a ∈ E, as the following lemma shows.
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Lemma 1.4. Let A(E) = {Ak(E)}k be a coherent sequence and f ∈ HbA(E). Then, for all a ∈ E,

lim
k→∞

∥∥∥∥dkf (a)

k!
∥∥∥∥

1
k

Ak(E)

= 0.

Therefore, the function τa(f ) = f (a + ·) belongs to HbA(E).

Proof. Let f = ∑∞
k=0 Pk ∈ HbA(E), with Pk = dkf (0)

k! ∈ Ak(E). Then

f (x + a) =
∞∑

k=0

k∑
j=0

(
k

j

)
P̌k

(
ak−j , xj

) =
∞∑

j=0

∞∑
k=j

(
k

j

)
P̌k

(
ak−j , xj

)
.

Thus dj f (a)
j ! = ∑∞

k=j

(
k
j

)
(Pk)ak−j . The partial sums of this series belong to Ak(E) since A(E) is

a coherent sequence. For 0 < ε < 1, let N ∈ N be such that ‖Pk‖
1
k

Ak(E)
� ε

C‖a‖ if k � N . We have

∞∑
k=max(j,N)

∥∥∥∥
(

k

j

)
(Pk)ak−j

∥∥∥∥
Aj (E)

�
∞∑

k=max(j,N)

(
k

j

)
Ck−j‖Pk‖Ak(E)‖a‖k−j

�
(

ε

C‖a‖
)j ∞∑

k=max(j,N)

(
k

j

)
εk−j < ∞.

Therefore, the series converges in Aj (E) and dj f (a)
j ! ∈ Aj (E).

Also, for j � N ,∥∥∥∥djf (a)

j !
∥∥∥∥

1
j

Aj (E)

� ε

C‖a‖

( ∞∑
k=j

(
k

j

)
εk−j

) 1
j

−−−→
j→∞

ε

C‖a‖(1 − ε)
.

Since ε > 0 is arbitrary, we conclude that ‖ dj f (a)
j ! ‖

1
j

Aj (E) −−−→
j→∞ 0. �

Lemma 1.5. Let A(E) = {Ak(E)}k be a coherent multiplicative sequence. If f,g ∈ HbA(E),
then fg ∈ HbA(E). Therefore, HbA(E) is an algebra.

Proof. Take f,g ∈ HbA(E) with Taylor expansions f = ∑∞
k=0 Pk and g = ∑∞

k=0 Qk , where

Pk,Qk ∈ Ak(E). Then dk(fg)(0)
k! = ∑k

j=0 PjQk−j belongs to Ak(E), since A(E) is multiplica-
tive. For each ε > 0, take A > 0 such that

max
{‖Pk‖Ak(E),‖Qk‖Ak(E)

}
� Aεk,

for every k � 0. Then,

∥∥∥∥dk(fg)(0)

k!
∥∥∥∥

1
k

Ak(E)

�
(

k∑
j=0

Mk‖Pj‖Aj (E)‖Qk−j‖Ak−j (E)

) 1
k

�
(
(k + 1)A2) 1

k Mε −−−→
k→∞ Mε.

Therefore ‖ dk(fg)(0)‖
1
k → 0 and thus fg ∈ HbA(E). �
k! Ak(E)
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We define in HbA(E) a sequence of seminorms {pn}n,

pn(f ) =
∞∑

k=0

∥∥∥∥dkf (0)

k!
∥∥∥∥

Ak(E)

nk,

for f ∈ HbA(E).
It is easy to see that (HbA(E), {pn}n) is a Fréchet space. Moreover, for each f ∈ HbA(E), the

partial sums of the Taylor series expansion of f about the origin converges to f in HbA(E).
Next, we present examples of coherent multiplicative sequences. The coherence is shown

in [9]. It is immediate that the sequences of Examples 1.6 and 1.8 are multiplicative. For the
other examples see [14, Exercise 2.63] and [10]. Moreover, Boyd and Lasalle showed that the
product of two integral polynomials with values in a Banach algebra is also integral [4].

Example 1.6. Let A(E) be the sequence of homogeneous polynomials, Ak(E) = Pk(E), k � 1.
Then, A(E) is coherent and multiplicative and HbA(E) = Hb(E).

Example 1.7. Let A(E) be the sequence of nuclear polynomials, Ak(E) = Pk
N(E), k � 1. Then,

A(E) is coherent and multiplicative and HbA(E) is the space of nuclearly entire functions of
bounded type HNb(E) defined by Gupta and Nachbin (see [14,20]).

Example 1.8. Suppose A(E) is the sequence of extendible polynomials, that is, Ak(E) = Pk
e (E),

k � 1. Then, A(E) is coherent and multiplicative. Moreover, an application of [8, Proposition 14]
gives that HbA(E) is the space of all f ∈ H(E) such that, for any Banach space G ⊃ E, there is
an extension f̃ ∈ Hb(G) of f .

Example 1.9. Let A(E) be the sequence of integral polynomials, Ak(E) = Pk
I (E), k � 1. Then,

A(E) is coherent and multiplicative and HbA(E) is the space of integral holomorphic functions
of bounded type HbI (E) defined in [12].

2. Coherent sequences and duality

Let A(E) = {Ak(E)}k be a coherent sequence. The Borel transform β :HbA(E)′ → H(E′)
assigns to each element ϕ ∈ HbA(E)′ the holomorphic function β(ϕ) ∈ H(E′), given by
β(ϕ)(γ ) = ϕ(exp◦γ ) = ϕ(eγ ).

If ϕ ∈ Ak(E)′, we have two natural ways to identify ϕ with an element in HbA(E)′:

HbA(E)
ϕ̃−→C

f 
→ ϕ

(
dkf (0)

k!
) or

HbA(E)
ϕ̄−→C

f 
→ ϕ
(
dkf (0)

)
.

Thus, the Borel transform induces two different “polynomial” Borel transforms: βk :Ak(E)′ →
Pk(E′) where βk(ϕ) = β(ϕ̃) and Bk :Ak(E)′ → Pk(E′) given by Bk(ϕ) = β(ϕ̄). Note that for

γ ∈ E′, βk(ϕ)(γ ) = ϕ(
γ k

k! ) and Bk(ϕ)(γ ) = ϕ(γ k).
In the polynomial setting it is more common to use the mapping Bk than the mapping βk .

Moreover, it is not necessary to deal with holomorphic functions in order to define the polynomial
Borel transform Bk . Indeed, for a Banach space of k-homogeneous polynomials Ak(E), we can
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define Bk :Ak(E)′ → Pk(E′) by Bk(ϕ)(γ ) = ϕ(γ k), for every γ ∈ E′. Also, we can express the
holomorphic Borel transform β in terms of the Bk’s:

β(ϕ) =
∞∑

k=0

Bk(ϕ|Ak(E))

k! .

Notation. In the sequel, the expression

Ak(E)′ = Bk(E
′)

will always mean that the polynomial Borel transform Bk :Ak(E)′ → Bk(E
′) is an isometric

isomorphism.

The following lemma states that in order to have this duality, Ak(E) must be “small”:

Lemma 2.1. If Ak(E)′ = Bk(E
′), then finite type polynomials are dense in Ak(E):

Pk
f (E)Ak = Ak(E).

Proof. Suppose there exists P ∈ Ak(E) − Pk
f (E)Ak . Then there is ϕ ∈ Ak(E)′ such that

ϕ(P ) = 1 and ϕ|Pk
f (E) ≡ 0. For every γ ∈ E′, ϕ(γ k) = 0 and then Bk(ϕ)(γ ) = 0. Thus

Bk(ϕ) = 0 and therefore ϕ = 0 in Ak(E), which is a contradiction. �
Since the Taylor expansion about the origin of a function f ∈ HbA(E) converges in HbA(E),

we have

Corollary 2.2. Let {Ak(E)}k and {Bk(E
′)}k be coherent sequences such that Ak(E)′ = Bk(E

′)
for all k. Then finite type polynomials are dense in HbA(E).

Examples 2.3. We exhibit two simple situations of coherent sequences where the duality
Ak(E)′ = Bk(E

′) holds.
First, if Pn

A(E) is the space of approximable n-homogeneous polynomials, then Pn
A(E)′ is

(isometrically) the space of integral polynomials Pn
I (E′) [13].

Second, if E′ has the approximation property, the dual of Pn
N(E) coincides with Pn(E′) [20].

Note that in both cases, the sequence of dual spaces (i.e. {Pn(E′)}n and {PI (E
′)}n, respec-

tively) is coherent and multiplicative.

Remark 2.4. Now we use results from [15] on minimal, maximal and dual (or adjoint) polyno-
mial ideals to show how to obtain other examples in which the duality relation Ak(E)′ = Bk(E

′)
holds.

Suppose Ak is a minimal ideal and let αk be its associated k-symmetric tensor norm. If E′ has
the bounded approximation property, then Ak(E) identifies isometrically with

⊗k
s,αk

E′ and then

Ak(E)′ is isometrically isomorphic to Bk(E
′) = Adual

k (E′) via the Borel transform Bk , see [15,
Corollary 4.3].

On the other hand, if we start with a maximal ideal Bk , let Ak = (Bdual
k )min. Again, if E′

has the bounded approximation property, the Borel transform Bk is an isometric isomorphism
between Ak(E)′ and Bk(E

′).
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The following proposition states that if the duals of Ak(E) form a coherent sequence of spaces
of polynomials, then {Ak(E)}k inherits the coherence.

Proposition 2.5. Let {Bk(E
′)}k be a coherent sequence with constants C and D, and suppose

Ak(E)′ = Bk(E
′) for all k. Then, {Ak(E)}k is a coherent sequence with constants D and C.

Proof. First, observe that if ξ ∈ E′ and a ∈ E, then (ξk+1)a = ξ(a)ξk . Thus, for every ψ ∈
Bk(E

′),
B−1

k (ψ)
((

ξk+1)
a

) = ξ(a)B−1
k (ψ)

(
ξk

) = ξ(a)ψ(ξ) = (aψ)(ξ) = B−1
k+1(aψ)

(
ξk+1).

This implies that, for every P ∈Pk+1
f (E), B−1

k (ψ)(Pa) = B−1
k+1(aψ)(P ) and

‖Pa‖Ak(E) = sup
‖ψ‖Bk(E′)=1

∣∣B−1
k+1(aψ)(P )

∣∣ � D‖a‖‖P ‖Ak+1(E).

By the density result in Lemma 2.1, we obtain that for every P ∈ Ak+1(E) and every a ∈ E,
Pa belongs to Ak(E) and ‖Pa‖Ak(E) � D‖a‖‖P ‖Ak+1(E).

To prove the second condition of coherence, note that if γ and ξ are in E′ and ψ ∈ Bk+1(E
′)

we have, by the polarization formula,

B−1
k+1(ψ)

(
γ ξk

)
= 1

2k+1(k + 1)!
∑

ε1,...,εk+1=±1

ε1 · · · εk+1B
−1
k+1(ψ)

((
ε1γ + (ε2 + · · · + εk+1)ξ

)k+1)

= 1

2k+1(k + 1)!
∑

ε1,...,εk+1=±1

ε1 · · · εk+1ψ
(
ε1γ + (ε2 + · · · + εk+1)ξ

)
= ψγ (ξ) = B−1

k (ψγ )
(
ξk

)
.

This implies that if P is a finite type k-homogeneous polynomial on E, then B−1
k+1(ψ)(γP ) =

B−1
k (ψγ )(P ). And thus, for every P ∈ Pk

f (E),

‖γP ‖Ak+1(E) = sup
‖ψ‖Bk (E′)=1

∣∣B−1
k (ψγ )(P )

∣∣ � C‖γ ‖‖P ‖Ak(E).

Therefore, again by Lemma 2.1, for every P ∈ Ak(E) the polynomial γP belongs to Ak+1(E)

and ‖γP ‖Ak+1(E) � C‖γ ‖‖P ‖Ak(E). �
In order to study the dual of HbA(E), we need the following

Definition 2.6. Let B(E) = {Bk(E)}k be a coherent sequence. We define the holomorphic func-
tions of B-exponential type on E,

ExpB(E) =
{
f ∈ H(E): dkf (0) ∈ Bk(E) for all k and lim sup

k→∞
∥∥dkf (0)

∥∥ 1
k

Bk
< ∞

}
.

A classical result of Gupta states that, for E′ with the approximation property, the Borel trans-
form defines a duality between the space of nuclearly entire functions of bounded type over E,
HNb(E), and the space of holomorphic mappings of exponential type on E′, Exp(E′) [14,20].
In an analogous way, we prove the following:
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Proposition 2.7. Let {Bk(E
′)}k be a coherent sequence and let {Ak(E)}k be such that Ak(E)′ =

Bk(E
′) for all k. Then the Borel transform is a vector space isomorphism between HbA(E)′ and

ExpB(E′).

Proof. Let ϕ ∈ HbA(E)′. Since ϕ is continuous, there are constants c,R > 0 such that
|ϕ(g)| � cpR(g), for every g ∈ HbA(E). In particular, for each k, if g belongs to Ak(E),
we get |ϕ(g)| � cRk‖g‖Ak(E). Then ‖ϕ|Ak(E)

‖Ak(E)′ � cRk , for every k � 1. Moreover, since
dkβ(ϕ)(0)

k! (γ ) = ϕ|Ak (E)
(
γ k

k! ) we have that dkβ(ϕ)(0) = Bk(ϕ|Ak (E)
). Then ‖dkβ(ϕ)(0)‖

1
k

Bk(E
′) =

‖ϕ|Ak(E)
‖

1
k

Ak(E)′ � c
1
k R. Therefore, β(ϕ) ∈ ExpB(E′).

The Borel transform β is injective as a consequence of Corollary 2.2. To see that it is also

surjective, let ψ ∈ ExpB(E′) and A = supk ‖dkψ(0)‖
1
k

Bk(E
′). For each g ∈ HbA(E), we define

ϕ(g) =
∞∑

k=0

B−1
k

(
dkψ(0)

)(dkg(0)

k!
)

.

Since ∣∣ϕ(g)
∣∣ �

∞∑
k=0

∥∥dkψ(0)
∥∥

Bk(E
′)

∥∥∥∥dkg(0)

k!
∥∥∥∥

Ak(E)

�
∞∑

k=0

Ak

∥∥∥∥dkg(0)

k!
∥∥∥∥

Ak(E)

= pA(g),

we have ϕ ∈ HbA(E)′. Finally, simple computations show that β(ϕ) = ψ . �
3. Multiplication in HbA(E)′

Suppose that B(E) = {Bk(E)}k is a coherent multiplicative sequence. Then, we can see

that ExpB(E) is an algebra. Indeed, if f,g ∈ ExpB(E), with A1 = supk ‖dkf (0)‖
1
k

Bk(E)
and

A2 = supk ‖dkg(0)‖
1
k

Bk(E)
, we have dk(fg)(0) ∈ Bk(E) and ‖dk(fg)(0)‖

1
k

Bk(E)
� M(A1 +A2),

where M is the multiplicative constant of the sequence B(E) (see the proof of Lemma 1.5 for
some details).

This fact allows us to introduce a multiplication on HbA(E)′, just copying the product in
ExpB(E) via the Borel transform:

Definition 3.1. Let {Bk(E
′)}k be a coherent multiplicative sequence and let {Ak(E)}k be such

that Ak(E)′ = Bk(E
′) for all k. For ϕ,ψ ∈ HbA(E)′ we define the product � in HbA(E)′, by

ϕ � ψ = β−1(β(ϕ)β(ψ)
)
.

We would also like to define the “natural” convolution product in HbA(E)′: if ϕ,ψ ∈
HbA(E)′, then ϕ ∗ ψ ∈ HbA(E)′ is the linear functional given by

ϕ ∗ ψ(f ) = ψ
(
x 
→ ϕ(τxf )

)
.

We prove that this convolution product is well defined in a few steps. First we define:

Definition 3.2. Let ϕ ∈ HbA(E)′ and let f ∈ HbA(E). We define ϕ ∗ f :E → C as follows,

ϕ ∗ f (x) = ϕ(τxf ) = ϕ
(
f (x + ·)).
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Therefore, the desired convolution product can be rewritten as ϕ ∗ ψ(f ) = ψ(ϕ ∗ f ). For this
to be well defined, we must show that ϕ ∗ f ∈ HbA(E) and that f → ϕ ∗ f is continuous. This
will be done in the following lemma and theorem.

Lemma 3.3. Let {Bk(E
′)}k be a coherent multiplicative sequence and suppose Ak(E)′ =

Bk(E
′) for every k. Let P ∈ Ak(E) and ϕ ∈ Ak−l (E)′, k � l. Then the l-homogeneous poly-

nomial x 
→ ϕ(Pxl ) belongs to Al(E) and∥∥x 
→ ϕ(Pxl )
∥∥

Al (E)
� Mk‖ϕ‖Ak−l (E)′ ‖P ‖Ak(E).

Proof. If P is a finite type polynomial, then x 
→ ϕ(Pxl ) is also a finite type polynomial and
thus belongs to Al (E). We can therefore define a linear operator

T :
(
Pk

f (E),‖ · ‖Ak(E)

) → Al(E)

P =
N∑

j=1

γ k
j 
→ [

x 
→ ϕ(Pxl )
]
.

If P = ∑N
j=1 γ k

j and ψ ∈ Al (E)′, then

ψ
(
T (P )

) =
N∑

j=1

(
Bk−l (ϕ)Bl(ψ)

)
(γj ) = B−1

k

(
Bk−l (ϕ)Bl(ψ)

)
(P ).

Then, for every ψ ∈ Al (E)′,∣∣ψ(
T (P )

)∣∣ � Mk‖ϕ‖Ak−l (E)′ ‖ψ‖Al (E)′ ‖P ‖Ak(E).

Therefore, T is continuous and, by Lemma 2.1, can be extended to Ak(E). By density, it easily
follows that T (P )(x) = ϕ(Pxl ) for every x ∈ E and every P ∈ Ak(E). �
Theorem 3.4. Let {Bk(E

′)}k be a coherent multiplicative sequence and {Ak(E)}k be such that
Ak(E)′ = Bk(E

′) for every k. Let f ∈ HbA(E) and ϕ ∈ HbA(E)′. Then ϕ∗f belongs to HbA(E)

and the application

Tϕ :HbA(E) → HbA(E)

f 
→ ϕ ∗ f

is a continuous linear operator.

Proof. If f = ∑∞
k=0 Pk , Pk ∈ Ak(E), then

ϕ ∗ f (x) = ϕ(τxf ) = ϕ

( ∞∑
k=0

k∑
l=0

(
k

l

)
(Pk)xl

)
=

∞∑
l=0

∞∑
k=l

(
k

l

)
ϕ
(
(Pk)xl

)
.

From Lemma 3.3, the polynomial x 
→ ϕ((Pk)xl ) belongs to Al(E). Also, proceeding as in the
beginning of the proof of Proposition 2.7, we have that there exist constants c,R > 0 such that
‖ϕ|Ak(E)‖Ak(E)′ � cRk . Let ε > 0. Since f ∈ HbA(E), there exists cε > 0 such that ‖Pk‖Ak(E) �
cεε

k for all k. Then dl(ϕ∗f )(0)
l! belongs to Al (E) because dl(ϕ∗f )(0)

l! (x) = ∑∞
k=l

(
k
l

)
ϕ((Pk)xl ) and,

by Lemma 3.3,
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∞∑
k=l

(
k

l

)∥∥x 
→ ϕ(Pxl )
∥∥

Al (E)
�

∞∑
k=l

(
k

l

)
Mk‖ϕ|Ak−l (E)‖Ak−l (E)′ ‖Pk‖Ak(E)

� c

∞∑
k=l

(
k

l

)
MkRk−l‖Pk‖Ak(E)

� ccε(Mε)l
∞∑
k=l

(
k

l

)
(MRε)k−l

= ccε(Mε)l

(1 − MRε)l+1
< ∞,

for arbitrary small ε > 0. Moreover, since∥∥∥∥dl(ϕ ∗ f )(0)

l!
∥∥∥∥

1
l

Al (E)

� (ccε)
1
l Mε

(1 − MRε)
l+1
l

−−−→
l→∞

Mε

1 − MRε
,

for every ε sufficiently small, it follows that ϕ ∗ f ∈ HbA(E). Finally, the application Tϕ is
continuous because

pr(ϕ ∗ f ) =
∞∑
l=0

∥∥∥∥dl(ϕ ∗ f )(0)

l!
∥∥∥∥

Al (E)

rl � c

∞∑
l=0

rl
∞∑
k=l

(
k

l

)
MkRk−l‖Pk‖Ak(E)

= c

∞∑
k=0

‖Pk‖Ak(E)M
k

k∑
l=0

(
k

l

)
rlRk−l = c

∞∑
k=0

‖Pk‖Ak(E)M
k(R + r)k

= cpM(R+r)(f ). �
We can now define the following:

Definition 3.5. For ϕ,ψ ∈ HbA(E)′, the convolution product ϕ ∗ ψ ∈ HbA(E)′ is defined by

ϕ ∗ ψ(f ) = ψ
(
x 
→ ϕ(τxf )

) = ψ(ϕ ∗ f ),

for f ∈ HbA(E).

As a consequence of Theorem 3.4 we have

Corollary 3.6. If ϕ ∈ HbA(E)′, then the application

Mϕ :HbA(E)′ → HbA(E)′

ψ 
→ ψ ∗ ϕ

is a continuous linear operator when we consider the strong dual topology on HbA(E)′.

Proof. Just note that Mϕ is the transpose of Tϕ . �
Next we show that the two products defined on HbA(E)′ are actually the same.

Proposition 3.7. Let {Bk(E
′)}k be a coherent multiplicative sequence and {Ak(E)}k such that

Ak(E)′ = Bk(E
′) for every k. Let ϕ,ψ ∈ HbA(E)′. Then ϕ � ψ = ϕ ∗ ψ .
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Proof. Since finite type polynomials are dense in HbA(E), it is sufficient to verify that, for each
γ ∈ E′ and k � 0, ϕ � ψ(γ k) = ϕ ∗ ψ(γ k).

For g ∈ ExpB(E′), β−1(g)(γ k) = B−1
k (dkg(0))(γ k) = dkg(0)(γ ). Then,

ϕ � ψ
(
γ k

) = β−1(β(ϕ)β(ψ)
)(

γ k
) = dk

(
β(ϕ)β(ψ)

)
(0)(γ )

=
k∑

j=0

(
k

j

)
dj

(
β(ϕ)

)
(0)(γ )dk−j

(
β(ψ)

)
(0)(γ )

=
k∑

j=0

(
k

j

)
ϕ
(
γ j

)
ψ

(
γ k−j

)
.

On the other hand, since (ϕ ∗ γ k)(x) = ϕ(τxγ
k) = ∑k

j=0

(
k
j

)
ϕ(γ j )γ (x)k−j , we obtain

ϕ ∗ ψ
(
γ k

) = ψ
(
ϕ ∗ γ k

) =
k∑

j=0

(
k

j

)
ϕ
(
γ j

)
ψ

(
γ k−j

) = ϕ � ψ
(
γ k

)
. �

As an immediate consequence, we have:

Corollary 3.8. The convolution product in HbA(E)′ is commutative.

4. Convolution operators and hypercyclicity

As usual, by a convolution operator T , we mean a continuous operator that commutes with
translations τx , i.e., T ◦ τx = τx ◦T . Next we characterize the convolution operators on HbA(E).

Proposition 4.1. Let {Bk(E
′)}k be a coherent sequence and {Ak(E)}k such that Ak(E)′ =

Bk(E
′) for every k. Then for every convolution operator T :HbA(E) → HbA(E) there exists

a unique functional ϕ ∈ HbA(E)′ such that

T (f ) = ϕ ∗ f,

for every f ∈ HbA(E). If, in addition, {Bk(E
′)}k is multiplicative, then for every ϕ ∈ HbA(E)′,

Tϕ is a convolution operator on HbA(E).

Proof. Let T :HbA(E) → HbA(E) be a convolution operator and let ϕ = δ0 ◦ T , i.e. ϕ(f ) =
T (f )(0) for f ∈ HbA(E). Then ϕ ∈ HbA(E)′ and

T (f )(x) = [
τxT (f )

]
(0) = T (τxf )(0) = ϕ(τxf ) = ϕ ∗ f (x),

for every f ∈ HbA(E) and x ∈ E. The uniqueness of ϕ follows from the identity

T
(
eγ

) = ϕ ∗ eγ = [
x 
→ ϕ

(
τxe

γ
)] = ϕ

(
eγ

)
eγ = β(ϕ)(γ )eγ (1)

and the fact that β is one to one.
The second assertion is immediate by Theorem 3.4. �
Proposition 4.1 and the results in the previous sections allow us to establish the following:
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Corollary 4.2. Let {Bk(E
′)}k be a coherent multiplicative sequence and let {Ak(E

′)}k be
such that Ak(E)′ = Bk(E

′) for every k. Then ψ 
→ Tβ−1(ψ) is an algebra isomorphism from
ExpB(E′) onto the algebra of convolution operators on HbA(E).

Now we are ready to prove the announced result about hypercyclicity of convolution opera-
tors. We follow the steps of the proof of [26, Theorem 3.1].

Theorem 4.3. Suppose that E′ is separable. Let {Bk(E
′)}k be a coherent sequence and {Ak(E)}k

be such that Ak(E)′ = Bk(E
′) for every k. Then, every convolution operator T :HbA(E) →

HbA(E) which is not a scalar multiple of the identity is hypercyclic.

Proof. Let ϕ ∈ HbA(E)′ be the linear functional given in Proposition 4.1, which satisfies T (f ) =
ϕ ∗ f . Since T is not a scalar multiple of the identity, it follows that ϕ is not a scalar multiple
of δ0.

Since E′ is separable, by Corollary 2.2, HbA(E) is separable. Therefore, we can use the
Hypercyclicity Criterion [17,22].

First, note that span{eγ : γ ∈ U} is dense in HbA(E) for any nonempty open set U ⊂ E′.
Indeed, if ψ ∈ HbA(E)′ and ψ(eγ ) = 0 for every γ ∈ U , then β(ψ) ≡ 0 in U and we have
β(ψ) = 0. This means that ψ is 0.

Also, the fact that ϕ is not a scalar multiple of δ0 implies that β(ϕ) is not a constant function.
Indeed, if β(ϕ) was constant, then λ = ϕ(1) = β(ϕ)(0) = β(ϕ)(γ ) = ϕ(eγ ) for all γ ∈ E′. But,
on the other hand, λ = λδ0(e

γ ) for all γ ∈ E′ and we would have that ϕ = λδ0.
We will now prove that T satisfies the Hypercyclicity Criterion. Let

V = {
γ ∈ E′:

∣∣β(ϕ)(γ )
∣∣ < 1

}
and W = {

γ ∈ E′:
∣∣β(ϕ)(γ )

∣∣ > 1
}
.

Then V,W ⊂ E′ are open sets, and they are nonempty. Indeed, if W = ∅ (V = ∅), then β(ϕ)

( 1
β(ϕ)

) would be a nonconstant bounded entire function. Let

HV (E) = span
{
eγ , γ ∈ V

}
and HW(E) = span

{
eγ , γ ∈ W

}
.

As we have observed, HV (E) and HW(E) are dense in HbA(E).
For γ ∈ V , T (eγ ) = β(ϕ)(γ )eγ (see (1)). Then T (HV (E)) ⊂ HV (E). Also, T n(eγ ) =

β(ϕ)(γ )neγ , and since |β(ϕ)(γ )| < 1 for γ ∈ V , we obtain that T n(f ) −−−−→n→∞ 0, for every
f ∈ HV (E).

For γ ∈ W , let S(eγ ) = eγ

β(ϕ)(γ )
. Since {eγ , γ ∈ W } is linearly independent (see the proof

of [1, Lemma 2.3]), we can linearly extend S to HW(E). Then S(HW(E)) ⊂ HW(E) and
Sn(eγ ) = eγ

β(ϕ)(γ )n
. Thus Sn(f ) −−−−→n→∞ 0, for every f ∈ HW(E), since |β(ϕ)(γ )| > 1 for γ ∈ W .

Finally, T S(eγ ) = T ( eγ

β(ϕ)(γ )
) = eγ and therefore T Sf = f for all f ∈ HW(E).

By the Hypercyclicity Criterion, T is hypercyclic. �
By Theorem 3.4, if B(E′) is a coherent multiplicative sequence, each ϕ ∈ HbA(E)′ defines a

convolution operator f 
→ ϕ ∗f . As mentioned in the previous proof, this operator is not a scalar
multiple of the identity unless ϕ is a scalar multiple of δ0. Therefore, we have:

Corollary 4.4. Suppose that E′ is separable. Let {Bk(E
′)}k be a coherent multiplicative se-

quence and {Ak(E)}k such that Ak(E)′ = Bk(E
′) for every k. For every ϕ ∈ HbA(E)′ which is

not a scalar multiple of δ0, the operator
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Tϕ :HbA(E) → HbA(E)

f 
→ Tϕ(f ) = ϕ ∗ f

is hypercyclic.

Now we apply the previous results to different spaces of holomorphic functions.

Example 4.5. In [1] the authors study differentiation operators in Hbc(E), the space of holomor-
phic functions of compact bounded type on E (that is: f = ∑

Pn ∈ Hbc(E) whenever each Pn

is an approximable n-homogeneous polynomial and ‖Pn‖ 1
n → 0, where ‖ · ‖ denotes the usual

norm). They show that if the differentiation operator is constructed from an entire function of
exponential type on C, then it is hypercyclic. By Examples 2.3, this result is a particular case of
Corollary 4.4. Indeed, every such differentiation operator in HbA(E) is a convolution operator:
if Φ(z) = ∑

cnz
n is an exponential type function and a ∈ E, we define h(γ ) = ∑

cnγ (a)n, then
h ∈ ExpB(E′) and β−1(h)(f ) = ∑

cnd
nf (0)(a) for all f ∈ HbA(E). Therefore,

β−1(h) ∗ f (x) = h(τxf ) =
∑

cn

(
dnτxf

)
(0)(a) =

∑
cnd

nf (x)(a).

Example 4.6. Consider the space HNb(E) of nuclearly entire functions of bounded type. If
E′ is separable with the approximation property, Examples 2.3 and Proposition 4.1 assert that
the convolution operators on HNb(E) are precisely the operators Tϕ , ϕ ∈ HNb(E)′. Such an
operator is hypercyclic whenever it is not a scalar multiple of the identity by Theorem 4.3. This
last statement answers a question of Aron and Markose in [2]. For E a dual Banach space and a
slightly different definition of nuclear polynomials, Petersson obtained a stronger version of this
result [27].

Example 4.7. Let {Ak}k be a sequence of minimal ideals. If E′ has the bounded approximation
property, Ak(E)′ can, by Remark 2.4, be identified with Bk(E

′) = Adual
k (E′). Therefore, if E′

is also separable and {Bk(E
′)}k is coherent and multiplicative, the convolution operators on

HbA(E) are those of the form Tϕ , ϕ ∈ HbA(E)′. They are hypercyclic if they are not scalar
multiples of the identity.

For example, we can take Ak to be the minimal ideal associated to the tensor norm ηk [7,21].
In this case, {Bk}k is the coherent multiplicative sequence of extendible polynomials.

In the next section, we present other examples in which the hypotheses of Theorem 4.3 and
Corollary 4.4 hold. Namely, we consider the holomorphic functions of bounded type associated
to the Schatten–von Neumann polynomials in the sense of Cobos, Kühn and Peetre [11].

5. Holomorphic Schatten–von Neumann functions of bounded type

Suppose H is a separable Hilbert space. Let us first recall the definition of Hilbert–Schmidt n-
homogeneous polynomials on H, which will be denoted Sn

2 (H). For finite type polynomials it is
possible to define an inner product in the following way: if y, z ∈ H, 〈〈·, y〉n, 〈·, z〉n〉 = 〈z, y〉n,
then Sn

2 (H) is the completion of the space of finite type polynomials Pn
f (H) with this inner

product.
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Note that if {ei}i is an orthonormal basis of H and P,Q ∈ Sn
2 (H), then

〈P,Q〉 =
∞∑

i1,...,in=1

P̌ (ei1, . . . , ein)Q̌(ei1, . . . , ein).

Also note that the Borel transform is an isometric isomorphism between (Sn
2 (H))′ and

Sn
2 (H′).

Cobos, Kühn and Peetre in [11] define Schatten–von Neumann classes of multilinear function-
als on H. We adapt their definition to homogeneous polynomials on H. To this end, throughout
this section we will denote by Sn

1 (H) and Sn∞(H) the spaces of n-homogeneous nuclear and
approximable polynomials on H, respectively. Since H′ has the approximation property and the
Radon–Nikodym property, the Borel transform is an isometric isomorphism between (Sn

1 (H))′
and Pn(H′), and also between (Sn∞(H))′ and Sn

1 (H′).
We use the complex interpolation method [3,6] to define Schatten polynomials. Follow-

ing [11], we define:

Definition 5.1. The Schatten–von Neumann p-class of n-homogeneous polynomials on H is
defined as

Sn
p(H) = [

Sn
1 (H),Sn∞(H)

]
θ
,

with 1
p

= 1 − θ and 0 < θ < 1. Here, [Sn
1 (H),Sn∞(H)]θ denotes the space obtained by complex

interpolation from the pair (Sn
1 (H),Sn∞(H)), with parameter θ .

The following result, which is the polynomial version of [11, Theorem 3.1] and can be proved
analogously, shows that this definition is consistent with the definition of Sn

2 (H).

Proposition 5.2. We have the following isometric isomorphisms:[
Sn

1 (H),Pn(H)
]

1
2

1= [
Sn

1 (H),Sn∞(H)
]

1
2

1= Sn
2 (H).

For the real method of interpolation the previous proposition holds with equivalent norms
(see [11]).

In the proof of [11, Theorem 4.5], the reflexivity of Sn
p(H) is proven. In fact, this can be seen

as a consequence of the following result:

Proposition 5.3. If 1 < p,q < ∞ are such that 1
p

+ 1
q

= 1, then the Borel transform is an

isometric isomorphism between (Sn
p(H))′ and Sn

q (H′).

Proof. We know that the statement holds when p = 2. Next, assume 1 < p < 2.
By the Reiteration Theorem [3, 4.6.1] for the complex method,

Sn
p(H) = [

Sn
1 (H),Sn∞(H)

]
θ

= [
Sn

1 (H),Sn
2 (H)

]
η
,

where θ = η
2 . Then Sn

p(H) = [Sn
1 (H),Sn

2 (H)]2θ .
In the following two cases, the Borel transform is an isomorphism

Bn :
(
Sn

1 (H)
)′ →Pn(H′) and Bn :

(
Sn

2 (H)
)′ → Sn

2 (H′).
Then Bn : [(Sn(H))′, (Sn(H))′]2θ → [Pn(H′),Sn(H′)]2θ is an isomorphism.
1 2 2
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Since Sn
2 (H) is reflexive, and by a duality theorem [3, Corollary 4.5.2], we have[(

Sn
1 (H)

)′
,
(
Sn

2 (H)
)′]

2θ
= [

Sn
1 (H),Sn

2 (H)
]′

2θ
= (

Sn
p(H)

)′
.

On the other hand,[
Pn(H′),Sn

2 (H′)
]

2θ
= [

Sn∞(H′),Sn
2 (H′)

]
2θ

= [
Sn

1 (H′),Sn∞(H′)
]
ν
,

with ν = 1
2 2θ + (1 − 2θ) = 1 − θ (the first equality follows from [3, Theorem 4.2.2] and the last

one from the Reiteration Theorem). Therefore, Bn : (Sn
p(H))′ → [Sn

1 (H′),Sn∞(H′)]ν = Sn
q (H′)

is an isomorphism, with 1
q

= 1 − ν = θ , that is, 1
q

= 1 − 1
p

.
For the case 2 < p < ∞, we have

Sn
p(H) = [

Sn
1 (H),Sn∞(H)

]
θ

= [
Sn

2 (H),Sn∞(H)
]
η
,

where η = 2θ − 1. We proceed analogously to obtain the desired result. �
Corollary 5.4. For 1 < p < ∞, the Schatten–von Neumann classes Sn

p(H) are reflexive.

In [10] it is shown that interpolation of coherent sequences is coherent. We will now show
that interpolation of multiplicative coherent sequences is multiplicative.

Proposition 5.5. Let E be Banach space and let {A0
k(E)}k , {A1

k(E)}k be coherent multiplicative
sequences (with constants M0 and M1, respectively). Then, the sequence {Aθ

k (E)}k is multiplica-

tive, where Aθ
k (E) = [A0

k(E),A1
k(E)]θ , for every 0 < θ < 1 (with constant M1−θ

0 Mθ
1 ).

Proof. Since {Aj
k (E)}k are multiplicative, for j = 0,1, we can define a continuous bilinear map-

ping

Φ
j
k,l :Aj

k (E) × A
j
l (E) → A

j
k+l (E)

(P,Q) 
→ PQ.

It follows that ‖Φj
k,l‖ � Mk+l

j . Then, by the Multilinear Interpolation Theorem [3, Theo-
rem 4.4.1], (P,Q) 
→ PQ defines a mapping

Φθ
k,l :Aθ

k (E) × Aθ
l (E) → Aθ

k+l (E),

which is continuous and has norm less than or equal to (M1−θ
0 Mθ

1 )k+l . That is, if P ∈ Aθ
k (E),

Q ∈ Aθ
l (E), then PQ ∈ Aθ

k+l (E) and

‖PQ‖Aθ
k+l (E) �

(
M1−θ

0 Mθ
1

)k+l‖P ‖
Aθ

k (E)‖Q‖
Aθ

l (E). �
From Propositions 5.3 and 5.5 we have

Corollary 5.6. For every 1 � p � ∞, the sequence of Schatten–von Neumann p-classes of ho-
mogeneous polynomials {Sk

p(H)}k is multiplicative.

Let HbSp
(H) be the holomorphic functions of bounded type of the Schatten–von Neumann

p-class on H, then by Theorems 3.4 and 4.3, we have
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Corollary 5.7. Let H be separable Hilbert space. For 1 � p � ∞, every convolution operator
on HbSp

(H) which is not a scalar multiple of the identity is hypercyclic. Moreover, each ϕ ∈
HbSp

(H)′ defines a convolution operator Tϕ .

The case p = 2 of this result (Hilbert–Schmidt holomorphic functions of bounded type) was
proved by Petersson in [26].
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