

Available online at www.sciencedirect.com

J. Math. Anal. Appl. 333 (2007) 42-51

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

(1.1)

www.elsevier.com/locate/jmaa

On boundary value problems in three-ion electrodiffusion

P. Amster^{a,b,*}, C. Rogers^{c,d}

^a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina

^b Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
 ^c School of Mathematics, University of New South Wales, Sydney, Australia
 ^d Australian Research Council Centre of Excellence for Mathematics and Statistics of Complex Systems, Australia

Received 24 November 2006

Available online 28 March 2007

Submitted by T. Witelski

Abstract

The existence of solutions to a class of two-point boundary value problems in three-ion electrodiffusion is investigated via an integro-differential formulation. Boundedness by upper and lower solutions corresponding to associated boundary value problems is considered and illustrated by Painlevé II solutions of a constrained version of the original boundary value problems.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Three-ion electrodiffusion; Nonlinear boundary value problems; Third order ODE's; Topological methods

1. Introduction

Leuchtag in [1] presented an *m*-ion electrodiffusion model consisting of the nonlinear coupled system

$$\frac{\mathrm{d}n_i}{\mathrm{d}x} = v_i n_i p - c_i, \quad i = 1, \dots, m,$$
$$\frac{\mathrm{d}p}{\mathrm{d}x} = \sum_{i=1}^m v_i n_i,$$

* Corresponding author.

E-mail address: pamster@dm.uba.ar (P. Amster).

0022-247X/\$ – see front matter @ 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2007.03.067

where n_i is the number of ions with the same charge, p is the electric field, the v_j are nonzero integral signed valencies while the c_i are real constants. In the three-ion case to be considered here, the model reduces to the following nonlinear third order equation for the electric field p:

$$pp''' - p'p'' - (v_1 + v_2 + v_3)p^2p'' + (v_1v_2 + v_2v_3 + v_3v_1)p^3p' - (v_1c_1 + v_2c_2 + v_3c_3)p' - \frac{1}{2}v_1v_2v_3p^5 + v_1v_2v_3(c_1 + c_2 + c_3)xp^3 - [(v_2 + v_3)v_1c_1 + (v_3 + v_1)v_2c_2 + (v_1 + v_2)v_3c_3]p^2 = 0.$$
(1.2)

In previous work on the model (1.1), in the two-ion case a Bäcklund transformation was applied to an underlying Painlevé II reduction [2]. Here, the three-ion model is analyzed in connection with the existence of solutions to a class of two-point boundary value problems and the construction of upper and lower solutions [3]. The work complements that initiated in [4] on the three-ion model.

2. A two-point boundary value problem

Let us consider the following two-point boundary value problem for (1.2):

$$pp''' - p'p'' - (v_1 + v_2 + v_3)p^2p'' + (v_1v_2 + v_1v_3 + v_2v_3)p^3p' - (v_1c_1 + v_2c_2 + v_3c_3)p' - \frac{1}{2}v_1v_2v_3p^5 + v_1v_2v_3(c_1 + c_2 + c_3)xp^3 - [(v_2 + v_3)v_1c_1 + (v_3 + v_1)v_2c_2 + (v_1 + v_2)v_3c_3]p^2 = 0, p(0) = p_0, \qquad p(T) = p_T, \qquad p''(0) = r_0.$$
(2.1)

If we set u = p''/p, $u_0 = r_0/p_0$, then for $p \neq 0$ this boundary value problem is equivalent to:

$$p^{2}u' - (v_{1} + v_{2} + v_{3})p^{2}p'' + (v_{1}v_{2} + v_{1}v_{3} + v_{2}v_{3})p^{3}p' - (v_{1}c_{1} + v_{2}c_{2} + v_{3}c_{3})p' - \frac{1}{2}v_{1}v_{2}v_{3}p^{5} + v_{1}v_{2}v_{3}(c_{1} + c_{2} + c_{3})xp^{3} = [(v_{2} + v_{3})v_{1}c_{1} + (v_{3} + v_{1})v_{2}c_{2} + (v_{1} + v_{2})v_{3}c_{3}]p^{2}, p'' = pu, \qquad p(0) = p_{0}, \qquad p(T) = p_{T}, \qquad u(0) = u_{0}.$$
(2.2)

This in turn, is equivalent to the second order integro-differential boundary value problem:

$$p'' = -C_3 + \varphi(x)p + C_1(p' - p'(0))p + \frac{C_2}{2}p^3p \int_0^x (C_4p^2(t) + C_5t)p(t) dt,$$

$$p(0) = p_0, \qquad p(T) = p_T,$$
(2.3)

where

$$C_{1} = v_{1} + v_{2} + v_{3}, \qquad C_{2} = -(v_{1}v_{2} + v_{1}v_{3} + v_{2}v_{3}), \qquad C_{3} = v_{1}c_{1} + v_{2}c_{2} + v_{3}c_{3},$$

$$C_{4} = \frac{1}{2}v_{1}v_{2}v_{3}, \qquad C_{5} = -v_{1}v_{2}v_{3}(c_{1} + c_{2} + c_{3}),$$

$$C_{6} = (v_{2} + v_{3})v_{1}c_{1} + (v_{3} + v_{1})v_{2}c_{2} + (v_{1} + v_{2})v_{3}c_{3},$$

and

$$\varphi(x) = u_0 - \frac{1}{2}C_2p_0^2 + \frac{C_3}{p_0} + C_6x.$$

Here, we shall assume that the associated linear operator $\mathcal{L}p := p'' - \varphi p$ is below resonance for the Dirichlet conditions, that is

$$\varphi_i := \inf_{0 \le x \le T} \varphi(x) = \frac{r_0 + C_3}{p_0} - C_2 \frac{p_0^2}{2} + \min\{0, C_6 T\} > -\left(\frac{\pi}{T}\right)^2.$$
(2.4)

By standard results, condition (2.4) implies that $\mathcal{L}: H^2 \cap H^1_0(0, T) \to L^2(0, T)$ is invertible. In particular, a straightforward computation shows that if $p \in H^2 \cap H^1_0(0, T)$ then

$$\|p\|_{L^2} \leq \frac{1}{(\frac{\pi}{T})^2 + \varphi_i} \|\mathcal{L}p\|_{L^2}$$

and

$$\|p'\|_{L^2} \leq \frac{\frac{\pi}{T}}{(\frac{\pi}{T})^2 + \varphi_i} \|\mathcal{L}p\|_{L^2}.$$

Furthermore, writing $p'' = \mathcal{L}p + \varphi p$, we also deduce that

$$||p''||_{L^2} \leq (1+k) ||\mathcal{L}p||_{L^2},$$

where

$$k = \frac{\max\{|\frac{r_0+C_3}{p_0} - C_2\frac{p_0^2}{2}|, |\frac{r_0+C_3}{p_0} - C_2\frac{p_0^2}{2} + C_6T|\}}{(\frac{\pi}{T})^2 + \varphi_i}$$

Hence,

$$||p'||_C \leq T^{1/2} ||p''||_{L^2} \leq T^{1/2} (1+k) ||\mathcal{L}p||_{L^2},$$

and setting

$$N = T^{1/2} \max\left\{\frac{\frac{\pi}{T}}{(\frac{\pi}{T})^2 + \varphi_i}, 1 + k\right\}$$

we conclude that

$$||p||_{C^1} := \max\{||p||_C, ||p'||_C\} \leq N ||\mathcal{L}p||_{L^2}.$$

In order to establish a sufficient condition for the existence of solutions, let us define a polynomial $\gamma : \mathbb{R} \to \mathbb{R}$ given by

$$\gamma(M) = 2|C_1|M^2 + \frac{|C_2|}{2}M^3 + TM^2(|C_4|M^2 + |C_5|T).$$
(2.5)

From the limits

$$\lim_{M \to 0^+} \frac{\gamma(M)}{M} = 0, \qquad \lim_{M \to +\infty} \frac{\gamma(M)}{M} = +\infty,$$

it is clear that the function $M - NT^{1/2}\gamma(M)$ achieves a positive maximum A_{max} at some value $M_{\text{max}} > 0$.

The following result may be established:

Theorem 2.1. *Assume that* (2.4) *holds, and that* $\Theta \leq A_{\text{max}}$ *, where*

$$\Theta := \max\left\{ |p_0|, |p_T|, \frac{|p_T - p_0|}{T} \right\} + N\left(|C_3| T^{1/2} + \|\varphi B\|_{L^2} \right)$$
(2.6)

and

$$B(t) = \left(\frac{p_T - p_0}{T}\right)t + p_0.$$

Then the boundary value problem (2.1) admits at least one classical solution.

Proof. Let us define an operator $\mathcal{T}: C^1[0,T] \to C^1[0,T]$ given by $\mathcal{T}q = p$, where p is the unique solution of the linear problem

$$\begin{cases} p''(x) - \varphi(x)p(x) = V(q) - C_3, \\ p(0) = p_0, \quad p(T) = p_T, \end{cases}$$

with

$$V(q)(x) := C_1 \left(q'(x) - q'(0) \right) q(x) + \frac{C_2}{2} q^3(x) + q(x) \int_0^x \left(C_4 q^2(t) + C_5 t \right) q(t) \, \mathrm{d}t.$$

By standard results, T is well defined and compact. Moreover, if θ is the unique function satisfying

$$\mathcal{L}\theta = -C_3, \qquad \theta(0) = p_0, \qquad \theta(T) = p_T,$$

then

$$\|\theta - B\|_{C^1} \leq N \|C_3 - \varphi B\|_{L^2} \leq N (|C_3|T^{1/2} + \|\varphi B\|_{L^2}).$$

Hence, $\|\theta\|_{C^1} \leq \Theta$, where Θ is given by (2.6). Moreover, the following bound is obtained for $p = \mathcal{T}q$:

$$||p - \theta||_{C^1} \leq N ||\mathcal{L}(p - \theta)||_{L^2} = N ||V(q)||_{L^2}.$$

It is readily shown that if $||q||_{C^1} \leq M$ then $|V(q)(x)| \leq \gamma(M)$, with $\gamma(M)$ as in (2.5). Thus, $||p||_{C^1} \leq \Theta + NT^{1/2}\gamma(M)$, and since $\Theta \leq A_{\max}$ we conclude that if $||q||_{C^1} \leq M_{\max}$ then $||p||_{C^1} \leq M_{\max}$. The result now follows from Schauder's Fixed Point Theorem. \Box

As a particular consequence we obtain:

Corollary 2.1. Assume that $\min\{0, C_6T\} > L - (\frac{\pi}{T})^2$ for some L > 0. Then there exist constants $\delta_0, \delta_T > 0$ such that the boundary value problem (2.1) admits at least one classical solution for any choice of the parameters p_0, p_T, C_3 and r_0 satisfying:

$$|p_T| < \delta_T, \qquad \frac{|r_0| + |C_3|}{L} < |p_0| < \delta_0.$$

Proof. From the hypotheses, it is clear that if C_2 and C_6 are fixed then (2.4) holds for δ_0 small enough. Furthermore, it is observed that $\|\varphi\|_C$ and the constant N remain bounded as $p_0 \to 0$, provided $|\frac{r_0+C_3}{p_0}| < L$. On the other hand, if $p_0, p_T \to 0$ then $\|B\|_{C^1} \to 0$ and $C_3 \to 0$. Hence $\Theta \to 0$, and the result follows. \Box

3. The case $v_1 + v_2 + v_3 = 0$. Upper and lower solutions

Here we focus on the boundary value problem

$$p'' = -C_3 + \varphi(x)p + \frac{C_2}{2}p^3 + p \int_0^x (C_4 p^2(t) + C_5 t)p(t) dt,$$

$$p(0) = p_0, \qquad p(T) = p_T,$$
(3.1)

corresponding to the case $C_1 = \sum v_i = 0$. Note that this condition implies that $C_2 \ge 0$.

The quantities α and β are termed lower and upper solutions respectively for the boundary value problem (3.1) if

$$\alpha'' \ge -C_3 + \varphi(x)\alpha + \frac{C_2}{2}\alpha^3 + \alpha \int_0^x (C_4 \alpha^2(t) + C_5 t)\alpha(t) \,\mathrm{d}t,$$
(3.2)

$$\beta'' \leqslant -C_3 + \varphi(x)\beta + \frac{C_2}{2}\beta^3 + \beta \int_0^x \left(C_4\beta^2(t) + C_5t\right)\beta(t)\,\mathrm{d}t,\tag{3.3}$$

and

$$\alpha(0) \leqslant p_0 \leqslant \beta(0), \qquad \alpha(T) \leqslant p_T \leqslant \beta(T). \tag{3.4}$$

Then we have:

Theorem 3.1. Let α and β be respectively lower and upper solutions of the boundary value problem (3.1), with $0 \leq \alpha \leq \beta$, and assume that $v_1v_2(v_1 + v_2) > 0$, $c_1 + c_2 + c_3 \leq 0$. Then (3.1) admits a solution u with $\alpha \leq u \leq \beta$.

Proof. From the assumptions, it readily follows that if $0 \le p \le q$ then

$$p(x) \int_{0}^{x} \left(C_4 p^2(t) + C_5 t \right) p(t) \, \mathrm{d}t \ge q(x) \int_{0}^{x} \left(C_4 q^2(t) + C_5 t \right) q(t) \, \mathrm{d}t.$$

Let us fix a nonnegative constant λ such that

$$\lambda \geqslant \frac{3}{2}C_2 \|\beta\|_C^2 + \varphi_s,$$

with

$$\varphi_s := \sup_{0 \le x \le T} \varphi(x) = \frac{r_0 + C_3}{p_0} - C_2 \frac{p_0^2}{2} + \max\{0, C_6 T\}.$$

Then the function $\varphi p + \frac{C_2}{2}p^3 - \lambda p$ is nonincreasing in p for $\alpha(x) \leq p \leq \beta(x)$. Next, define a fixed point operator \mathcal{T} such that for fixed $q \in C[0, T]$, $p = \mathcal{T}q$ is the unique solution of the linear problem

$$p'' - \lambda p = -C_3 + \varphi q + \frac{C_2}{2}q^3 - \lambda q + q \int_0^x (C_4 q^2(t) + C_5 t)q(t) dt,$$

$$p(0) = p_0, \qquad p(T) = p_T.$$

By standard results, $\mathcal{T} : C[0, T] \to C[0, T]$ is well defined and compact. Moreover, if $\alpha \leq q \leq \beta$, for $p = \mathcal{T}q$ it follows that

$$p'' - \lambda p \leqslant -C_3 + \varphi \alpha + \frac{C_2}{2} \alpha^3 - \lambda \alpha + \alpha \int_0^x (C_4 \alpha^2(t) + C_5 t) \alpha(t) \, \mathrm{d}t \leqslant \alpha'' - \lambda \alpha$$

and

$$p''-\lambda p \ge -C_3 + \varphi\beta + \frac{C_2}{2}\beta^3 - \lambda\beta + \beta \int_0^x \left(C_4\beta^2(t) + C_5t\right)\beta(t)\,\mathrm{d}t \ge \beta'' - \lambda\beta.$$

From (3.4) and the maximum principle we conclude that $\alpha \leq p \leq \beta$.

The result follows by applying Schauder's Theorem to the bounded, convex and closed set $\{u \in C[0, T]: \alpha \leq u \leq \beta\}$. \Box

An analogous result when $\alpha \leq \beta \leq 0$ may be established, namely:

Theorem 3.2. Let α and β be respectively lower and an upper solutions of (3.1), with $\alpha \leq \beta \leq 0$, and assume that $v_1v_2(v_1 + v_2) < 0$, $c_1 + c_2 + c_3 \leq 0$. Then the boundary value problem (3.1) admits a solution u with $\alpha \leq u \leq \beta$.

4. An iterative quasilinearization method

Here, the existence of an ordered couple of lower and upper solutions is assumed and an iterative scheme that converges to a solution of problem (3.1) is constructed. Under appropriate conditions, the convergence is proved to be quadratic.

In this connection, it proves convenient to write $(3.1)_1$ as

$$p'' - \frac{C_2}{2}p^3 = F(p),$$

where the mapping $F: C[0, 1] \rightarrow C[0, 1]$ is given by

$$F(p) = -C_3 + \varphi p + p \int_0^x \left(C_4 p^2(t) + C_5 t \right) p(t) \, \mathrm{d}t.$$
(4.1)

It is readily seen that F is infinitely Fréchet differentiable, with

$$DF(p)[q] = \varphi q + p \int_{0}^{x} (3C_4 p^2(t) + C_5 t)q(t) dt + q \int_{0}^{x} (C_4 p^2(t) + C_5 t)p(t) dt$$
(4.2)

and

$$D^{2}F(p)[q,r] = 6C_{4}p \int_{0}^{x} pqr \,dt + q \int_{0}^{x} (3C_{4}p^{2}(t) + C_{5}t)r(t) \,dt + r \int_{0}^{x} (3C_{4}p^{2}(t) + C_{5}t)q(t) \,dt.$$
(4.3)

As a preliminary we note appropriate comparison and existence-uniqueness results for the semilinear operator $S_{\lambda}p := p'' - \frac{C_2}{2}p^3 - \lambda p$ with $\lambda, C_2 \ge 0$ (proofs are straightforward):

Lemma 4.1. If $p, q \in H^2(0, T)$ satisfy

 $S_{\lambda}p \ge S_{\lambda}q$ a.e. $p(0) \le q(0), \qquad p(T) \le q(T),$

then $p \leq q$.

Lemma 4.2. Let $\xi \in L^2(0,T)$ and $p_0, p_T \in \mathbb{R}$. Then the boundary value problem

 $S_{\lambda}p = \xi, \qquad p(0) = p_0, \qquad p(T) = p_T$

admits a unique solution $p \in H^2(0, T)$.

In what follows, we shall consider only the situation when Theorem 3.1 applies. Analogous conclusions hold when Theorem 3.2 obtains.

In order to construct an iterative Newton-type scheme for the boundary value problem (3.1), the following result is required.

Lemma 4.3. Let the assumptions of Theorem 3.1 hold. Then there exists $p \in C^2[0, T]$ such that $\alpha \leq p \leq \beta$, and

$$\begin{cases} S_0 p = F(\alpha) + DF(\alpha)(p - \alpha), \\ p(0) = p_0, \quad p(T) = p_T. \end{cases}$$
(4.4)

Proof. Fix a nonnegative constant $\lambda \ge \varphi_s$, with φ_s as in Theorem 3.1, and define a function $\Pi : [0, T] \times \mathbb{R} \to \mathbb{R}$ by

$$\Pi(x, p) = \begin{cases} p & \text{if } \alpha(x) \leq p \leq \beta(x), \\ \alpha(x) & \text{if } p < \alpha(x), \\ \beta(x) & \text{if } p > \beta(x). \end{cases}$$

From Lemma 4.2 and Schauder's Theorem, it is seen that the following quasilinear problem admits at least one solution:

$$\begin{cases} S_{\lambda}p = F(\alpha) + DF(\alpha) \big(\Pi(p) - \alpha \big) - \lambda \Pi(p), \\ p(0) = p_0, \quad p(T) = p_T. \end{cases}$$

We now write $S_{\lambda}p = F(\alpha) - \lambda\alpha + (DF(\alpha) - \lambda I)(\Pi(p) - \alpha)$, and from the choice of λ it follows immediately that $S_{\lambda}p \leq F(\alpha) - \lambda\alpha \leq S_{\lambda}\alpha$.

On the other hand, consider the Taylor expansion

$$F(z) = F(\alpha) + DF(\alpha)(z - \alpha) + R(z).$$

From the fact that $D^2 F(p)[q, r] \leq 0$ for $p, q, r \geq 0$, it follows that $R(z) \leq 0$ for $z \geq \alpha$. Then

$$S_{\lambda}p = F(\Pi(p)) - R(\Pi(p)) - \lambda\Pi(p) \ge F(\beta) - \lambda\beta \ge S_{\lambda}\beta.$$

Hence, $\alpha \leq p \leq \beta$, and $S_0 p = F(\alpha) + DF(\alpha)(p-\alpha)$. Again, we may write $S_0 p = F(p) - R(p)$, where the Taylor remainder R(p) is nonpositive, and conclude that $S_0 p \geq F(p)$. Thus p is a lower solution of the boundary value problem (3.1). \Box

Next, we define a sequence as follows. Start with $p_1 = \alpha$, then from Lemma 4.2 we may choose a lower solution p_2 with $p_1 \leq p_2 \leq \beta$ satisfying (4.4). Iteration of this process produces a nondecreasing sequence

$$p_1 \leqslant p_2 \leqslant p_3 \leqslant \cdots \leqslant \beta$$

such that

$$S_0 p_{n+1} = F(p_n) + DF(p_n)(p_{n+1} - p_n), \qquad p_{n+1}(0) = p_0, \qquad p_{n+1}(T) = p_T, \quad (4.5)$$

where $\{p_n\}$ converges pointwise to some function p. From standard results (Dini's Theorem), $p_n \rightarrow p$ uniformly, and use of (4.5) shows that p is a solution of (3.1). In order to prove the quadratic convergence of $\{p_n\}$ we impose an extra requirement:

Theorem 4.4. Let the assumptions of Theorem 3.1 hold. Further, assume that

$$\mu + \varphi + \frac{C_2}{2} \left(p_{n+1}^2 + p_{n+1} p_n + p_n^2 \right) + \int_0^x \left(C_4 \beta^2 + C_5 t \right) \beta \, \mathrm{d}t \ge 0 \tag{4.6}$$

for some $n \ge 2$ and some constant $\mu < (\frac{\pi}{T})^2$, and that $k_0k_1 < \frac{1}{T}$, where

$$k_{0} = \frac{\frac{\pi}{T}}{(\frac{\pi}{T})^{2} - \mu}, \qquad k_{1} = \left\| \beta \int_{0}^{x} (3C_{4}\beta^{2} + C_{5}t) \, \mathrm{d}t \right\|_{C}$$

Then

$$||p_{n+1} - p_n||_C \leq k ||p_n - p_{n-1}||_C^2$$

for some constant k independent of n. In particular, the sequence defined by (4.6) converges quadratically to a solution of the boundary value problem (3.1).

Proof. In the context the previous proof, define $E_n = p_n - p_{n-1}$. Then $\{E_n\}$ is pointwise non-increasing and tends to 0 as $n \to \infty$. Moreover, for $n \ge 2$

$$S_0 p_{n+1} - S_0 p_n = R_n + DF(p_n)(p_{n+1} - p_n)$$

where $R_n := F(p_n) - F(p_{n-1}) - DF(p_{n-1})(p_n - p_{n-1})$ is the Taylor remainder. It follows that

$$E_{n+1}'' + \mu E_{n+1} = R_n + p_n \int_0^x (3C_4 p_n^2 + C_5 t) E_{n+1} dt$$

+ $\left(\mu + \varphi + \frac{C_2}{2} (p_{n+1}^2 + p_{n+1} p_n + p_n^2) + \int_0^x (C_4 p_n^2 + C_5 t) p_n dt \right) E_{n+1}$
 $\ge R_n + p_n \int_0^x (3C_4 p_n^2 + C_5 t) E_{n+1} dt.$

Thus, if $\Phi \in H^2 \cap H^1_0(0, T)$ denotes the unique solution of

P. Amster, C. Rogers / J. Math. Anal. Appl. 333 (2007) 42-51

$$\Phi'' + \mu \Phi = R_n + p_n \int_0^x (3C_4 p_n^2 + C_5 t) E_{n+1} dt, \qquad (4.7)$$

then the standard comparison principle implies that $E_{n+1} \leq \Phi$. Moreover,

$$\|\Phi\|_{C} \leq Tk_{0}\|\Phi'' + \mu\Phi\|_{C} \leq Tk_{0}(\|R_{n}\|_{C} + k_{1}\|E_{n+1}\|_{C}),$$

and hence

$$\|E_{n+1}\|_C \leq \frac{Tk_0}{1 - Tk_0k_1} \|R_n\|_C$$

Furthermore, from the Taylor expansion of F we deduce that

$$||R_n||_C \leq T\left(6|C_4|||\beta||_C^2 + |C_5|\frac{T}{2}\right)||E_n||_C^2.$$

Finally, note that if (4.6) holds, then it also holds for any $m \ge n$, and the result is established. \Box

5. Painlevé II

Here, we present Painlevé II solutions of a suitably constrained version of boundary value problem (2.1). Thus, we obtain particular nonconstant solutions of (2.1) such that

$$p'' + \lambda p^3 + \mu x p + \nu = 0$$
(5.1)

for appropriate constants λ , μ and ν . Note that if λ is negative, the transformation $p(x) \mapsto Y(x) := \sigma p(\omega x)$ for suitable choice of σ and ω gives a solution of the standard Painlevé II equation $Y'' = 2Y^3 \pm xY + C$. One use of (5.1) to eliminate p''' and p'' in (2.1), it is seen that

$$\begin{aligned} &-p[3\lambda p^2 p' + \mu p + \mu x p'] + p'[\lambda p^3 + \mu x p + \nu] + (\nu_1 + \nu_2 + \nu_3) p^2[\lambda p^3 + \mu x p + \nu] \\ &+ (\nu_1 \nu_2 + \nu_1 \nu_3 + \nu_2 \nu_3) p^3 p' - (\nu_1 c_1 + \nu_2 c_2 + \nu_3 c_3) p' - \frac{1}{2} \nu_1 \nu_2 \nu_3 p^5 \\ &+ \nu_1 \nu_2 \nu_3 (c_1 + c_2 + c_3) x p^3 - [(\nu_2 + \nu_3) \nu_1 c_1 + (\nu_1 + \nu_3) \nu_2 c_2 + (\nu_1 + \nu_2) \nu_3 c_3] p^2 \\ &= 0, \end{aligned}$$

whence we obtain:

$$\lambda = \frac{1}{2} (\nu_2 \nu_3 + \nu_1 \nu_3 + \nu_1 \nu_2),$$

$$\mu = (\nu_1 c_1 + \nu_2 c_2 + \nu_3 c_3)(\nu_1 + \nu_2 + \nu_3) - [(\nu_2 + \nu_3)\nu_1 c_1 + (\nu_1 + \nu_3)\nu_2 c_2 + (\nu_1 + \nu_2)\nu_3 c_3],$$

$$\nu = \nu_1 c_1 + \nu_2 c_2 + \nu_3 c_3,$$

$$\mu (\nu_1 + \nu_2 + \nu_3) + \nu_1 \nu_2 \nu_3 (c_1 + c_2 + c_3) = 0,$$

$$(\nu_1 + \nu_2)(\nu_1 + \nu_3)(\nu_2 + \nu_3) = 0.$$

(5.2)

In view of the latter condition, we proceed with the constraint $v_1 + v_2 = 0$, $v_3 \neq 0$ whence $c_3 = 0$, and

$$\lambda = -\nu_1^2/2, \qquad \mu = \nu_1^2(c_1 + c_2), \qquad \nu = c_1\nu_1 + c_2\nu_2 = \nu_1(c_1 - c_2). \tag{5.3}$$

Finally, from the boundary conditions in (2.1) we obtain the constraint

50

$$r_0 = \frac{\nu_1^2}{2} p_0^3 - \nu_1 (c_1 - c_2).$$
(5.4)

Analogous results hold by cyclic interchange for $\{v_2 + v_3 = 0, v_1 \neq 0, c_1 = 0\}$ and $\{v_3 + v_1 = 0, v_2 \neq 0, c_2 = 0\}$.

Conversely, if \tilde{p} is a solution of (5.1) for some $\lambda < 0$, μ and ν , then we obtain a solution of (2.1) by setting $\tilde{p}_0 = \tilde{p}(0)$, $\tilde{p}_T = \tilde{p}(T)$, $\tilde{r}_0 = -\alpha \tilde{p}_0^3 - \gamma$, and

$$\begin{split} \tilde{\nu}_1 &= -\tilde{\nu}_2 := \pm \sqrt{2} |\lambda|, \\ \tilde{c}_1 &= \frac{1}{2} \left(\frac{\nu}{\tilde{\nu}_1} - \frac{\mu}{2\lambda} \right), \qquad \tilde{c}_2 = -\frac{1}{2} \left(\frac{\nu}{\tilde{\nu}_1} + \frac{\mu}{2\nu} \right), \qquad \tilde{c}_3 = 0 \end{split}$$

The constant $\tilde{\nu}_3$ may be chosen arbitrarily.

A Painlevé II solution of the boundary value problem (2.1) may be used as a lower or an upper solution for a related boundary problem, for which Theorem 3.1 or Theorem 3.2 applies. In particular, the following result holds:

Corollary 5.1. Let \tilde{p} be a nonnegative concave solution of (5.1) for some $\lambda < 0$, $\mu \leq 0 \leq v$. Fix a constant $\tilde{v}_3 > 0$ and assume that $\tilde{p}(0) > 0$. Then the boundary value problem (3.1) admits at least one solution p such that $0 \leq p \leq \tilde{p}$ for any choice of the parameters for which:

- (i) $0 < p_0 \leq \tilde{p}_0, 0 \leq p_T \leq \tilde{p}_T$.
- (ii) $v_1 + v_2 + v_3 = 0$, $c_1 + c_2 + c_3 \leq 0$.
- (iii) $0 \leq v_1 c_1 + v_2 c_2 c_3 (v_1 + v_2) \leq v$.
- (iv) $-2\lambda \leq v_1^2 + v_1v_2 + v_2^2$.
- (v) $0 < v_1 v_2 (v_1 + v_2) \leqslant -2\lambda \tilde{v}_3$.
- (vi) $\tilde{\nu}_3 \nu \leq \nu_1 \nu_2 (\nu_1 + \nu_2) (c_1 + c_2 + c_3).$

(vii)
$$\frac{\tilde{r}_0 + \nu}{\tilde{p}_0} + \lambda \tilde{p}_0^2 + (\tilde{\nu}_3 \nu - \mu) j \leqslant \frac{r_0 + \nu_1 c_1 + \nu_2 c_2 - c_3 (\nu_1 + \nu_2)}{p_0} - (\nu_1^2 + \nu_1 \nu_2 + \nu_2^2) \frac{p_0^2}{2} + [\nu_1^2 c_1 + \nu_2^2 c_2 - (\nu_1 + \nu_2)^2 c_3] j, \quad j = 0, 1.$$

From conditions (ii) and (iii) it follows that $\tilde{C}_3 \ge C_3 \ge 0$. By (iv), $\alpha \equiv 0$ is a lower solution of (3.1). Moreover, it follows from (vii) that $\tilde{\varphi} \le \varphi$, and as $\tilde{C}_1 = \tilde{v}_3 \ge 0$ and \tilde{p} is concave and nonnegative, then $\tilde{C}_1(\tilde{p}' - \tilde{p}'(0))\tilde{p} \le 0$. From (iv), we also deduce that $\tilde{C}_2 \le C_2$. Finally, from (ii), (v) and (vi) we conclude that $\tilde{C}_4 \le C_4 \le 0$ and $\tilde{C}_5 \le C_5 \le 0$. This implies that \tilde{p} is an upper solution of (3.1).

It is noted that if $\tilde{v}_3 \gg 0$, then conditions (ii) to (vi) are fulfilled for appropriate choices of v_i and c_i . Moreover, condition (vii) holds if r_0/p_0 is large enough.

References

- [1] H.R. Leuchtag, J. Math. Phys. 22 (1981) 1317-1320.
- [2] C. Rogers, A.P. Bassom, W.K. Schief, J. Math. Anal. Appl. 240 (1999) 367-381.
- [3] C. De Coster, P. Habets, Two-Point Boundary Value Problems: Lower and Upper Solutions, Math. Sci. Eng., vol. 205, Elsevier, Amsterdam, 2006.
- [4] P. Amster, M.C. Mariani, C. Rogers, C.C. Tisdell, J. Math. Anal. Appl. 289 (2004) 712–721.