On boundary value problems in three-ion electrodiffusion

P. Amster ${ }^{\text {a,b, }, *}$, C. Rogers ${ }^{\mathrm{c}, \mathrm{d}}$
${ }^{\text {a }}$ Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
${ }^{\text {b }}$ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
${ }^{\text {c }}$ School of Mathematics, University of New South Wales, Sydney, Australia
${ }^{\mathrm{d}}$ Australian Research Council Centre of Excellence for Mathematics and Statistics of Complex Systems, Australia

Received 24 November 2006

Available online 28 March 2007
Submitted by T. Witelski

Abstract

The existence of solutions to a class of two-point boundary value problems in three-ion electrodiffusion is investigated via an integro-differential formulation. Boundedness by upper and lower solutions corresponding to associated boundary value problems is considered and illustrated by Painlevé II solutions of a constrained version of the original boundary value problems.

© 2007 Elsevier Inc. All rights reserved.
Keywords: Three-ion electrodiffusion; Nonlinear boundary value problems; Third order ODE's; Topological methods

1. Introduction

Leuchtag in [1] presented an m-ion electrodiffusion model consisting of the nonlinear coupled system

$$
\begin{align*}
& \frac{\mathrm{d} n_{i}}{\mathrm{~d} x}=v_{i} n_{i} p-c_{i}, \quad i=1, \ldots, m, \\
& \frac{\mathrm{~d} p}{\mathrm{~d} x}=\sum_{i=1}^{m} v_{i} n_{i}, \tag{1.1}
\end{align*}
$$

[^0]where n_{i} is the number of ions with the same charge, p is the electric field, the v_{j} are nonzero integral signed valencies while the c_{i} are real constants. In the three-ion case to be considered here, the model reduces to the following nonlinear third order equation for the electric field p :
\[

$$
\begin{align*}
& p p^{\prime \prime \prime}-p^{\prime} p^{\prime \prime}-\left(v_{1}+v_{2}+v_{3}\right) p^{2} p^{\prime \prime}+\left(v_{1} v_{2}+v_{2} v_{3}+v_{3} \nu_{1}\right) p^{3} p^{\prime} \\
& \quad-\left(v_{1} c_{1}+v_{2} c_{2}+v_{3} c_{3}\right) p^{\prime}-\frac{1}{2} \nu_{1} v_{2} \nu_{3} p^{5}+v_{1} v_{2} \nu_{3}\left(c_{1}+c_{2}+c_{3}\right) x p^{3} \\
& \quad-\left[\left(v_{2}+v_{3}\right) v_{1} c_{1}+\left(v_{3}+v_{1}\right) v_{2} c_{2}+\left(v_{1}+v_{2}\right) v_{3} c_{3}\right] p^{2}=0 . \tag{1.2}
\end{align*}
$$
\]

In previous work on the model (1.1), in the two-ion case a Bäcklund transformation was applied to an underlying Painlevé II reduction [2]. Here, the three-ion model is analyzed in connection with the existence of solutions to a class of two-point boundary value problems and the construction of upper and lower solutions [3]. The work complements that initiated in [4] on the three-ion model.

2. A two-point boundary value problem

Let us consider the following two-point boundary value problem for (1.2):

$$
\begin{align*}
& p p^{\prime \prime \prime}-p^{\prime} p^{\prime \prime}-\left(v_{1}+v_{2}+v_{3}\right) p^{2} p^{\prime \prime}+\left(v_{1} v_{2}+v_{1} v_{3}+v_{2} \nu_{3}\right) p^{3} p^{\prime} \\
& \quad-\left(v_{1} c_{1}+v_{2} c_{2}+v_{3} c_{3}\right) p^{\prime}-\frac{1}{2} v_{1} v_{2} v_{3} p^{5}+v_{1} v_{2} v_{3}\left(c_{1}+c_{2}+c_{3}\right) x p^{3} \\
& \quad-\left[\left(v_{2}+v_{3}\right) v_{1} c_{1}+\left(v_{3}+v_{1}\right) v_{2} c_{2}+\left(v_{1}+v_{2}\right) v_{3} c_{3}\right] p^{2}=0, \\
& p(0)=p_{0}, \quad p(T)=p_{T}, \quad p^{\prime \prime}(0)=r_{0} . \tag{2.1}
\end{align*}
$$

If we set $u=p^{\prime \prime} / p, u_{0}=r_{0} / p_{0}$, then for $p \neq 0$ this boundary value problem is equivalent to:

$$
\begin{align*}
p^{2} u^{\prime} & -\left(v_{1}+v_{2}+v_{3}\right) p^{2} p^{\prime \prime}+\left(v_{1} v_{2}+v_{1} v_{3}+v_{2} v_{3}\right) p^{3} p^{\prime} \\
& \quad-\left(v_{1} c_{1}+v_{2} c_{2}+v_{3} c_{3}\right) p^{\prime}-\frac{1}{2} v_{1} v_{2} v_{3} p^{5}+v_{1} v_{2} v_{3}\left(c_{1}+c_{2}+c_{3}\right) x p^{3} \\
= & {\left[\left(v_{2}+v_{3}\right) v_{1} c_{1}+\left(v_{3}+v_{1}\right) v_{2} c_{2}+\left(v_{1}+v_{2}\right) v_{3} c_{3}\right] p^{2}, } \\
p^{\prime \prime}= & p u, \quad p(0)=p_{0}, \quad p(T)=p_{T}, \quad u(0)=u_{0} . \tag{2.2}
\end{align*}
$$

This in turn, is equivalent to the second order integro-differential boundary value problem:

$$
\begin{align*}
& p^{\prime \prime}=-C_{3}+\varphi(x) p+C_{1}\left(p^{\prime}-p^{\prime}(0)\right) p+\frac{C_{2}}{2} p^{3} p \int_{0}^{x}\left(C_{4} p^{2}(t)+C_{5} t\right) p(t) \mathrm{d} t \\
& p(0)=p_{0}, \quad p(T)=p_{T}, \tag{2.3}
\end{align*}
$$

where

$$
\begin{aligned}
& C_{1}=v_{1}+v_{2}+v_{3}, \quad C_{2}=-\left(v_{1} v_{2}+v_{1} v_{3}+v_{2} v_{3}\right), \quad C_{3}=v_{1} c_{1}+v_{2} c_{2}+v_{3} c_{3}, \\
& C_{4}=\frac{1}{2} v_{1} v_{2} v_{3}, \quad C_{5}=-v_{1} v_{2} v_{3}\left(c_{1}+c_{2}+c_{3}\right), \\
& C_{6}=\left(v_{2}+v_{3}\right) v_{1} c_{1}+\left(v_{3}+v_{1}\right) \nu_{2} c_{2}+\left(v_{1}+v_{2}\right) v_{3} c_{3},
\end{aligned}
$$

and

$$
\varphi(x)=u_{0}-\frac{1}{2} C_{2} p_{0}^{2}+\frac{C_{3}}{p_{0}}+C_{6} x .
$$

Here, we shall assume that the associated linear operator $\mathcal{L} p:=p^{\prime \prime}-\varphi p$ is below resonance for the Dirichlet conditions, that is

$$
\begin{equation*}
\varphi_{i}:=\inf _{0 \leqslant x \leqslant T} \varphi(x)=\frac{r_{0}+C_{3}}{p_{0}}-C_{2} \frac{p_{0}^{2}}{2}+\min \left\{0, C_{6} T\right\}>-\left(\frac{\pi}{T}\right)^{2} \tag{2.4}
\end{equation*}
$$

By standard results, condition (2.4) implies that $\mathcal{L}: H^{2} \cap H_{0}^{1}(0, T) \rightarrow L^{2}(0, T)$ is invertible. In particular, a straightforward computation shows that if $p \in H^{2} \cap H_{0}^{1}(0, T)$ then

$$
\|p\|_{L^{2}} \leqslant \frac{1}{\left(\frac{\pi}{T}\right)^{2}+\varphi_{i}}\|\mathcal{L} p\|_{L^{2}}
$$

and

$$
\left\|p^{\prime}\right\|_{L^{2}} \leqslant \frac{\frac{\pi}{T}}{\left(\frac{\pi}{T}\right)^{2}+\varphi_{i}}\|\mathcal{L} p\|_{L^{2}}
$$

Furthermore, writing $p^{\prime \prime}=\mathcal{L} p+\varphi p$, we also deduce that

$$
\left\|p^{\prime \prime}\right\|_{L^{2}} \leqslant(1+k)\|\mathcal{L} p\|_{L^{2}}
$$

where

$$
k=\frac{\max \left\{\left|\frac{r_{0}+C_{3}}{p_{0}}-C_{2} \frac{p_{0}^{2}}{2}\right|,\left|\frac{r_{0}+C_{3}}{p_{0}}-C_{2} \frac{p_{0}^{2}}{2}+C_{6} T\right|\right\}}{\left(\frac{\pi}{T}\right)^{2}+\varphi_{i}} .
$$

Hence,

$$
\left\|p^{\prime}\right\|_{C} \leqslant T^{1 / 2}\left\|p^{\prime \prime}\right\|_{L^{2}} \leqslant T^{1 / 2}(1+k)\|\mathcal{L} p\|_{L^{2}}
$$

and setting

$$
N=T^{1 / 2} \max \left\{\frac{\frac{\pi}{T}}{\left(\frac{\pi}{T}\right)^{2}+\varphi_{i}}, 1+k\right\}
$$

we conclude that

$$
\|p\|_{C^{1}}:=\max \left\{\|p\|_{C},\left\|p^{\prime}\right\|_{C}\right\} \leqslant N\|\mathcal{L} p\|_{L^{2}} .
$$

In order to establish a sufficient condition for the existence of solutions, let us define a polynomial $\gamma: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
\gamma(M)=2\left|C_{1}\right| M^{2}+\frac{\left|C_{2}\right|}{2} M^{3}+T M^{2}\left(\left|C_{4}\right| M^{2}+\left|C_{5}\right| T\right) . \tag{2.5}
\end{equation*}
$$

From the limits

$$
\lim _{M \rightarrow 0^{+}} \frac{\gamma(M)}{M}=0, \quad \lim _{M \rightarrow+\infty} \frac{\gamma(M)}{M}=+\infty
$$

it is clear that the function $M-N T^{1 / 2} \gamma(M)$ achieves a positive maximum $A_{\max }$ at some value $M_{\text {max }}>0$.

The following result may be established:
Theorem 2.1. Assume that (2.4) holds, and that $\Theta \leqslant A_{\max }$, where

$$
\begin{equation*}
\Theta:=\max \left\{\left|p_{0}\right|,\left|p_{T}\right|, \frac{\left|p_{T}-p_{0}\right|}{T}\right\}+N\left(\left|C_{3}\right| T^{1 / 2}+\|\varphi B\|_{L^{2}}\right) \tag{2.6}
\end{equation*}
$$

and

$$
B(t)=\left(\frac{p_{T}-p_{0}}{T}\right) t+p_{0} .
$$

Then the boundary value problem (2.1) admits at least one classical solution.

Proof. Let us define an operator $\mathcal{T}: C^{1}[0, T] \rightarrow C^{1}[0, T]$ given by $\mathcal{T} q=p$, where p is the unique solution of the linear problem

$$
\left\{\begin{array}{l}
p^{\prime \prime}(x)-\varphi(x) p(x)=V(q)-C_{3}, \\
p(0)=p_{0}, \quad p(T)=p_{T},
\end{array}\right.
$$

with

$$
V(q)(x):=C_{1}\left(q^{\prime}(x)-q^{\prime}(0)\right) q(x)+\frac{C_{2}}{2} q^{3}(x)+q(x) \int_{0}^{x}\left(C_{4} q^{2}(t)+C_{5} t\right) q(t) \mathrm{d} t .
$$

By standard results, \mathcal{T} is well defined and compact. Moreover, if θ is the unique function satisfying

$$
\mathcal{L} \theta=-C_{3}, \quad \theta(0)=p_{0}, \quad \theta(T)=p_{T},
$$

then

$$
\|\theta-B\|_{C^{1}} \leqslant N\left\|C_{3}-\varphi B\right\|_{L^{2}} \leqslant N\left(\left|C_{3}\right| T^{1 / 2}+\|\varphi B\|_{L^{2}}\right)
$$

Hence, $\|\theta\|_{C^{1}} \leqslant \Theta$, where Θ is given by (2.6). Moreover, the following bound is obtained for $p=\mathcal{T} q$:

$$
\|p-\theta\|_{C^{1}} \leqslant N\|\mathcal{L}(p-\theta)\|_{L^{2}}=N\|V(q)\|_{L^{2}} .
$$

It is readily shown that if $\|q\|_{C^{1}} \leqslant M$ then $|V(q)(x)| \leqslant \gamma(M)$, with $\gamma(M)$ as in (2.5). Thus, $\|p\|_{C^{1}} \leqslant \Theta+N T^{1 / 2} \gamma(M)$, and since $\Theta \leqslant A_{\max }$ we conclude that if $\|q\|_{C^{1}} \leqslant M_{\max }$ then $\|p\|_{C^{1}} \leqslant M_{\max }$. The result now follows from Schauder's Fixed Point Theorem.

As a particular consequence we obtain:

Corollary 2.1. Assume that $\min \left\{0, C_{6} T\right\}>L-\left(\frac{\pi}{T}\right)^{2}$ for some $L>0$. Then there exist constants $\delta_{0}, \delta_{T}>0$ such that the boundary value problem (2.1) admits at least one classical solution for any choice of the parameters p_{0}, p_{T}, C_{3} and r_{0} satisfying:

$$
\left|p_{T}\right|<\delta_{T}, \quad \frac{\left|r_{0}\right|+\left|C_{3}\right|}{L}<\left|p_{0}\right|<\delta_{0} .
$$

Proof. From the hypotheses, it is clear that if C_{2} and C_{6} are fixed then (2.4) holds for δ_{0} small enough. Furthermore, it is observed that $\|\varphi\|_{C}$ and the constant N remain bounded as $p_{0} \rightarrow 0$, provided $\left|\frac{r_{0}+C_{3}}{p_{0}}\right|<L$. On the other hand, if $p_{0}, p_{T} \rightarrow 0$ then $\|B\|_{C^{1}} \rightarrow 0$ and $C_{3} \rightarrow 0$. Hence $\Theta \rightarrow 0$, and the result follows.

3. The case $v_{1}+v_{2}+v_{3}=0$. Upper and lower solutions

Here we focus on the boundary value problem

$$
\begin{align*}
& p^{\prime \prime}=-C_{3}+\varphi(x) p+\frac{C_{2}}{2} p^{3}+p \int_{0}^{x}\left(C_{4} p^{2}(t)+C_{5} t\right) p(t) \mathrm{d} t \\
& p(0)=p_{0}, \quad p(T)=p_{T} \tag{3.1}
\end{align*}
$$

corresponding to the case $C_{1}=\sum v_{i}=0$. Note that this condition implies that $C_{2} \geqslant 0$.
The quantities α and β are termed lower and upper solutions respectively for the boundary value problem (3.1) if

$$
\begin{align*}
& \alpha^{\prime \prime} \geqslant-C_{3}+\varphi(x) \alpha+\frac{C_{2}}{2} \alpha^{3}+\alpha \int_{0}^{x}\left(C_{4} \alpha^{2}(t)+C_{5} t\right) \alpha(t) \mathrm{d} t \tag{3.2}\\
& \beta^{\prime \prime} \leqslant-C_{3}+\varphi(x) \beta+\frac{C_{2}}{2} \beta^{3}+\beta \int_{0}^{x}\left(C_{4} \beta^{2}(t)+C_{5} t\right) \beta(t) \mathrm{d} t, \tag{3.3}
\end{align*}
$$

and

$$
\begin{equation*}
\alpha(0) \leqslant p_{0} \leqslant \beta(0), \quad \alpha(T) \leqslant p_{T} \leqslant \beta(T) . \tag{3.4}
\end{equation*}
$$

Then we have:
Theorem 3.1. Let α and β be respectively lower and upper solutions of the boundary value problem (3.1), with $0 \leqslant \alpha \leqslant \beta$, and assume that $\nu_{1} \nu_{2}\left(\nu_{1}+\nu_{2}\right)>0, c_{1}+c_{2}+c_{3} \leqslant 0$. Then (3.1) admits a solution u with $\alpha \leqslant u \leqslant \beta$.

Proof. From the assumptions, it readily follows that if $0 \leqslant p \leqslant q$ then

$$
p(x) \int_{0}^{x}\left(C_{4} p^{2}(t)+C_{5} t\right) p(t) \mathrm{d} t \geqslant q(x) \int_{0}^{x}\left(C_{4} q^{2}(t)+C_{5} t\right) q(t) \mathrm{d} t .
$$

Let us fix a nonnegative constant λ such that

$$
\lambda \geqslant \frac{3}{2} C_{2}\|\beta\|_{C}^{2}+\varphi_{s}
$$

with

$$
\varphi_{s}:=\sup _{0 \leqslant x \leqslant T} \varphi(x)=\frac{r_{0}+C_{3}}{p_{0}}-C_{2} \frac{p_{0}^{2}}{2}+\max \left\{0, C_{6} T\right\} .
$$

Then the function $\varphi p+\frac{C_{2}}{2} p^{3}-\lambda p$ is nonincreasing in p for $\alpha(x) \leqslant p \leqslant \beta(x)$. Next, define a fixed point operator \mathcal{T} such that for fixed $q \in C[0, T], p=\mathcal{T} q$ is the unique solution of the linear problem

$$
\begin{aligned}
& p^{\prime \prime}-\lambda p=-C_{3}+\varphi q+\frac{C_{2}}{2} q^{3}-\lambda q+q \int_{0}^{x}\left(C_{4} q^{2}(t)+C_{5} t\right) q(t) \mathrm{d} t, \\
& p(0)=p_{0}, \quad p(T)=p_{T} .
\end{aligned}
$$

By standard results, $\mathcal{T}: C[0, T] \rightarrow C[0, T]$ is well defined and compact. Moreover, if $\alpha \leqslant q \leqslant \beta$, for $p=\mathcal{T} q$ it follows that

$$
p^{\prime \prime}-\lambda p \leqslant-C_{3}+\varphi \alpha+\frac{C_{2}}{2} \alpha^{3}-\lambda \alpha+\alpha \int_{0}^{x}\left(C_{4} \alpha^{2}(t)+C_{5} t\right) \alpha(t) \mathrm{d} t \leqslant \alpha^{\prime \prime}-\lambda \alpha
$$

and

$$
p^{\prime \prime}-\lambda p \geqslant-C_{3}+\varphi \beta+\frac{C_{2}}{2} \beta^{3}-\lambda \beta+\beta \int_{0}^{x}\left(C_{4} \beta^{2}(t)+C_{5} t\right) \beta(t) \mathrm{d} t \geqslant \beta^{\prime \prime}-\lambda \beta
$$

From (3.4) and the maximum principle we conclude that $\alpha \leqslant p \leqslant \beta$.
The result follows by applying Schauder's Theorem to the bounded, convex and closed set $\{u \in C[0, T]: \alpha \leqslant u \leqslant \beta\}$.

An analogous result when $\alpha \leqslant \beta \leqslant 0$ may be established, namely:
Theorem 3.2. Let α and β be respectively lower and an upper solutions of (3.1), with $\alpha \leqslant \beta \leqslant 0$, and assume that $\nu_{1} v_{2}\left(v_{1}+v_{2}\right)<0, c_{1}+c_{2}+c_{3} \leqslant 0$. Then the boundary value problem (3.1) admits a solution u with $\alpha \leqslant u \leqslant \beta$.

4. An iterative quasilinearization method

Here, the existence of an ordered couple of lower and upper solutions is assumed and an iterative scheme that converges to a solution of problem (3.1) is constructed. Under appropriate conditions, the convergence is proved to be quadratic.

In this connection, it proves convenient to write (3.1) $)_{1}$ as

$$
p^{\prime \prime}-\frac{C_{2}}{2} p^{3}=F(p)
$$

where the mapping $F: C[0,1] \rightarrow C[0,1]$ is given by

$$
\begin{equation*}
F(p)=-C_{3}+\varphi p+p \int_{0}^{x}\left(C_{4} p^{2}(t)+C_{5} t\right) p(t) \mathrm{d} t \tag{4.1}
\end{equation*}
$$

It is readily seen that F is infinitely Fréchet differentiable, with

$$
\begin{equation*}
D F(p)[q]=\varphi q+p \int_{0}^{x}\left(3 C_{4} p^{2}(t)+C_{5} t\right) q(t) \mathrm{d} t+q \int_{0}^{x}\left(C_{4} p^{2}(t)+C_{5} t\right) p(t) \mathrm{d} t \tag{4.2}
\end{equation*}
$$

and

$$
\begin{align*}
D^{2} F(p)[q, r]= & 6 C_{4} p \int_{0}^{x} p q r \mathrm{~d} t+q \int_{0}^{x}\left(3 C_{4} p^{2}(t)+C_{5} t\right) r(t) \mathrm{d} t \\
& +r \int_{0}^{x}\left(3 C_{4} p^{2}(t)+C_{5} t\right) q(t) \mathrm{d} t \tag{4.3}
\end{align*}
$$

As a preliminary we note appropriate comparison and existence-uniqueness results for the semilinear operator $S_{\lambda} p:=p^{\prime \prime}-\frac{C_{2}}{2} p^{3}-\lambda p$ with $\lambda, C_{2} \geqslant 0$ (proofs are straightforward):

Lemma 4.1. If $p, q \in H^{2}(0, T)$ satisfy

$$
S_{\lambda} p \geqslant S_{\lambda} q \quad \text { a.e. } \quad p(0) \leqslant q(0), \quad p(T) \leqslant q(T)
$$

then $p \leqslant q$.
Lemma 4.2. Let $\xi \in L^{2}(0, T)$ and $p_{0}, p_{T} \in \mathbb{R}$. Then the boundary value problem

$$
S_{\lambda} p=\xi, \quad p(0)=p_{0}, \quad p(T)=p_{T}
$$

admits a unique solution $p \in H^{2}(0, T)$.

In what follows, we shall consider only the situation when Theorem 3.1 applies. Analogous conclusions hold when Theorem 3.2 obtains.

In order to construct an iterative Newton-type scheme for the boundary value problem (3.1), the following result is required.

Lemma 4.3. Let the assumptions of Theorem 3.1 hold. Then there exists $p \in C^{2}[0, T]$ such that $\alpha \leqslant p \leqslant \beta$, and

$$
\left\{\begin{array}{l}
S_{0} p=F(\alpha)+D F(\alpha)(p-\alpha) \tag{4.4}\\
p(0)=p_{0}, \quad p(T)=p_{T}
\end{array}\right.
$$

Proof. Fix a nonnegative constant $\lambda \geqslant \varphi_{s}$, with φ_{s} as in Theorem 3.1, and define a function $\Pi:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\Pi(x, p)= \begin{cases}p & \text { if } \alpha(x) \leqslant p \leqslant \beta(x) \\ \alpha(x) & \text { if } p<\alpha(x) \\ \beta(x) & \text { if } p>\beta(x)\end{cases}
$$

From Lemma 4.2 and Schauder's Theorem, it is seen that the following quasilinear problem admits at least one solution:

$$
\left\{\begin{array}{l}
S_{\lambda} p=F(\alpha)+D F(\alpha)(\Pi(p)-\alpha)-\lambda \Pi(p) \\
p(0)=p_{0}, \quad p(T)=p_{T}
\end{array}\right.
$$

We now write $S_{\lambda} p=F(\alpha)-\lambda \alpha+(D F(\alpha)-\lambda I)(\Pi(p)-\alpha)$, and from the choice of λ it follows immediately that $S_{\lambda} p \leqslant F(\alpha)-\lambda \alpha \leqslant S_{\lambda} \alpha$.

On the other hand, consider the Taylor expansion

$$
F(z)=F(\alpha)+D F(\alpha)(z-\alpha)+R(z)
$$

From the fact that $D^{2} F(p)[q, r] \leqslant 0$ for $p, q, r \geqslant 0$, it follows that $R(z) \leqslant 0$ for $z \geqslant \alpha$. Then

$$
S_{\lambda} p=F(\Pi(p))-R(\Pi(p))-\lambda \Pi(p) \geqslant F(\beta)-\lambda \beta \geqslant S_{\lambda} \beta .
$$

Hence, $\alpha \leqslant p \leqslant \beta$, and $S_{0} p=F(\alpha)+D F(\alpha)(p-\alpha)$. Again, we may write $S_{0} p=F(p)-R(p)$, where the Taylor remainder $R(p)$ is nonpositive, and conclude that $S_{0} p \geqslant F(p)$. Thus p is a lower solution of the boundary value problem (3.1).

Next, we define a sequence as follows. Start with $p_{1}=\alpha$, then from Lemma 4.2 we may choose a lower solution p_{2} with $p_{1} \leqslant p_{2} \leqslant \beta$ satisfying (4.4). Iteration of this process produces a nondecreasing sequence

$$
p_{1} \leqslant p_{2} \leqslant p_{3} \leqslant \cdots \leqslant \beta
$$

such that

$$
\begin{equation*}
S_{0} p_{n+1}=F\left(p_{n}\right)+D F\left(p_{n}\right)\left(p_{n+1}-p_{n}\right), \quad p_{n+1}(0)=p_{0}, \quad p_{n+1}(T)=p_{T}, \tag{4.5}
\end{equation*}
$$

where $\left\{p_{n}\right\}$ converges pointwise to some function p. From standard results (Dini's Theorem), $p_{n} \rightarrow p$ uniformly, and use of (4.5) shows that p is a solution of (3.1). In order to prove the quadratic convergence of $\left\{p_{n}\right\}$ we impose an extra requirement:

Theorem 4.4. Let the assumptions of Theorem 3.1 hold. Further, assume that

$$
\begin{equation*}
\mu+\varphi+\frac{C_{2}}{2}\left(p_{n+1}^{2}+p_{n+1} p_{n}+p_{n}^{2}\right)+\int_{0}^{x}\left(C_{4} \beta^{2}+C_{5} t\right) \beta \mathrm{d} t \geqslant 0 \tag{4.6}
\end{equation*}
$$

for some $n \geqslant 2$ and some constant $\mu<\left(\frac{\pi}{T}\right)^{2}$, and that $k_{0} k_{1}<\frac{1}{T}$, where

$$
k_{0}=\frac{\frac{\pi}{T}}{\left(\frac{\pi}{T}\right)^{2}-\mu}, \quad k_{1}=\left\|\beta \int_{0}^{x}\left(3 C_{4} \beta^{2}+C_{5} t\right) \mathrm{d} t\right\|_{C}
$$

Then

$$
\left\|p_{n+1}-p_{n}\right\|_{C} \leqslant k\left\|p_{n}-p_{n-1}\right\|_{C}^{2}
$$

for some constant k independent of n. In particular, the sequence defined by (4.6) converges quadratically to a solution of the boundary value problem (3.1).

Proof. In the context the previous proof, define $E_{n}=p_{n}-p_{n-1}$. Then $\left\{E_{n}\right\}$ is pointwise nonincreasing and tends to 0 as $n \rightarrow \infty$. Moreover, for $n \geqslant 2$

$$
S_{0} p_{n+1}-S_{0} p_{n}=R_{n}+D F\left(p_{n}\right)\left(p_{n+1}-p_{n}\right)
$$

where $R_{n}:=F\left(p_{n}\right)-F\left(p_{n-1}\right)-D F\left(p_{n-1}\right)\left(p_{n}-p_{n-1}\right)$ is the Taylor remainder. It follows that

$$
\begin{aligned}
E_{n+1}^{\prime \prime}+\mu E_{n+1}= & R_{n}+p_{n} \int_{0}^{x}\left(3 C_{4} p_{n}^{2}+C_{5} t\right) E_{n+1} \mathrm{~d} t \\
& +\left(\mu+\varphi+\frac{C_{2}}{2}\left(p_{n+1}^{2}+p_{n+1} p_{n}+p_{n}^{2}\right)+\int_{0}^{x}\left(C_{4} p_{n}^{2}+C_{5} t\right) p_{n} \mathrm{~d} t\right) E_{n+1} \\
\geqslant & R_{n}+p_{n} \int_{0}^{x}\left(3 C_{4} p_{n}^{2}+C_{5} t\right) E_{n+1} \mathrm{~d} t
\end{aligned}
$$

Thus, if $\Phi \in H^{2} \cap H_{0}^{1}(0, T)$ denotes the unique solution of

$$
\begin{equation*}
\Phi^{\prime \prime}+\mu \Phi=R_{n}+p_{n} \int_{0}^{x}\left(3 C_{4} p_{n}^{2}+C_{5} t\right) E_{n+1} \mathrm{~d} t \tag{4.7}
\end{equation*}
$$

then the standard comparison principle implies that $E_{n+1} \leqslant \Phi$. Moreover,

$$
\|\Phi\|_{C} \leqslant T k_{0}\left\|\Phi^{\prime \prime}+\mu \Phi\right\|_{C} \leqslant T k_{0}\left(\left\|R_{n}\right\|_{C}+k_{1}\left\|E_{n+1}\right\|_{C}\right)
$$

and hence

$$
\left\|E_{n+1}\right\|_{C} \leqslant \frac{T k_{0}}{1-T k_{0} k_{1}}\left\|R_{n}\right\|_{C}
$$

Furthermore, from the Taylor expansion of F we deduce that

$$
\left\|R_{n}\right\|_{C} \leqslant T\left(6\left|C_{4}\right|\|\beta\|_{C}^{2}+\left|C_{5}\right| \frac{T}{2}\right)\left\|E_{n}\right\|_{C}^{2}
$$

Finally, note that if (4.6) holds, then it also holds for any $m \geqslant n$, and the result is established.

5. Painlevé II

Here, we present Painlevé II solutions of a suitably constrained version of boundary value problem (2.1). Thus, we obtain particular nonconstant solutions of (2.1) such that

$$
\begin{equation*}
p^{\prime \prime}+\lambda p^{3}+\mu x p+v=0 \tag{5.1}
\end{equation*}
$$

for appropriate constants λ, μ and ν. Note that if λ is negative, the transformation $p(x) \mapsto$ $Y(x):=\sigma p(\omega x)$ for suitable choice of σ and ω gives a solution of the standard Painlevé II equation $Y^{\prime \prime}=2 Y^{3} \pm x Y+C$. One use of (5.1) to eliminate $p^{\prime \prime \prime}$ and $p^{\prime \prime}$ in (2.1), it is seen that

$$
\begin{aligned}
& -p\left[3 \lambda p^{2} p^{\prime}+\mu p+\mu x p^{\prime}\right]+p^{\prime}\left[\lambda p^{3}+\mu x p+\nu\right]+\left(v_{1}+\nu_{2}+\nu_{3}\right) p^{2}\left[\lambda p^{3}+\mu x p+\nu\right] \\
& +\left(\nu_{1} \nu_{2}+\nu_{1} \nu_{3}+\nu_{2} \nu_{3}\right) p^{3} p^{\prime}-\left(\nu_{1} c_{1}+\nu_{2} c_{2}+\nu_{3} c_{3}\right) p^{\prime}-\frac{1}{2} \nu_{1} \nu_{2} \nu_{3} p^{5} \\
& +\nu_{1} \nu_{2} \nu_{3}\left(c_{1}+c_{2}+c_{3}\right) x p^{3}-\left[\left(\nu_{2}+\nu_{3}\right) \nu_{1} c_{1}+\left(\nu_{1}+\nu_{3}\right) \nu_{2} c_{2}+\left(\nu_{1}+\nu_{2}\right) \nu_{3} c_{3}\right] p^{2} \\
& =0,
\end{aligned}
$$

whence we obtain:

$$
\begin{align*}
& \lambda= \frac{1}{2}\left(\nu_{2} v_{3}+v_{1} v_{3}+v_{1} v_{2}\right) \\
& \mu=\left(v_{1} c_{1}+v_{2} c_{2}+v_{3} c_{3}\right)\left(\nu_{1}+v_{2}+v_{3}\right) \\
&-\left[\left(v_{2}+v_{3}\right) v_{1} c_{1}+\left(v_{1}+v_{3}\right) v_{2} c_{2}+\left(v_{1}+v_{2}\right) v_{3} c_{3}\right] \\
& \nu= v_{1} c_{1}+v_{2} c_{2}+v_{3} c_{3} \\
& \mu\left(v_{1}+v_{2}+v_{3}\right)+v_{1} v_{2} v_{3}\left(c_{1}+c_{2}+c_{3}\right)=0, \\
&\left(v_{1}+v_{2}\right)\left(v_{1}+v_{3}\right)\left(v_{2}+v_{3}\right)=0 \tag{5.2}
\end{align*}
$$

In view of the latter condition, we proceed with the constraint $\nu_{1}+\nu_{2}=0, \nu_{3} \neq 0$ whence $c_{3}=0$, and

$$
\begin{equation*}
\lambda=-v_{1}^{2} / 2, \quad \mu=v_{1}^{2}\left(c_{1}+c_{2}\right), \quad \nu=c_{1} v_{1}+c_{2} v_{2}=v_{1}\left(c_{1}-c_{2}\right) . \tag{5.3}
\end{equation*}
$$

Finally, from the boundary conditions in (2.1) we obtain the constraint

$$
\begin{equation*}
r_{0}=\frac{v_{1}^{2}}{2} p_{0}^{3}-v_{1}\left(c_{1}-c_{2}\right) . \tag{5.4}
\end{equation*}
$$

Analogous results hold by cyclic interchange for $\left\{\nu_{2}+\nu_{3}=0, \nu_{1} \neq 0, c_{1}=0\right\}$ and $\left\{\nu_{3}+v_{1}=0, \nu_{2} \neq 0, c_{2}=0\right\}$.

Conversely, if \tilde{p} is a solution of (5.1) for some $\lambda<0, \mu$ and ν, then we obtain a solution of (2.1) by setting $\tilde{p}_{0}=\tilde{p}(0), \tilde{p}_{T}=\tilde{p}(T), \tilde{r}_{0}=-\alpha \tilde{p}_{0}^{3}-\gamma$, and

$$
\begin{aligned}
& \tilde{v}_{1}=-\tilde{v}_{2}:= \pm \sqrt{2|\lambda|}, \\
& \tilde{c}_{1}=\frac{1}{2}\left(\frac{v}{\tilde{v}_{1}}-\frac{\mu}{2 \lambda}\right), \quad \tilde{c}_{2}=-\frac{1}{2}\left(\frac{v}{\tilde{v}_{1}}+\frac{\mu}{2 v}\right), \quad \tilde{c}_{3}=0 .
\end{aligned}
$$

The constant $\tilde{\nu}_{3}$ may be chosen arbitrarily.
A Painlevé II solution of the boundary value problem (2.1) may be used as a lower or an upper solution for a related boundary problem, for which Theorem 3.1 or Theorem 3.2 applies. In particular, the following result holds:

Corollary 5.1. Let \tilde{p} be a nonnegative concave solution of (5.1) for some $\lambda<0, \mu \leqslant 0 \leqslant \nu$. Fix a constant $\tilde{v}_{3}>0$ and assume that $\tilde{p}(0)>0$. Then the boundary value problem (3.1) admits at least one solution p such that $0 \leqslant p \leqslant \tilde{p}$ for any choice of the parameters for which:
(i) $0<p_{0} \leqslant \tilde{p}_{0}, 0 \leqslant p_{T} \leqslant \tilde{p}_{T}$.
(ii) $\nu_{1}+\nu_{2}+\nu_{3}=0, c_{1}+c_{2}+c_{3} \leqslant 0$.
(iii) $0 \leqslant \nu_{1} c_{1}+\nu_{2} c_{2}-c_{3}\left(\nu_{1}+\nu_{2}\right) \leqslant \nu$.
(iv) $-2 \lambda \leqslant \nu_{1}^{2}+v_{1} \nu_{2}+v_{2}^{2}$.
(v) $0<\nu_{1} \nu_{2}\left(\nu_{1}+\nu_{2}\right) \leqslant-2 \lambda \tilde{\nu}_{3}$.
(vi) $\tilde{\nu}_{3} \nu \leqslant \nu_{1} \nu_{2}\left(\nu_{1}+\nu_{2}\right)\left(c_{1}+c_{2}+c_{3}\right)$.
(vii) $\begin{aligned} \frac{\tilde{r}_{0}+v}{\tilde{p}_{0}}+\lambda \tilde{p}_{0}^{2}+\left(\tilde{v}_{3} v-\mu\right) j \leqslant & \frac{r_{0}+v_{1} c_{1}+v_{2} c_{2}-c_{3}\left(v_{1}+v_{2}\right)}{p_{0}}-\left(v_{1}^{2}+v_{1} \nu_{2}+v_{2}^{2}\right) \frac{p_{0}^{2}}{2} \\ & +\left[v_{1}^{2} c_{1}+v_{2}^{2} c_{2}-\left(\nu_{1}+v_{2}\right)^{2} c_{3}\right] j, \quad j=0,1 .\end{aligned}$

From conditions (ii) and (iii) it follows that $\tilde{C}_{3} \geqslant C_{3} \geqslant 0 . B y$ (iv), $\alpha \equiv 0$ is a lower solution of (3.1). Moreover, it follows from (vii) that $\tilde{\varphi} \leqslant \varphi$, and as $\tilde{C}_{1}=\tilde{v}_{3} \geqslant 0$ and \tilde{p} is concave and nonnegative, then $\tilde{C}_{1}\left(\tilde{p}^{\prime}-\tilde{p}^{\prime}(0)\right) \tilde{p} \leqslant 0$. From (iv), we also deduce that $\tilde{C}_{2} \leqslant C_{2}$. Finally, from (ii), (v) and (vi) we conclude that $\tilde{C}_{4} \leqslant C_{4} \leqslant 0$ and $\tilde{C}_{5} \leqslant C_{5} \leqslant 0$. This implies that \tilde{p} is an upper solution of (3.1).

It is noted that if $\tilde{v}_{3} \gg 0$, then conditions (ii) to (vi) are fulfilled for appropriate choices of v_{i} and c_{i}. Moreover, condition (vii) holds if r_{0} / p_{0} is large enough.

References

[1] H.R. Leuchtag, J. Math. Phys. 22 (1981) 1317-1320.
[2] C. Rogers, A.P. Bassom, W.K. Schief, J. Math. Anal. Appl. 240 (1999) 367-381.
[3] C. De Coster, P. Habets, Two-Point Boundary Value Problems: Lower and Upper Solutions, Math. Sci. Eng., vol. 205, Elsevier, Amsterdam, 2006.
[4] P. Amster, M.C. Mariani, C. Rogers, C.C. Tisdell, J. Math. Anal. Appl. 289 (2004) 712-721.

[^0]: * Corresponding author.

 E-mail address: pamster@dm.uba.ar (P. Amster).

