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Abstract

The existence of solutions to a class of two-point boundary value problems in three-ion electrodiffusion
is investigated via an integro-differential formulation. Boundedness by upper and lower solutions corre-
sponding to associated boundary value problems is considered and illustrated by Painlevé II solutions of
a constrained version of the original boundary value problems.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Leuchtag in [1] presented an m-ion electrodiffusion model consisting of the nonlinear coupled
system

dni

dx
= νinip − ci, i = 1, . . . ,m,

dp

dx
=

m∑
i=1

νini, (1.1)

* Corresponding author.
E-mail address: pamster@dm.uba.ar (P. Amster).
0022-247X/$ – see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2007.03.067



P. Amster, C. Rogers / J. Math. Anal. Appl. 333 (2007) 42–51 43
where ni is the number of ions with the same charge, p is the electric field, the νj are nonzero
integral signed valencies while the ci are real constants. In the three-ion case to be considered
here, the model reduces to the following nonlinear third order equation for the electric field p:

pp′′′ − p′p′′ − (ν1 + ν2 + ν3)p
2p′′ + (ν1ν2 + ν2ν3 + ν3ν1)p

3p′

− (ν1c1 + ν2c2 + ν3c3)p
′ − 1

2
ν1ν2ν3p

5 + ν1ν2ν3(c1 + c2 + c3)xp
3

− [
(ν2 + ν3)ν1c1 + (ν3 + ν1)ν2c2 + (ν1 + ν2)ν3c3

]
p2 = 0. (1.2)

In previous work on the model (1.1), in the two-ion case a Bäcklund transformation was applied
to an underlying Painlevé II reduction [2]. Here, the three-ion model is analyzed in connection
with the existence of solutions to a class of two-point boundary value problems and the construc-
tion of upper and lower solutions [3]. The work complements that initiated in [4] on the three-ion
model.

2. A two-point boundary value problem

Let us consider the following two-point boundary value problem for (1.2):

pp′′′ − p′p′′ − (ν1 + ν2 + ν3)p
2p′′ + (ν1ν2 + ν1ν3 + ν2ν3)p

3p′

− (ν1c1 + ν2c2 + ν3c3)p
′ − 1

2
ν1ν2ν3p

5 + ν1ν2ν3(c1 + c2 + c3)xp
3

− [
(ν2 + ν3)ν1c1 + (ν3 + ν1)ν2c2 + (ν1 + ν2)ν3c3

]
p2 = 0,

p(0) = p0, p(T ) = pT , p′′(0) = r0. (2.1)

If we set u = p′′/p, u0 = r0/p0, then for p �= 0 this boundary value problem is equivalent to:

p2u′ − (ν1 + ν2 + ν3)p
2p′′ + (ν1ν2 + ν1ν3 + ν2ν3)p

3p′

− (ν1c1 + ν2c2 + ν3c3)p
′ − 1

2
ν1ν2ν3p

5 + ν1ν2ν3(c1 + c2 + c3)xp
3

= [
(ν2 + ν3)ν1c1 + (ν3 + ν1)ν2c2 + (ν1 + ν2)ν3c3

]
p2,

p′′ = pu, p(0) = p0, p(T ) = pT , u(0) = u0. (2.2)

This in turn, is equivalent to the second order integro-differential boundary value problem:

p′′ = −C3 + ϕ(x)p + C1
(
p′ − p′(0)

)
p + C2

2
p3p

x∫
0

(
C4p

2(t) + C5t
)
p(t)dt,

p(0) = p0, p(T ) = pT , (2.3)

where

C1 = ν1 + ν2 + ν3, C2 = −(ν1ν2 + ν1ν3 + ν2ν3), C3 = ν1c1 + ν2c2 + ν3c3,

C4 = 1

2
ν1ν2ν3, C5 = −ν1ν2ν3(c1 + c2 + c3),

C6 = (ν2 + ν3)ν1c1 + (ν3 + ν1)ν2c2 + (ν1 + ν2)ν3c3,

and

ϕ(x) = u0 − 1
C2p

2
0 + C3 + C6x.
2 p0
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Here, we shall assume that the associated linear operator Lp := p′′ − ϕp is below resonance
for the Dirichlet conditions, that is

ϕi := inf
0�x�T

ϕ(x) = r0 + C3

p0
− C2

p2
0

2
+ min{0,C6T } > −

(
π

T

)2

. (2.4)

By standard results, condition (2.4) implies that L : H 2 ∩ H 1
0 (0, T ) → L2(0, T ) is invertible. In

particular, a straightforward computation shows that if p ∈ H 2 ∩ H 1
0 (0, T ) then

‖p‖L2 � 1

( π
T

)2 + ϕi

‖Lp‖L2

and

‖p′‖L2 �
π
T

( π
T

)2 + ϕi

‖Lp‖L2 .

Furthermore, writing p′′ = Lp + ϕp, we also deduce that

‖p′′‖L2 � (1 + k)‖Lp‖L2,

where

k = max{| r0+C3
p0

− C2
p2

0
2 |, | r0+C3

p0
− C2

p2
0

2 + C6T |}
( π
T

)2 + ϕi

.

Hence,

‖p′‖C � T 1/2‖p′′‖L2 � T 1/2(1 + k)‖Lp‖L2,

and setting

N = T 1/2 max

{ π
T

( π
T

)2 + ϕi

,1 + k

}

we conclude that

‖p‖C1 := max
{‖p‖C,‖p′‖C

}
� N‖Lp‖L2 .

In order to establish a sufficient condition for the existence of solutions, let us define a poly-
nomial γ : R → R given by

γ (M) = 2|C1|M2 + |C2|
2

M3 + T M2(|C4|M2 + |C5|T
)
. (2.5)

From the limits

lim
M→0+

γ (M)

M
= 0, lim

M→+∞
γ (M)

M
= +∞,

it is clear that the function M − NT 1/2γ (M) achieves a positive maximum Amax at some value
Mmax > 0.

The following result may be established:

Theorem 2.1. Assume that (2.4) holds, and that Θ � Amax, where

Θ := max

{
|p0|, |pT |, |pT − p0|} + N

(|C3|T 1/2 + ‖ϕB‖L2

)
(2.6)
T



P. Amster, C. Rogers / J. Math. Anal. Appl. 333 (2007) 42–51 45
and

B(t) =
(

pT − p0

T

)
t + p0.

Then the boundary value problem (2.1) admits at least one classical solution.

Proof. Let us define an operator T : C1[0, T ] → C1[0, T ] given by T q = p, where p is the
unique solution of the linear problem{

p′′(x) − ϕ(x)p(x) = V (q) − C3,

p(0) = p0, p(T ) = pT ,

with

V (q)(x) := C1
(
q ′(x) − q ′(0)

)
q(x) + C2

2
q3(x) + q(x)

x∫
0

(
C4q

2(t) + C5t
)
q(t)dt.

By standard results, T is well defined and compact. Moreover, if θ is the unique function satis-
fying

Lθ = −C3, θ(0) = p0, θ(T ) = pT ,

then

‖θ − B‖C1 � N‖C3 − ϕB‖L2 � N
(|C3|T 1/2 + ‖ϕB‖L2

)
.

Hence, ‖θ‖C1 � Θ , where Θ is given by (2.6). Moreover, the following bound is obtained for
p = T q:

‖p − θ‖C1 � N
∥∥L(p − θ)

∥∥
L2 = N

∥∥V (q)
∥∥

L2 .

It is readily shown that if ‖q‖C1 � M then |V (q)(x)| � γ (M), with γ (M) as in (2.5). Thus,
‖p‖C1 � Θ + NT 1/2γ (M), and since Θ � Amax we conclude that if ‖q‖C1 � Mmax then
‖p‖C1 � Mmax. The result now follows from Schauder’s Fixed Point Theorem. �

As a particular consequence we obtain:

Corollary 2.1. Assume that min{0,C6T } > L− ( π
T

)2 for some L > 0. Then there exist constants
δ0, δT > 0 such that the boundary value problem (2.1) admits at least one classical solution for
any choice of the parameters p0, pT , C3 and r0 satisfying:

|pT | < δT ,
|r0| + |C3|

L
< |p0| < δ0.

Proof. From the hypotheses, it is clear that if C2 and C6 are fixed then (2.4) holds for δ0 small
enough. Furthermore, it is observed that ‖ϕ‖C and the constant N remain bounded as p0 → 0,
provided | r0+C3

p0
| < L. On the other hand, if p0,pT → 0 then ‖B‖C1 → 0 and C3 → 0. Hence

Θ → 0, and the result follows. �
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3. The case ν1 + ν2 + ν3 = 0. Upper and lower solutions

Here we focus on the boundary value problem

p′′ = −C3 + ϕ(x)p + C2

2
p3 + p

x∫
0

(
C4p

2(t) + C5t
)
p(t)dt,

p(0) = p0, p(T ) = pT , (3.1)

corresponding to the case C1 = ∑
νi = 0. Note that this condition implies that C2 � 0.

The quantities α and β are termed lower and upper solutions respectively for the boundary
value problem (3.1) if

α′′ � −C3 + ϕ(x)α + C2

2
α3 + α

x∫
0

(
C4α

2(t) + C5t
)
α(t)dt, (3.2)

β ′′ � −C3 + ϕ(x)β + C2

2
β3 + β

x∫
0

(
C4β

2(t) + C5t
)
β(t)dt, (3.3)

and

α(0) � p0 � β(0), α(T ) � pT � β(T ). (3.4)

Then we have:

Theorem 3.1. Let α and β be respectively lower and upper solutions of the boundary value
problem (3.1), with 0 � α � β , and assume that ν1ν2(ν1 + ν2) > 0, c1 + c2 + c3 � 0. Then (3.1)
admits a solution u with α � u � β .

Proof. From the assumptions, it readily follows that if 0 � p � q then

p(x)

x∫
0

(
C4p

2(t) + C5t
)
p(t)dt � q(x)

x∫
0

(
C4q

2(t) + C5t
)
q(t)dt.

Let us fix a nonnegative constant λ such that

λ � 3

2
C2‖β‖2

C + ϕs,

with

ϕs := sup
0�x�T

ϕ(x) = r0 + C3

p0
− C2

p2
0

2
+ max{0,C6T }.

Then the function ϕp + C2
2 p3 − λp is nonincreasing in p for α(x) � p � β(x). Next, define

a fixed point operator T such that for fixed q ∈ C[0, T ], p = T q is the unique solution of the
linear problem

p′′ − λp = −C3 + ϕq + C2

2
q3 − λq + q

x∫
0

(
C4q

2(t) + C5t
)
q(t)dt,

p(0) = p0, p(T ) = pT .
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By standard results, T : C[0, T ] → C[0, T ] is well defined and compact. Moreover, if α � q � β ,
for p = T q it follows that

p′′ − λp � −C3 + ϕα + C2

2
α3 − λα + α

x∫
0

(
C4α

2(t) + C5t
)
α(t)dt � α′′ − λα

and

p′′ − λp � −C3 + ϕβ + C2

2
β3 − λβ + β

x∫
0

(
C4β

2(t) + C5t
)
β(t)dt � β ′′ − λβ.

From (3.4) and the maximum principle we conclude that α � p � β .
The result follows by applying Schauder’s Theorem to the bounded, convex and closed set

{u ∈ C[0, T ]: α � u � β}. �
An analogous result when α � β � 0 may be established, namely:

Theorem 3.2. Let α and β be respectively lower and an upper solutions of (3.1), with α � β � 0,
and assume that ν1ν2(ν1 + ν2) < 0, c1 + c2 + c3 � 0. Then the boundary value problem (3.1)
admits a solution u with α � u � β .

4. An iterative quasilinearization method

Here, the existence of an ordered couple of lower and upper solutions is assumed and an
iterative scheme that converges to a solution of problem (3.1) is constructed. Under appropriate
conditions, the convergence is proved to be quadratic.

In this connection, it proves convenient to write (3.1)1 as

p′′ − C2

2
p3 = F(p),

where the mapping F : C[0,1] → C[0,1] is given by

F(p) = −C3 + ϕp + p

x∫
0

(
C4p

2(t) + C5t
)
p(t)dt. (4.1)

It is readily seen that F is infinitely Fréchet differentiable, with

DF(p)[q] = ϕq + p

x∫
0

(
3C4p

2(t) + C5t
)
q(t)dt + q

x∫
0

(
C4p

2(t) + C5t
)
p(t)dt (4.2)

and

D2F(p)[q, r] = 6C4p

x∫
0

pqr dt + q

x∫
0

(
3C4p

2(t) + C5t
)
r(t)dt

+ r

x∫ (
3C4p

2(t) + C5t
)
q(t)dt. (4.3)
0
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As a preliminary we note appropriate comparison and existence-uniqueness results for the semi-
linear operator Sλp := p′′ − C2

2 p3 − λp with λ,C2 � 0 (proofs are straightforward):

Lemma 4.1. If p,q ∈ H 2(0, T ) satisfy

Sλp � Sλq a.e. p(0) � q(0), p(T ) � q(T ),

then p � q .

Lemma 4.2. Let ξ ∈ L2(0, T ) and p0,pT ∈ R. Then the boundary value problem

Sλp = ξ, p(0) = p0, p(T ) = pT

admits a unique solution p ∈ H 2(0, T ).

In what follows, we shall consider only the situation when Theorem 3.1 applies. Analogous
conclusions hold when Theorem 3.2 obtains.

In order to construct an iterative Newton-type scheme for the boundary value problem (3.1),
the following result is required.

Lemma 4.3. Let the assumptions of Theorem 3.1 hold. Then there exists p ∈ C2[0, T ] such that
α � p � β , and{

S0p = F(α) + DF(α)(p − α),

p(0) = p0, p(T ) = pT .
(4.4)

Proof. Fix a nonnegative constant λ � ϕs , with ϕs as in Theorem 3.1, and define a function
Π : [0, T ] × R → R by

Π(x,p) =
{

p if α(x) � p � β(x),

α(x) if p < α(x),

β(x) if p > β(x).

From Lemma 4.2 and Schauder’s Theorem, it is seen that the following quasilinear problem
admits at least one solution:{

Sλp = F(α) + DF(α)
(
Π(p) − α

) − λΠ(p),

p(0) = p0, p(T ) = pT .

We now write Sλp = F(α)−λα+ (DF(α)−λI)(Π(p)−α), and from the choice of λ it follows
immediately that Sλp � F(α) − λα � Sλα.

On the other hand, consider the Taylor expansion

F(z) = F(α) + DF(α)(z − α) + R(z).

From the fact that D2F(p)[q, r] � 0 for p,q, r � 0, it follows that R(z) � 0 for z � α. Then

Sλp = F
(
Π(p)

) − R
(
Π(p)

) − λΠ(p) � F(β) − λβ � Sλβ.

Hence, α � p � β , and S0p = F(α)+DF(α)(p−α). Again, we may write S0p = F(p)−R(p),
where the Taylor remainder R(p) is nonpositive, and conclude that S0p � F(p). Thus p is a
lower solution of the boundary value problem (3.1). �
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Next, we define a sequence as follows. Start with p1 = α, then from Lemma 4.2 we may
choose a lower solution p2 with p1 � p2 � β satisfying (4.4). Iteration of this process produces
a nondecreasing sequence

p1 � p2 � p3 � · · · � β

such that

S0pn+1 = F(pn) + DF(pn)(pn+1 − pn), pn+1(0) = p0, pn+1(T ) = pT , (4.5)

where {pn} converges pointwise to some function p. From standard results (Dini’s Theorem),
pn → p uniformly, and use of (4.5) shows that p is a solution of (3.1). In order to prove the
quadratic convergence of {pn} we impose an extra requirement:

Theorem 4.4. Let the assumptions of Theorem 3.1 hold. Further, assume that

μ + ϕ + C2

2

(
p2

n+1 + pn+1pn + p2
n

) +
x∫

0

(
C4β

2 + C5t
)
β dt � 0 (4.6)

for some n � 2 and some constant μ < (π
T

)2, and that k0k1 < 1
T

, where

k0 =
π
T

( π
T

)2 − μ
, k1 =

∥∥∥∥∥β

x∫
0

(
3C4β

2 + C5t
)

dt

∥∥∥∥∥
C

.

Then

‖pn+1 − pn‖C � k‖pn − pn−1‖2
C

for some constant k independent of n. In particular, the sequence defined by (4.6) converges
quadratically to a solution of the boundary value problem (3.1).

Proof. In the context the previous proof, define En = pn − pn−1. Then {En} is pointwise non-
increasing and tends to 0 as n → ∞. Moreover, for n � 2

S0pn+1 − S0pn = Rn + DF(pn)(pn+1 − pn),

where Rn := F(pn)−F(pn−1)−DF(pn−1)(pn −pn−1) is the Taylor remainder. It follows that

E′′
n+1 + μEn+1 = Rn + pn

x∫
0

(
3C4p

2
n + C5t

)
En+1 dt

+
(

μ + ϕ + C2

2

(
p2

n+1 + pn+1pn + p2
n

) +
x∫

0

(
C4p

2
n + C5t

)
pn dt

)
En+1

� Rn + pn

x∫
0

(
3C4p

2
n + C5t

)
En+1 dt.

Thus, if Φ ∈ H 2 ∩ H 1(0, T ) denotes the unique solution of
0
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Φ ′′ + μΦ = Rn + pn

x∫
0

(
3C4p

2
n + C5t

)
En+1 dt, (4.7)

then the standard comparison principle implies that En+1 � Φ . Moreover,

‖Φ‖C � T k0‖Φ ′′ + μΦ‖C � T k0
(‖Rn‖C + k1‖En+1‖C

)
,

and hence

‖En+1‖C � T k0

1 − T k0k1
‖Rn‖C.

Furthermore, from the Taylor expansion of F we deduce that

‖Rn‖C � T

(
6|C4|‖β‖2

C + |C5|T
2

)
‖En‖2

C.

Finally, note that if (4.6) holds, then it also holds for any m � n, and the result is established. �
5. Painlevé II

Here, we present Painlevé II solutions of a suitably constrained version of boundary value
problem (2.1). Thus, we obtain particular nonconstant solutions of (2.1) such that

p′′ + λp3 + μxp + ν = 0 (5.1)

for appropriate constants λ, μ and ν. Note that if λ is negative, the transformation p(x) 
→
Y(x) := σp(ωx) for suitable choice of σ and ω gives a solution of the standard Painlevé II
equation Y ′′ = 2Y 3 ± xY + C. One use of (5.1) to eliminate p′′′ and p′′ in (2.1), it is seen that

−p
[
3λp2p′ + μp + μxp′] + p′[λp3 + μxp + ν

] + (ν1 + ν2 + ν3)p
2[λp3 + μxp + ν

]
+ (ν1ν2 + ν1ν3 + ν2ν3)p

3p′ − (ν1c1 + ν2c2 + ν3c3)p
′ − 1

2
ν1ν2ν3p

5

+ ν1ν2ν3(c1 + c2 + c3)xp
3 − [

(ν2 + ν3)ν1c1 + (ν1 + ν3)ν2c2 + (ν1 + ν2)ν3c3
]
p2

= 0,

whence we obtain:

λ = 1

2
(ν2ν3 + ν1ν3 + ν1ν2),

μ = (ν1c1 + ν2c2 + ν3c3)(ν1 + ν2 + ν3)

− [
(ν2 + ν3)ν1c1 + (ν1 + ν3)ν2c2 + (ν1 + ν2)ν3c3

]
,

ν = ν1c1 + ν2c2 + ν3c3,

μ(ν1 + ν2 + ν3) + ν1ν2ν3(c1 + c2 + c3) = 0,

(ν1 + ν2)(ν1 + ν3)(ν2 + ν3) = 0. (5.2)

In view of the latter condition, we proceed with the constraint ν1 + ν2 = 0, ν3 �= 0 whence
c3 = 0, and

λ = −ν2
1/2, μ = ν2

1(c1 + c2), ν = c1ν1 + c2ν2 = ν1(c1 − c2). (5.3)

Finally, from the boundary conditions in (2.1) we obtain the constraint
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r0 = ν2
1

2
p3

0 − ν1(c1 − c2). (5.4)

Analogous results hold by cyclic interchange for {ν2 + ν3 = 0, ν1 �= 0, c1 = 0} and
{ν3 + ν1 = 0, ν2 �= 0, c2 = 0}.

Conversely, if p̃ is a solution of (5.1) for some λ < 0, μ and ν, then we obtain a solution
of (2.1) by setting p̃0 = p̃(0), p̃T = p̃(T ), r̃0 = −αp̃3

0 − γ , and

ν̃1 = −ν̃2 := ±√
2|λ|,

c̃1 = 1

2

(
ν

ν̃1
− μ

2λ

)
, c̃2 = −1

2

(
ν

ν̃1
+ μ

2ν

)
, c̃3 = 0.

The constant ν̃3 may be chosen arbitrarily.
A Painlevé II solution of the boundary value problem (2.1) may be used as a lower or an

upper solution for a related boundary problem, for which Theorem 3.1 or Theorem 3.2 applies.
In particular, the following result holds:

Corollary 5.1. Let p̃ be a nonnegative concave solution of (5.1) for some λ < 0, μ � 0 � ν. Fix
a constant ν̃3 > 0 and assume that p̃(0) > 0. Then the boundary value problem (3.1) admits at
least one solution p such that 0 � p � p̃ for any choice of the parameters for which:

(i) 0 < p0 � p̃0, 0 � pT � p̃T .

(ii) ν1 + ν2 + ν3 = 0, c1 + c2 + c3 � 0.

(iii) 0 � ν1c1 + ν2c2 − c3(ν1 + ν2) � ν.

(iv) −2λ � ν2
1 + ν1ν2 + ν2

2 .

(v) 0 < ν1ν2(ν1 + ν2) � −2λν̃3.

(vi) ν̃3ν � ν1ν2(ν1 + ν2)(c1 + c2 + c3).

(vii)
r̃0 + ν

p̃0
+ λp̃2

0 + (ν̃3ν − μ)j � r0 + ν1c1 + ν2c2 − c3(ν1 + ν2)

p0
− (

ν2
1 + ν1ν2 + ν2

2

)p2
0

2
+ [

ν2
1c1 + ν2

2c2 − (ν1 + ν2)
2c3

]
j, j = 0,1.

From conditions (ii) and (iii) it follows that C̃3 � C3 � 0. By (iv), α ≡ 0 is a lower solu-
tion of (3.1). Moreover, it follows from (vii) that ϕ̃ � ϕ, and as C̃1 = ν̃3 � 0 and p̃ is concave
and nonnegative, then C̃1(p̃

′ − p̃′(0))p̃ � 0. From (iv), we also deduce that C̃2 � C2. Finally,
from (ii), (v) and (vi) we conclude that C̃4 � C4 � 0 and C̃5 � C5 � 0. This implies that p̃ is an
upper solution of (3.1).

It is noted that if ν̃3 � 0, then conditions (ii) to (vi) are fulfilled for appropriate choices of νi

and ci . Moreover, condition (vii) holds if r0/p0 is large enough.

References

[1] H.R. Leuchtag, J. Math. Phys. 22 (1981) 1317–1320.
[2] C. Rogers, A.P. Bassom, W.K. Schief, J. Math. Anal. Appl. 240 (1999) 367–381.
[3] C. De Coster, P. Habets, Two-Point Boundary Value Problems: Lower and Upper Solutions, Math. Sci. Eng., vol. 205,

Elsevier, Amsterdam, 2006.
[4] P. Amster, M.C. Mariani, C. Rogers, C.C. Tisdell, J. Math. Anal. Appl. 289 (2004) 712–721.


