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Abstract

We study the existence of periodic solutions for a nonlinear second order system of ordinary differential
equations of p-Laplacian type. Assuming suitable Nagumo and Landesman–Lazer type conditions we prove
the existence of at least one solution applying topological degree methods. We extend a celebrated result by
Nirenberg for resonant systems.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

We study the nonlinear system of second order differential equations

φ(u′)′ = f (t, u,u′), t ∈ (0, T ), (1)

under periodic boundary conditions

u(0) = u(T ), u′(0) = u′(T ). (2)

Following the pioneering work of Manásevich and Mawhin [6] we assume that φ : RN → R
N

satisfies the following conditions:
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(1) For any x1, x2 ∈ R with x1 �= x2, we have that〈
φ(x1) − φ(x2), x1 − x2

〉
> 0. (3)

(2) There exists a function α : (0,+∞) → (0,∞) such that α(s) → +∞ as s → +∞ and〈
φ(x), x

〉
� α

(|x|)|x| for all x ∈ R
N. (4)

We remark that (3) and (4) imply that φ is an homeomorphism onto R
N (for details see [6]).

Equation (1) is usually referred in the literature as a p-Laplacian type equation; indeed, the most
standard examples in which the previous conditions hold are the N -dimensional p-Laplacian
given by φ(x) = |x|p−2x (with p > 1), and a system of one-dimensional p-Laplacians, namely:
φ(x) = (|x1|p1−2x1, . . . , |xN |pN−2xN) (pj > 1).

Without loss of generality, we may assume that φ(0) = 0. For simplicity, we shall also assume
that f : [0, T ] × R

2N → R
N is a continuous function.

We obtain solutions of (1)–(2) under Landesman–Lazer type conditions applying topological
degree methods [7].

There exists a vast literature on Landesman–Lazer type conditions for resonant problems,
starting at the pioneering work [5] for a resonant elliptic second order scalar equation under
Dirichlet conditions (for a survey on Landesman–Lazer conditions see, e.g., [8]). In [10], Niren-
berg extended these results to systems of elliptic equations. Nirenberg’s result can be adapted to
our problem (1)–(2) in the following way:

Theorem 1.1. Let φ(x) = x and f (t, u,u′) = p(t) − cu′ − g(u), and assume that the radial
limits gv := limr→+∞ g(rv) exist uniformly respect to v ∈ SN−1, the unit sphere of R

N . Then
(1)–(2) has at least one T -periodic solution if the following conditions hold:

• gv �= p := 1
T

∫ T

0 p(t) dt for any v ∈ SN−1.
• The degree of the mapping θ :SN−1 → SN−1 given by

θ(v) = gv − p

|gv − p|
is different from 0.

In [12] Ortega and Sánchez gave an interesting example which shows that, in some sense, the
existence of radial limits of g is necessary. More precisely, they have shown a system with φ and
f as in Theorem 1.1 for which no periodic solution exists, although the following conditions are
fulfilled for some R > 0:

• g(u) �= p for |u| � R.
• The degree of the mapping θR :SN−1 → SN−1 given by

θR(v) = g(Rv) − p

|g(Rv) − p|
is different from 0.

Despite this example, we shall show that the assumption on the existence of radial limits can
be replaced by a weaker condition (see condition (F1)).
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As usual, when topological methods are applied, it is essential to obtain a priori bounds for
the solutions. When f is a bounded function, a priori bounds can be deduced directly from
Landesman–Lazer type conditions. However, if f is unbounded as a function of u′, an extra
assumption is required. We introduce a Nagumo type condition, which allows to establish a
priori bounds for the derivatives. Nagumo condition was first introduced in [11] for a (linear)
scalar equation, and generalized in many ways for systems of linear equations (see, e.g., [1]).
A Nagumo condition for a scalar equation and general φ was introduced for example in [2]. The
case of an N -dimensional p-Laplacian was studied in [9], where a priori bounds are obtained
using Nagumo and Hartman type conditions. In this paper we shall assume a slightly different
condition (see condition (N)), which can be regarded as an extension of the Nagumo assumption
introduced in [3].

The paper is organized as follows. In Section 2 we give some notations and preliminary re-
sults. In particular, we recall the continuation theorem that will be used in the proofs. In Section 3,
we introduce appropriate Landesman–Lazer type conditions and prove the existence of solutions
of (1)–(2) for f bounded. Finally, in Section 4 we study the general case assuming a Nagumo
type condition for f .

2. Some notations and preliminary results

We denote by C1
T the space of T -periodic functions in C1([0, T ]). The results we recall in

this section are proved in [6]:

Proposition 2.1. For l ∈ C([0, T ]), let us define

Gl(a) = 1

T

T∫

0

φ−1(a + l(t)
)
dt.

If φ satisfies conditions (3) and (4), then the function Gl has the following properties:

(1) For any fixed l ∈ C([0, T ]), the equation

Gl(a) = 0

has a unique solution a = a(l).
(2) The function a :C([0, T ]) → R

N thus defined, is continuous and sends bounded sets into
bounded sets.

Moreover, the following continuation theorem provides an analogue of the Mawhin coinci-
dence degree theory (see [7]) for p-Laplacian type operators. An abstract version of the theory
for more general nonlinear operators can be found in [4].

Theorem 2.1. Let Ω ⊂ C1
T an open set. Assume that:

(1) For λ ∈ (0,1] the problem

φ(u′)′ = λf (t, u,u′) (5)

has no solutions on ∂Ω .
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(2) The equation

F(u) = 1

T

T∫

0

f (t, u,0) dt = 0

has no solutions in ∂Ω ∩ R
N .

(3) dB

(
F,Ω ∩ R

N,0
) �= 0, (6)

where dB denotes the Brouwer degree.

Then problem (1)–(2) has at least one solution in Ω .

3. Existence results for bounded f

Throughout this section, we shall assume that f is bounded. In this case, we first observe that
for any u ∈ C1

T , if l(t) = ∫ t

0 f (s,u,u′) dt and 0 � λ � 1 then |a(λl)| � k for some constant k

depending only on ‖f ‖C . Thus, if

φ(u′)′ = λf (t, u,u′)
then φ(u′(t)) = a(λl) + λl(t), and we deduce that |φ(u′)| � k + T ‖f ‖C . Hence ‖u′‖C � M for
some constant M .

Our Landesman–Lazer type condition reads as follows:

Condition (F1): There exists a family {(Uj ,wj )}j=1,...,K where Uj is an open subset of SN−1

and wj ∈ SN−1, such that {Uj } covers SN−1 and the limit

lim sup
s→+∞

〈
f (t, su, v),wj

〉 := f u,j (t) (7)

exists uniformly for u ∈ Uj and v ∈ R
N with |v| � M (M as before).

Remark 3.1. In particular, condition (F1) holds trivially if f = p(t)− g(u), and radial limits for
g exist uniformly as in Theorem 1.1. As condition (F1) may be hard to verify, we shall give a
more explicit one (see condition (F2)).

Remark 3.2. If condition (F1) holds, a straightforward computation shows that the mapping
u �→ f u,j (t) is continuous in Uj for each fixed t . Indeed, if ε > 0 set s0 > 0 and a sequence
{sn}n∈N such that

〈
f (t, su, v),wj

〉 − f u,j (t) <
ε

3
for s � s0,

and

f u,j (t) − 〈
f (t, snu, v),wj

〉
<

ε

3
for n ∈ N,

for every u ∈ Uj and |v| � M . Fixing n such that sn � s0 we obtain:∣∣f u,j (t) − f u0,j (t)
∣∣ �

∣∣f u,j (t) − 〈
f (t, snu, v),wj

〉∣∣
+ ∣∣〈f (t, snu, v),wj

〉 − 〈
f (t, snu0, v),wj

〉∣∣
+ ∣∣〈f (t, snu0, v),wj

〉 − f u0,j (t)
∣∣.
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Taking δ > 0 small enough, the second term in the right-hand side is less than ε
3 for |u−u0| < δ,

and it follows that |f u,j (t) − f u0,j (t)| < ε.

Theorem 3.3. Assume that f is bounded, and that condition (F1) holds. Then the periodic bound-
ary value problem (1)–(2) admits at least one solution, provided that:

(1) For each u ∈ SN−1 there exists j such that u ∈ Uj and

T∫

0

f u,j (t) dt < 0.

(2) There exists a constant R0 such that dB(F,BR,0) �= 0 for any R � R0, where BR ⊂ R
N

denotes the open ball of radius R centered at 0, and F is defined as in Theorem 2.1.

Remark 3.4. It follows from the proof below that F(u) �= 0 for u ∈ R
N with |u| large. Thus, the

Brouwer degree in condition (2) is well defined.

Proof of Theorem 3.3. We claim that the periodic solutions of φ(u′)′ = λf (t, u,u′) with
0 < λ � 1 are a priori bounded for the C1-norm. Indeed, otherwise there exist sequences
λn ∈ (0,1] and {un} ∈ C1

T such that φ(u′
n)

′ = λnf (t, un,u
′
n) and ‖un‖C1 → ∞. From the pre-

vious considerations ‖u′
n‖C � M , and thus un − un(0) is bounded, |un(0)| → ∞. In particular,

|un(t)| → ∞ uniformly in t . We may assume that un(t) �= 0, and define zn(t) = un(t)
|un(t)| . Taking a

subsequence if necessary, we may assume that zn → u uniformly in t for some u ∈ SN−1. From
condition (1),

∫ T

0 f u,j dt < −ε < 0 for some j , then for each fixed t we obtain:
〈
f

(
t, un(t), u

′
n(t)

)
,wj

〉 − f u,j (t)

= 〈
f

(
t,

∣∣un(t)
∣∣zn(t), u

′
n(t)

)
,wj

〉 − f zn(t),j (t) + f zn(t),j (t) − f u,j (t)

<
ε

T

when n is large enough. Then by Fatou Lemma,

lim sup
n→∞

T∫

0

〈
f

(
t, un(t), u

′
n(t)

)
,wj

〉
dt �

T∫

0

f u,j (t) + ε

T
dt < 0,

a contradiction since
∫ T

0 f (t, un(t), u
′
n(t)) dt = ∫ T

0 φ(u′
n)

′(t) dt = 0. In the same way, it is easy
to see that F(u) �= 0 for u ∈ R

N with |u| large.
Thus, fixing Ω = BR(0) ⊂ C1

T with R large enough, the proof follows from Theorem 2.1. �
In the next result we shall consider a particular case of the previous theorem. Let us first note

that condition (F1) implies, for any fixed x ∈ R
N and u0 ∈ SN−1, that

lim sup
s→+∞

〈
f (t, x + su, v),wj

〉 = f u,j (t)

for some j , uniformly for u in a neighborhood of u0 and |v| � M . The following condition is
stronger than (F1), since we impose a uniformity condition with respect to x. However, it has the
advantage that it allows to compute the Brouwer degree explicitly.
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Condition (F2): Let {e1, . . . , eN }, {w1, . . . ,wN } ⊂ SN−1 be two arbitrary bases of R
N , and as-

sume that the limits

lim sup
s→+∞

〈
f (t, x + sei, v),wi

〉 := f i(t) (8)

and

lim inf
s→−∞

〈
f (t, x + sei, v),wi

〉 := f
i
(t) (9)

exist uniformly respect to x ∈ span{ej : j �= i} and v ∈ R
N with |v| � M (M as before).

Remark 3.5. It is easy to see that (F2) implies (F1). Indeed, if u ∈ SN−1 then u = x + αei

with x ∈ span{ej : j �= i} for some i and α �= 0. Fix δ < |α|, and consider ũ = x̃ + α̃ei ∈ U :=
Bδ(u) ∩ SN−1. Then

lim sup
s→+∞

〈
f (t, sũ, v),wi

〉 = lim sup
s→+∞

〈
f (t, sx̃ + sα̃ei , v),wi

〉 = f i(t)

if α > 0, and

lim sup
s→+∞

〈
f (t, sũ, v),−wi

〉 = − lim inf
s→−∞

〈
f (t,−sx̃ − sα̃ei, v),wi

〉 = −f
i
(t)

if α < 0, uniformly for ũ ∈ U and |v| � M . Thus, the result follows from the compactness
of SN−1.

Theorem 3.6. Assume that f is bounded and that (F2) holds. Then problem (1)–(2) admits at
least one solution, provided that

T∫

0

f i(t) dt < 0 <

T∫

0

f
i
(t) dt

for each i = 1, . . . ,N .

Proof. From Remark 3.5 and the hypothesis, it is clear that condition (1) in Theorem 3.3 holds.
In order to compute the Brouwer degree dB(F,BR,0) for large R, consider the homotopy
H : [0,1] × R

N → R
N given by

H(λ,u) = λF(u) − (1 − λ)Cu,

where C : RN → R
N is the isomorphism uniquely defined by the identities 〈Cei,wj 〉 = δij . Sup-

pose that H(λ,u) = 0 for some λ ∈ [0,1] and |u| = R. Writing u = ∑N
j=1 aj ej we deduce that

|ai | is large for some i. Suppose for example that ai � 0, then

0 = 〈
λF(u) − (1 − λ)Cu,wi

〉 = λ
〈
F(u),wi

〉 − (1 − λ)ai.

On the other hand,

lim sup
s→+∞

T∫

0

〈
f (t, x + sei,0),wi

〉
dt �

T∫

0

f i(t) dt < 0.

Thus 〈F(u),wi〉 < 0, which yields a contradiction. The proof is analogous if ai � 0. We con-
clude that, for R large,

dB(F,BR,0) = (−1)NdB(C,BR,0) = ±1,

and the proof is complete. �
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Example 3.7. Let

fi(t, u, v) = μi(t, ui) + θi(t, u, v)

u2
i + 1

with μi, θi bounded, and

lim sup
s→+∞

μi(t, s) := μi(t),

lim inf
s→−∞ μi(t, s) := μ

i
(t).

Furthermore, assume that
T∫

0

μi(t) dt < 0 <

T∫

0

μ
i
(t) dt.

Thus, if we set {e1, . . . , eN } and {w1, . . . ,wN } as the canonical basis of R
N , the assumptions of

the previous theorem hold, with f i = μi , f
i
= μ

i
. Note, however, that radial limits of f do not

necessarily exist.

Remark 3.8. As in [12], from the mean value theorem for vector-valued integrals it follows that
if (1)–(2) admits a solution, then 0 belongs to the closed convex hull of f ([0, T ]×R

2N). Indeed,
if we consider the closed curve γ (t) = f (t, u(t), u′(t)), then 1

T

∫ T

0 γ (t) dt = 0, and hence 0
belongs to the convex hull of the set {γ (t): 0 � t � T }.
4. Nagumo-type conditions

In this section we study the existence of solutions for f not necessarily bounded, assuming
a Nagumo type condition. Let {z1, . . . , zN } and {w1, . . . ,wN } be two arbitrary bases of R

N and
assume that φ satisfies the following:

Condition (�): For each i = 1, . . . ,N there exists a constant Ri � 0 such that if 〈x, zi〉 = 0 then
|〈φ(x),wi〉| � Ri .

Remark 4.1. Condition (�) is trivially satisfied if φ(x) = (φ1(x1), . . . , φN(xN)) (uncoupled
case), taking {z1, . . . , zN } and {w1, . . . ,wN } as the canonical basis of R

N , and Ri = 0. More
generally, one may consider any φ such that if xi = 0 then φi(x) = 0: for example, this is the
case of the vector valued p-Laplacian given by φ(x) = |x|p−2x.

Assuming (�), we state our Nagumo type condition in the following way:

Condition (N): For each i = 1, . . . ,N there exists Mi > Ri and a function ψi : [0,+∞) →
(0,+∞) such that∣∣〈f (t, u, v),wi

〉∣∣ � ψi

(∣∣〈φ(v),wi

〉∣∣)
for arbitrary (t, u, v) ∈ [0, T ] × R

2N and
Mi∫

Ri

1

ψi(s)
ds > T .



P. Amster, P. De Nápoli / J. Math. Anal. Appl. 326 (2007) 1236–1243 1243
Thus, we obtain a priori bounds for the derivatives of the solutions. More precisely:

Lemma 4.2. Assume that (�) and (N) hold. Then there exists a constant M such that if u ∈ C1
T

satisfies φ(u′)′ = λf (t, u,u′) for some λ ∈ [0,1] then ‖u′‖C � M .

Proof. We shall prove that in fact |〈φ(u′),wi〉| < Mi for i = 1, . . . ,N . Indeed, suppose for
example that 〈φ(u′(t̃)),wi〉 � Mi for some t̃ and some i. As 〈u(0), zi〉 = 〈u(T ), zi〉, by Rolle
Theorem we deduce that 〈u′(t), zi〉 = 0 for some t . Using (�) and the continuity of φ(u′) we
conclude that 〈φ(u′(t0)),wi〉 = Ri for some t0, and 〈φ(u′(t1)),wi〉 = Mi for some t1. Further-
more, we may suppose that 〈φ(u′(t)),wi〉 ∈ (Ri,Mi) for any t between t0 and t1. Thus

T <

Mi∫

Ri

1

ψi(s)
ds =

t1∫
t0

λ〈f (t, u,u′),wi〉
ψi(〈φ(u′(t)),wi〉) dt.

By (N), this last term is less or equal that |t1 − t0|, a contradiction. The proof is analogous if
〈φ(u′(t̃)),wi〉 � −Mi for some t̃ . �

Thus we have:

Corollary 4.1. Theorems 3.3 and 3.6 are still true if the condition ‘f bounded’ is replaced by
(�) and (N), and the constant M in respective conditions (F1) and (F2) is given by the previous
lemma.
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