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Abstract

We study the existence of periodic solutions for a nonlinear second order system of ordinary differential
equations of p-Laplacian type. Assuming suitable Nagumo and Landesman—Lazer type conditions we prove
the existence of at least one solution applying topological degree methods. We extend a celebrated result by
Nirenberg for resonant systems.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

We study the nonlinear system of second order differential equations

o) = f(t,u,u’), 1€(0,7), ey
under periodic boundary conditions
u@ =u(T),  u'(0)=u(T). ()

Following the pioneering work of Manésevich and Mawhin [6] we assume that ¢ : RY — RV
satisfies the following conditions:
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(1) For any x1, x2 € R with x1 # x7, we have that

(¢ (x1) — ¢ (x2), x1 — x2) > 0. 3)
(2) There exists a function « : (0, +00) — (0, co) such that «(s) — +00 as s — +00 and
(¢ (), x) > a(lx|)lx| forall x e RV, 4)

We remark that (3) and (4) imply that ¢ is an homeomorphism onto R (for details see [6]).
Equation (1) is usually referred in the literature as a p-Laplacian type equation; indeed, the most
standard examples in which the previous conditions hold are the N-dimensional p-Laplacian
given by ¢ (x) = |x|P~2x (with p > 1), and a system of one-dimensional p-Laplacians, namely:
¢ () = (IX17 " 2x1, .o, [y [PV 2xn) (pj > 1.

Without loss of generality, we may assume that ¢ (0) = 0. For simplicity, we shall also assume
that £:[0, T] x R2Y — R¥ is a continuous function.

We obtain solutions of (1)—(2) under Landesman—Lazer type conditions applying topological
degree methods [7].

There exists a vast literature on Landesman—Lazer type conditions for resonant problems,
starting at the pioneering work [5] for a resonant elliptic second order scalar equation under
Dirichlet conditions (for a survey on Landesman—Lazer conditions see, e.g., [8]). In [10], Niren-
berg extended these results to systems of elliptic equations. Nirenberg’s result can be adapted to
our problem (1)—(2) in the following way:

Theorem 1.1. Let ¢(x) = x and f(t,u,u’) = p(t) — cu' — g(u), and assume that the radial
limits g, := lim,_, ;o g(rv) exist uniformly respect to v € SN=1, the unit sphere of RN. Then
(1)—(2) has at least one T -periodic solution if the following conditions hold:

o g, #£pi= %for p(t)dt for any v e SN~
o The degree of the mapping 0 : SN =1 — SN~ given by

)= =2
|gv — Pl
is different from Q.

In [12] Ortega and Sanchez gave an interesting example which shows that, in some sense, the
existence of radial limits of g is necessary. More precisely, they have shown a system with ¢ and
f asin Theorem 1.1 for which no periodic solution exists, although the following conditions are
fulfilled for some R > 0:

e g(u) # p for [u| = R.
e The degree of the mapping 0z : S¥~1 — S¥~! given by

g(Rv)—p
0 _ o\
RO =1 Ry = Bl

is different from 0.

Despite this example, we shall show that the assumption on the existence of radial limits can
be replaced by a weaker condition (see condition (F1)).



1238 P. Amster;, P. De Ndpoli/ J. Math. Anal. Appl. 326 (2007) 1236—1243

As usual, when topological methods are applied, it is essential to obtain a priori bounds for
the solutions. When f is a bounded function, a priori bounds can be deduced directly from
Landesman-Lazer type conditions. However, if f is unbounded as a function of u’, an extra
assumption is required. We introduce a Nagumo type condition, which allows to establish a
priori bounds for the derivatives. Nagumo condition was first introduced in [11] for a (linear)
scalar equation, and generalized in many ways for systems of linear equations (see, e.g., [1]).
A Nagumo condition for a scalar equation and general ¢ was introduced for example in [2]. The
case of an N-dimensional p-Laplacian was studied in [9], where a priori bounds are obtained
using Nagumo and Hartman type conditions. In this paper we shall assume a slightly different
condition (see condition (N)), which can be regarded as an extension of the Nagumo assumption
introduced in [3].

The paper is organized as follows. In Section 2 we give some notations and preliminary re-
sults. In particular, we recall the continuation theorem that will be used in the proofs. In Section 3,
we introduce appropriate Landesman—Lazer type conditions and prove the existence of solutions
of (1)—(2) for f bounded. Finally, in Section 4 we study the general case assuming a Nagumo
type condition for f.

2. Some notations and preliminary results

We denote by C} the space of T-periodic functions in C'([0, T']). The results we recall in
this section are proved in [6]:

Proposition 2.1. For [ € C([0, T)), let us define

T
1
Gi(a) = ?/¢—1(a +1(1)) dt.
0

If ¢ satisfies conditions (3) and (4), then the function G| has the following properties:

(1) Forany fixedl € C([0, T]), the equation
Gi(a)=0

has a unique solution a = a(l).
(2) The function a:C([0,T]) — RY thus defined, is continuous and sends bounded sets into
bounded sets.

Moreover, the following continuation theorem provides an analogue of the Mawhin coinci-
dence degree theory (see [7]) for p-Laplacian type operators. An abstract version of the theory
for more general nonlinear operators can be found in [4].

Theorem 2.1. Let 2 C C } an open set. Assume that:

(1) For A € (0, 1] the problem
p') =rf(t uu) (%)

has no solutions on 052.
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(2) The equation
. T
F(u):T/f(t,u,O)dt:O
0

has no solutions in 92 NRY,
3) dp(F,2NRN,0) 50, 6)

where dp denotes the Brouwer degree.
Then problem (1)—(2) has at least one solution in S2.
3. Existence results for bounded f

Throughout this section, we shall assume that f is bounded. In this case, we first observe that
for any u € cL ifi) = fé f(s,u,u’)dr and 0 < A < 1 then |a(Al)| < k for some constant k
depending only on || f||c. Thus, if

o) =rf(t,u,u’)

then ¢ (u’'(t)) = a(Al) + Al(t), and we deduce that ¢ (u')| <k + T| f|c. Hence ||u’||c < M for
some constant M.
Our Landesman-Lazer type condition reads as follows:

Condition (F1): There exists a family {(U;, w;)};j=1,...xk where U; is an open subset of SN—1
and w; € S¥~!, such that {U;} covers SV¥~! and the limit

limsup(f(t,su,v),wj):= Fu,j(t) 7

§—>—+00
exists uniformly foru € U; and v € R with |v] < M (M as before).
Remark 3.1. In particular, condition (F1) holds trivially if f = p(t) — g(u), and radial limits for

g exist uniformly as in Theorem 1.1. As condition (F1) may be hard to verify, we shall give a
more explicit one (see condition (F2)).

Remark 3.2. If condition (F1) holds, a straightforward computation shows that the mapping
u > f, j(t) is continuous in U; for each fixed ¢. Indeed, if ¢ > 0 set 5o > 0 and a sequence
{$n}nen such that

(£t su,v), wj) = Fuj () < % for s > so,
and
fu,j(t) — (f(t,s,,u, v), wj> < g forn e N,
for every u € U; and |v| < M. Fixing n such that s,, > so we obtain:
| Fuj @) = Fuo i O] < | Fuj @) = (£ (@, 501, v), wj)|
+ (£, snue, v), wj) — (£, sau0, v), w;)|
+ |(f(t1 SpltQ, U), wj) - ?M(),j(t)|
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Taking & > 0 small enough, the second term in the right-hand side is less than % for |u —uo| < 8,
and it follows that |fu,j(t) — fuo,j M <e.

Theorem 3.3. Assume that f is bounded, and that condition (F1) holds. Then the periodic bound-
ary value problem (1)—(2) admits at least one solution, provided that:

(1) For each u € SN~ there exists j such that u € Uj and
T
/fu,,-(r)dr <0.
0

(2) There exists a constant Ry such that dg(F, Bg,0) # 0 for any R > Ry, where Bgr C RN
denotes the open ball of radius R centered at 0, and F is defined as in Theorem 2.1.

Remark 3.4. It follows from the proof below that F(u) # 0 for u € RN with |u| large. Thus, the
Brouwer degree in condition (2) is well defined.

Proof of Theorem 3.3. We claim that the periodic solutions of ¢ (') = Af (¢, u,u’) with
0 <A <1 are a priori bounded for the C I_norm. Indeed, otherwise there exist sequences
An € (0,1] and {u,} € C} such that ¢ (u},) = Ay f (¢, un, u),) and |lu,||o1 — oo. From the pre-
vious considerations |lu),||c < M, and thus u,, — u,(0) is bounded, |u,(0)| — oo. In particular,
TROTE
subsequence if necessary, we may assume that z,, — u uniformly in ¢ for some u € S¥~!. From

|u, ()| — oo uniformly in 7. We may assume that u, (¢) # 0, and define z, () = Taking a

condition (1), fOT fu,j dt < —e < 0 for some j, then for each fixed r we obtain:

(f (£, un @), 1, (D), wj) = Fu,j ()

= (£ (1. [un O |2n @), 1, @) wj) = Fop00.5 O + Fop00.5 O = Fuj(0)

<L
T

when 7 is large enough. Then by Fatou Lemma,

T T

limsupf<f(t, un (1), up, (1)), wj)dt < / Fu i+ L ar < 0,
n—o00 T
0

a contradiction since fOT F un(t),u, (1)) dt = fOT ¢ u),) (1) dt = 0. In the same way, it is easy
to see that F (u) # 0 for u € R with |u| large.
Thus, fixing £2 = Bg(0) C C } with R large enough, the proof follows from Theorem 2.1. O

In the next result we shall consider a particular case of the previous theorem. Let us first note
that condition (F1) implies, for any fixed x € R and ug € SV, that
limsup<f(t, X+ su,v), wj) = fu,j(t)
§——+00
for some j, uniformly for u# in a neighborhood of u¢ and |v| < M. The following condition is
stronger than (F1), since we impose a uniformity condition with respect to x. However, it has the
advantage that it allows to compute the Brouwer degree explicitly.
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Condition (F2): Let {e1,...,en}, {w,...,wn} C SN=1 pe two arbitrary bases of RY and as-
sume that the limits
limsup(f (7, x + se;, v), w;) := f; (1) (8)
§—>400
and
liminf( f (1, x + se;, v), wi) == f (1) 9)
§—>—00 —1

exist uniformly respect to x € span{e;: j #i}and v € R with |v] < M (M as before).

Remark 3.5. It is easy to see that (F2) implies (F1). Indeed, if u € SV 1 then u = x + we;
with x € span{e;: j #i} for some i and o # 0. Fix § < |/, and consider it =% + ae; € U :=
Bs(u) N SN=1. Then

limsup(f (7, sii, v), w;) = limsup(f (z, sX + sae;, v), w;) = fi (1)

§—>+00 §—>—+00

if « > 0, and

lim sup(f(t, S, v), —wi> = —1iminf<f(t, —sX — sae;, v), w,-) = —ii(l)

s—+00 —>—o0

if @ < 0, uniformly for # € U and |v| < M. Thus, the result follows from the compactness
of N1,

Theorem 3.6. Assume that f is bounded and that (F2) holds. Then problem (1)—(2) admits at
least one solution, provided that

T T

/]_‘,-(t)dt<0</ii(t)dt

0 0
foreachi=1,..., N.

Proof. From Remark 3.5 and the hypothesis, it is clear that condition (1) in Theorem 3.3 holds.
In order to compute the Brouwer degree dp(F, Br,0) for large R, consider the homotopy

H:[0,1] x RN — RN given by
H,u)=AFu)—(1—-1Cu,
where C :RY — RV is the isomorphism uniquely defined by the identities (Ce;, w j) =3&ij. Sup-

pose that H (A, u) =0 for some A € [0, 1] and |u| = R. Writing u = Z?’zl aje; we deduce that
|a;| is large for some i. Suppose for example that a; > 0, then

0=(AF@u) — (1 =0)Cu, w;)=AF@),w;)— (1= Aa.

On the other hand,
T T
limsup/<f(t,x + se;, 0), wi>dt < f fi(t)dt < 0.
§—>+00 o

Thus (F(u), w;) <0, which yields a contradiction. The proof is analogous if a; < 0. We con-
clude that, for R large,

dp(F, Bg,0) = (—1)Ndp(C, Bg,0) = £1,

and the proof is complete. O
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Example 3.7. Let
0i(t,u,v)
filtu,v) = it up) + 0
uj + 1
with u;, 6; bounded, and
limsup w; (¢, 5) 1= jz; (t),
§s——+00
liminf w; (¢, s) == @ .(t).
§——00 —i
Furthermore, assume that
T T
/ﬁ,-(t)dz <O</ﬁi(t)dt.
0 0
Thus, if we set {e,...,en} and {wy, ..., wy} as the canonical basis of RV, the assumptions of

the previous theorem hold, with J_‘i = i, i L=H Note, however, that radial limits of f do not
necessarily exist.

Remark 3.8. As in [12], from the mean value theorem for vector-valued integrals it follows that
if (1)—(2) admits a solution, then 0 belongs to the closed convex hull of ([0, T'] x R2M). Indeed,

if we consider the closed curve y (t) = f(t,u(t),u’(¢)), then %fOT y(t)dt = 0, and hence 0
belongs to the convex hull of the set {y(r): 0 <t < T}.

4. Nagumo-type conditions

In this section we study the existence of solutions for f not necessarily bounded, assuming
a Nagumo type condition. Let {z{, ..., zy} and {wy, ..., wy} be two arbitrary bases of RY and
assume that ¢ satisfies the following:

Condition (®): Foreachi =1, ..., N there exists a constant R; > 0 such that if (x, z;) = 0 then
(@ (x), wi)| < R;.

Remark 4.1. Condition (®) is trivially satisfied if ¢ (x) = (¢1(x1),...,dn(xn)) (uncoupled
case), taking {z,...,zn} and {wy, ..., wy} as the canonical basis of RY, and R; = 0. More
generally, one may consider any ¢ such that if x; = 0 then ¢;(x) = 0: for example, this is the
case of the vector valued p-Laplacian given by ¢ (x) = |x |P=2x.

Assuming (P), we state our Nagumo type condition in the following way:

Condition (N): For each i = 1,..., N there exists M; > R; and a function ; :[0, +00) —
(0, 4+00) such that
() wi | < i ([(@ ), wi)])
for arbitrary (r, u, v) € [0, T] x R*Y and

M;

/ ! ds>T.
Vi (s)

R;
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Thus, we obtain a priori bounds for the derivatives of the solutions. More precisely:

Lemma 4.2. Assume that (®) and (N) hold. Then there exists a constant M such that if u € C 1T
satisfies ¢ (') = Af (t,u,u’) for some A € [0, 1] then ||u'||c < M.

Proof. We shall prove that in fact |{(¢(u’), w;)| < M; for i = 1,..., N. Indeed, suppose for
example that (¢ (u' (7)), w;) > M; for some 7 and some i. As (u(0),z;) = (u(T), z;), by Rolle
Theorem we deduce that (u/(r), z;) = 0 for some ¢. Using (®) and the continuity of ¢ (u") we
conclude that {¢ (1’ (29)), w;) = R; for some 1y, and (¢ (1’ (¢1)), w;) = M; for some t;. Further-
more, we may suppose that (¢ (u'(¢)), w;) € (R;, M;) for any ¢ between fo and ;. Thus

M; ! 1 N ,
t .
T</ dS:f f(7uau)awl> dt
R; 0]

(
Vi (s) Vi({(@'(1)), wi))

By (N), this last term is less or equal that |f; — fo|, a contradiction. The proof is analogous if
(W' (), w;) < —M; for some f. O

Thus we have:

Corollary 4.1. Theorems 3.3 and 3.6 are still true if the condition ‘f bounded’ is replaced by
(@) and (N), and the constant M in respective conditions (F1) and (F2) is given by the previous
lemma.
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