Landesman-Lazer type conditions for a system of p-Laplacian like operators

Pablo Amster ${ }^{\text {a,b,* }}$, Pablo De Nápoli ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina
${ }^{\text {b }}$ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

Received 19 December 2005
Available online 27 April 2006
Submitted by P.G.L. Leach

Abstract

We study the existence of periodic solutions for a nonlinear second order system of ordinary differential equations of p-Laplacian type. Assuming suitable Nagumo and Landesman-Lazer type conditions we prove the existence of at least one solution applying topological degree methods. We extend a celebrated result by Nirenberg for resonant systems. © 2006 Elsevier Inc. All rights reserved.

Keywords: p-Laplacian systems; Landesman-Lazer conditions

1. Introduction

We study the nonlinear system of second order differential equations

$$
\begin{equation*}
\phi\left(u^{\prime}\right)^{\prime}=f\left(t, u, u^{\prime}\right), \quad t \in(0, T), \tag{1}
\end{equation*}
$$

under periodic boundary conditions

$$
\begin{equation*}
u(0)=u(T), \quad u^{\prime}(0)=u^{\prime}(T) \tag{2}
\end{equation*}
$$

Following the pioneering work of Manásevich and Mawhin [6] we assume that $\phi: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ satisfies the following conditions:

[^0](1) For any $x_{1}, x_{2} \in \mathbb{R}$ with $x_{1} \neq x_{2}$, we have that
\[

$$
\begin{equation*}
\left\langle\phi\left(x_{1}\right)-\phi\left(x_{2}\right), x_{1}-x_{2}\right\rangle>0 . \tag{3}
\end{equation*}
$$

\]

(2) There exists a function $\alpha:(0,+\infty) \rightarrow(0, \infty)$ such that $\alpha(s) \rightarrow+\infty$ as $s \rightarrow+\infty$ and

$$
\begin{equation*}
\langle\phi(x), x\rangle \geqslant \alpha(|x|)|x| \quad \text { for all } x \in \mathbb{R}^{N} \tag{4}
\end{equation*}
$$

We remark that (3) and (4) imply that ϕ is an homeomorphism onto \mathbb{R}^{N} (for details see [6]). Equation (1) is usually referred in the literature as a p-Laplacian type equation; indeed, the most standard examples in which the previous conditions hold are the N-dimensional p-Laplacian given by $\phi(x)=|x|^{p-2} x$ (with $p>1$), and a system of one-dimensional p-Laplacians, namely: $\phi(x)=\left(\left|x_{1}\right|^{p_{1}-2} x_{1}, \ldots,\left|x_{N}\right|^{p_{N}-2} x_{N}\right)\left(p_{j}>1\right)$.

Without loss of generality, we may assume that $\phi(0)=0$. For simplicity, we shall also assume that $f:[0, T] \times \mathbb{R}^{2 N} \rightarrow \mathbb{R}^{N}$ is a continuous function.

We obtain solutions of (1)-(2) under Landesman-Lazer type conditions applying topological degree methods [7].

There exists a vast literature on Landesman-Lazer type conditions for resonant problems, starting at the pioneering work [5] for a resonant elliptic second order scalar equation under Dirichlet conditions (for a survey on Landesman-Lazer conditions see, e.g., [8]). In [10], Nirenberg extended these results to systems of elliptic equations. Nirenberg's result can be adapted to our problem (1)-(2) in the following way:

Theorem 1.1. Let $\phi(x)=x$ and $f\left(t, u, u^{\prime}\right)=p(t)-c u^{\prime}-g(u)$, and assume that the radial limits $g_{v}:=\lim _{r \rightarrow+\infty} g(r v)$ exist uniformly respect to $v \in S^{N-1}$, the unit sphere of \mathbb{R}^{N}. Then (1)-(2) has at least one T-periodic solution if the following conditions hold:

- $g_{v} \neq \bar{p}:=\frac{1}{T} \int_{0}^{T} p(t) d t$ for any $v \in S^{N-1}$.
- The degree of the mapping $\theta: S^{N-1} \rightarrow S^{N-1}$ given by

$$
\theta(v)=\frac{g_{v}-\bar{p}}{\left|g_{v}-\bar{p}\right|}
$$

is different from 0 .
In [12] Ortega and Sánchez gave an interesting example which shows that, in some sense, the existence of radial limits of g is necessary. More precisely, they have shown a system with ϕ and f as in Theorem 1.1 for which no periodic solution exists, although the following conditions are fulfilled for some $R>0$:

- $g(u) \neq \bar{p}$ for $|u| \geqslant R$.
- The degree of the mapping $\theta_{R}: S^{N-1} \rightarrow S^{N-1}$ given by

$$
\theta_{R}(v)=\frac{g(R v)-\bar{p}}{|g(R v)-\bar{p}|}
$$

is different from 0 .
Despite this example, we shall show that the assumption on the existence of radial limits can be replaced by a weaker condition (see condition (F1)).

As usual, when topological methods are applied, it is essential to obtain a priori bounds for the solutions. When f is a bounded function, a priori bounds can be deduced directly from Landesman-Lazer type conditions. However, if f is unbounded as a function of u^{\prime}, an extra assumption is required. We introduce a Nagumo type condition, which allows to establish a priori bounds for the derivatives. Nagumo condition was first introduced in [11] for a (linear) scalar equation, and generalized in many ways for systems of linear equations (see, e.g., [1]). A Nagumo condition for a scalar equation and general ϕ was introduced for example in [2]. The case of an N-dimensional p-Laplacian was studied in [9], where a priori bounds are obtained using Nagumo and Hartman type conditions. In this paper we shall assume a slightly different condition (see condition (N)), which can be regarded as an extension of the Nagumo assumption introduced in [3].

The paper is organized as follows. In Section 2 we give some notations and preliminary results. In particular, we recall the continuation theorem that will be used in the proofs. In Section 3, we introduce appropriate Landesman-Lazer type conditions and prove the existence of solutions of (1)-(2) for f bounded. Finally, in Section 4 we study the general case assuming a Nagumo type condition for f.

2. Some notations and preliminary results

We denote by C_{T}^{1} the space of T-periodic functions in $C^{1}([0, T])$. The results we recall in this section are proved in [6]:

Proposition 2.1. For $l \in C([0, T])$, let us define

$$
G_{l}(a)=\frac{1}{T} \int_{0}^{T} \phi^{-1}(a+l(t)) d t
$$

If ϕ satisfies conditions (3) and (4), then the function G_{l} has the following properties:
(1) For any fixed $l \in C([0, T])$, the equation

$$
G_{l}(a)=0
$$

has a unique solution $a=a(l)$.
(2) The function $a: C([0, T]) \rightarrow \mathbb{R}^{N}$ thus defined, is continuous and sends bounded sets into bounded sets.

Moreover, the following continuation theorem provides an analogue of the Mawhin coincidence degree theory (see [7]) for p-Laplacian type operators. An abstract version of the theory for more general nonlinear operators can be found in [4].

Theorem 2.1. Let $\Omega \subset C_{T}^{1}$ an open set. Assume that:
(1) For $\lambda \in(0,1]$ the problem

$$
\begin{equation*}
\phi\left(u^{\prime}\right)^{\prime}=\lambda f\left(t, u, u^{\prime}\right) \tag{5}
\end{equation*}
$$

has no solutions on $\partial \Omega$.
(2) The equation

$$
F(u)=\frac{1}{T} \int_{0}^{T} f(t, u, 0) d t=0
$$

has no solutions in $\partial \Omega \cap \mathbb{R}^{N}$.

$$
\begin{equation*}
d_{B}\left(F, \Omega \cap \mathbb{R}^{N}, 0\right) \neq 0, \tag{6}
\end{equation*}
$$

where d_{B} denotes the Brouwer degree.
Then problem (1)-(2) has at least one solution in Ω.

3. Existence results for bounded f

Throughout this section, we shall assume that f is bounded. In this case, we first observe that for any $u \in C_{T}^{1}$, if $l(t)=\int_{0}^{t} f\left(s, u, u^{\prime}\right) d t$ and $0 \leqslant \lambda \leqslant 1$ then $|a(\lambda l)| \leqslant k$ for some constant k depending only on $\|f\|_{C}$. Thus, if

$$
\phi\left(u^{\prime}\right)^{\prime}=\lambda f\left(t, u, u^{\prime}\right)
$$

then $\phi\left(u^{\prime}(t)\right)=a(\lambda l)+\lambda l(t)$, and we deduce that $\left|\phi\left(u^{\prime}\right)\right| \leqslant k+T\|f\|_{C}$. Hence $\left\|u^{\prime}\right\|_{C} \leqslant M$ for some constant M.

Our Landesman-Lazer type condition reads as follows:
Condition (F1): There exists a family $\left\{\left(U_{j}, w_{j}\right)\right\}_{j=1, \ldots, K}$ where U_{j} is an open subset of S^{N-1} and $w_{j} \in S^{N-1}$, such that $\left\{U_{j}\right\}$ covers S^{N-1} and the limit

$$
\begin{equation*}
\limsup _{s \rightarrow+\infty}\left\langle f(t, s u, v), w_{j}\right\rangle:=\bar{f}_{u, j}(t) \tag{7}
\end{equation*}
$$

exists uniformly for $u \in U_{j}$ and $v \in \mathbb{R}^{N}$ with $|v| \leqslant M$ (M as before).
Remark 3.1. In particular, condition (F1) holds trivially if $f=p(t)-g(u)$, and radial limits for g exist uniformly as in Theorem 1.1. As condition (F1) may be hard to verify, we shall give a more explicit one (see condition (F2)).

Remark 3.2. If condition (F1) holds, a straightforward computation shows that the mapping $u \mapsto \bar{f}_{u, j}(t)$ is continuous in U_{j} for each fixed t. Indeed, if $\varepsilon>0$ set $s_{0}>0$ and a sequence $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ such that

$$
\left\langle f(t, s u, v), w_{j}\right\rangle-\bar{f}_{u, j}(t)<\frac{\varepsilon}{3} \quad \text { for } s \geqslant s_{0}
$$

and

$$
\bar{f}_{u, j}(t)-\left\langle f\left(t, s_{n} u, v\right), w_{j}\right\rangle<\frac{\varepsilon}{3} \quad \text { for } n \in \mathbb{N},
$$

for every $u \in U_{j}$ and $|v| \leqslant M$. Fixing n such that $s_{n} \geqslant s_{0}$ we obtain:

$$
\begin{aligned}
\left|\bar{f}_{u, j}(t)-\bar{f}_{u_{0}, j}(t)\right| \leqslant & \left|\bar{f}_{u, j}(t)-\left\langle f\left(t, s_{n} u, v\right), w_{j}\right\rangle\right| \\
& +\left|\left\langle f\left(t, s_{n} u, v\right), w_{j}\right\rangle-\left\langle f\left(t, s_{n} u_{0}, v\right), w_{j}\right\rangle\right| \\
& +\left|\left\langle f\left(t, s_{n} u_{0}, v\right), w_{j}\right\rangle-\bar{f}_{u_{0}, j}(t)\right| .
\end{aligned}
$$

Taking $\delta>0$ small enough, the second term in the right-hand side is less than $\frac{\varepsilon}{3}$ for $\left|u-u_{0}\right|<\delta$, and it follows that $\left|\bar{f}_{u, j}(t)-\bar{f}_{u_{0}, j}(t)\right|<\varepsilon$.

Theorem 3.3. Assume that f is bounded, and that condition $(\mathrm{F} 1)$ holds. Then the periodic boundary value problem (1)-(2) admits at least one solution, provided that:
(1) For each $u \in S^{N-1}$ there exists j such that $u \in U_{j}$ and

$$
\int_{0}^{T} \bar{f}_{u, j}(t) d t<0
$$

(2) There exists a constant R_{0} such that $d_{B}\left(F, B_{R}, 0\right) \neq 0$ for any $R \geqslant R_{0}$, where $B_{R} \subset \mathbb{R}^{N}$ denotes the open ball of radius R centered at 0 , and F is defined as in Theorem 2.1.

Remark 3.4. It follows from the proof below that $F(u) \neq 0$ for $u \in \mathbb{R}^{N}$ with $|u|$ large. Thus, the Brouwer degree in condition (2) is well defined.

Proof of Theorem 3.3. We claim that the periodic solutions of $\phi\left(u^{\prime}\right)^{\prime}=\lambda f\left(t, u, u^{\prime}\right)$ with $0<\lambda \leqslant 1$ are a priori bounded for the C^{1}-norm. Indeed, otherwise there exist sequences $\lambda_{n} \in(0,1]$ and $\left\{u_{n}\right\} \in C_{T}^{1}$ such that $\phi\left(u_{n}^{\prime}\right)^{\prime}=\lambda_{n} f\left(t, u_{n}, u_{n}^{\prime}\right)$ and $\left\|u_{n}\right\|_{C^{1}} \rightarrow \infty$. From the previous considerations $\left\|u_{n}^{\prime}\right\|_{C} \leqslant M$, and thus $u_{n}-u_{n}(0)$ is bounded, $\left|u_{n}(0)\right| \rightarrow \infty$. In particular, $\left|u_{n}(t)\right| \rightarrow \infty$ uniformly in t. We may assume that $u_{n}(t) \neq 0$, and define $z_{n}(t)=\frac{u_{n}(t)}{\left|u_{n}(t)\right| \text {. Taking a }}$ subsequence if necessary, we may assume that $z_{n} \rightarrow u$ uniformly in t for some $u \in S^{N-1}$. From condition (1), $\int_{0}^{T} \bar{f}_{u, j} d t<-\varepsilon<0$ for some j, then for each fixed t we obtain:

$$
\begin{aligned}
& \left\langle f\left(t, u_{n}(t), u_{n}^{\prime}(t)\right), w_{j}\right\rangle-\bar{f}_{u, j}(t) \\
& \quad=\left\langle f\left(t,\left|u_{n}(t)\right| z_{n}(t), u_{n}^{\prime}(t)\right), w_{j}\right\rangle-\bar{f}_{z_{n}(t), j}(t)+\bar{f}_{z_{n}(t), j}(t)-\bar{f}_{u, j}(t) \\
& \quad<\frac{\varepsilon}{T}
\end{aligned}
$$

when n is large enough. Then by Fatou Lemma,

$$
\limsup _{n \rightarrow \infty} \int_{0}^{T}\left\langle f\left(t, u_{n}(t), u_{n}^{\prime}(t)\right), w_{j}\right\rangle d t \leqslant \int_{0}^{T} \bar{f}_{u, j}(t)+\frac{\varepsilon}{T} d t<0
$$

a contradiction since $\int_{0}^{T} f\left(t, u_{n}(t), u_{n}^{\prime}(t)\right) d t=\int_{0}^{T} \phi\left(u_{n}^{\prime}\right)^{\prime}(t) d t=0$. In the same way, it is easy to see that $F(u) \neq 0$ for $u \in \mathbb{R}^{N}$ with $|u|$ large.

Thus, fixing $\Omega=B_{R}(0) \subset C_{T}^{1}$ with R large enough, the proof follows from Theorem 2.1.
In the next result we shall consider a particular case of the previous theorem. Let us first note that condition (F1) implies, for any fixed $x \in \mathbb{R}^{N}$ and $u_{0} \in S^{N-1}$, that

$$
\limsup _{s \rightarrow+\infty}\left\langle f(t, x+s u, v), w_{j}\right\rangle=\bar{f}_{u, j}(t)
$$

for some j, uniformly for u in a neighborhood of u_{0} and $|v| \leqslant M$. The following condition is stronger than (F1), since we impose a uniformity condition with respect to x. However, it has the advantage that it allows to compute the Brouwer degree explicitly.

Condition (F2): Let $\left\{e_{1}, \ldots, e_{N}\right\},\left\{w_{1}, \ldots, w_{N}\right\} \subset S^{N-1}$ be two arbitrary bases of \mathbb{R}^{N}, and assume that the limits

$$
\begin{equation*}
\limsup _{s \rightarrow+\infty}\left\langle f\left(t, x+s e_{i}, v\right), w_{i}\right\rangle:=\bar{f}_{i}(t) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf _{s \rightarrow-\infty}\left\langle f\left(t, x+s e_{i}, v\right), w_{i}\right\rangle:=\underline{f}_{i}(t) \tag{9}
\end{equation*}
$$

exist uniformly respect to $x \in \operatorname{span}\left\{e_{j}: j \neq i\right\}$ and $v \in \mathbb{R}^{N}$ with $|v| \leqslant M$ (M as before).
Remark 3.5. It is easy to see that (F2) implies (F1). Indeed, if $u \in S^{N-1}$ then $u=x+\alpha e_{i}$ with $x \in \operatorname{span}\left\{e_{j}: j \neq i\right\}$ for some i and $\alpha \neq 0$. Fix $\delta<|\alpha|$, and consider $\tilde{u}=\tilde{x}+\tilde{\alpha} e_{i} \in U:=$ $B_{\delta}(u) \cap S^{N-1}$. Then

$$
\limsup _{s \rightarrow+\infty}\left\langle f(t, s \tilde{u}, v), w_{i}\right\rangle=\limsup _{s \rightarrow+\infty}\left\langle f\left(t, s \tilde{x}+s \tilde{\alpha} e_{i}, v\right), w_{i}\right\rangle=\bar{f}_{i}(t)
$$

if $\alpha>0$, and

$$
\limsup _{s \rightarrow+\infty}\left\langle f(t, s \tilde{u}, v),-w_{i}\right\rangle=-\liminf _{s \rightarrow-\infty}\left\langle f\left(t,-s \tilde{x}-s \tilde{\alpha} e_{i}, v\right), w_{i}\right\rangle=-\underline{f}_{i}(t)
$$

if $\alpha<0$, uniformly for $\tilde{u} \in U$ and $|v| \leqslant M$. Thus, the result follows from the compactness of S^{N-1}.

Theorem 3.6. Assume that f is bounded and that (F2) holds. Then problem (1)-(2) admits at least one solution, provided that

$$
\int_{0}^{T} \bar{f}_{i}(t) d t<0<\int_{0}^{T} \underline{f}_{i}(t) d t
$$

for each $i=1, \ldots, N$.
Proof. From Remark 3.5 and the hypothesis, it is clear that condition (1) in Theorem 3.3 holds. In order to compute the Brouwer degree $d_{B}\left(F, B_{R}, 0\right)$ for large R, consider the homotopy $H:[0,1] \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ given by

$$
H(\lambda, u)=\lambda F(u)-(1-\lambda) C u,
$$

where $C: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is the isomorphism uniquely defined by the identities $\left\langle C e_{i}, w_{j}\right\rangle=\delta_{i j}$. Suppose that $H(\lambda, u)=0$ for some $\lambda \in[0,1]$ and $|u|=R$. Writing $u=\sum_{j=1}^{N} a_{j} e_{j}$ we deduce that $\left|a_{i}\right|$ is large for some i. Suppose for example that $a_{i} \gg 0$, then

$$
0=\left\langle\lambda F(u)-(1-\lambda) C u, w_{i}\right\rangle=\lambda\left\langle F(u), w_{i}\right\rangle-(1-\lambda) a_{i}
$$

On the other hand,

$$
\limsup _{s \rightarrow+\infty} \int_{0}^{T}\left\langle f\left(t, x+s e_{i}, 0\right), w_{i}\right\rangle d t \leqslant \int_{0}^{T} \bar{f}_{i}(t) d t<0 .
$$

Thus $\left\langle F(u), w_{i}\right\rangle<0$, which yields a contradiction. The proof is analogous if $a_{i} \ll 0$. We conclude that, for R large,

$$
d_{B}\left(F, B_{R}, 0\right)=(-1)^{N} d_{B}\left(C, B_{R}, 0\right)= \pm 1
$$

and the proof is complete.

Example 3.7. Let

$$
f_{i}(t, u, v)=\mu_{i}\left(t, u_{i}\right)+\frac{\theta_{i}(t, u, v)}{u_{i}^{2}+1}
$$

with μ_{i}, θ_{i} bounded, and

$$
\begin{aligned}
& \limsup _{s \rightarrow+\infty} \mu_{i}(t, s):=\bar{\mu}_{i}(t), \\
& \liminf _{s \rightarrow-\infty} \mu_{i}(t, s):=\underline{\mu}_{i}(t) .
\end{aligned}
$$

Furthermore, assume that

$$
\int_{0}^{T} \bar{\mu}_{i}(t) d t<0<\int_{0}^{T} \underline{\mu}_{i}(t) d t
$$

Thus, if we set $\left\{e_{1}, \ldots, e_{N}\right\}$ and $\left\{w_{1}, \ldots, w_{N}\right\}$ as the canonical basis of \mathbb{R}^{N}, the assumptions of the previous theorem hold, with $\bar{f}_{i}=\bar{\mu}_{i}, \underline{f}_{i}=\underline{\mu}_{i}$. Note, however, that radial limits of f do not necessarily exist.

Remark 3.8. As in [12], from the mean value theorem for vector-valued integrals it follows that if (1)-(2) admits a solution, then 0 belongs to the closed convex hull of $f\left([0, T] \times \mathbb{R}^{2 N}\right)$. Indeed, if we consider the closed curve $\gamma(t)=f\left(t, u(t), u^{\prime}(t)\right)$, then $\frac{1}{T} \int_{0}^{T} \gamma(t) d t=0$, and hence 0 belongs to the convex hull of the set $\{\gamma(t): 0 \leqslant t \leqslant T\}$.

4. Nagumo-type conditions

In this section we study the existence of solutions for f not necessarily bounded, assuming a Nagumo type condition. Let $\left\{z_{1}, \ldots, z_{N}\right\}$ and $\left\{w_{1}, \ldots, w_{N}\right\}$ be two arbitrary bases of \mathbb{R}^{N} and assume that ϕ satisfies the following:

Condition (Φ) : For each $i=1, \ldots, N$ there exists a constant $R_{i} \geqslant 0$ such that if $\left\langle x, z_{i}\right\rangle=0$ then $\left|\left\langle\phi(x), w_{i}\right\rangle\right| \leqslant R_{i}$.

Remark 4.1. Condition (Φ) is trivially satisfied if $\phi(x)=\left(\phi_{1}\left(x_{1}\right), \ldots, \phi_{N}\left(x_{N}\right)\right)$ (uncoupled case), taking $\left\{z_{1}, \ldots, z_{N}\right\}$ and $\left\{w_{1}, \ldots, w_{N}\right\}$ as the canonical basis of \mathbb{R}^{N}, and $R_{i}=0$. More generally, one may consider any ϕ such that if $x_{i}=0$ then $\phi_{i}(x)=0$: for example, this is the case of the vector valued p-Laplacian given by $\phi(x)=|x|^{p-2} x$.

Assuming (Φ), we state our Nagumo type condition in the following way:
Condition (N) : For each $i=1, \ldots, N$ there exists $M_{i}>R_{i}$ and a function $\psi_{i}:[0,+\infty) \rightarrow$ $(0,+\infty)$ such that

$$
\left|\left\langle f(t, u, v), w_{i}\right\rangle\right| \leqslant \psi_{i}\left(\left|\left\langle\phi(v), w_{i}\right\rangle\right|\right)
$$

for arbitrary $(t, u, v) \in[0, T] \times \mathbb{R}^{2 N}$ and

$$
\int_{R_{i}}^{M_{i}} \frac{1}{\psi_{i}(s)} d s>T
$$

Thus, we obtain a priori bounds for the derivatives of the solutions. More precisely:
Lemma 4.2. Assume that (Φ) and (N) hold. Then there exists a constant M such that if $u \in C_{T}^{1}$ satisfies $\phi\left(u^{\prime}\right)^{\prime}=\lambda f\left(t, u, u^{\prime}\right)$ for some $\lambda \in[0,1]$ then $\left\|u^{\prime}\right\|_{C} \leqslant M$.

Proof. We shall prove that in fact $\left|\left\langle\phi\left(u^{\prime}\right), w_{i}\right\rangle\right|<M_{i}$ for $i=1, \ldots, N$. Indeed, suppose for example that $\left\langle\phi\left(u^{\prime}(\tilde{t})\right), w_{i}\right\rangle \geqslant M_{i}$ for some \tilde{t} and some i. As $\left\langle u(0), z_{i}\right\rangle=\left\langle u(T), z_{i}\right\rangle$, by Rolle Theorem we deduce that $\left\langle u^{\prime}(t), z_{i}\right\rangle=0$ for some t. Using (Φ) and the continuity of $\phi\left(u^{\prime}\right)$ we conclude that $\left\langle\phi\left(u^{\prime}\left(t_{0}\right)\right), w_{i}\right\rangle=R_{i}$ for some t_{0}, and $\left\langle\phi\left(u^{\prime}\left(t_{1}\right)\right), w_{i}\right\rangle=M_{i}$ for some t_{1}. Furthermore, we may suppose that $\left\langle\phi\left(u^{\prime}(t)\right), w_{i}\right\rangle \in\left(R_{i}, M_{i}\right)$ for any t between t_{0} and t_{1}. Thus

$$
T<\int_{R_{i}}^{M_{i}} \frac{1}{\psi_{i}(s)} d s=\int_{t_{0}}^{t_{1}} \frac{\lambda\left\langle f\left(t, u, u^{\prime}\right), w_{i}\right\rangle}{\psi_{i}\left(\left\langle\phi\left(u^{\prime}(t)\right), w_{i}\right\rangle\right)} d t .
$$

By (N), this last term is less or equal that $\left|t_{1}-t_{0}\right|$, a contradiction. The proof is analogous if $\left\langle\phi\left(u^{\prime}(\tilde{t})\right), w_{i}\right\rangle \leqslant-M_{i}$ for some \tilde{t}.

Thus we have:
Corollary 4.1. Theorems 3.3 and 3.6 are still true if the condition ' f bounded' is replaced by (Φ) and (N), and the constant M in respective conditions $(\mathrm{F} 1)$ and $(\mathrm{F} 2)$ is given by the previous lemma.

References

[1] P. Amster, Nagumo and Landesman-Lazer type conditions for nonlinear second order systems, NoDEA Nonlinear Differential Equations Appl., in press.
[2] A. Cabada, R.L. Pouso, Existence result for the problem $\left(\phi\left(u^{\prime}\right)\right)^{\prime}=f\left(t, u, u^{\prime}\right)$ with periodic and Neumann boundary conditions, in: Proc. of the Second World Congress of Nonlinear Analysts, Nonlinear Anal. 30 (3) (1997) 1733-1742.
[3] D. Franco, D. O'Regan, Existence of solutions to second order problems with nonlinear boundary conditions, in: Proc. of the Fourth Int. Conf. on Dynamical Systems and Diff. Equations, Discrete Contin. Dyn. Syst. (2003) 273280.
[4] W.G. Ge, J.L. Ren, An extension of Mawhin's continuation theorem and its application to boundary value problems with a p-Laplacian, Nonlinear Anal. 58 (4) (2004) 477-488.
[5] E. Landesman, A. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970) 609-623.
[6] R. Manásevich, J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian like operators, J. Differential Equations 145 (2) (1998) 367-393.
[7] J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, NSF-CBMS Regional Conf. Math., vol. 40, Amer. Math. Soc., Providence, RI, 1979.
[8] J. Mawhin, Landesman-Lazer conditions for boundary value problems: A nonlinear version of resonance, Bol. Soc. Esp. Mat. Apl. 16 (2000) 45-65.
[9] J. Mawhin, A.J. Ureña, A Hartman-Nagumo inequality for the vector ordinary p-Laplacian and applications to nonlinear boundary value problems, J. Inequal. Appl. 7 (5) (2002) 701-725.
[10] L. Nirenberg, Generalized degree and nonlinear problems, in: E.H. Zarantonello (Ed.), Contributions to Nonlinear Functional Analysis, Academic Press, New York, 1971, pp. 1-9.
[11] M. Nagumo, Über die Differentialgleichung $y^{\prime \prime}=f\left(t, y, y^{\prime}\right)$, Proc. Phys. Math. Soc. Japan 19 (1937) 861-866.
[12] R. Ortega, L. Sánchez, Periodic solutions of forced oscillators with several degrees of freedom, Bull. London Math. Soc. 34 (2002) 308-318.

[^0]: * Corresponding author.

 E-mail addresses: pamster@dm.uba.ar (P. Amster), pdenapo@dm.uba.ar (P. De Nápoli).

