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Abstract

In this work we analyze the existence and regularity of the solution of a nonhomogeneous Neu-
mann problem for the Poisson equation in a plane dof?awith an external cusp. In order to prove
that there exists a unique solution #hl(2) using the Lax—Milgram theorem we need to apply a
trace theorem. Sinc® is not a Lipschitz domain, the standard trace theoren¥#b¢£2) does not
apply, in fact the restriction of/1(£2) functions is not necessarily ih2(3£2). So, we introduce a
trace theorem by using weighted Sobolev norm&irlnder appropriate assumptions we prove that
the solution of our problem is iﬂz(.Q) and we obtain an a priori estimate for the second derivatives
of the solution.
0 2005 Elsevier Inc. All rights reserved.

Y Supported by ANPCyT under grant PICT 03-05009, by CONICET under grant PIP 0660/98 and Fundacién
Antorchas.
- Corresponding author.
E-mail addresses: gacosta@ungs.edu.ar (G. Acosta), garmenta@dm.uba.ar (M.G. Armentano),
rduran@dm.uba.ar (R.G. Duran), aldoc7@dm.uba.ar (A.L. Lombardi).
1 The first author is partially supported by PICT 03-10724.
2 The second and third authors are members of CONICET, Argentina.

0022-247X/$ — see front mattér 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2005.01.065



398 G. Acosta et al. / J. Math. Anal. Appl. 310 (2005) 397411

Keywords: Cuspidal domains; Traces; Neumann problem; Regularity

1. Introduction

This paper deals with an elliptic equation in a domain with an external cusp. Since this
kind of domains are not Lipschitz, the standard arguments to prove existence cannot be
applied when nonhomogeneous Neumann boundary conditions are imposed on some part
of the boundary. Indeed, to apply the Lax—Milgram theorem in this case one needs to use
some trace theorem for Sobolev spaces. However, simple examples show that, for some
cusps, there are functions #i1(£2) such that their restriction to the boundary are not in
L2(382). Therefore the classic trace theorems for Lipschitz domains are not valid in this
case.

We consider the following model problem: I&t be the plane domain defined by

.Q:{(x,y): O<x<1, 0<y<<p(x)},

with ¢ € C2(0,1), ¢, ¢, ¢” > 00n (0, 1), ¢(0) = ¢'(0) = 0 (a typical example i®(x) =
x% a>1),andl" = I U I> U I'z the boundary of2, where

nn={0<x<1, y=0}, DH={x=1 0<y<
and
={0<x <1, y=pM)}

(see Fig. 1).
We seek: such that
—Au=f ing,
d
5, =0 onrlt,
u=>0 only,

=g only

(1.1)

(=5

wherev denotes the outside normal .

€

T,

Fig. 1. Cuspidal domain.
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In [6] the authors characterize the traces of the Sobolev sg#édg2), 1< p < oo,
for domains of the class considered here by using some weighted norm on the boundary.
Existence of solutions of (1.1) can be derived from their results under certain hypothesis
on the data. In order to obtain existence results for more general data we present a different
kind of trace results by introducing a weighted Sobolev spac2 such that the restriction
to the boundary of functions in that space ard.in(I").

Once the existence of a solution is known, the question about its regularity arises
naturally. For the Poisson problem with homogeneous boundary conditions on cuspidal
domains it is known that, if the right-hand side of the equation 46¢2), then the solu-
tion belongs taH2(£2) (see [2,5]). We show that the technique introduced by Khelif in [5]
can be extended to treat nonhomogeneous Neumann type boundary conditions. In this way
we prove that the solution of our model problem belongs to the sHA¢E).

2. Existence and uniqueness of solution

In this section we prove some trace results and apply them to obtain existence and
uniqueness of solution of our model problem using the Lax—Milgram theorem.

LetV = {v e HY(£2): v|r, = 0}. The variational problem associated with (1.1) is given
by: Findu € V such that

a(u,v)=L1(v)+ La(v) YveV,
where

a(u,v):/Vu~Vv, Ll(v)szv and Lz(v)=/gv.
2 Q I3
Using the Poincaré inequality, it is easy to see that the bilinear farm) is coercive
and continuous ol . Therefore, in order to prove that there exists a unique solutidn in
using the Lax—Milgram theorem, we need to impose conditions on thefdaa ¢ which
guarantee that the linear operatdrsand L, are continuous oY . For the continuity of
L1 itis enough to assume thgte L?(£2). On the other hand, the continuity &6 when
g € L3(I'3), in the case of a Lipschitz domain, is proved by using well-known results on
restrictions of H1(£2) to the boundary. However, since our domain is not Lipschitz, the
standard trace theorem faf1(s2) does not apply, in fact, the following example shows
that for some cusps the restriction 8 (£2) functions is not necessarily ib?(I").

Example 2.1. Considerp(x) = x%, « > 1, and the functiom(x, y) = x~7. Then, an easy
computation shows thate H(£2) iff y < 25%. Howeveru e L2(I") iff y < 3. So, for
a > 2, taking3 <y < %51, we have examples of functions which arefit(s2) and such

that their restrictions to the boundary are noLf(I").

In [6], Mazya et al. characterize the space of tracesVdf?(£2), for non-Lipschitz
domainss2 of the type considered here, by using some weighted norms on the boundary.
In particular, it follows from their results that there exists a constastich that

Jug? |20 < Clull pace- 2.1)
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Indeed, the left-hand side agrees with the first term in the riprm-wg(g), with p = 2,

introduced in [6, p. 108] which, as proved in that paper, is bounded b theorm.
The inequality (2.1) can be used to prove the continuit ptinder the assumption that

gp~% € L2(I3), in fact we have

fgw‘%uw%

I3

_1 1
|L2(w)| = <|lgp~2 ||L2(1"3) |ug? HLZ(F3)

< C||g<p_% ||L2(F3) lull 2 (2)-

Let us observe that assuming continuitygothe conditiong<p‘% € L?(I3) implies thatg

has to vanish at the origin, which does not seem to be a natural condition for the existence of
a solution. Therefore, our goal is to relax the assumptiog by introducing a trace result

of a different nature of those in [6]. More precisely, we want to give sufficient conditions to
have traces ir.? of the boundary. In order to do that we introduce the weighted Sobolev
spacer”’(Q) as the closure of > (£2) in the norm

flull® 1p(9) ””‘9" HLP(_Q) + ” Vugz) )”LP(.Q)

In what follows we use the lettef to denote a generic constant which depends only
on p.

Lemma 2.1. There exists a constant C such that for any u € Wj’p(.(z) with 1< p < oo,

lullzecry < C([lup™ ’ ”LP(.Q) + ||Vu(p ”LP(.Q))

Proof. We will use the following change of variables which is a generalization of that
introduced by Grisvard [3] for power type cusps. ket andn = then, 2 is

transformed in2 given by

@ (X) rp(x)

0<77<1}

—{(E,n)-é TS

see Fig. 2. ~
We denote by = {(§,71): &€ >

G3={¢Em: £> 75, n=1).
First we give the proof for the cage= 1. Writing v(&, n) = u(x, y) we have

1 1
/|u|=/}u(x,(p(x))|,/1+g0’(x)2dx<C/|u(x,<p(x))|dx
I3 0 0

=0}, 2 ={(5,n): § = 5. 0<n<1and

@' (1)

_ f lu(E. )] (€) de. 2.2)
w’%l)
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Fig. 2.

where

¢'(x)?

¢ (x)

Applying the following standard trace inequality {2

)
L) ’

a0
Il 2y < c(uwnLl@ + H o

J(¢) = (2.3)

to the functionw (&, n) = v(&, n)J(€), we get

) 5 ’
/ v ]I (€)de < c([|v<s, n)|J(E)d$dn+/‘ ”fn ) ‘J(S)dédn)
1 Q Q2

)

and therefore, changing variables and using (2.2) and (2.3), we have

-1 3u
lul <C lulp(x) ~dxdy + 3 dxdy|.
I3 2 Q Y

Applying the same argument di and a standard trace theorem ) we obtain

||M||L1(r) < C(”WP_:L”Ll(Q) + ”VMHLl(_Q)) (2-4)

concluding the proof for the cage= 1.
Now, for anyp such that 1< p < oo, we use (2.4) for” to obtain

/|u|"<c(/|u|"¢l+p/|u|P1|W|>
r 2 2
_1 1
=C(f|u|f’<pl+p/|u|f’1¢ q|ww>,
2 22

whereq = %, and therefore, the proof concludes by using the inequality< %a‘f +
%b” in the last term on the right-hand sider
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Remark 2.1. With an argument analogous to that used in the previous lemma one can
prove the following result, which is stronger than (2.1):

1
lue? |, < ClIuliri) + 1Vu@llLre)-

Existence results for more general datean be obtained from the previous lemma and
embedding theorems. During the rest of this section we will restrict ourselves to the case
of power type cusps, for which embedding theorems are well known.

Let ¢(x) = x¥ with « > 1. In the next theorem we prove that the restrictiorHdf(£2)
functions are inL?(I") under appropriate assumptions on the values ahd p. In the
proof we will make use of the inclusion

2 +1)
a—1
which is a particular case of the results given in [1].

HY2)c L' (2) for2<r< (2.5)

Theorem 2.1. Letu e HY(2)and1< p<2. Ifa <1+ 2 2 thenu € LP(I") and
lullerry < Cllull gig)- (2.6)

Proof. From Lemma 2.1 we know that

oz(’7

lullrry < C(”’”_% ”LI’(Q) + HVux ”LI’(Q))

C(Jux™7 | Loy + IVEllLP (@) (2.7

To bound the first term on the right-hand side of (2.7) we use the Holder inequality with an
exponeny; to be chosen below. Then,

1 g1
q g q
[ s (qu) (/x ) .
2 2 2
2 < 20+
From (2.5), |f <G o, We have

1
q
2

On the other hanc(,fQ h Ll) ; is bounded ify > 1+ «. So, ifa < 1+ we can take

g suchthat o < g < (Zélj‘)";, and we obtain (2.6). O

Remark 2.2. In particular, it follows from the previous theorem that ok 2 the functions
in H1(£2) have traces irL.2(I"), while from Example 2.1 we know that this is not true for
a > 2. Therefore our result is almost optimal.

Now we can give an existence result for problem (1.1) under appropriate assumptions
ong andw.
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Theorem 2.2. Let 1< p <2, g € L(I'3) withg = 527, and f € L2(2). Ifa < 1+[—27

then there exists a unique solution € V of problem (1.1).

Proof. Since the bilinear forna(-, -) is coercive and continuous dn, the existence of a
unique solution will be a consequence of the Lax—Milgram theorem if we show that the
linear functionalL := L, + L» is continuous orV'.

Sincef e L2(£2), L1 is continuous and therefore it only remains to prove the continuity
of L. From Theorem 2.1 we know thii|| .» (1) < Clu|| () @and so,

[

I3

|Lo(w)| = Sgllzars lullr sy < CligliLa s llull g1

and the theorem is proved.c

3. Regularity of the solution

In this section we analyze the regularity of the solutioof problem (1.1). Under ap-
propriate conditions og we prove, in the next theorem, that H2($2). In order to obtain
this result we will apply the method introduced by Khelif [2,5] which is based in approxi-
mating the domain by a sequence of Lipschitz domains.

Theorem 3.1 Let f € L2(£2), and g such that, if h(1) := g(1, ¢ (1)), hg~? € L2(0, 1) and

H(¢")"% € L3(0,1). Assume also that || £ | 1(0.1) < 1. Then the problem (1.1) has a
unique solution u belonging to H2(2), and there exists a constant C such that

lull 22y < C{ILfllL2ge) + Hh(p_% ||L2(o,1) + “h/(‘//)_% ||L2(O,l)}‘ (CHY

Proof. The existence of a unique solutiene H(£2) follows from the results of Sec-
tion 2. Then it only remains to show thaic H2($2).
Let p, = 1/n and define
.Q,,:{(x,y)e.Q: Pn <X <1},
Iy ={x,0: p, <x<1},
R={1,y:0<y<1},
3 ={(x,9(): pp <x <1},

and

Iy ={(pn, »): 0<y < o(pn)}.

see Fig. 3.
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Q
n
¥
o
Fig. 3.
We consider the following problem if2,,:
—Au, = f in$2,,
u, =0 only, 32
Y —g  only, 3.2)

3ltn _ n n
=0 onIyury.

In what follows the lettelC’ will denote a constant which may dependg@n
Observe first that the solutian, satisfies

lanll 1y < C{IF 2oy + 167 2] 200, ) (3.3)

with C independent of. Indeed, this estimate follows by standard arguments using a trace
theorem as that given in Remark 2.1 applied®n Note that the argument of Lemma 2.1
can be applied t&2,, providing a constant independentof

It is known that the solution of problem (3.2) belongsH&t¢(52,) [2,4], for some
positivee, in particular its first derivatives are continuous. Our goal is to obtain an estimate
for |lun |l y2(e,, valid uniformly inn. Using a method introduced by Khelif [2,5] we will
show that

_1 _1
lunll 2,y < C{||f||L2(.(2) + |hp~2 HL2(0,1) + W' @2 HL2(0,1)} (3:4)
with C independent of.
For anyp andy in H1(£2,) we have

/m%=/mm+/w%,

24 2, 082,

wherert is the unit tangent vector oriented clockwise. Note that the right-hand side has to
be understood in a weak sense, i8.e H~Y2(32,). Taking

duy duy
n

ax ay

in the equation given above we obtain

/f2=/umw2=/ha+¢w2=/p3+{/mwy+/w3
2 25 2, 25 2, 2,

p:
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0
= [z o+ [v2a [ o3

2, 2, 2y 082,
ap
_ 2
082,

where|u,| y2(q, ) denotes the seminorm of, in H2($2,,).
To simplify notation we introduce the one variable functions

ouy
v(t) 1= (t p)) and w(t):= E(I p(1)).
Then, the boundary conditions imply
3;’)7 =0 on I'U I,
w=v¢ + hy/1+ (¢)? onry,
Jun — 0 onr}.

Therefore, (3.5) becomes
1
|un|il2(9n) = / fz - 2/ w(t)v/(t) drt, (36)
2, Pn

and so, we have to bound the last term on the right-hand side.
From the boundary condition af;’ we have

1 1 1
/ ; 2 ’
/w(l)v/(t)dtsz(t)<w(t)) dt—/w(t)<h(t) 1+ (') ) 4
¢'(1) ¢'(1)
P Pn P
=1+I1l. 3.7)
For the first term we have
1
1—/w(t)w ) /()dt (t)2 @/((;)2
Pn Pn
1 1 i 00
_ = 2\/ 29
- 2/(w(t) ) o0 f 0%
Pn Dn

Now, smced”" is continuous, it follows from the boundary condition dxaithatw (1) =0

Therefore, mtegrating by parts, we obtain for the first term in the right-hand side of the last
equation,

1

1 n 1 _ 2(ﬂ()
E/(“’(”)w'md” W s /(” PInC

Pn
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and then,

2 290//@)
; _ = 3.8
w(pa) /(,,) / 0 C (3.8)

Using now the boundary condition af};’ and the fact tha% is continuous, it follows
thatv(p,) = 0 and so, from the boundary condition 6k we obtain

w(pn) =h(pp)y/ 1+ ¢ (pn)?.

Therefore, replacing in (3.8) we have

1
1 1 1 %n
I=—=h2(py) (1 + ¢ (pn)? / 2 3.9
Sh*(p )( +<p(p))(p,(pn) Zp () /()2 (3.9

To bound the first term on the right-hand side we observe that, for an$, 1),

s

/h%)

0

N

1
2
<|[w'h 2 ||L2(O,1)</§0//(Z)dt)

0

|h(s) —h(0)| =

= ”h/(‘%’ﬁ)_% ||L2(O,1)¢/(S)%'

In particularh is continuous at 0 and consequently, sih@e‘% e L%(0, 1), it follows that
h(0) =0 (recall that O< ¢(¢) < ¢ for all  small enough).
Moreover,

hz(l’n) _1
(ﬂ/(Pn) < ”h/ QON) ||L2(0,1)

and so, we obtain from (3.9),

w()
/(t)Z

1< @) gy +5 / w(r) (3.10)

Let us now estimate the second term on the right-hand side of (3.7). A simple computation
shows that

1 1
ll:_/‘zﬂﬂMﬂW%) i 4[RO OVt e'®?
¢' (214 ¢/ (1) ¢'(1)

Using the arithmetic—geometric inequality < - a2+ b2 valid for all e > 0, we have

dt =111 +1V.

1 1
¢ /w(r)%”(r) P / h(0)%¢" (1)

< 5
i 2p ¢'(1)? F ¢ (D2(1+¢'(1)?)
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¢

1
e [w®)?" () 1, _1.2
S 5/ dt + Z”’“ﬂ 2220 (@)2

@'(1)?

L°°(0,1)

Pn

while, on the other hand, we have

! 2.1 l/ 2 N
|IV|<§/MQH 1 w‘h

@' (1)? 2¢ @ (1)
Pn Pn
€ 1w(t)2<p”(t)
=3
< 5/ (p’(t)z dt + Hh( ) ||L2(O 1"
Pn
So
‘ w(t)?¢” (1) 1 12 9"
||||<e/7dt+—h<p*é R
QD/(l‘)Z ¢ “ HLZ(O,l) (w/)z L(0.0)
C _12
+ZHh/(<p”) 2| L20.1)- (3.11)

Therefore, using the estimates (3.10) and (3.11), we obtain from (3.7),

1 1
1 w(t)%p" (1)
Hv' @) de| <[ = —— T " dt
[ o (2“)/ PI0%
Pn Pn
1 (p//(p _l 2
J— hw 2
2¢ ((,0/)2 Lo, 1)” ”Lz(O,l)
(1+ >Hh @) 200 (3.12)
But, from the boundary condition of" we know thataa”; (z,0) = 0 and therefore,
o(t) 2 ot )
, Aty 2 32 2
wi(t) = % (to®)| = I (1, y)dy <<p(t) 52 2, y)| dy
0
and consequently,
1
/wz(t) 3214,,( . 2
o) 2 12(2,)
Pn
Therefore, replacing in (3.12) we obtain
32u,, 2
W) (1) dt| < (1+ 2¢) ‘”,‘p 2y
@2l =0l 9y L2(2,)

n
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1
€

(0//§0 1,2
h 2
(@)2 D) || % ||L2(o,1)

1
+c<2+ E)||h/(<p”)—%||iz(0,l). (3.13)

Hence, using this estimate in (3.6), we conclude that

1
220y < 1 122 + c<2+ g){tho—% 1200 + 17 @) 72| 2200))

" 3214 2
+ (1420 22 (1, y) , (3.14)
(¥ L>(0,1) dy L2(82,)
where we have used that
"

L4 /(pz <1

(@)% 10,1
From this fact, we also observe that- 0 may be chosen in such a way that

1
(1+20)| 22 <1
(@)% L~ 0,1)

So, recalling now (3.3), we obtain (3.4).

Now, using a standard argument and the Rellich theorem, one can show that there is a
subsequence, that for simplicity we continue calling such that, for eacky, u,, is de-
fined ong2; for n large enough and converges weaklyHR(£2;) and strongly inH1(2;).
Moreover, if we callu the limit function, it follows from (3.4) and the weak convergence
in H2, thatu satisfies the estimate (3.1). So, it remains only to showdlisithe solution
of (1.1). Therefore we have to see that

/Vu-Vv:/fv+/gv YveV.
Q

Q2 I3

It is enough to show that, givene V,
/‘VwVv—/fv—/gv—)O
2% 2 I3

whenk — oco. Moreover, by density, we can assume tha W1>°(2) N V. Forn >k,
we have

waVv—([fv—/gv

2 I3

:/(Vu—Vun)~Vv+/Vun~Vv—/fv—/gv

Q2 2k 2 I3

=/(Vu—Vu,,)~Vv+/Vun~Vv— f Vun~Vv—/fv—/gv
Q

2k 2, £2,\ 82 I3
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=/(Vu—Vu,,)~Vv— / fv— / gv — / Vu, - Vo, (3.15)
2%

2\2, \r} 2, \ 82

where we have used thay is the solution of problem (3.2). But,

1
Vuy - Vo < lunll grg,)Ivliwieoo)$2n \ $2¢]2

-Qn\gk

and, sincélu, || y14,,, are uniformly bounded, the last term on the right-hand side of (3.15)
can be made smaller than any positive constant by takiagge enough. Then, the proof
concludes by using that, farfixed,

/(Vu—Vun)~Vv—>0
2
whenn — o0. O

Observe that the domains with power type cusps,¢.€),=t*, « > 1, are in the class
considered here. In fact,

(p”(/) - 1
@2 o«
In what follows we will show that the hypothegi@_% € L?(0, 1) assumed in the pre-

vious theorem is not too restrictive and cannot be substantially relaxed. With this goal we
considerg(r) = 1*, « > 1. In this case, the hypothesis/is~2 € L2(0, 1) and we will

a(r

prove that, if the solution of problem (1.1) belongs#8(£2) then,ht—"F" e L" (0, 1)
for anyr < 2. In particular, ifz is continuous at = 0, it follows that(0) = 0.

We will show in the next lemma that, far € H?($2), f’,—‘v’ is the restriction tolz of
a function inW17(£2), for r < 2. Then, the result will follow by using again the results
of [6].

Lemma3.1. Let u € H2(£2), and consider v = - Vu, where

1
n(-xv )’) = 7(_0[)}’)“)'
/x2 +0(2y2

Then,

(i) v=2onr3,
(i) v=—3"onn,
(i) ve Wb () forr<2.

Proof. The first two assertions follow immediately from the fact that, y) agrees with
the outward normal oz and with the inward normal ofy.
To prove (iii), let us call

ay

a(x, y) =
/x2 & a2y2

and b(x,y):=

X
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Then, we have

ou
5.
Sincea and b are bounded functions, we have that L2(£2). Therefore we have to

show that the first derivatives af are in L" (£2) for anyr < 2. Now, a straightforward
computation yields

d
v:—a(x,y)% +b(x,y) (3.16)

da ax? b a?y?
W (x24a2y2)3 X (x2 4 g2y2)3
and
da —axy b —a?xy
X (x24q2y2)3 Wy (24 a2y2)3
Integrating these expressions oygrone can easily check that
g g p y
aa s 1
/ e < Cfx“_s dx,
Q Y 0
ab|* ;
f a_ < C/x2va—3s+a dx,
X
Q 0
da|® ;
/ —| < C/xs(a+l)—35+a dx
dx ’
Q 0
and
b |° :
/'_ < C/\xs(ot+l)f3s+a dx.
ad
Q Y 0
Therefore,
da s .
8—6L (2) fs<a+1, (3.17)
y
ab ) Vs if @ >3,
— e L*(R2), e g (3.18)
0x s < 375 |foz<§,
ob da P Vs if a>2,
5’5614(9)’ {s<%f—z if o <2. (3.19)

Now, letw be any of the first derivatives af Then, in view of (3.16), in order to prove
(iii) it is enough to see that, for < 2, 3w, 94y, 82y 3by) € L7(£2), and this is the aim

> dx
of the rest of the proof. We will make use of the imbedding theorem (2.5).

First choosep = 532t t—r. Sincew e H(52), it follows from (2.5) thatw €

L™(2), whereq = ngi; is the dual exponent op. On the other hand, since< 2,
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we haverp < o + 1 and so, we obtain from (3.17) th%t € L"P(£2). Then, applying the
Holder inequality we obtain theltw € L"(£2).

In a similar way, using (3.18), (3.19), and again (2.5), we can proveggmt %w,
3w e L?(£2) choosing nowp = “F2 andg = &1

Therefore, taking derivatives in the expression (3.16) we ob}?ie L?(£2) andg—;{ €
L"(£2), for r < 2, concluding the proof. O

In [6], the authors characterize the tracedio¥” for general cuspidal domains. Apply-
ing their results for our case it follows in particular that foe WL" (£2) (see [6, p. 108)),
1
/ lo(t, %) —v(t,0)]

tot(r—l)

0
From this estimate and our previous lemma we can easily obtain the following corollary.

Corollary 3.1. Let u be the solution of problem (1.1) and () := g(z, 1%). If u € H3(82)
then,

1
|h ()]
to(r=1

0

<oo foranyr <2 (3.21)

Proof. Let v defined fromu as in Lemma 3.1. Then, we know from that lemma that
v e W7 (£2). Therefore, (3.21) follows immediately from (3.20) and the fact that0
only. O

Acknowledgments

We thank Julian Fernandez Bonder and Noemi Wolanski for helpful comments.

References

[1] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

[2] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.

[3] P. Grisvard, Problemes aux limites dans des domaines avec points de rebroussement, Ann. Fac. Sci. Toulouse 4
(1995) 561-578.

[4] P. Grisvard, Problemes aux limites dans les polygones Mode d’emploi (Boundary value problems in plane
polygons. Instructions for use), EDF Bull. Direction Etudes Rech. Sér. C Math. Inform. 1 (1986) 21-59.

[5] A. Khelif, Equations aux derivees partiellles, C. R. Acad. Sci. Paris 287 (1978) 1113-1116.

[6] V.G. Mazya, Yu.V. Netrusov, V. Poborchi, Boundary values of functions in Sobolev spaces on certain non-
Lipschitzian domains, St. Petersburg Math. J. 11 (2000) 107-128.



