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Abstract

In this work we analyze the existence and regularity of the solution of a nonhomogeneou
mann problem for the Poisson equation in a plane domainΩ with an external cusp. In order to prov
that there exists a unique solution inH1(Ω) using the Lax–Milgram theorem we need to appl
trace theorem. SinceΩ is not a Lipschitz domain, the standard trace theorem forH1(Ω) does not
apply, in fact the restriction ofH1(Ω) functions is not necessarily inL2(∂Ω). So, we introduce a
trace theorem by using weighted Sobolev norms inΩ. Under appropriate assumptions we prove t
the solution of our problem is inH2(Ω) and we obtain an a priori estimate for the second derivat
of the solution.
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1. Introduction

This paper deals with an elliptic equation in a domain with an external cusp. Sinc
kind of domains are not Lipschitz, the standard arguments to prove existence can
applied when nonhomogeneous Neumann boundary conditions are imposed on so
of the boundary. Indeed, to apply the Lax–Milgram theorem in this case one needs
some trace theorem for Sobolev spaces. However, simple examples show that, fo
cusps, there are functions inH 1(Ω) such that their restriction to the boundary are no
L2(∂Ω). Therefore the classic trace theorems for Lipschitz domains are not valid i
case.

We consider the following model problem: letΩ be the plane domain defined by

Ω = {
(x, y): 0< x < 1, 0< y < ϕ(x)

}
,

with ϕ ∈ C2(0,1), ϕ,ϕ′, ϕ′′ > 0 on (0,1), ϕ(0) = ϕ′(0) = 0 (a typical example isϕ(x) =
xα , α > 1), andΓ = Γ1 ∪ Γ2 ∪ Γ3 the boundary ofΩ , where

Γ1 = {0� x � 1, y = 0}, Γ2 = {x = 1, 0� y � 1}
and

Γ3 = {
0� x � 1, y = ϕ(x)

}
(see Fig. 1).

We seeku such that


−∆u = f in Ω,
∂u
∂ν

= 0 onΓ1,
u = 0 onΓ2,
∂u
∂ν

= g onΓ3,

(1.1)

whereν denotes the outside normal toΩ .
Fig. 1. Cuspidal domain.
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In [6] the authors characterize the traces of the Sobolev spacesW1,p(Ω), 1� p < ∞,
for domains of the class considered here by using some weighted norm on the bou
Existence of solutions of (1.1) can be derived from their results under certain hypo
on the data. In order to obtain existence results for more general data we present a d
kind of trace results by introducing a weighted Sobolev space inΩ such that the restrictio
to the boundary of functions in that space are inLp(Γ ).

Once the existence of a solution is known, the question about its regularity
naturally. For the Poisson problem with homogeneous boundary conditions on cu
domains it is known that, if the right-hand side of the equation is inL2(Ω), then the solu-
tion belongs toH 2(Ω) (see [2,5]). We show that the technique introduced by Khelif in
can be extended to treat nonhomogeneous Neumann type boundary conditions. In t
we prove that the solution of our model problem belongs to the spaceH 2(Ω).

2. Existence and uniqueness of solution

In this section we prove some trace results and apply them to obtain existenc
uniqueness of solution of our model problem using the Lax–Milgram theorem.

Let V = {v ∈ H 1(Ω): v|Γ2 = 0}. The variational problem associated with (1.1) is giv
by: Findu ∈ V such that

a(u, v) = L1(v) + L2(v) ∀v ∈ V,

where

a(u, v) =
∫
Ω

∇u · ∇v, L1(v) =
∫
Ω

f v and L2(v) =
∫
Γ3

gv.

Using the Poincaré inequality, it is easy to see that the bilinear forma(·, ·) is coercive
and continuous onV . Therefore, in order to prove that there exists a unique solutionV
using the Lax–Milgram theorem, we need to impose conditions on the dataf andg which
guarantee that the linear operatorsL1 andL2 are continuous onV . For the continuity of
L1 it is enough to assume thatf ∈ L2(Ω). On the other hand, the continuity ofL2 when
g ∈ L2(Γ3), in the case of a Lipschitz domain, is proved by using well-known result
restrictions ofH 1(Ω) to the boundary. However, since our domain is not Lipschitz,
standard trace theorem forH 1(Ω) does not apply, in fact, the following example sho
that for some cusps the restriction ofH 1(Ω) functions is not necessarily inL2(�).

Example 2.1. Considerϕ(x) = xα , α > 1, and the functionu(x, y) = x−γ . Then, an easy
computation shows thatu ∈ H 1(Ω) iff γ < α−1

2 . However,u ∈ L2(Γ ) iff γ < 1
2. So, for

α > 2, taking 1
2 � γ < α−1

2 , we have examples of functions which are inH 1(Ω) and such
that their restrictions to the boundary are not inL2(Γ ).

In [6], Mazya et al. characterize the space of traces ofW1,p(Ω), for non-Lipschitz
domainsΩ of the type considered here, by using some weighted norms on the bou
In particular, it follows from their results that there exists a constantC such that∥ 1 ∥
∥uϕ 2 ∥

L2(Γ )
� C‖u‖H1(Ω). (2.1)
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Indeed, the left-hand side agrees with the first term in the norm‖ · ‖T W1
p(Ω), with p = 2,

introduced in [6, p. 108] which, as proved in that paper, is bounded by theH 1 norm.
The inequality (2.1) can be used to prove the continuity ofL2 under the assumption th

gϕ− 1
2 ∈ L2(Γ3), in fact we have

∣∣L2(u)
∣∣ =

∣∣∣∣∣
∫
Γ3

gϕ− 1
2 uϕ

1
2

∣∣∣∣∣ �
∥∥gϕ− 1

2
∥∥

L2(Γ3)

∥∥uϕ
1
2
∥∥

L2(Γ3)

� C
∥∥gϕ− 1

2
∥∥

L2(Γ3)
‖u‖H1(Ω).

Let us observe that assuming continuity ofg the conditiongϕ− 1
2 ∈ L2(Γ3) implies thatg

has to vanish at the origin, which does not seem to be a natural condition for the existe
a solution. Therefore, our goal is to relax the assumption ong by introducing a trace resu
of a different nature of those in [6]. More precisely, we want to give sufficient conditio
have traces inLp of the boundary. In order to do that we introduce the weighted Sob
spaceW1,p

ϕ (Ω) as the closure ofC∞(Ω̄) in the norm

‖u‖p

W
1,p
ϕ (Ω)

:= ∥∥uϕ
− 1

p
∥∥p

Lp(Ω)
+ ∥∥∇uϕ

(
p−1
p

)
∥∥p

Lp(Ω)
.

In what follows we use the letterC to denote a generic constant which depends o
onp.

Lemma 2.1. There exists a constant C such that for any u ∈ W
1,p
ϕ (Ω) with 1� p < ∞,

‖u‖Lp(Γ ) � C
(∥∥uϕ

− 1
p
∥∥

Lp(Ω)
+ ∥∥∇uϕ

(
p−1
p

)
∥∥

Lp(Ω)

)
.

Proof. We will use the following change of variables which is a generalization of
introduced by Grisvard [3] for power type cusps. Letξ = 1

ϕ′(x)
andη = y

ϕ(x)
then,Ω is

transformed inΩ̃ given by

Ω̃ =
{
(ξ, η): ξ >

1

ϕ′(1)
, 0< η < 1

}
,

see Fig. 2.
We denote byΓ̃1 = {(ξ, η): ξ � 1

ϕ′(1)
, η = 0}, Γ̃2 = {(ξ, η): ξ = 1

ϕ′(1)
, 0 � η � 1} and

Γ̃3 = {(ξ, η): ξ � 1
ϕ′(1)

, η = 1}.
First we give the proof for the casep = 1. Writing v(ξ, η) = u(x, y) we have

∫
Γ3

|u| =
1∫

0

∣∣u(
x,ϕ(x)

)∣∣√1+ ϕ′(x)2 dx � C

1∫
0

∣∣u(
x,ϕ(x)

)∣∣dx

= C

∞∫ ∣∣v(ξ,1)
∣∣J (ξ) dξ, (2.2)
1
ϕ′(1)
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Fig. 2.

where

J (ξ) = ϕ′(x)2

ϕ′′(x)
. (2.3)

Applying the following standard trace inequality iñΩ :

‖w‖L1(Γ̃3)
� C

(
‖w‖L1(Ω̃) +

∥∥∥∥∂w

∂η

∥∥∥∥
L1(Ω̃)

)
,

to the functionw(ξ,η) = v(ξ, η)J (ξ), we get
∞∫

1
ϕ′(1)

∣∣v(ξ,1)
∣∣J (ξ) dξ � C

(∫
Ω̃

∣∣v(ξ, η)
∣∣J (ξ) dξ dη +

∫
Ω̃

∣∣∣∣∂v(ξ, η)

∂η

∣∣∣∣J (ξ) dξ dη

)

and therefore, changing variables and using (2.2) and (2.3), we have∫
Γ3

|u| � C

(∫
Ω

|u|ϕ(x)−1 dx dy +
∫
Ω

∣∣∣∣∂u

∂y

∣∣∣∣dx dy

)
.

Applying the same argument onΓ1 and a standard trace theorem onΓ2, we obtain

‖u‖L1(Γ ) � C
(‖uϕ−1‖L1(Ω) + ‖∇u‖L1(Ω)

)
(2.4)

concluding the proof for the casep = 1.
Now, for anyp such that 1< p < ∞, we use (2.4) forup to obtain∫

Γ

|u|p � C

(∫
Ω

|u|pϕ−1 + p

∫
Ω

|u|p−1|∇u|
)

= C

(∫
Ω

|u|pϕ−1 + p

∫
Ω

|u|p−1ϕ
− 1

q |∇u|ϕ 1
q

)
,

whereq = p
p−1, and therefore, the proof concludes by using the inequalityab � 1

q
aq +

1 p

p
b in the last term on the right-hand side.�
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Remark 2.1. With an argument analogous to that used in the previous lemma on
prove the following result, which is stronger than (2.1):∥∥uϕ

1
p
∥∥

Lp(Γ )
� C

(‖u‖Lp(Ω) + ‖∇uϕ‖Lp(Ω)

)
.

Existence results for more general datag can be obtained from the previous lemma a
embedding theorems. During the rest of this section we will restrict ourselves to th
of power type cusps, for which embedding theorems are well known.

Let ϕ(x) = xα with α > 1. In the next theorem we prove that the restriction ofH 1(Ω)

functions are inLp(Γ ) under appropriate assumptions on the values ofα andp. In the
proof we will make use of the inclusion

H 1(Ω) ⊂ Lr(Ω) for 2� r � 2(α + 1)

α − 1
(2.5)

which is a particular case of the results given in [1].

Theorem 2.1. Let u ∈ H 1(Ω) and 1� p � 2. If α < 1+ 2
p

then u ∈ Lp(Γ ) and

‖u‖Lp(Γ ) � C‖u‖H1(Ω). (2.6)

Proof. From Lemma 2.1 we know that

‖u‖Lp(Γ ) � C
(∥∥ux

− α
p
∥∥

Lp(Ω)
+ ∥∥∇ux

α(
p−1
p

)
∥∥

Lp(Ω)

)
� C

(∥∥ux
− α

p
∥∥

Lp(Ω)
+ ‖∇u‖Lp(Ω)

)
. (2.7)

To bound the first term on the right-hand side of (2.7) we use the Hölder inequality w
exponentq to be chosen below. Then,

∫
Ω

|u|px−α �
(∫

Ω

|u|pq

) 1
q
(∫

Ω

x
−α

q
q−1

) q−1
q

.

From (2.5), if 2
p

� q � 2(1+α)
(α−1)p

we have

(∫
Ω

|u|pq

) 1
q

� C‖u‖p

H1(Ω)
.

On the other hand,(
∫
Ω

x
−α

q
q−1 )

q−1
q is bounded ifq > 1+ α. So, ifα < 1+ 2

p
we can take

q such that 1+ α < q � 2(1+α)
(α−1)p

and we obtain (2.6). �
Remark 2.2. In particular, it follows from the previous theorem that forα < 2 the functions
in H 1(Ω) have traces inL2(Γ ), while from Example 2.1 we know that this is not true f
α > 2. Therefore our result is almost optimal.

Now we can give an existence result for problem (1.1) under appropriate assum

ong andα.
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Theorem 2.2. Let 1 � p � 2, g ∈ Lq(Γ3) with q = p
p−1 , and f ∈ L2(Ω). If α < 1 + 2

p

then there exists a unique solution u ∈ V of problem (1.1).

Proof. Since the bilinear forma(·, ·) is coercive and continuous onV , the existence of a
unique solution will be a consequence of the Lax–Milgram theorem if we show tha
linear functionalL := L1 + L2 is continuous onV .

Sincef ∈ L2(Ω), L1 is continuous and therefore it only remains to prove the contin
of L2. From Theorem 2.1 we know that‖u‖Lp(Γ ) � C‖u‖H1(Ω) and so,

∣∣L2(u)
∣∣ =

∣∣∣∣∣
∫
Γ3

gu

∣∣∣∣∣ � ‖g‖Lq(Γ3)‖u‖Lp(Γ3) � C‖g‖Lq(Γ3)‖u‖H1(Ω)

and the theorem is proved.�

3. Regularity of the solution

In this section we analyze the regularity of the solutionu of problem (1.1). Under ap
propriate conditions ong we prove, in the next theorem, thatu ∈ H 2(Ω). In order to obtain
this result we will apply the method introduced by Khelif [2,5] which is based in appr
mating the domain by a sequence of Lipschitz domains.

Theorem 3.1. Let f ∈ L2(Ω), and g such that, if h(t) := g(t, ϕ(t)), hϕ− 1
2 ∈ L2(0,1) and

h′(ϕ′′)− 1
2 ∈ L2(0,1). Assume also that ‖ ϕ′′ϕ

(ϕ′)2 ‖L∞(0,1) < 1. Then the problem (1.1) has a

unique solution u belonging to H 2(Ω), and there exists a constant C such that

‖u‖H2(Ω) � C
{‖f ‖L2(Ω) + ∥∥hϕ− 1

2
∥∥

L2(0,1)
+ ∥∥h′(ϕ′′)−

1
2
∥∥

L2(0,1)

}
. (3.1)

Proof. The existence of a unique solutionu ∈ H 1(Ω) follows from the results of Sec
tion 2. Then it only remains to show thatu ∈ H 2(Ω).

Let pn = 1/n and define

Ωn = {
(x, y) ∈ Ω: pn < x < 1

}
,

Γ n
1 = {

(x,0): pn � x � 1
}
,

Γ2 = {
(1, y): 0� y � 1

}
,

Γ n
3 = {(

x,ϕ(x)
)
: pn � x � 1

}
,

and

Γ n
4 = {

(pn, y): 0� y � ϕ(pn)
}
,

see Fig. 3.
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We consider the following problem inΩn:


−∆un = f in Ωn,
un = 0 onΓ2,
∂un

∂ν
= g onΓ n

3 ,
∂un

∂ν
= 0 onΓ n

1 ∪ Γ n
4 .

(3.2)

In what follows the letterC will denote a constant which may depend onϕ.
Observe first that the solutionun satisfies

‖un‖H1(Ωn) � C
{‖f ‖L2(Ω) + ∥∥hϕ− 1

2
∥∥

L2(0,1)

}
(3.3)

with C independent ofn. Indeed, this estimate follows by standard arguments using a
theorem as that given in Remark 2.1 applied onΩn. Note that the argument of Lemma 2
can be applied toΩn providing a constant independent ofn.

It is known that the solution of problem (3.2) belongs toH 2+ε(Ωn) [2,4], for some
positiveε, in particular its first derivatives are continuous. Our goal is to obtain an esti
for ‖un‖H2(Ωn) valid uniformly in n. Using a method introduced by Khelif [2,5] we w
show that

‖un‖H2(Ωn) � C
{‖f ‖L2(Ω) + ∥∥hϕ− 1

2
∥∥

L2(0,1)
+ ∥∥h′(ϕ′′)−

1
2
∥∥

L2(0,1)

}
(3.4)

with C independent ofn.
For anyρ andψ in H 1(Ωn) we have∫

Ωn

ρxψy =
∫
Ωn

ρyψx +
∫

∂Ωn

ψ
∂ρ

∂τ
,

whereτ is the unit tangent vector oriented clockwise. Note that the right-hand side h
be understood in a weak sense, i.e.,∂ρ

∂τ
∈ H−1/2(∂Ωn). Taking

ρ = ∂un

∂x
and ψ = ∂un

∂y

in the equation given above we obtain∫
f 2 =

∫
(∆un)

2 =
∫

(ρx + ψy)
2 =

∫
ρ2

x + 2
∫

ρxψy +
∫

ψ2
y

Ωn Ωn Ωn Ωn Ωn Ωn
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e last
=
∫
Ωn

ρ2
x + 2

∫
Ωn

ρyψx +
∫
Ωn

ψ2
y + 2

∫
∂Ωn

ψ
∂ρ

∂τ

= |un|2H2(Ωn)
+ 2

∫
∂Ωn

ψ
∂ρ

∂τ
, (3.5)

where|un|H2(Ωn) denotes the seminorm ofun in H 2(Ωn).
To simplify notation we introduce the one variable functions

v(t) := ∂un

∂x

(
t, ϕ(t)

)
and w(t) := ∂un

∂y

(
t, ϕ(t)

)
.

Then, the boundary conditions imply


∂un

∂y
= 0 on Γ n

1 ∪ Γ2,

w = vϕ′ + h
√

1+ (ϕ′)2 onΓ n
3 ,

∂un

∂x
= 0 onΓ n

4 .

Therefore, (3.5) becomes

|un|2H2(Ωn)
=

∫
Ωn

f 2 − 2

1∫
pn

w(t)v′(t) dt, (3.6)

and so, we have to bound the last term on the right-hand side.
From the boundary condition onΓ n

3 we have

1∫
pn

w(t)v′(t) dt =
1∫

pn

w(t)

(
w(t)

ϕ′(t)

)′
dt −

1∫
pn

w(t)

(
h(t)

√
1+ (ϕ′(t))2

ϕ′(t)

)′
dt

= I + II. (3.7)

For the first term we have

I =
1∫

pn

w(t)w′(t) 1

ϕ′(t)
dt −

1∫
pn

w(t)2 ϕ′′(t)
ϕ′(t)2

dt

= 1

2

1∫
pn

(
w(t)2)′ 1

ϕ′(t)
dt −

1∫
pn

w(t)2 ϕ′′(t)
ϕ′(t)2

dt.

Now, since∂un

∂y
is continuous, it follows from the boundary condition onΓ2 thatw(1) = 0.

Therefore, integrating by parts, we obtain for the first term in the right-hand side of th
equation,

1
1∫ (

w(t)2)′ 1
′ dt = −1

w(pn)
2 1

′ + 1
1∫
w(t)2 ϕ′′(t)

′ 2
dt
2
pn

ϕ (t) 2 ϕ (pn) 2
pn

ϕ (t)
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and then,

I = −1

2
w(pn)

2 1

ϕ′(pn)
− 1

2

1∫
pn

w(t)2 ϕ′′(t)
ϕ′(t)2

dt. (3.8)

Using now the boundary condition onΓ n
4 and the fact that∂un

∂x
is continuous, it follows

thatv(pn) = 0 and so, from the boundary condition onΓ n
3 we obtain

w(pn) = h(pn)

√
1+ ϕ′(pn)2.

Therefore, replacing in (3.8) we have

I = −1

2
h2(pn)

(
1+ ϕ′(pn)

2) 1

ϕ′(pn)
− 1

2

1∫
pn

w2(t)
ϕ′′(t)
ϕ′(t)2

dt. (3.9)

To bound the first term on the right-hand side we observe that, for anys ∈ (0,1),

∣∣h(s) − h(0)
∣∣ =

∣∣∣∣∣
s∫

0

h′(t)
∣∣∣∣∣ �

∥∥h′(ϕ′′)−
1
2
∥∥

L2(0,1)

( s∫
0

ϕ′′(t) dt

) 1
2

= ∥∥h′(ϕ′′)−
1
2
∥∥

L2(0,1)
ϕ′(s)

1
2 .

In particularh is continuous at 0 and consequently, sincehϕ− 1
2 ∈ L2(0,1), it follows that

h(0) = 0 (recall that 0< ϕ(t) < t for all t small enough).
Moreover,

h2(pn)

ϕ′(pn)
�

∥∥h′(ϕ′′)−
1
2
∥∥2

L2(0,1)

and so, we obtain from (3.9),

|I | � C
∥∥h′(ϕ′′)−

1
2
∥∥2

L2(0,1)
+ 1

2

1∫
pn

w2(t)
ϕ′′(t)
ϕ′(t)2

dt. (3.10)

Let us now estimate the second term on the right-hand side of (3.7). A simple compu
shows that

II = −
1∫

pn

w(t)h(t)ϕ′′(t)
ϕ′(t)2

√
1+ ϕ′(t)2

dt +
1∫

pn

w(t)h′(t)
√

1+ ϕ′(t)2

ϕ′(t)
dt = III + IV.

Using the arithmetic–geometric inequalityab � 1
2ε

a2 + ε
2b2 valid for all ε > 0, we have

|III| � ε
1∫

w(t)2ϕ′′(t)
′ 2

dt + 1
1∫

h(t)2ϕ′′(t)
′ 2 ′ 2

dt

2

pn

ϕ (t) 2ε
pn

ϕ (t) (1+ ϕ (t) )
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� ε

2

1∫
pn

w(t)2ϕ′′(t)
ϕ′(t)2

dt + 1

2ε

∥∥hϕ− 1
2
∥∥2

L2(0,1)

∥∥∥∥ ϕ′′ϕ
(ϕ′)2

∥∥∥∥
L∞(0,1)

,

while, on the other hand, we have

|IV| � ε

2

1∫
pn

w(t)2ϕ′′(t)
ϕ′(t)2

dt + 1

2ε

1∫
pn

h′(t)2(1+ ϕ′(t)2)

ϕ′′(t)
dt

� ε

2

1∫
pn

w(t)2ϕ′′(t)
ϕ′(t)2

dt + C

2ε

∥∥h′(ϕ′′)−
1
2
∥∥2

L2(0,1)
.

So

|II| � ε

1∫
pn

w(t)2ϕ′′(t)
ϕ′(t)2

dt + 1

2ε

∥∥hϕ− 1
2
∥∥2

L2(0,1)

∥∥∥∥ ϕ′′ϕ
(ϕ′)2

∥∥∥∥
L∞(0,1)

+ C

2ε

∥∥h′(ϕ′′)−
1
2
∥∥2

L2(0,1)
. (3.11)

Therefore, using the estimates (3.10) and (3.11), we obtain from (3.7),∣∣∣∣∣
1∫

pn

w(t)v′(t) dt

∣∣∣∣∣ �
(

1

2
+ ε

) 1∫
pn

w(t)2ϕ′′(t)
ϕ′(t)2

dt

+ 1

2ε

∥∥∥∥ ϕ′′ϕ
(ϕ′)2

∥∥∥∥
L∞(0,1)

∥∥hϕ− 1
2
∥∥2

L2(0,1)

+ C

(
1+ 1

2ε

)∥∥h′(ϕ′′)−
1
2
∥∥2

L2(0,1)
. (3.12)

But, from the boundary condition onΓ n
1 we know that∂un

∂y
(t,0) = 0 and therefore,

w2(t) =
∣∣∣∣∂un

∂y

(
t, ϕ(t)

)∣∣∣∣
2

=
( ϕ(t)∫

0

∂2un

∂y2
(t, y) dy

)2

� ϕ(t)

ϕ(t)∫
0

∣∣∣∣∂2un

∂y2
(t, y)

∣∣∣∣
2

dy

and consequently,

1∫
pn

w2(t)

ϕ(t)
dt �

∥∥∥∥∂2un

∂y2
(t, y)

∥∥∥∥
2

L2(Ωn)

.

Therefore, replacing in (3.12) we obtain

2

∣∣∣∣
1∫
w(t)v′(t) dt

∣∣∣∣ � (1+ 2ε)

∥∥∥∥ ϕ′′ϕ
′ 2

∥∥∥∥
∥∥∥∥∂2un

2
(t, y)

∥∥∥∥
2

∣
pn

∣ (ϕ ) L∞(0,1) ∂y L2(Ωn)
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re is a

ce
+ 1

ε

∥∥∥∥ ϕ′′ϕ
(ϕ′)2

∥∥∥∥
L∞(0,1)

∥∥hϕ− 1
2
∥∥2

L2(0,1)

+ C

(
2+ 1

ε

)∥∥h′(ϕ′′)−
1
2
∥∥2

L2(0,1)
. (3.13)

Hence, using this estimate in (3.6), we conclude that

|un|2H2(Ωn)
� ‖f ‖2

L2(Ω)
+ C

(
2+ 1

ε

){∥∥hϕ− 1
2
∥∥2

L2(0,1)
+ ∥∥h′(ϕ′′)−

1
2
∥∥2

L2(0,1)

}

+ (1+ 2ε)

∥∥∥∥ ϕ′′ϕ
(ϕ′)2

∥∥∥∥
L∞(0,1)

∥∥∥∥∂2un

∂y2
(t, y)

∥∥∥∥
2

L2(Ωn)

, (3.14)

where we have used that∥∥∥∥ ϕ′′ϕ
(ϕ′)2

∥∥∥∥
L∞(0,1)

< 1.

From this fact, we also observe thatε > 0 may be chosen in such a way that

(1+ 2ε)

∥∥∥∥ ϕ′′ϕ
(ϕ′)2

∥∥∥∥
L∞(0,1)

< 1.

So, recalling now (3.3), we obtain (3.4).
Now, using a standard argument and the Rellich theorem, one can show that the

subsequence, that for simplicity we continue callingun, such that, for eachΩk , un is de-
fined onΩk for n large enough and converges weakly inH 2(Ωk) and strongly inH 1(Ωk).
Moreover, if we callu the limit function, it follows from (3.4) and the weak convergen
in H 2, thatu satisfies the estimate (3.1). So, it remains only to show thatu is the solution
of (1.1). Therefore we have to see that∫

Ω

∇u · ∇v =
∫
Ω

f v +
∫
Γ3

gv ∀v ∈ V.

It is enough to show that, givenv ∈ V ,∫
Ωk

∇u · ∇v −
∫
Ω

f v −
∫
Γ3

gv → 0

whenk → ∞. Moreover, by density, we can assume thatv ∈ W1,∞(Ω) ∩ V . For n � k,
we have∫

Ωk

∇u · ∇v −
∫
Ω

f v −
∫
Γ3

gv

=
∫
Ωk

(∇u − ∇un) · ∇v +
∫
Ωk

∇un · ∇v −
∫
Ω

f v −
∫
Γ3

gv

=
∫

(∇u − ∇un) · ∇v +
∫

∇un · ∇v −
∫

∇un · ∇v −
∫

f v −
∫

gv
Ωk Ωn Ωn\Ωk Ω Γ3
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.15)
of

s

-
al we

lts
=
∫
Ωk

(∇u − ∇un) · ∇v −
∫

Ω\Ωn

f v −
∫

Γ3\Γ n
3

gv −
∫

Ωn\Ωk

∇un · ∇v, (3.15)

where we have used thatun is the solution of problem (3.2). But,∣∣∣∣∣
∫

Ωn\Ωk

∇un · ∇v

∣∣∣∣∣ � ‖un‖H1(Ωn)‖v‖W1,∞(Ω)|Ωn \ Ωk| 1
2

and, since‖un‖H1(Ωn) are uniformly bounded, the last term on the right-hand side of (3
can be made smaller than any positive constant by takingk large enough. Then, the pro
concludes by using that, fork fixed,∫

Ωk

(∇u − ∇un) · ∇v → 0

whenn → ∞. �
Observe that the domains with power type cusps, i.e.,ϕ(t) = tα , α > 1, are in the clas

considered here. In fact,

ϕ′′ϕ
(ϕ′)2

= α − 1

α
.

In what follows we will show that the hypothesishϕ− 1
2 ∈ L2(0,1) assumed in the pre

vious theorem is not too restrictive and cannot be substantially relaxed. With this go
considerϕ(t) = tα , α > 1. In this case, the hypothesis isht− α

2 ∈ L2(0,1) and we will

prove that, if the solution of problem (1.1) belongs toH 2(Ω) then,ht−
α(r−1)

r ∈ Lr(0,1)

for anyr < 2. In particular, ifh is continuous att = 0, it follows thath(0) = 0.
We will show in the next lemma that, foru ∈ H 2(Ω), ∂u

∂ν
is the restriction toΓ3 of

a function inW1,r (Ω), for r < 2. Then, the result will follow by using again the resu
of [6].

Lemma 3.1. Let u ∈ H 2(Ω), and consider v = η · ∇u, where

η(x, y) := 1√
x2 + α2y2

(−αy,x).

Then,

(i) v = ∂u
∂ν

on Γ3,
(ii) v = − ∂u

∂ν
on Γ1,

(iii) v ∈ W1,r (Ω) for r < 2.

Proof. The first two assertions follow immediately from the fact thatη(x, y) agrees with
the outward normal onΓ3 and with the inward normal onΓ1.

To prove (iii), let us call
αy x
a(x, y) := √
x2 + α2y2

and b(x, y) := √
x2 + α2y2

.
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o

e

Then, we have

v = −a(x, y)
∂u

∂x
+ b(x, y)

∂u

∂y
. (3.16)

Sincea and b are bounded functions, we have thatv ∈ L2(Ω). Therefore we have t
show that the first derivatives ofv are inLr(Ω) for any r < 2. Now, a straightforward
computation yields

∂a

∂y
= αx2

(x2 + α2y2)
3
2

,
∂b

∂x
= α2y2

(x2 + α2y2)
3
2

and

∂a

∂x
= −αxy

(x2 + α2y2)
3
2

,
∂b

∂y
= −α2xy

(x2 + α2y2)
3
2

.

Integrating these expressions overΩ one can easily check that

∫
Ω

∣∣∣∣∂a

∂y

∣∣∣∣
s

� C

1∫
0

xα−s dx,

∫
Ω

∣∣∣∣ ∂b

∂x

∣∣∣∣
s

� C

1∫
0

x2sα−3s+α dx,

∫
Ω

∣∣∣∣∂a

∂x

∣∣∣∣
s

� C

1∫
0

xs(α+1)−3s+α dx,

and ∫
Ω

∣∣∣∣∂b

∂y

∣∣∣∣
s

� C

1∫
0

xs(α+1)−3s+α dx.

Therefore,

∂a

∂y
∈ Ls(Ω) if s < α + 1, (3.17)

∂b

∂x
∈ Ls(Ω),

{
∀s if α � 3

2,
s < 1+α

3−2α
if α < 3

2,
(3.18)

∂b

∂y
,
∂a

∂x
∈ Ls(Ω),

{∀s if α � 2,
s < 1+α

2−α
if α < 2. (3.19)

Now, letw be any of the first derivatives ofu. Then, in view of (3.16), in order to prov
(iii) it is enough to see that, forr < 2, ∂a

∂x
w, ∂a

∂y
w, ∂b

∂x
w, ∂b

∂y
w ∈ Lr(Ω), and this is the aim

of the rest of the proof. We will make use of the imbedding theorem (2.5).
First choosep = 2(α+1)

2(α+1)−r(α−1)
. Sincew ∈ H 1(Ω), it follows from (2.5) thatw ∈
Lrq(Ω), whereq = 2(α+1)
r(α−1)

is the dual exponent ofp. On the other hand, sincer < 2,
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y-

llary.

hat

oulouse 4

plane
9.

n non-
we haverp < α + 1 and so, we obtain from (3.17) that∂a
∂y

∈ Lrp(Ω). Then, applying the

Hölder inequality we obtain that∂a
∂y

w ∈ Lr(Ω).

In a similar way, using (3.18), (3.19), and again (2.5), we can prove that∂a
∂x

w, ∂b
∂y

w,

∂b
∂x

w ∈ L2(Ω) choosing nowp = (α+1)
2 andq = α+1

α−1.

Therefore, taking derivatives in the expression (3.16) we obtain∂v
∂x

∈ L2(Ω) and ∂v
∂y

∈
Lr(Ω), for r < 2, concluding the proof. �

In [6], the authors characterize the traces ofW1,r for general cuspidal domains. Appl
ing their results for our case it follows in particular that forv ∈ W1,r (Ω) (see [6, p. 108]),

1∫
0

|v(t, tα) − v(t,0)|r
tα(r−1)

dt � C‖v‖W1,r (Ω). (3.20)

From this estimate and our previous lemma we can easily obtain the following coro

Corollary 3.1. Let u be the solution of problem (1.1) and h(t) := g(t, tα). If u ∈ H 2(Ω)

then,

1∫
0

|h(t)|r
tα(r−1)

< ∞ for any r < 2. (3.21)

Proof. Let v defined fromu as in Lemma 3.1. Then, we know from that lemma t
v ∈ W1,r (Ω). Therefore, (3.21) follows immediately from (3.20) and the fact thatv = 0
onΓ1. �
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