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Abstract

In this paper we discuss the problem of integral representation of analytic functions over a complex
Banach spacé&. We obtain, for a wide class of functions, integral representations of the form

_ 1
foo = / dORG AW () and f()= / @ VAV,
E' E - vl

where W is an abstract Wiener measure Bhand fi, f» are transformations of involving the
covariance operator o¥.
0 2004 Elsevier Inc. All rights reserved.
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I ntroduction

The Cauchy integral formula has no true analogue in infinite-dimensional holomorphy.
The usual generalisation, though quite useful, is essentially the one-dimensional formula
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in each direction: giver and|A| < r,

_ 1 [ fe»
1e0=55 ] o-x

lw|=r

do.

In this paper, we discuss the problem of generalising the Cauchy integral formula to
infinite-dimensional Banach spaces, and derive two related formulas valid for a wide class
of functions on such spaces.

Integral expressions valid for some homogeneous polynomials and some holomorphic
functions on a Banach spaéthave been proposed, all of which involve integration over
the dual spacé’ rather thanE. An integralk-homogeneous polynomial ovér [4], for
example, is

P(x) = / Y OF du(y).
BE/

We begin our discussion by considering the Cauchy integral formu@, @md possible
generalisations to larger spaces. The Cauchy integral formula

f(z)=i/ J@) 40, (1)

2ni ] w—z
Sl

may be written, after a change in variables, as

1
F)= /  f@dP©), o
—Zw
Sl

whereP is normalised Lebesgue measure on the circle. One may also write

1
f@)= f - f(i) dG(w), (3)
- l—ZW |w|

whereG is a Gaussian measure 6n

In the following heuristic introduction, we consider the problem of generalising these
formulas ton or infinite-dimensional complex spaces. We refer to [5] for infinite-
dimensional holomorphy.

In n-dimensional space the first formula leads to the Cauchy formula over the polydisc,
where integration is over the distinguished boundary. Only rarely (i.e¢>9hcan the
infinite-dimensional polydisc be found in a Banach space; also, divisian by, seems
meaningless, so we do not pursue this idea.

The second formula involves integration on the sphere and makes some sense if one is
willing to takew € E’. This and the consideration of integral polynomials is what gave rise
to the definition of integral holomorphic functigh: By, — C in [3],

1
f(x)z/mdﬂ(y)-

E'




D. Pinasco, |. Zalduendo / J. Math. Anal. Appl. 308 (2005) 159-174 161

In this expression, integration is over the unit ballgsf(the w*-closure of the unit sphere)
andp is a regular Borel measure 0B/, w*). The measurg is said to represent the func-
tion f, but there are many such representirig, and little has been said in the way of ex-
pressing these measures in terms of the funcfiofor example agu(y) = f(y)dM(y),
where f is some transformation of andM a universal measure (i.e., the same measure
for all f). Consider the problem ia”. For the second formula to hold one sees after ex-
panding the functlong— and f in Taylor series, that we would need (integrating on
the (2n — 1)- dlmen5|onal spherﬁ)

|
/wﬂ@“dp(w) = Sup—— .
]!
K
However, one obtains

-1
| +n—1
/ a)dP(a))—S ||'( n_1 ) .
S

This can be compensated for by multiplying e&chomogeneous term in the integral by
the combinatorial numbe(r ) When assigned tq— the Szegd kernel for the
sphereS appears. It could also be a55|gnedftobta|n|ng a transfornf,, of f for which
the formula

1
f@)= / — fa(@)dP(w)
1-(z, )
S
holds. However, both the Szegd kernels and fhis tend to infinity as the dimensiom
increases. Thus, this approach also seems inappropriate for infinite-dimensional holomor-

phy.
Consider now the third formula and proceed as above to generalis€'it ©One is led
to calculate

o!
f 5w°‘dG(w)—5a,3W|oa|'
CV!
Here the extant factor isx|!. This can be compensated for by multiplying eadch
homogeneous term in the integral byl, independently of the dimension. When

assigned toH%w), one obtains the formula

F2) = / ) £ () dG (). )

cn

Alternatively, it can be assigned 6, obtaining a transfornf< of f which is entire if f
has radius of convergence 1. Normalisingf% to avoid poles, one obtains

f(z)—/l_(z,ﬁ)f (lollo) dG @). (B)

Cn
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These last two integral formulas, (A) for entire functions and (B) for functions holo-
morphic on the unit ball, are the ones that we will proveCifh and then generalise to
infinite-dimensional Banach spaces.

In Section 1 we recall and adapt to our needs some of the elements of the theory
of abstract Wiener spaces. Formulas (A) and (B) are proved’foand for an infinite-
dimensional Banach space in Section 2. The functions to which they apply are presented
rather abstractly in this section. Finally, we discuss in Section 3 more tractable classes of
functions for which these results hold.

1. Themeasures

We need to consider Gaussian measures on Banach spaces and will use the theory of
abstract Wiener spaces (see [8,10]). Since our spaces will be complex, we need to review
some of the interplay between the real and complex structures. This will also serve to fix
notation.

Let H be a separable complex Hilbert space and denote its inner prodyc} .bs of
course also has areal Hilbert space structure, which we will denatig bits inner product
is (,)gr = Re(,). Note thatx andix are orthogonal irHHg. Also, fix (e,,), an orthonormal
basis ofH. Then(e,, ie,) is an orthonormal basis dffz. The duals of both spaces are
(real) isometric, via the mappingl, — H', ¢ > ¢ whered(x) = ¢(x) — ig(ix). As
always, H' can be identified withH via I: H' — H such that forx € H and¢ € H’,
¢(x) = (x, I(¢)). The isomorphisnY is conjugate linear Our need for analyticity will
lead us to correct the lack of linearity éfwith involutions inH andH'. If x =) x,e, is
an element of/, we denotec* = Y X, e,. Note that(x*, y) = (x, y*). Similarly, if ¢ € H’,
defineg* so thatl (¢*) = I(¢)*, and note thap (x*) = ¢*(x). These involutions depend
on the basis chosen idH. The same involution is obtained—however—if a basfs) is
used, for whichf," = f,.

A complex-valued Gaussian random variable (with meaand variancer2) is one
whose density functiorf : C — R is

_ \w—m\z

fw) = me o2

Its real and imaginary parts are independent real-valued Gaussian random variables with

. 2
mean Ren and Invz and variancé-.
If P is afinite-rank orthogonal projector ifi, a cylinder set ind is a set of the form

A={xe H: Px € B},

whereB is a Borel subset oP H. The collection of such sets is a field, but nat dield.
We will denote byI™ the Gaussian cylinder measure defined on cylinder sets:

1
rA) = ;/e_lwlzdw,
B
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wheren is the complex dimension aP H, and the integral is with respect to Lebesgue
measure” is not a true measure (it is net-additive). However, integrals of cylinder
functions F: H — C of the form F = h o P) may be defined by setting

/FdF:fth,

A B
whereG is standardi-dimensional Gaussian measure. Note also that the involutisn
I'-preserving.

Elementsp € H' are complex-valued Gaussian random variables with mean 0 and vari-
ance(¢p, ¢). Note that elements in € H, are real-valued random variables with mean 0
and variance («, ).

Consider onH a norm||.|| with the following property: given any > O there is a
finite-rank orthogonal projecta?, such that for allP 1 P,

F{er: ||Px||>£}<8.

Such a norm is callecheasurabld8]. If S is a Hilbert—Schmidt operator oH, |.||s =

(S(), S(.))% is an example of a measurable norm. Upon completiHg||.||) one ob-
tains a Banach spack. (: H — X is called an abstract Wiener space. The inclusion
is continuous and dense. Givef, ..., x, € X" and a Borel seB C C", one defines, if
Cx={xeX: (x{(x),...,x,(x)) e B},andCy =Cx N H,

[(Cx)=T(Cp).

I' is o-additive, and extends to a measu¥e(called Wiener measure) on the Borel
algebraB3 of X. This generalises the situati@it — C[0, 1] giving rise to the ‘original’
Wiener measure og'[0, 1]. We shall use the following important theorems. It is easily
checked by following the proofs in [8] for example, where the real versions of these theo-
rems are given, that the complex versions hold.

Theorem 1.1 (Gross [7]) If X is a separable Banach space, there is a Hilbert spatce
such that: H — X is an abstract Wiener space. Furthermore, there is a smaller abstract
Wiener spaced <— Xg < X and an increasing sequence of finite-rank orthogonal pro-
jectors(p,) converging to the identity it/ ; these extend t@, on Xo where they converge

to the identity as well. Alsdy (Xg) = 1.

Theorem 1.2 (Fernique [6]) There is are > 0 such that

/egnxllde(x) < 00.
X

If /:X"— H'is the transpose of the inclusiopwe define* = * o /’. In the following
commutative diagram:

H/lﬁx/
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the arrow on the rightA =1 o I o * is called thecovariance operatoof W. (* is dense

and one-to-one and we can chogsg) C X’ such that*(z,) = ¢}, the orthonormal basis

of H’' dual to(e,,). Note that(z,) is a sequence of independent Gaussian complex random
variables with mean 0 and variance 1 on the probability sg&cé, W). We will denote

by T the (densely-defined and unbounded) inverse of the opefator

2. Theformulas

We now prove finite-dimensional versions of formulas (A) and (B) of the Introduction.
G will denote standard Gaussian measure(¥n The projections to théth coordinates
are normally distributed complex-valued random variables with mean zero and variance 1.
These therefore have density functions

1 2
Ze 2%
T

a=(x1,...,0,) and B = (B1, ..., By) will be multi-indices. We will employ the usual

notationsijar| = a1 + -+ + ap; @l = 1!+ o !; ©* = W)+ wy". In the following lem-

mas,N denotes any norny : C" — [0, c0).

Lemma 2.1. Let G be standard Gaussian measure Gh. Then

/w%ﬂ dG(w) =fw%ﬁ1v(w)‘“'—‘ﬁ‘dc(w)=5aﬂa!.
Cl‘l Cl’l

Proof. Whena # 8 the integrals are zero by considerations of symmetry.& 3,

/a)%ﬂd(;(w):/w%ﬂzv(w)‘“'*‘ﬁ‘dc(w):/|w1|2°‘1..-|wn|2“n dG(w)
cr cn cr

n n
) 1 2
=]"[/|w,-|2“l dGi(wi)=l_[;/|wi|2°"e ol? g,
=1l -

i=17
n o0 n o0 n
:H/pz""'e*pZZpdp=1_[/ua"ef"du=l_[oe,-!=a!. a
i=19 i=19 i=1

Lemma 2.2. Let h:C" — C be an entire function inL?(G) (p > 1). Then for every
ze(C",

h(z) =/e<z’“’>h(a))dG(a)).

CV[

Proof. Sincee!>® isin L7(G) for all ¢ < oo, the integral exists by Holder. Write

n J
h(a)):Z Z aawo‘ and €<Z'w) ZZ]_:L!<ZZICE) :Z Z %Z'Bé)ﬂ,
i=1 :

k>0la|=k j=0"" J20181=j
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and note that these series are uniformly convergent in any ball. Now

/ = () dG(w) = f 2. 2.5 %ﬁz Y ae® dG(w)

&n on 0= P k>0 al=k

—zzzzw—/ﬂww

Jj20|Bl=j k>0|a|=k

3D IDIP I

J201B1=j k=0|a|=k

=) Y a*=hk). D

k>0 |a|=k

Lemma 2.3. Let B be the open unit ball ofC” and h: B — C analytic. If h(w) =
> k50 Ljajk da@”, defineh®:C" — C by h¥(@) = Y4507 2/t de®®. Then if
h®(N(0)w) € LY(G), for anyz such thatsup, |(z, ﬁw)ﬂ <1, we have

— 1 <&
h(z)—/1_<Z’L>h (N(@)w)dG (o).

o N(@)

Proof. Note that sincé: has radius of convergence o€, is entire. Also,

w 1 1
z,——})|<c<1l so —| <
N (o) 1—(o 35 1-

and the integral exists. Defidgto be the indicator function of the sgb: |w;| > % for all i}
and write

I (w) _r 2i®; j_l jl PP
O Z:N(w) =12 D G Ny

25 N(w)) >0 j=08l=j

)

c

Then the integral is the limit as— oo of

I (w) >
— " (N(0w)dG(w)
/l—(L m) ( )

/1 (a))Z Z ﬁ'N(w)j Pa ﬂz Z ag N (@) 0® dG(w)

cn j=01B1=j k>0 " o=k

_Z Z Z Z agz? k‘ﬁ, /1 (@)@ N ()71l 4G (w),

j=2018|=j k=>0|a|=k

C}'l

which, as in Lemma 2.1, converges to

Z Z Z Z aaz k',B' 0‘,30[' Z Z aOlZa :h(Z) O

>01Bl=j k=0 |a|=k k>0 |o|=k
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In order to extend these formulas to an infinite-dimensional Banach space setting, sup-
poseX is a separable Banach space and consider the abstract Wiener sface X
given by Gross’ theorem.

We will need to define the following transformation for holomorphic functions
F:H — C. Recall [5] thatF can be expressed locally by its Taylor series expangien
> Fr where F; are continuoug-homogeneous polynomials, i.€(x) = ¢« (x, ..., x),
with ¢ continuous symmetrig-linear functionals. Consider, ...,y € H. Then

Pr(x,...,y)= ¢k<zxz'1€il, e Zyikeik>
i1 i
=YY vy,
i1 7

We definezp,f(x, Y= Zil ... Zik Xiy -+ Vi, k (eiq, - . ., €;,). Note that if * is the invo-
lution defined in the previous section,

q‘)k(x*, ...,y*) =¢£(x, oY)
DefineF,f(x) = ¢£(x, ox)andFf=Y", F,f, and note that
F(x*) = Fi(x).

F%:H — C is just as holomorphic a&; its ‘coefficients’ have been conjugated.

Denote by]|.|o the norm of the spacEg in Gross’ theorem. For the following theorem
we will consider functions of the following type. Lt : H — C be holomorphic and
such thatF = F o ¢, with F: X — C someL?(W)-integrable functior(p > 1) which is
|I.llo-continuous onXg. We will also require tha¥ o P, (P,, the extended projections in
Gross'’ theorem) be almost surely boundedgby L” (W). We will give examples of such
functions in the next section. Note th&it = F o 1 o x, SOF? is in L” (W) whenF is.

Setf =Folo*:X — C.Note thatf is holomorphic onX’ and denotef* = F¥ o
I o*. Thus onX

ft:Fﬁolot*:ﬁotolot*:ﬁoA,

whereA is the covariance operator of the Wiener meadurdRecall thatl is the densely-
defined unbounded inverse of the covariance operatso

f]:oTz1,‘\*:’:voT:Fti

on the dense subspace AmWe denote withf® o T the class ofF* in LP(W). We then
have the following theorem.

Theorem 2.4. For f as above and € X',

Fo) = / NI dW (), )

X
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Proof. We use, throughout, the notation introduced in Gross’ theorem. The composition
F o p, is a holomorphic cylinder function of, thus by Lemma 2.2 for any € H we
have, sincép,x, y) = (x, pny),

(F o pn)(x) = / P (F o p)(») T ().
H

The left-hand side of course convergegttx), which forx = I1*(z) is F(11*(2)) = f(2).
Also,

(x, pny) = (15@), pay) = (pny. 1*(2)) = (@) (pny) = (2 0 O*(pny)
= (zo0)(pny*) =2(t(pny™)).

so the integral above is

/gz(z(p»y*))(popn)(y) dr(y).
H

Since the involution * is"-preserving and+(x) = F?(x*), we have

/ PN FE(puy ) d I (3*) = f PV (pyy)dT ()
H H

= / P LRy ) dW (y).
Xo
Recall thatP, converge to the identity oo, a set ofW-measure one, so the integrands
converge almost surely tﬁ(y)ﬁ(y). Also, we have the bounds

|eZ(P’”/)f":a(Pny)| < eHZHHPnV||0|(1’;ﬁ o Pn)()/)| < eCHZHH)/Hog(y)’

an integrable function, singge L? (W) for somep > 1 andeclzllvlo is in L9(W) for all
g < oo. Indeed,

. . 2
(ecHZHHVHo)‘i = 4¢llzlllyllo < pgelviia

for small ¢ and large enouglM, and the latter function is integrable by Fernique’s the-
orem. Thus, applying the Lebesgue dominated convergence theorem, the integrals above
converge to

f FNFE () dW (),
Xo
which is

/ N oD dW (). O

X
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Recall [5] that the Taylor series expansign= ), fi of a holomorphic function in
infinite dimensions converges uniformly in some neighborhood around the point of ex-
pansion, but the radius of uniform convergence need not be as large as the distance to the
complement of the domain gf. A case in point is the functionf : co — C defined by

f) =) x1-x
k

which is entire, but with radius of uniform convergence equal to one. The radius of uniform
convergence may be calculated as
1
" limsupll e 7F°

where || f| is the norm of thek-homogeneous polynomigl; (i.e., the infimum of the
numberse such that fi (x)| < ¢|lx||%). Functions whose Taylor series have infinite radius
of uniform convergence are bounded on bounded subsets. Such functions are said to be of
bounded type.

Now for the extension of formula (B), leB;, denote the open unit ball of/, and
F:Bj — C a holomorphic function defined oB},, whose Taylor series expansion
about 0,F =), Fx, has radius of uniform convergence at least one. Define

F<>=Z%Fk.
— k!

F< is then holomorphic on all off, indeed, its Taylor series expansion about 0 has infinite
radius of convergence, sB® is of bounded type. Sef = F o I o /*. The functionf is
holomorphic on the open unit ball of’, and the serief = ", Fi o I o*, has radius

of uniform convergence at least one. Thgfi = F® o [ o * = Dk %(Fk oloi™)isa
holomorphic function of bounded type dff. We will use the notationg %, 1%, etc. as
above. Also we will require of < that it be inL1(W), ||.|lo-continuous onXo, and that
FO(8||Pyy|lx Poy) be almost surely bounded lgye L1 (W) for somes > 0. We then have
the following.

Theorem 2.5. For f as above and any € § B,

1 N
f(z)=/7y(f<>ﬁoT)(3IIVIIV)dW(V)- (B)
| 1=t

vl

Proof. The proof is analogous to that of the previous theorem. Use Lemma 2»3 Bn
with N (p,y) = §|tp, v x to obtain

. 1 o
(Fop(iis) = WF Gllpnyllx Pny)dT (y),
PR ¥ [T )
which is
1 —
/—Bz)’FﬁQ((S”PHV”XPnV)dW(y),
1-2(5mpm)

Xo
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The integrands converge rﬁﬁ%(any llxy) on Xg. Also, one has the bounds
vx

FZ @) Payllx Puy)| <

- |FE (811 Py llx Pay)|
(5T

HZH

1—

1 1
S 8 ) e L°(W).
1-%

The rest of the proof proceeds as beforel

The theorem could have been written with= 1, given the conditions imposed @
The role ofé will become clearer in the next section, and is related to the following fact.
In the n- dimensional setting the functioef” is G-integrable for anyu < 1, and the

integral i |s(1 - In the infinite-dimensional setting, however, Fernique’s theorem assures

the integrability ofe®171” only for some sufficiently smab.

3. Thefunctions

We have proven the integral formulas (A) and (B) for holomorphic functipn¥” — C
which ‘extend’ holomorphically taF : H — C, in the sense that = Fo I o * = F o A,
provided thatF o P, are almost surely bounded lgye L? (W).

The fact thatf o T = F on ImA, with F € L”(W), can be viewed as an integrability
condition, whilef o T o« = F, with F holomorphic, is essentially a continuity condition.
In this section we wish to study classes of functions verifying such conditions but which
are more tractable.

The first of these classes is related to growth conditions on the fungtidiote that
since the covariance operatdris one-to-onej.||4 = ||A(.)| is a norm onX’ (stronger
than its usual norm). We will denote with, the radii of uniform convergence calculated
with this norm,

1

ra= 1k
limsup]| i ll¥/

Note that4 < r, the usual radius of convergence.

Definition 1. We will say thatf: X’ — C is of A-exponential typéf there are positive
constants ando such that for alk € X’,

|f(Z)| < CeUHZHA.

Proposition 3.1. Let f be a Gateaux-holomorphic function &f. Then the following are
equivalent

(i) f is of A-exponential type.
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(i) Foreacha € X', f(z) =Y 4 fr.a(z—a) With fi . k-homogeneous polynomials which
are continuous for the norn|| 4 and
k
o
I fr.alla < Cayy o

(i) f(z) =>4 fi(z) with fi k-homogeneous polynomials which are continuous for the
norm||.||a and

ok

I filla < CF

Thus if (i), (i), or (iii) hold, f is Fréchet-holomorphic;s = co and f is uniformly/||.|| 4-
continuous orj|.|| 4-bounded sets.

Proof. (i) = (ii): For eacha € X’ there are uniqué-homogeneous polynomialg , such
that f(z) = Zk>0 Sk.a(z — a), and thef; , may be expressed

1 fla+ rz)
fk a(Z)—_ Wd)\

|X|=r
(see [5]). Thus for ali > 0,

1 | f(a+ rz2)| 1 ce® (lalla+riizlia)
|fk’a(Z)|<E / f7|d)»| > / h——YY

s Uz
|Al=r [A|=r

ce’llalla UHZHAV erollzlla
rdt=cella
0
<

+1 -k

From where, settlngzll 1, the f; , are||.|| a-continuous and

”fka”A\C”a”A forall r > 0.

But the minimum of the function — < is attained for, = <. Thus

, e , ek P eFk! ok ok
I fk.alla < €y 70 < Clala 18 = Clalla & oy S Clala gy
for somecyq,, by Stirling’s formula.c,, is independent of.
(ii) = (iii) is clear.
(iiiy = (i): We have, for any, € X/,

k
CEUICEOWEDITE 3 CRIW. _ ceotetn,

k=0 k>0 >0

so f is of A-exponential type.
Note that given any of the three equivalent conditions,

Yk o Ak _©
I ficall i S Chais Geymre
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so limsup |l fk.a ||i\/k =0, andry = oo. Also,
(allz —alla)*
@ = @< Y | frale =) € Y cpary——

>1 >1
_ oll—alla
= Cla4 (e - 1),

so f is uniformly ||.|| 4-continuous orj|.|| 4-bounded sets. O

If f is of A-exponential type, it verifies the conditions for formula (A) to hold. Indeed,
since f is ||.||a-continuous,f o T is continuous on Imi, a dense subspace &f Extend
foT by continuity to all ofX (f o T will also be||.||p-continuous), and s&t = foT ot. F
is continuous and Gateaux-holomorphic, thus holomorphi& oAlso, one has the bounds

|(f oT o Pn)(7)|p L CPePIPn(llo < cPopoclvlio ¢ MesHy”g,

integrable by Fernique’s theorem.

For the case of formula (B) we defineto be of A-harmonic typewhenr, > 1. For
such anf, f¢ is of A-exponential type. Letf be holomorphic on the open unit ball
of X, with r4 > 1. Then formula (B) is applicable t¢ for somes > 0. Indeed,f** o T
is continuous on Im; extend continuously to alk, and takeF<? = f¢f o T. Then
(%o T)(S||Pay || Pay)| is bounded by aiX(W)-function for sufficiently smals:

KfWowaRmn&yﬂ<§:$UMT@MwWﬂVD

k!

1

<D I fihas® ey gt
k

k
1 1
<O el ad NPy 12 < 30l fellad NPy I
k k

GellyIDF sz

14!

<M E 0 =Me 0,
k

integrable for smals by Fernique’s theorem. Note th&tloes not depend on the particular
function f, so any function ofdA-harmonic type can be represented by formula (B) on the
same balb BS, .

A second class of functions to which our formulas apply is related to an analog of
Hardy space of holomorphic functions on the unit ballFbf H.-H. Kuo definedk-linear
functionals of Hilbert—Schmidt type in [8]. O. Lopushansky and A. Zagorodnyuk define
and study, in [9], the space of Hilbertidnhomogeneous polynomialg, (* H) over H
and their¢?-sum, the Hardy spac&?. These are Hilbert spaces, ai is dual to the
symmetric Fock space, which plays an important role in qguantum mechanics. Note that
for P € P,(*H), the usual polynomial norm is bounded by the Hilbertian nofi| <
| Plln. Also, for e = (a1, ...,0,...) €{0,1,...,k}™ with |a| = ¥, &; = k, consider

Py H — C, defined byP, (x) = x* = x;*---x," - --. The polynomial %Pw form an
orthonormal basis foP, (* H).
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Now letS(P,) = ﬁ P, and extend linearly to obtai$:: 2 — H(H). We will denote
by F the space of functions

F=1{Sh): h e H?},

which, if we set(S(h1), S(h2)) F = (h1, h2)42, is @ Hilbert space isometric 2. Note
however that functions itF are holomorphic on all o7, and in fact are functions of
bounded type, i.e., bounded on bounded subsets.dhdeed, ifh = )", hy is the Taylor

series expansion éf at 0, | S(h)k | < IS(A)lln < T%Ilhkllh, so

1k _ ||hk||h>1/"
S(h — ,
I < (1

which tends to zero, sincé|hi|ln) € ¢2. Thus the Taylor series = > hi has infinite
radius of convergence.

Recall that(z;) C X" are such that"(zx) = ¢;, and set* (y) = z2(y)*t - - - 2, (¥)* - -
Since by Lemma 3.1%#") is an orthonormal set ih2(W), the linear map

J:F— L*W) suchthat J(x%)=z"

is isometric. LetF(x) = fx and F(y) = «/a— Z%(y), and note that* is continuous
on X. Applying Theorem 2.4, formula (A) is valid fof (z) = F o I o t*(z). Thus for a

dense subset of (all finite sums ofFP ) we have
e =Folor@ = [ VTFETdWe) = [ VTG aW ).
X X

Now fix z € X’. Using the Cauchy-Schwarz inequality we see that this integral is continu-
ous overF. Thus to obtain formula (A) forf = F o I o ¢* with any F € F we need only
see that

Fis>Folo*(2)=f(2)
is continuous orF. But this is true, for
|Folot*(z)—Goloi*(2)
< |Fe = G (10" @) ]| < 3 1 Fe = Gillpy ey | 1 0 @)

k>0 k>0
1 0@
<Y VN = Gill py gy —————
k=0 IJH
V2 (ot @) *\ Y2
<(Zk!||Fk—Gk||%h<kH)) (ZT> =C@IF -G£

k=0 k=0

We remark that iff : X’ — C is a function representable as

Fo) = / EN () dW(y) with h e LAW),
X
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then there exists af € F for which f(z) = F o I o t*(2).
Similarly, if we setS(P,) = +/|«|! P, and extend linearly, we obtain a space of functions

G={Sh): heH?},

for which formula (B) is valid.

Finally, we want to be able to apply our formulas (A) and (B) to functions which are
holomorphic on a Banach spage even ifE is not a dual space. This can be done through
the Aron—Berner extension of the function to the bidaédlof E. The Aron—Berner con-
struction may be seen in [1,5,11]. We need to recall only the following. # >, fi is
the Taylor series expansion g¢f (about 0, say). Then eadtithomogeneous polynomial
fi: E — C may be canonically extended to the bidugl: E” — C, and the Aron—Berner
extension off is defined to be

=R
k

A result of Davie and Gamelin [2] says that the Aron—Berner extension preserves the norms
of homogeneous polynomials, so the radius of uniform convergence of the Taylor series of
f and f coincide. If f is a holomorphic function o, consider

E/

where we still denote witht the restriction ofA to E. We want to prove that iff is of
A-exponential type (respectively of-harmonic type), thery is of A-exponential type
(respectively ofA-harmonic type). By Proposition 3.1, we need only see that for|afy-
continuoust-homogeneous polynomid@ overE, || P[4 = || P| 4. To check this, note that
the identity mappingc — (E, ||.]l4) is continuous and of norm less than or equal to one.
Calla:E" — (E, ||.]|la)” its bitranspose and consider the Aron—Berner extensioistof
both spaces:

EN—————=(E,|.]2)"

P pA

Note that by the Davie—-Gamelin theordB4| 4 = || P|| . Now for anyz € E” we have
|P(@)] = |PA(«@)| < | PA] Je@ | = 1PILale@], < IPIAlIzI.

Thus||P||4 < ||P|l4. The opposite inequality is trivial, SOP|[4 = || P|| 4.
We have then the following variations of Theorems 2.4 and 2.5, wheéis Wiener
measure o’ andA: E” — E’ its covariance operator.
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Theorem 3.2. SupposeE has a separable dual, and lgt: E — C be a holomorphic
function ofA-exponential type. If is the Aron—-Berner extension ¢f andz € E”,

Fo) = / N (FEoT) () dW (). )

E'

Theorem 3.3. SupposeE has a separable dual. There iséa> 0 such that if f is a
holomorphic function ofA-harmonic type orE, and f its Aron—Berner extension, then for
zZ € 83%/”

F@ = [ s (D6l aw o). ®

vl

E
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