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Abstract

In this paper we discuss the problem of integral representation of analytic functions over a co
Banach spaceE. We obtain, for a wide class of functions, integral representations of the form

f (x) =
∫
E′

eγ (x)f1(γ ) dW(γ ) and f (x) =
∫
E′

1

1− γ (x)
‖γ ‖

f2(γ ) dW(γ ),

whereW is an abstract Wiener measure onE′ andf1, f2 are transformations off involving the
covariance operator ofW .
 2004 Elsevier Inc. All rights reserved.

Keywords:Integral representation; Cauchy integral formula; Gaussian measures

Introduction

The Cauchy integral formula has no true analogue in infinite-dimensional holomo
The usual generalisation, though quite useful, is essentially the one-dimensional fo
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in each direction: givenx and|λ| < r ,

f (λx) = 1

2πi

∫
|ω|=r

f (ωx)

ω − λ
dω.

In this paper, we discuss the problem of generalising the Cauchy integral form
infinite-dimensional Banach spaces, and derive two related formulas valid for a wide
of functions on such spaces.

Integral expressions valid for some homogeneous polynomials and some holom
functions on a Banach spaceE have been proposed, all of which involve integration o
the dual spaceE′ rather thanE. An integralk-homogeneous polynomial overE [4], for
example, is

P(x) =
∫

BE′

γ (x)k dµ(γ ).

We begin our discussion by considering the Cauchy integral formula onC, and possible
generalisations to larger spaces. The Cauchy integral formula

f (z) = 1

2πi

∫
S1

f (ω)

ω − z
dω, (1)

may be written, after a change in variables, as

f (z) =
∫
S1

1

1− zω
f (ω)dP (ω), (2)

whereP is normalised Lebesgue measure on the circle. One may also write

f (z) =
∫
C

1

1− z ω̄
|ω̄|

f

(
ω

|ω|
)

dG(ω), (3)

whereG is a Gaussian measure onC.
In the following heuristic introduction, we consider the problem of generalising t

formulas to n or infinite-dimensional complex spaces. We refer to [5] for infin
dimensional holomorphy.

In n-dimensional space the first formula leads to the Cauchy formula over the pol
where integration is over the distinguished boundary. Only rarely (i.e., in�∞) can the
infinite-dimensional polydisc be found in a Banach space; also, division byω − z seems
meaningless, so we do not pursue this idea.

The second formula involves integration on the sphere and makes some sense i
willing to takeω ∈ E′. This and the consideration of integral polynomials is what gave
to the definition of integral holomorphic functionf :B◦

E → C in [3],

f (x) =
∫

1

1− γ (x)
dµ(γ ).
BE′
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In this expression, integration is over the unit ball ofE′ (thew∗-closure of the unit sphere
andµ is a regular Borel measure on(BE′ ,w∗). The measureµ is said to represent the fun
tion f , but there are many such representingµ’s, and little has been said in the way of e
pressing these measures in terms of the functionf , for example asdµ(γ ) = f̃ (γ ) dM(γ ),
wheref̃ is some transformation off andM a universal measure (i.e., the same mea
for all f ). Consider the problem inCn. For the second formula to hold one sees after
panding the functions 1

1−〈z,ω〉 andf in Taylor series, that we would need (integrating
the(2n − 1)-dimensional sphereS)∫

S

ωβω̄α dP (ω) = δαβ

α!
|α|! .

However, one obtains∫
S

ωβω̄α dP (ω) = δαβ

α!
|α|!

( |α| + n − 1
n − 1

)−1

.

This can be compensated for by multiplying eachk-homogeneous term in the integral
the combinatorial number

(
k+n−1
n−1

)
. When assigned to 1

1−〈z,ω〉 , the Szegö kernel for th
sphereS appears. It could also be assigned tof obtaining a transformfn of f for which
the formula

f (z) =
∫
S

1

1− 〈z,ω〉fn(ω)dP (ω)

holds. However, both the Szegö kernels and thefn’s tend to infinity as the dimensionn
increases. Thus, this approach also seems inappropriate for infinite-dimensional ho
phy.

Consider now the third formula and proceed as above to generalise it toCn. One is led
to calculate∫

Cn

ωβω̄α dG(ω) = δαβ

α!
|α|! |α|!.

Here the extant factor is|α|!. This can be compensated for by multiplying eachk-
homogeneous term in the integral by 1/k!, independently of the dimensionn. When
assigned to 1

1−〈z,ω〉 , one obtains the formula

f (z) =
∫
Cn

e〈z,ω〉f (ω)dG(ω). (A)

Alternatively, it can be assigned tof , obtaining a transformf ♦ of f which is entire iff
has radius of convergence 1. Normalising in1

1−〈z,ω〉 to avoid poles, one obtains

f (z) =
∫

1〈
ω

〉f ♦(‖ω‖ω)
dG(ω). (B)
Cn
1− z, ‖ω‖
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These last two integral formulas, (A) for entire functions and (B) for functions h
morphic on the unit ball, are the ones that we will prove inCn and then generalise t
infinite-dimensional Banach spaces.

In Section 1 we recall and adapt to our needs some of the elements of the
of abstract Wiener spaces. Formulas (A) and (B) are proved forCn and for an infinite-
dimensional Banach space in Section 2. The functions to which they apply are pre
rather abstractly in this section. Finally, we discuss in Section 3 more tractable clas
functions for which these results hold.

1. The measures

We need to consider Gaussian measures on Banach spaces and will use the th
abstract Wiener spaces (see [8,10]). Since our spaces will be complex, we need to
some of the interplay between the real and complex structures. This will also serve
notation.

Let H be a separable complex Hilbert space and denote its inner product by〈 , 〉. H of
course also has a real Hilbert space structure, which we will denote byHR . Its inner product
is 〈 , 〉R = Re〈 , 〉. Note thatx andix are orthogonal inHR . Also, fix (en), an orthonorma
basis ofH . Then(en, ien) is an orthonormal basis ofHR . The duals of both spaces a
(real) isometric, via the mappingH ′

R → H ′, φ �→ φ̃ where φ̃(x) = φ(x) − iφ(ix). As
always,H ′ can be identified withH via I :H ′ → H such that forx ∈ H andφ ∈ H ′,
φ(x) = 〈x, I (φ)〉. The isomorphismI is conjugate linear. Our need for analyticity will
lead us to correct the lack of linearity ofI with involutions inH andH ′. If x = ∑

xnen is
an element ofH , we denotex∗ = ∑

xnen. Note that〈x∗, y〉 = 〈x, y∗〉. Similarly, if φ ∈ H ′,
defineφ∗ so thatI (φ∗) = I (φ)∗, and note thatφ(x∗) = φ∗(x). These involutions depen
on the basis chosen inH . The same involution is obtained—however—if a basis(fn) is
used, for whichf ∗

n = fn.
A complex-valued Gaussian random variable (with meanm and varianceσ 2) is one

whose density functionf :C → R is

f (w) = 1

πσ 2
e
− |w−m|2

σ2 .

Its real and imaginary parts are independent real-valued Gaussian random variabl

mean Rem and Imm and varianceσ
2

2 .
If P is a finite-rank orthogonal projector inH , a cylinder set inH is a set of the form

A = {x ∈ H : Px ∈ B},
whereB is a Borel subset ofPH . The collection of such sets is a field, but not aσ -field.
We will denote byΓ the Gaussian cylinder measure defined on cylinder sets:

Γ (A) = 1
n

∫
e−|w|2 dw,
π
B
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wheren is the complex dimension ofPH , and the integral is with respect to Lebesg
measure.Γ is not a true measure (it is notσ -additive). However, integrals of cylinde
functions (F :H → C of the formF = h ◦ P ) may be defined by setting∫

A

F dΓ =
∫
B

hdG,

whereG is standardn-dimensional Gaussian measure. Note also that the involution∗ is
Γ -preserving.

Elementsφ ∈ H ′ are complex-valued Gaussian random variables with mean 0 and
ance〈φ,φ〉. Note that elements inα ∈ H ′

R are real-valued random variables with mea
and variance12〈α,α〉.

Consider onH a norm‖.‖ with the following property: given anyε > 0 there is a
finite-rank orthogonal projectorPε such that for allP ⊥ Pε,

Γ
{
x ∈ H : ‖Px‖ > ε

}
< ε.

Such a norm is calledmeasurable[8]. If S is a Hilbert–Schmidt operator onH , ‖.‖S =
〈S(.), S(.)〉 1

2 is an example of a measurable norm. Upon completing(H,‖.‖) one ob-
tains a Banach spaceX. ι :H ↪→ X is called an abstract Wiener space. The inclusioι

is continuous and dense. Givenx′
1, . . . , x

′
n ∈ X′ and a Borel setB ⊂ Cn, one defines, if

CX = {x ∈ X: (x′
1(x), . . . , x′

n(x)) ∈ B}, andCH = CX ∩ H ,

Γ̃ (CX) = Γ (CH ).

Γ̃ is σ -additive, and extends to a measureW (called Wiener measure) on the Borelσ -
algebraB of X. This generalises the situationC1 ↪→ C[0,1] giving rise to the ‘original’
Wiener measure onC[0,1]. We shall use the following important theorems. It is ea
checked by following the proofs in [8] for example, where the real versions of these
rems are given, that the complex versions hold.

Theorem 1.1 (Gross [7]). If X is a separable Banach space, there is a Hilbert spaceH

such thatι :H ↪→ X is an abstract Wiener space. Furthermore, there is a smaller abs
Wiener spaceH ↪→ X0 ↪→ X and an increasing sequence of finite-rank orthogonal p
jectors(pn) converging to the identity inH ; these extend toPn onX0 where they converg
to the identity as well. Also,W(X0) = 1.

Theorem 1.2 (Fernique [6]). There is anε > 0 such that∫
X

eε‖x‖2
dW(x) < ∞.

If ι′ :X′ → H ′ is the transpose of the inclusionι, we defineι∗ = ∗ ◦ ι′. In the following
commutative diagram:

H
ι

X

I A
H ′ X′
ι∗
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the arrow on the right,A = ι ◦ I ◦ ι∗ is called thecovariance operatorof W . ι∗ is dense
and one-to-one and we can choose(zn) ⊂ X′ such thatι∗(zn) = e′

n, the orthonormal basi
of H ′ dual to(en). Note that(zn) is a sequence of independent Gaussian complex ran
variables with mean 0 and variance 1 on the probability space(X,B,W). We will denote
by T the (densely-defined and unbounded) inverse of the operatorA.

2. The formulas

We now prove finite-dimensional versions of formulas (A) and (B) of the Introduc
G will denote standard Gaussian measure onCn. The projections to theith coordinates
are normally distributed complex-valued random variables with mean zero and varia
These therefore have density functions

1

π
e−|z|2.

α = (α1, . . . , αn) andβ = (β1, . . . , βn) will be multi-indices. We will employ the usua
notations:|α| = α1 + · · · + αn; α! = α1! · · ·αn!; ωα = ω

α1
1 · · ·ωαn

n . In the following lem-
mas,N denotes any normN :Cn → [0,∞).

Lemma 2.1. LetG be standard Gaussian measure onCn. Then∫
Cn

ωαω̄β dG(ω) =
∫
Cn

ωαω̄βN(ω)|α|−|β| dG(ω) = δαβα!.

Proof. Whenα �= β the integrals are zero by considerations of symmetry. Ifα = β,∫
Cn

ωαω̄β dG(ω) =
∫
Cn

ωαω̄βN(ω)|α|−|β| dG(ω) =
∫
Cn

|ω1|2α1 · · · |ωn|2αn dG(ω)

=
n∏

i=1

∫
C

|ωi |2αi dGi(ωi) =
n∏

i=1

1

π

∫
C

|ωi |2αi e−|ωi |2 dωi

=
n∏

i=1

∞∫
0

ρ2αi e−ρ2
2ρ dρ =

n∏
i=1

∞∫
0

uαi e−u du =
n∏

i=1

αi ! = α!. �

Lemma 2.2. Let h :Cn → C be an entire function inLp(G) (p > 1). Then for every
z ∈ Cn,

h(z) =
∫
Cn

e〈z,ω〉h(ω)dG(ω).

Proof. Sincee〈z,ω〉 is in Lq(G) for all q < ∞, the integral exists by Hölder. Write

h(ω) =
∑ ∑

aαωα and e〈z,ω〉 =
∑ 1

(
n∑

ziωi

)j

=
∑ ∑ 1

zβω̄β,
k�0 |α|=k j�0
j !

i=1 j�0 |β|=j
β!
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and note that these series are uniformly convergent in any ball. Now∫
Cn

e〈z,ω〉h(ω)dG(ω) =
∫
Cn

∑
j�0

∑
|β|=j

1

β!z
βωβ

∑
k�0

∑
|α|=k

aαωα dG(ω)

=
∑
j�0

∑
|β|=j

∑
k�0

∑
|α|=k

aαzβ 1

β!
∫
Cn

ωαω̄β dG(ω)

=
∑
j�0

∑
|β|=j

∑
k�0

∑
|α|=k

aαzβ 1

β!δαβα!

=
∑
k�0

∑
|α|=k

aαzα = h(z). �

Lemma 2.3. Let B be the open unit ball ofCn and h :B → C analytic. If h(ω) =∑
k�0

∑
|α|=k aαωα , defineh♦ :Cn → C by h♦(ω) = ∑

k�0
1
k!

∑
|α|=k aαωα . Then if

h♦(N(ω)ω) ∈ L1(G), for anyz such thatsupω
∣∣〈z, ω

N(ω)

〉∣∣ < 1, we have

h(z) =
∫
Cn

1

1− 〈
z, ω

N(ω)

〉h♦(
N(ω)ω

)
dG(ω).

Proof. Note that sinceh has radius of convergence one,h♦ is entire. Also,∣∣∣∣〈z, ω

N(ω)

〉∣∣∣∣ � c < 1 so

∣∣∣∣ 1

1− 〈
z, ω

N(ω)

〉 ∣∣∣∣ � 1

1− c
,

and the integral exists. DefineIr to be the indicator function of the set{ω: |ωi | � 1
r

for all i}
and write

Ir (ω)

1− 〈
z, ω

N(ω)

〉 = Ir (ω)
∑
j�0

(
n∑

i=1

ziωi

N(ω)

)j

= Ir (ω)
∑
j�0

∑
|β|=j

j !
β!

zβω̄β

N(ω)j
.

Then the integral is the limit asr �→ ∞ of∫
Cn

Ir(ω)

1− 〈
z, ω

N(ω)

〉h♦(
N(ω)ω

)
dG(ω)

=
∫
Cn

Ir(ω)
∑
j�0

∑
|β|=j

j !
β!

1

N(ω)j
zβω̄β

∑
k�0

1

k!
∑
|α|=k

aαN(ω)kωα dG(ω)

=
∑
j�0

∑
|β|=j

∑
k�0

∑
|α|=k

aαzβ j !
k!β!

∫
Cn

Ir (ω)ωαω̄βN(ω)|α|−|β| dG(ω),

which, as in Lemma 2.1, converges to∑ ∑ ∑ ∑
aαzβ j !

δαβα! =
∑ ∑

aαzα = h(z). �

j�0 |β|=j k�0 |α|=k

k!β!
k�0 |α|=k
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In order to extend these formulas to an infinite-dimensional Banach space settin
poseX is a separable Banach space and consider the abstract Wiener spaceι :H ↪→ X

given by Gross’ theorem.
We will need to define the following transformation for holomorphic functio

F :H → C. Recall [5] thatF can be expressed locally by its Taylor series expansionF =∑
Fk whereFk are continuousk-homogeneous polynomials, i.e.,Fk(x) = φk(x, . . . , x),

with φk continuous symmetrick-linear functionals. Considerx, . . . , y ∈ H . Then

φk(x, . . . , y) = φk

(∑
i1

xi1ei1, . . . ,
∑
ik

yik eik

)
=

∑
i1

. . .
∑
ik

xi1 · · ·yikφk(ei1, . . . , eik ).

We defineφ�
k(x, . . . , y) = ∑

i1
. . .

∑
ik

xi1 · · ·yikφk(ei1, . . . , eik ). Note that if * is the invo-
lution defined in the previous section,

φk

(
x∗, . . . , y∗) = φ

�
k(x, . . . , y).

DefineF
�
k (x) = φ

�
k(x, . . . , x) andF� = ∑

k F
�
k , and note that

F
(
x∗) = F�(x).

F � :H → C is just as holomorphic asF ; its ‘coefficients’ have been conjugated.
Denote by‖.‖0 the norm of the spaceX0 in Gross’ theorem. For the following theore

we will consider functions of the following type. LetF : H → C be holomorphic and
such thatF = F̃ ◦ ι, with F̃ :X → C someLp(W)-integrable function(p > 1) which is
‖.‖0-continuous onX0. We will also require thatF̃ ◦ Pn (Pn, the extended projections
Gross’ theorem) be almost surely bounded byg ∈ Lp(W). We will give examples of suc
functions in the next section. Note thatF� = F̃ ◦ ι ◦ ∗, soF̃ � is in Lp(W) whenF̃ is.

Setf = F ◦ I ◦ ι∗ :X′ → C. Note thatf is holomorphic onX′ and denotef � = F� ◦
I ◦ ι∗. Thus onX

f � = F� ◦ I ◦ ι∗ = F̃ � ◦ ι ◦ I ◦ ι∗ = F̃ � ◦ A,

whereA is the covariance operator of the Wiener measureW . Recall thatT is the densely-
defined unbounded inverse of the covariance operatorA, so

f � ◦ T = F̃ � ◦ A ◦ T = F̃ �

on the dense subspace ImA. We denote withf � ◦ T the class of̃F� in Lp(W). We then
have the following theorem.

Theorem 2.4. For f as above andz ∈ X′,

f (z) =
∫

ez(γ )(f � ◦ T )(γ ) dW(γ ). (A)
X
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Proof. We use, throughout, the notation introduced in Gross’ theorem. The compo
F ◦ pn is a holomorphic cylinder function onH , thus by Lemma 2.2 for anyx ∈ H we
have, since〈pnx, y〉 = 〈x,pny〉,

(F ◦ pn)(x) =
∫
H

e〈x,pny〉(F ◦ pn)(y) dΓ (y).

The left-hand side of course converges toF(x), which forx = I ι∗(z) is F(I ι∗(z)) = f (z).
Also,

〈x,pny〉 = 〈
I ι∗(z),pny

〉 = 〈
pny, I ι∗(z)

〉 = ι∗(z)(pny) = (z ◦ ι)∗(pny)

= (z ◦ ι)
(
pny

∗) = z
(
ι
(
pny

∗)),
so the integral above is∫

H

ez(ι(pny∗))(F ◦ pn)(y) dΓ (y).

Since the involution * isΓ -preserving andF(x) = F�(x∗), we have∫
H

ez(ι(pny∗))F �(pny∗) dΓ (y∗) =
∫
H

ez(ι(pny))F �(pny)dΓ (y)

=
∫
X0

ez(Pnγ )F̃ �(Pnγ )dW(γ ).

Recall thatPn converge to the identity onX0, a set ofW -measure one, so the integran

converge almost surely toez(γ )F̃ �(γ ). Also, we have the bounds∣∣ez(Pnγ )F̃ �(Pnγ )
∣∣ � e‖z‖‖Pnγ ‖0

∣∣(F̃ � ◦ Pn)(γ )
∣∣ � ec‖z‖‖γ ‖0g(γ ),

an integrable function, sinceg ∈ Lp(W) for somep > 1 andec‖z‖‖γ ‖0 is in Lq(W) for all
q < ∞. Indeed,(

ec‖z‖‖γ ‖0
)q = eqc‖z‖‖γ ‖0 � Meε‖γ ‖2

0

for small ε and large enoughM , and the latter function is integrable by Fernique’s t
orem. Thus, applying the Lebesgue dominated convergence theorem, the integral
converge to∫

X0

ez(γ )F̃ �(γ ) dW(γ ),

which is∫
ez(γ )(f � ◦ T )(γ ) dW(γ ). �
X
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Recall [5] that the Taylor series expansionf = ∑
k fk of a holomorphic function in

infinite dimensions converges uniformly in some neighborhood around the point o
pansion, but the radius of uniform convergence need not be as large as the distanc
complement of the domain off . A case in point is the functionf : c0 → C defined by

f (x) =
∑

k

x1 · · ·xk

which is entire, but with radius of uniform convergence equal to one. The radius of un
convergence may be calculated as

r = 1

lim sup‖fk‖1/k
,

where‖fk‖ is the norm of thek-homogeneous polynomialfk (i.e., the infimum of the
numbersc such that|fk(x)| � c‖x‖k). Functions whose Taylor series have infinite rad
of uniform convergence are bounded on bounded subsets. Such functions are said
bounded type.

Now for the extension of formula (B), letB◦
H denote the open unit ball ofH , and

F :B◦
H → C a holomorphic function defined onB◦

H , whose Taylor series expansio
about 0,F = ∑

k Fk , has radius of uniform convergence at least one. Define

F♦ =
∑

k

1

k!Fk.

F♦ is then holomorphic on all ofH , indeed, its Taylor series expansion about 0 has infi
radius of convergence, soF♦ is of bounded type. Setf = F ◦ I ◦ ι∗. The functionf is
holomorphic on the open unit ball ofX′, and the seriesf = ∑

k Fk ◦ I ◦ ι∗, has radius
of uniform convergence at least one. Thenf ♦ = F♦ ◦ I ◦ ι∗ = ∑

k
1
k! (Fk ◦ I ◦ ι∗) is a

holomorphic function of bounded type onX′. We will use the notationsf ♦�, F̃♦, etc. as
above. Also we will require of̃F♦ that it be inL1(W), ‖.‖0-continuous onX0, and that
F̃♦(δ‖Pnγ ‖XPnγ ) be almost surely bounded byg ∈ L1(W) for someδ > 0. We then have
the following.

Theorem 2.5. For f as above and anyz ∈ δB◦
X′ ,

f (z) =
∫
X

1

1− z
( γ

δ‖γ ‖
) (f ♦� ◦ T )(δ‖γ ‖γ )dW(γ ). (B)

Proof. The proof is analogous to that of the previous theorem. Use Lemma 2.3 onpnH

with N(pny) = δ‖ιpny‖X to obtain

(F ◦ pn)
(
I ι∗z

) =
∫
H

1

1− z
( ιpny

δ‖ιpny‖X

)F�♦(δ‖ιpny‖Xpny)dΓ (y),

which is∫
1( Pnγ ) F̃ �♦(δ‖Pnγ ‖XPnγ )dW(γ ).
X0
1− z

δ‖Pnγ ‖X
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fact.
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ed
The integrands converge to 1
1−z(

γ
δ‖γ ‖X )

F̃ �♦(δ‖γ ‖Xγ ) onX0. Also, one has the bounds

∣∣∣∣ 1

1− z
( Pnγ

δ‖Pnγ ‖X

) F̃ �♦(δ‖Pnγ ‖XPnγ )

∣∣∣∣ � 1

1− ‖z‖
δ

∣∣F̃ �♦(
δ‖Pnγ ‖XPnγ

)∣∣
� 1

1− ‖z‖
δ

g(γ ) ∈ L1(W).

The rest of the proof proceeds as before.�
The theorem could have been written withδ = 1, given the conditions imposed oñF♦.

The role ofδ will become clearer in the next section, and is related to the following
In the n-dimensional setting the functionea|ω|2 is G-integrable for anya < 1, and the
integral is 1

(1−a)n
. In the infinite-dimensional setting, however, Fernique’s theorem as

the integrability ofeε‖γ ‖2
only for some sufficiently smallε.

3. The functions

We have proven the integral formulas (A) and (B) for holomorphic functionsf :X′ → C

which ‘extend’ holomorphically toF :H → C, in the sense thatf = F ◦ I ◦ ι∗ = F̃ ◦ A,
provided thatF̃ ◦ Pn are almost surely bounded byg ∈ Lp(W).

The fact thatf ◦ T = F̃ on ImA, with F̃ ∈ Lp(W), can be viewed as an integrabili
condition, whilef ◦ T ◦ ι = F , with F holomorphic, is essentially a continuity conditio
In this section we wish to study classes of functions verifying such conditions but w
are more tractable.

The first of these classes is related to growth conditions on the functionf . Note that
since the covariance operatorA is one-to-one,‖.‖A = ‖A(.)‖ is a norm onX′ (stronger
than its usual norm). We will denote withrA the radii of uniform convergence calculat
with this norm,

rA = 1

lim sup‖fk‖1/k
A

.

Note thatrA � r , the usual radius of convergence.

Definition 1. We will say thatf :X′ → C is of A-exponential typeif there are positive
constantsc andσ such that for allz ∈ X′,∣∣f (z)

∣∣ � ceσ‖z‖A.

Proposition 3.1. Let f be a Gateaux-holomorphic function onX′. Then the following are
equivalent:
(i) f is ofA-exponential type.
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ch

the
(ii) For eacha ∈ X′, f (z) = ∑
k fk,a(z−a) with fk,a k-homogeneous polynomials whi

are continuous for the norm‖.‖A and

‖fk,a‖A � C‖a‖A

σ k

k! .

(iii) f (z) = ∑
k fk(z) with fk k-homogeneous polynomials which are continuous for

norm‖.‖A and

‖fk‖A � C
σk

k! .

Thus if (i), (ii) , or (iii) hold,f is Fréchet-holomorphic,rA = ∞ andf is uniformly‖.‖A-
continuous on‖.‖A-bounded sets.

Proof. (i) ⇒ (ii): For eacha ∈ X′ there are uniquek-homogeneous polynomialsfk,a such
thatf (z) = ∑

k�0 fk,a(z − a), and thefk,a may be expressed

fk,a(z) = 1

2πi

∫
|λ|=r

f (a + λz)

λk+1
dλ

(see [5]). Thus for allr > 0,

|fk,a(z)| � 1

2π

∫
|λ|=r

|f (a + λz)|
rk+1

|dλ| � 1

2π

∫
|λ|=r

ceσ(‖a‖A+r‖z‖A)

rk+1
|dλ|

= ceσ‖a‖A

2π

2π∫
0

eσ‖z‖Ar

rk+1
r dt = ceσ‖a‖A

erσ‖z‖A

rk
.

From where, setting‖z‖A � 1, thefk,a are‖.‖A-continuous and

‖fk,a‖A � c′‖a‖A

eσr

rk
for all r > 0.

But the minimum of the functionr �→ eσr

rk is attained forrk = k
σ

. Thus

‖fk,a‖A � c′‖a‖A

eσr

rk
� c′‖a‖A

ek

kk
σ k = c′‖a‖A

ekk!
kk

σ k

k! � c‖a‖A

σ k

k! ,

for somec‖a‖A
, by Stirling’s formula.c‖a‖A

is independent ofk.
(ii) ⇒ (iii) is clear.
(iii) ⇒ (i): We have, for anyz ∈ X′,∣∣f (z)

∣∣ �
∑
k�0

∣∣fk(z)
∣∣ �

∑
k�0

‖fk‖A‖z‖k
A �

∑
k�0

C
(σ‖z‖A)k

k! = Ceσ‖z‖A,

sof is of A-exponential type.
Note that given any of the three equivalent conditions,

1/k 1/k σ
‖fk,a‖A � c‖a‖A (k!)1/k
,
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ed,
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lar
the
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te that
so lim supk ‖fk,a‖1/k
A = 0, andrA = ∞. Also,

|f (z) − f (a)| �
∑
k�1

∣∣fk,a(z − a)
∣∣ �

∑
k�1

c‖a‖A

(σ‖z − a‖A)k

k!
= c‖a‖A

(
eσ‖z−a‖A − 1

)
,

sof is uniformly‖.‖A-continuous on‖.‖A-bounded sets. �
If f is of A-exponential type, it verifies the conditions for formula (A) to hold. Inde

sincef is ‖.‖A-continuous,f ◦ T is continuous on ImA, a dense subspace ofX. Extend
f ◦T by continuity to all ofX (f ◦T will also be‖.‖0-continuous), and setF = f ◦T ◦ ι. F
is continuous and Gateaux-holomorphic, thus holomorphic onH . Also, one has the bound∣∣(f ◦ T ◦ Pn)(γ )

∣∣p � Cpepσ‖Pn(γ )‖0 � Cpepσc‖γ ‖0 � Meε‖γ ‖2
0,

integrable by Fernique’s theorem.
For the case of formula (B) we definef to be ofA-harmonic typewhenrA � 1. For

such anf , f ♦ is of A-exponential type. Letf be holomorphic on the open unit ba
of X′, with rA � 1. Then formula (B) is applicable tof for someδ > 0. Indeed,f ♦� ◦ T

is continuous on ImA; extend continuously to allX, and takeF̃♦� = f ♦� ◦ T . Then
|(f ♦� ◦ T )(δ‖Pnγ ‖Pnγ )| is bounded by anL1(W)-function for sufficiently smallδ:∣∣(f ♦� ◦ T

)(
δ‖Pnγ ‖Pnγ

)∣∣ �
∑

k

1

k!
∣∣fk

(
T

(
δ‖Pnγ ‖Pnγ

))∣∣
�

∑
k

1

k! ‖fk‖Aδk‖Pnγ ‖2k �
∑

k

1

k! ‖fk‖Aδk‖Pnγ ‖2k
0

�
∑

k

1

k! ‖fk‖Aδkck‖γ ‖2k
0

� M
∑

k

(δc‖γ ‖2
0)

k

k! = Meδc‖γ ‖2
0,

integrable for smallδ by Fernique’s theorem. Note thatδ does not depend on the particu
functionf , so any function ofA-harmonic type can be represented by formula (B) on
same ballδB◦

X′ .
A second class of functions to which our formulas apply is related to an anal

Hardy space of holomorphic functions on the unit ball ofH . H.-H. Kuo definedk-linear
functionals of Hilbert–Schmidt type in [8]. O. Lopushansky and A. Zagorodnyuk de
and study, in [9], the space of Hilbertiank-homogeneous polynomialsPh(

kH) over H

and their�2-sum, the Hardy spaceH2. These are Hilbert spaces, andH2 is dual to the
symmetric Fock space, which plays an important role in quantum mechanics. No
for P ∈ Ph(

kH), the usual polynomial norm is bounded by the Hilbertian norm:‖P ‖ �
‖P ‖h. Also, for α = (α1, . . . , αn, . . .) ∈ {0,1, . . . , k}(N) with |α| = ∑

i αi = k, consider

Pα :H → C, defined byPα(x) = xα = x
α1
1 · · ·xαn

n · · ·. The polynomials
√

|α|!
α! Pα form an
orthonormal basis forPh(
kH).
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Now letS(Pα) = 1√|α|!Pα , and extend linearly to obtainS :H2 →H(H). We will denote

by F the space of functions

F = {
S(h): h ∈ H2},

which, if we set〈S(h1), S(h2)〉F = 〈h1, h2〉H2, is a Hilbert space isometric toH2. Note
however that functions inF are holomorphic on all ofH , and in fact are functions o
bounded type, i.e., bounded on bounded subsets ofH . Indeed, ifh = ∑

k hk is the Taylor
series expansion ofh at 0,‖S(h)k‖ � ‖S(h)k‖h � 1√

k! ‖hk‖h, so

∥∥S(h)k
∥∥1/k �

(‖hk‖h√
k!

)1/k

,

which tends to zero, since(‖hk‖h) ∈ �2. Thus the Taylor seriesh = ∑
k hk has infinite

radius of convergence.
Recall that(zk) ⊂ X′ are such thatι∗(zk) = e′

k , and setzα(γ ) = z1(γ )α1 · · · zn(γ )αn · · ·.
Since by Lemma 3.1( 1√

α!z
α) is an orthonormal set inL2(W), the linear map

J :F → L2(W) such that J
(
xα

) = zα

is isometric. LetF(x) = 1√
α!x

α and F̃ (γ ) = 1√
α!z

α(γ ), and note thatF̃ is continuous

on X. Applying Theorem 2.4, formula (A) is valid forf (z) = F ◦ I ◦ ι∗(z). Thus for a
dense subset ofF (all finite sums of 1√|α|!Pα) we have

f (z) = F ◦ I ◦ ι∗(z) =
∫
X

ez(γ )(f � ◦ T )(γ ) dW(γ ) =
∫
X

ez(γ )J (F �)(γ ) dW(γ ).

Now fix z ∈ X′. Using the Cauchy-Schwarz inequality we see that this integral is con
ous overF . Thus to obtain formula (A) forf = F ◦ I ◦ ι∗ with anyF ∈ F we need only
see that

F �→ F ◦ I ◦ ι∗(z) = f (z)

is continuous onF . But this is true, for∣∣F ◦ I ◦ ι∗(z) − G ◦ I ◦ ι∗(z)
∣∣

�
∑
k�0

∣∣(Fk − Gk)
(
I ◦ ι∗(z)

)∣∣ �
∑
k�0

‖Fk − Gk‖Ph(kH)

∥∥I ◦ ι∗(z)
∥∥k

�
∑
k�0

√
k!‖Fk − Gk‖Ph(kH)

‖I ◦ ι∗(z)‖k

√
k!

�
(∑

k�0

k!‖Fk − Gk‖2
Ph(kH)

)1/2(∑
k�0

‖I ◦ ι∗(z)‖2k

k!
)1/2

= C(z)‖F − G‖F .

We remark that iff :X′ → C is a function representable as

f (z) =
∫

ez(γ )h(γ ) dW(γ ) with h ∈ L2(W),
X
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then there exists anF ∈F for whichf (z) = F ◦ I ◦ ι∗(z).
Similarly, if we setS(Pα) = √|α|!Pα and extend linearly, we obtain a space of functio

G = {
S(h): h ∈H2},

for which formula (B) is valid.
Finally, we want to be able to apply our formulas (A) and (B) to functions which

holomorphic on a Banach spaceE, even ifE is not a dual space. This can be done thro
the Aron–Berner extension of the function to the bidualE′′ of E. The Aron–Berner con
struction may be seen in [1,5,11]. We need to recall only the following. Iff = ∑

k fk is
the Taylor series expansion off (about 0, say). Then eachk-homogeneous polynomia
fk :E → C may be canonically extended to the bidual:fk :E′′ → C, and the Aron–Berne
extension off is defined to be

f̄ =
∑

k

fk.

A result of Davie and Gamelin [2] says that the Aron–Berner extension preserves the
of homogeneous polynomials, so the radius of uniform convergence of the Taylor se
f andf̄ coincide. Iff is a holomorphic function onE, consider

E′

E′′
A

f̄

E

A

f

C

where we still denote withA the restriction ofA to E. We want to prove that iff is of
A-exponential type (respectively ofA-harmonic type), thenf̄ is of A-exponential type
(respectively ofA-harmonic type). By Proposition 3.1, we need only see that for any‖.‖A-
continuousk-homogeneous polynomialP overE, ‖P̄ ‖A = ‖P ‖A. To check this, note tha
the identity mappingE → (E,‖.‖A) is continuous and of norm less than or equal to o
Call α :E′′ → (E,‖.‖A)′′ its bitranspose and consider the Aron–Berner extensions ofP to
both spaces:

E′′

P̄

α
(E,‖.‖A)′′

P̄ A

C

Note that by the Davie–Gamelin theorem‖P̄ A‖A = ‖P ‖A. Now for anyz ∈ E′′ we have∣∣P̄ (z)
∣∣ = ∣∣P̄ A

(
α(z)

)∣∣ �
∥∥P̄ A

∥∥
A

∥∥α(z)
∥∥k

A
= ‖P ‖A

∥∥α(z)
∥∥k

A
� ‖P ‖A‖z‖k

A.

Thus‖P̄ ‖A � ‖P ‖A. The opposite inequality is trivial, so‖P̄‖A = ‖P ‖A.
We have then the following variations of Theorems 2.4 and 2.5, whereW is Wiener
measure onE′ andA :E′′ → E′ its covariance operator.
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Theorem 3.2. SupposeE has a separable dual, and letf :E → C be a holomorphic
function ofA-exponential type. Iff̄ is the Aron–Berner extension off , andz ∈ E′′,

f̄ (z) =
∫
E′

ez(γ )
(
f̄ � ◦ T

)
(γ ) dW(γ ). (A)

Theorem 3.3. SupposeE has a separable dual. There is aδ > 0 such that: if f is a
holomorphic function ofA-harmonic type onE, andf̄ its Aron–Berner extension, then f
z ∈ δB◦

E′′ ,

f̄ (z) =
∫
E′

1

1− z
( γ

δ‖γ ‖
)(

f̄ ♦� ◦ T
)(

δ‖γ ‖γ )
dW(γ ). (B)
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