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Abstract

We study by topological methods a nonlinear differential equation generalizing the
Black—Scholes formula for an option pricing model with stochastic volatility. We prove
the existence of at least a solution of the stationary Dirichlet problem applying an upper
and lower solutions method. Moreover, we construct a solution by an iterative procedure.
0 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

In this work we study a nonlinear differential equation arising in an option
pricing model. From the Black—Scholes model, if volatility is stochastic, the
following PDE on the variables andS is obtained [3]:

1
Lf = 5po®Vfo=rf —rSfs, (1)
where/ is the operator given by
3% 1 32 32

1
L=08 + 0282 — + V252 25y .
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We study the stationary case for a generalization of (1) under Dirichlet condi-
tions.

Applying a Newton-type iteration [2] we prove under appropriate conditions
the existence of a solution in the Sobolev spd¢é&(£2) which is obtained
recursively. In Section 4 we obtain a solution under different assumptions,
applying an upper and lower solutions method.

Our main interest is a better understanding of Black—Scholes type equations.

2. Black—Scholestype differential equations

The Black—Scholes equation for pricing options has been studied by many
authors (see, for example, [1,4,6,8,9]).

In particular, stochastic volatility models are proposed: specifically, we shall
consider as in [3] the following processes

dS[ = Stat dZ[ + S[/.,L dt
dU[ VU[th+aU[ dt

whereZ, andW; are two standard Brownian motions with correlation coefficient
p,formally E(dZ;,dW;) = pdt. If f(S,0,t)is the price of an option depending
on the price of the assét then by Ito’s lemma [7], it holds

df(S,o,t) = fsdS+ fydo + Lf dt.

Under an appropriate choice of the portfolio the stochastic term of the equation
vanishes (for details, see [3]).

3. Stationary solutionsto a nonlinear Black—Scholestype equation

We study the following stationary Dirichlet problem:

2528f+2 2V23£+p 2V58f _; 2V8f

dSdo
(1a :rg(f)f—l”S% in 20,
f=ho o0nas,

with g € C2(R), ho € H?(£20), 20 C (0, a) x (0, b) with C11 boundary.

In this section we shall apply an iterative method in order to solve (1a).
Let us introduce the change of variabl@sgiven by y =logS, x =o/V;
adding a parametex € [0, 1] into (1a) we obtain the following problem for

u(x,y)= f(S,o0) inthe domain2 = @ (£2p):

u _ i f) 2rg(u) .
{020 =50t 4 0 )+ B e
u="h onos.
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For simplicity, we define

P ou Jdu 8u_+ 1 2r \ou +2rg(u)
X Uy —y — | =P — = "oy, )4 oo U
dx’ Ay Lo x2V2 )3y = x2v2

and the linear operator

92u

axdy’

We remark thaL is strictly elliptic forp < 1.

We start at a solutiomg of (1b);, and construct recursively a solution of
(1b);.0+¢ for some steg. Thus, we have solutions for 1o < A1 < --- < Ay
< ---, and ife can be chosen uniformly the procedure gives a solution of prob-
lem (1b);.

In order to define a convergent sequence we apply Newton’s method: let
v H2(2) — L2(2) be given by

Lu=Au+2p

V() =Lu— (Ao + &) F(x, u, Vi)
and define

Up+1=Un — [Dw(un)]il(W(un))
Under appropriate conditions the differentiady (1) given by

oF oF ap
Dy (u)(p) = Lo — (Ao + &) —(x,u, Vu)p + (x,u, Vu)—
ou ouy 0x

IF a
+ _(-xa u, Vu)_(p>
ouy dy

2r[g(u)ul’ N A N 2r \ dgp
x2yvz TPy x2V2 ) 3y

is invertible. Hence, the sequence is well defined and converges quadratically to a

zero ofyr.

We remark that it = [Dy (u,)]~1(¥ (u,)) then

Lz— (o + s)(izr[g(”")””] erp <1 o ) 3Z>

=L<p—(ko—|—8)<

x2V2 ox - x2v2 5;
=V (un) = Luy — F(x, un, Vuy).

Thenu,+1 =u, — z is the unique solution of the linear problem

Oupy1 dup 2r Oupt1 Oup
L =(A — 1-—— —
un+1 ( 0 + 8) |:10( ax 8X ) + < X2V2 8y ay

2r(g(uy) + Mng/(un)) du, Oup
+ 22 (Uny1—up) + F X,Mn,ﬁ,g
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with the boundary condition

Upt+1=nh onoas2.

If we assume thag (u)u is nondecreasing with respect itg then the following
lemma shows thdi,,} is well defined.

Lemmal. Lets € C(2) and L, : H2(£2) — L?(£2) bethelinear operator given

by
0z 2r 0z
Liz=Lz— XA p— 1-——
e [p3x+< x2V2>8y+ }
withs >0and0< A < 1. Then L; |H1(.Q) isinvertible and onto. Moreover, there

exists a constant ¢ > 0 depending only on |s|leo such that ||z||2,.2 < ¢||Lsz]||2 for
anyz € H>N H}(£2).

Proof. By classical results [5], the linear problem
LsZ:§0 inQ, ZIBQ:O

is uniquely solvable it 2(2) for anyy € L2(2). Assume the existence of > 0
andu, € H2N H}(£2) such that

l$nlloo < M, lunll22=1, Il Ls,unll2 = O.

As [, Ly,up - u, — 0, we obtain

ou 2r \ou
_/Lu,,.un+k|:p/8—x"un+/<l 2V2> 8nun+/snu5:| — 0.
Q Q Q Q

By ellipticity, — [, Luy - up > kllu, ||f2 for some positive constait Moreover,
if we define the fields

2r
Fi(x,y) = (ui, 0), Fa(x,y) = < 2V2>(O u )

we see that

8)‘1
/uunz /dIVFl— /Fl'udS:O
2r u
/(1 2V2> L /dlsz——/Fz'udSzo.
2

As s, > 0, we deduce thatu, |12 — 0. This implies that| Lu, |2 — 0, which
contradicts the invertibility of.. O

and
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Theorem 2. Let us assume that g(u)u is nondecreasing with respect to . Then
there exists ¢ such that {u,} converges for the norm || - |22 to a solution of
(10)sgte-

Proof. Letz, = u,+1 — u,, and consider

Zr(g(un) + Mng/(un)) >0.
x2y2

Then fork = Ao + ¢ it holds

sn(x,y) =

Ly, zn = (Ao + &) F(x, un, Vuy) — Luy
= (Ao +&)[F(x,un, V) — F(x, up—1, Vity_1)
—DF(x,up—1, Vuy_1)(x, 2p—1, VZn—l)]
r
= (Ao + ‘9)W (éng//(Sn) + Zg/(Sn))Zs_l

for some mean valug, (x, y) betweens,, andu,,—1. If |u, —uo||2,2 < R for some
constantR and anyn < N, then there exists a constakitsuch that

|gun) +ung )| o <K, 68" (En) +28'E) | <K.
By the previous lemma, we have that
r
lanllz2 < cllLs,znll2 < cGro+ &) —55 K 122_1]), < c1llza-1l13 2
for some constant;. Inductively,

1
lznll22 < (c1llzoll2.2)” ~llzoll2.2
and hence

N
2/-1
lun+1—uollz2 < E T ~"llzoll2,2
j=0

for T = c1llzoll2.2. AsS
Lgyz0=¢F(x, uo, Vuo),
we may choose such thaf|zoll2,2 < 1/c1. Hence,T <1 and

1
lun+1 — uoll2,2 < & || F(x, uo, Vuo) ”zm

Thus, takings small we may assume thiit,, — uoll2,2 < R for anyn, and the
previous computations imply thét, } is a Cauchy sequence. This completes the
proof. O

The following theorem shows that under an extra assumption thes Stegy
be chosen uniformly.
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Theorem 3. Let us assume that

o 48l
du

for some constant M. Then the step ¢ of Theorem 2 may be chosen independent
of up. Hence, there exists a sequence

O=A<Ai<---<Any=1,

where the solutions u; of (1b), ; are constructed asin Theorem 2, and uy isthe
unique solution of the original problem.

Proof. It suffices to prove the existence of a const@nsuch that ifu satisfies
(1by), for somex, then||u|2.2 < C: Indeed, in that case in the proof of Theorem 2
we have that|uol|2,2 < C, and by the imbedding/2(£2) < C(£2) we conclude
that the constank can be considered such that

ls) +ug'@)| <K ug"G+28' ], <K

foranyu € Beyr(uo) C H3(2).
If u satisfies(1b);, with the notation of Lemma 1 there exists a mean vglue
such thatLyu = 0 fors = 2r2/x?V2(£g' (£) + g(£)), With ||s]|ec < M. AS

lu—hll22 < cllLshl22<C

for some constant independent of;, our claim is proved. O

4. An upper and lower solutions method for (1a)

In this section we obtain solutions of (1a) by an upper and lower solutions
method. As before, we shall consider the equivalent prokley. Our main
result is the following:

Theorem 4. Let us assume that there exists a nonnegative constant « such that:

(i) h(x,y) <afor (x,y)e€ds2,
(i) g(a) =0.

Then the problem (1b); admitsa solution u € H2(2) with0 < u < «.
Proof. Let

M= sup g(u)+ug'(u),
O<u<a
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and choose a positive constargatisfying
2r

§> ——
x2y2

for anyx such thai(x, y) € 22 for somey. Hence the function

2rg(u)
W()C, M) = W” —Su
is strictly decreasing with respect tofor u € [0, «]. We define a sequende,, }
in the following way: setio = «, and consides,, ;1 as the unique solution (given
by Lemma 1) of the linear problem

{Lu —su= 2;3;(;’;% —su, in$,
ulye =h,
where
Lu:Au—f-Zpa—Mz—pa—M— <1—i>8—u
9xdy ox x2V2 )3y

We claim that:

() 0<u, <«foreveryn.
(i) Forany(x, y) € £2 the sequencfu, (x, y)} is nonincreasing.

In order to prove claims (i) and (ii) we proceed by induction: assume, for
example, thats1(xo, yo) > « for some (xo, yo) € 2. AS uilso = h < a, we
deduce thatxo, yo) € £2 and we may assume théatp, yp) is a maximum. As
Vui(xg, yo) = 0, we have that

32 2
(Aul—i—Zpi —su1> = %@a—sa}—sa.
0x0dy (X0,70) xcV
Hence
32u1
(Au1+2p—> = s[u1(xo, yo) — ] > 0,
dxdy (x0,0)

which contradicts the maximum principle. On the other hand; &nonincreas-
ing we have thaLui — su1 = ¥ (x,a) < ¥(x,0) <0, and beingi1|so =h >0
we obtain by the minimum principle that > 0.

Next, we assume as inductive hypothesis that @, < u,—1. As before, if
[tn+1 — un](x0, yo) > 0 is maximum, then

2rg(un)
(Lup4+1 — Slzln+l)|(xo,yo) = W“n — Sup

2rg(un—1)
= (Zi‘jzunl —SUp-1 = (Lu, — Sun)l(xo,yo)-
X (x0,0)

Hence, a$/u,,+1(xo, yo) = Vu, (x0, yo), we conclude that

(x0,y0)
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32 (uny1 — m)

A — 2
< (U1 —un) +2p axdy

(x0,¥0)
= s[un11(x0, o) — tn (x0, y0)] > 0,
a contradiction. The inequality,+1 > 0 follows in the same way as before.

Hence, there exists a functian: 2 — R such thatu, (x, y) — u(x, y) for
every(x, y). By Lemma 1, there existd € H2(£2) such that

LH —sH =0, Hlyo =h.
Moreover,

lns1 — Hll22 < c||Lupta — suns1 — (LH —sH) ||, =¥ (-, un)|,
and|y (-, u,)| < K for a constank independent ofi.. Hence, the sequenée, }

is bounded inH2(£2). Fix p such that 2< p < oo, and suppose that, A u in
WLr(£2). Then there exists a subsequefeg } with

litn; —ull1p > e

for somee > 0. By the compactness of the imbeddiHg($2) < W17 (£2) the

sequencgu,, } admits a subsequence that converge® i (£2) to somev with

lv—ull1,, > €, acontradiction since, — u pointwise. Thus, taking limitin the

equality

2rg(uy,)
x2v?2

we easily conclude that

2rg(u)
x2y?2 "

Lupyi1 —supy1= Up — SUy,

Lu=

and the proof is complete.
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