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Abstract

We study by topological methods a nonlinear differential equation generalizing the
Black–Scholes formula for an option pricing model with stochastic volatility. We prove
the existence of at least a solution of the stationary Dirichlet problem applying an upper
and lower solutions method. Moreover, we construct a solution by an iterative procedure.
 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

In this work we study a nonlinear differential equation arising in an option
pricing model. From the Black–Scholes model, if volatility is stochastic, the
following PDE on the variablesσ andS is obtained [3]:
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2
ρσ 2Vfσ = rf − rSfS, (1)

whereL is the operator given by

L= ∂t + 1
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We study the stationary case for a generalization of (1) under Dirichlet condi-
tions.

Applying a Newton-type iteration [2] we prove under appropriate conditions
the existence of a solution in the Sobolev spaceH 2(Ω) which is obtained
recursively. In Section 4 we obtain a solution under different assumptions,
applying an upper and lower solutions method.

Our main interest is a better understanding of Black–Scholes type equations.

2. Black–Scholes type differential equations

The Black–Scholes equation for pricing options has been studied by many
authors (see, for example, [1,4,6,8,9]).

In particular, stochastic volatility models are proposed: specifically, we shall
consider as in [3] the following processes

dSt = Stσt dZt + Stµdt,
dσt = V σt dWt + ασt dt,

whereZt andWt are two standard Brownian motions with correlation coefficient
ρ, formallyE(dZt, dWt )= ρ dt . If f (S,σ, t) is the price of an option depending
on the price of the assetS, then by Ito’s lemma [7], it holds

df (S,σ, t)= fS dS + fσ dσ +Lf dt.
Under an appropriate choice of the portfolio the stochastic term of the equation
vanishes (for details, see [3]).

3. Stationary solutions to a nonlinear Black–Scholes type equation

We study the following stationary Dirichlet problem:

(1a)


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1
2σ

2S2 ∂2f

∂S2 + 1
2σ

2V 2 ∂2f

∂σ2 + ρσ 2V S
∂2f
∂S∂σ

− 1
2ρσ

2V
∂f
∂σ

= rg(f )f − rS ∂f
∂S

in Ω0,

f = h0 on∂Ω0,

with g ∈C2(R), h0 ∈H 2(Ω0),Ω0 ⊂ (0, a)× (0, b) with C1,1 boundary.
In this section we shall apply an iterative method in order to solve (1a).
Let us introduce the change of variablesΦ given by y = logS, x = σ/V ;

adding a parameterλ ∈ [0,1] into (1a) we obtain the following problem for
u(x, y)= f (S,σ ) in the domainΩ =Φ(Ω0):

(1b)λ
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For simplicity, we define

F
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and the linear operator

Lu=∆u+ 2ρ
∂2u

∂x∂y
.

We remark thatL is strictly elliptic forρ < 1.
We start at a solutionu0 of (1b)λ0 and construct recursively a solution of

(1b)λ0+ε for some stepε. Thus, we have solutions for 0= λ0 < λ1 < · · · < λn
< · · ·, and if ε can be chosen uniformly the procedure gives a solution of prob-
lem (1b)1.

In order to define a convergent sequence we apply Newton’s method: let
ψ :H 2(Ω)→L2(Ω) be given by

ψ(u)= Lu− (λ0 + ε)F (x,u,∇u)
and define

un+1 = un − [
Dψ(un)

]−1(
ψ(un)

)
.

Under appropriate conditions the differentialDψ(u) given by
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)
is invertible. Hence, the sequence is well defined and converges quadratically to a
zero ofψ .

We remark that ifz= [Dψ(un)]−1(ψ(un)) then
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with the boundary condition

un+1 = h on∂Ω.

If we assume thatg(u)u is nondecreasing with respect tou, then the following
lemma shows that{un} is well defined.

Lemma 1. Let s ∈C(Ω) and Ls :H 2(Ω)→L2(Ω) be the linear operator given
by

Lsz= Lz− λ
[
ρ
∂z

∂x
+

(
1− 2r

x2V 2

)
∂z

∂y
+ sz

]
with s � 0 and 0 � λ� 1. Then Ls |H1

0 (Ω)
is invertible and onto. Moreover, there

exists a constant c > 0 depending only on ‖s‖∞ such that ‖z‖2,2 � c‖Lsz‖2 for
any z ∈H 2 ∩H 1

0 (Ω).

Proof. By classical results [5], the linear problem

Lsz= ϕ inΩ, z|∂Ω = 0

is uniquely solvable inH 2(Ω) for anyϕ ∈L2(Ω). Assume the existence ofsn � 0
andun ∈H 2 ∩H 1

0 (Ω) such that

‖sn‖∞ �M, ‖un‖2,2 = 1, ‖Lsnun‖2 → 0.
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∫
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By ellipticity, − ∫
Ω Lun · un � k‖un‖2

1,2 for some positive constantk. Moreover,
if we define the fields
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we see that∫
Ω
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2
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and ∫
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2
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2

∫
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As sn � 0, we deduce that‖un‖1,2 → 0. This implies that‖Lun‖2 → 0, which
contradicts the invertibility ofL. ✷
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Theorem 2. Let us assume that g(u)u is nondecreasing with respect to u. Then
there exists ε such that {un} converges for the norm ‖ · ‖2,2 to a solution of
(1b)λ0+ε .

Proof. Let zn = un+1 − un, and consider

sn(x, y)= 2r(g(un)+ ung′(un))
x2V 2 � 0.

Then forλ= λ0 + ε it holds

Lsnzn = (λ0 + ε)F (x,un,∇un)−Lun
= (λ0 + ε)[F(x,un,∇un)− F(x,un−1,∇un−1)

−DF(x,un−1,∇un−1)(x, zn−1,∇zn−1)
]

= (λ0 + ε) r

x2V 2

(
ξng

′′(ξn)+ 2g′(ξn)
)
z2n−1

for some mean valueξn(x, y) betweenun andun−1. If ‖un−u0‖2,2 �R for some
constantR and anyn�N , then there exists a constantK such that∥∥g(un)+ ung′(un)

∥∥∞ �K,
∥∥ξng′′(ξn)+ 2g′(ξn)

∥∥∞ �K.
By the previous lemma, we have that

‖zn‖2,2 � c‖Lsnzn‖2 � c(λ0 + ε) r

x2V 2
K

∥∥z2n−1

∥∥
2 � c1‖zn−1‖2

2,2

for some constantc1. Inductively,

‖zn‖2,2 �
(
c1‖z0‖2,2

)2n−1‖z0‖2,2

and hence

‖uN+1 − u0‖2,2 �
N∑
j=0

T 2j−1‖z0‖2,2

for T = c1‖z0‖2,2. As

Ls0z0 = εF (x,u0,∇u0),

we may chooseε such that‖z0‖2,2< 1/c1. Hence,T < 1 and

‖uN+1 − u0‖2,2 � ε
∥∥F(x,u0,∇u0)

∥∥
2

1

1− T
Thus, takingε small we may assume that‖un − u0‖2,2 � R for anyn, and the
previous computations imply that{un} is a Cauchy sequence. This completes the
proof. ✷

The following theorem shows that under an extra assumption the stepε may
be chosen uniformly.
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Theorem 3. Let us assume that

0 � d[g(u)u]
du

�M

for some constant M . Then the step ε of Theorem 2 may be chosen independent
of u0. Hence, there exists a sequence

0 = λ0< λ1< · · ·< λN = 1,

where the solutions uj of (1b)λj are constructed as in Theorem 2, and uN is the
unique solution of the original problem.

Proof. It suffices to prove the existence of a constantC such that ifu satisfies
(1b)λ for someλ, then‖u‖2,2 � C: Indeed, in that case in the proof of Theorem 2
we have that‖u0‖2,2 � C, and by the imbeddingH 2(Ω) ↪→ C(Ω) we conclude
that the constantK can be considered such that∥∥g(u)+ ug′(u)

∥∥∞ �K,
∥∥ug′′(u)+ 2g′(u)

∥∥∞ �K

for anyu ∈BC+R(u0)⊂H 2(Ω).
If u satisfies(1b)λ, with the notation of Lemma 1 there exists a mean valueξ

such thatLsu= 0 for s = 2r2/x2V 2(ξg′(ξ)+ g(ξ)), with ‖s‖∞ �M. As

‖u− h‖2,2 � c‖Lsh‖2,2 � C

for some constantC independent ofu, our claim is proved. ✷

4. An upper and lower solutions method for (1a)

In this section we obtain solutions of (1a) by an upper and lower solutions
method. As before, we shall consider the equivalent problem(1b)1. Our main
result is the following:

Theorem 4. Let us assume that there exists a nonnegative constant α such that:

(i) h(x, y)� α for (x, y) ∈ ∂Ω ,
(ii) g(α)� 0.

Then the problem (1b)1 admits a solution u ∈H 2(Ω) with 0 � u� α.

Proof. Let

M = sup
0�u�α

g(u)+ ug′(u),
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and choose a positive constants satisfying

s >
2r

x2V 2
M

for anyx such that(x, y) ∈Ω for somey. Hence the function

ψ(x,u) := 2rg(u)

x2V 2 u− su
is strictly decreasing with respect tou for u ∈ [0, α]. We define a sequence{un}
in the following way: setu0 ≡ α, and considerun+1 as the unique solution (given
by Lemma 1) of the linear problem{

Lu− su= 2rg(un)
x2V 2 un − sun in Ω,

u|∂Ω = h,
where

Lu=∆u+ 2ρ
∂u2

∂x∂y
− ρ ∂u

∂x
−

(
1− 2r

x2V 2

)
∂u

∂y
.

We claim that:

(i) 0 � un � α for everyn.
(ii) For any(x, y) ∈Ω the sequence{un(x, y)} is nonincreasing.

In order to prove claims (i) and (ii) we proceed by induction: assume, for
example, thatu1(x0, y0) > α for some(x0, y0) ∈ Ω . As u1|∂Ω = h � α, we
deduce that(x0, y0) ∈ Ω and we may assume that(x0, y0) is a maximum. As
∇u1(x0, y0)= 0, we have that(

∆u1 + 2ρ
∂2u1

∂x∂y
− su1

)∣∣∣∣
(x0,y0)

= 2rg(α)

x2V 2
α − sα � −sα.

Hence(
∆u1 + 2ρ

∂2u1

∂x∂y

)∣∣∣∣
(x0,y0)

= s[u1(x0, y0)− α
]
> 0,

which contradicts the maximum principle. On the other hand, asψ is nonincreas-
ing we have thatLu1 − su1 = ψ(x,α) � ψ(x,0)� 0, and beingu1|∂Ω = h� 0
we obtain by the minimum principle thatu1 � 0.

Next, we assume as inductive hypothesis that 0� un � un−1. As before, if
[un+1 − un](x0, y0) > 0 is maximum, then

(Lun+1 − sun+1)|(x0,y0) =
(

2rg(un)

x2V 2 un − sun
)∣∣∣∣
(x0,y0)

�
(

2rg(un−1)

x2V 2
un−1 − sun−1

)∣∣∣∣
(x0,y0)

= (Lun − sun)|(x0,y0).

Hence, as∇un+1(x0, y0)= ∇un(x0, y0), we conclude that
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(
∆(un+1 − un)+ 2ρ

∂2(un+1 − un)
∂x∂y

)∣∣∣∣
(x0,y0)

= s[un+1(x0, y0)− un(x0, y0)
]
> 0,

a contradiction. The inequalityun+1 � 0 follows in the same way as before.
Hence, there exists a functionu :Ω → R such thatun(x, y)→ u(x, y) for

every(x, y). By Lemma 1, there existsH ∈H 2(Ω) such that

LH − sH = 0, H |∂Ω = h.
Moreover,

‖un+1 −H‖2,2 � c
∥∥Lun+1 − sun+1 − (LH − sH)∥∥2 = c∥∥ψ(· , un)∥∥2

and|ψ(· , un)| �K for a constantK independent ofn. Hence, the sequence{un}
is bounded inH 2(Ω). Fix p such that 2< p <∞, and suppose thatun �−→ u in
W1,p(Ω). Then there exists a subsequence{unj } with

‖unj − u‖1,p � ε

for someε > 0. By the compactness of the imbeddingH 2(Ω) ↪→W1,p(Ω) the
sequence{unj } admits a subsequence that converges inW1,p(Ω) to somev with
‖v− u‖1,p � ε, a contradiction sinceun → u pointwise. Thus, taking limit in the
equality

Lun+1 − sun+1 = 2rg(un)

x2V 2
un − sun,

we easily conclude that

Lu= 2rg(u)

x2V 2 u

and the proof is complete.✷
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