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It is established that, under certain conditions, the Dirichlet problem on a
bounded interval for the Painleve II equation is uniquely solvable and solutions are´
constructed in an iterative manner. Moreover, conditions for the existence of
periodic solutions are set down. � 2002 Elsevier Science

1. INTRODUCTION

� �The Painleve II equation 1 arose originally in work by Painleve,´ ´
Gambier, and Fuchs on canonical forms for second-order ODEs whose
solutions do not admit movable singularities. The considerable interest in
Painleve equations in recent times is due, in large measure, to the´

� �celebrated Painleve conjecture in soliton theory of Ablowitz and Segur 2´
concerning the admittance of symmetry reduction to a Painleve equation´
as a test for integrability. In this connection, the Painleve II equation´
arises, in particular, as a symmetry reduction not only of the KdV and

� �mKdV equations but also of the nonlinear Schrodinger equation 3 . In¨
addition, the Painleve II equation arises directly as a physical model´

� �describing the electric field in both electrolytes 4�6 and semiconductors
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� �7 . The application of a Backlund transformation for Painleve II in the¨ ´
context of steady electrolysis has recently been discussed by Rogers et al.

� �in 8 . Whereas there is an extensive literature on initial value problems for
the Painleve II equation, the literature on two-point boundary value´

� �problems for this equation is relatively sparse. Hastings and McLeod 9
Ž .investigated a boundary value problem on ��, � for Painleve II which´

� �arises in plasma physics in the work of DeBoer and Ludford 10 . Bound-
Ž .ary value problems for Painleve II on 0, � were considered by Holmes´

� � � �and Spence 11 . Thompson 12 investigated two-point boundary value
problems in two-ion electrodiffusion for a Painleve II-type equation.´
Therein, the boundary conditions involved vanishing derivatives at the end
points. Here, attention is concentrated on the Dirichlet problem for
Painleve II on a bounded interval, and conditions are established for its´
unique solvability. An iterative procedure for solution construction is
described. To conclude, conditions are established for the solvability of a
class of periodic boundary value problems for Painleve II.´

2. UNIQUE SOLVABILITY OF THE DIRICHLET PROBLEM

Here, we study certain boundary value problems for the Painleve II �´
equation

d 2 Y
� 3P : � 2Y � zY � C2dz

� �on the bounded interval a, a of the real line. Let us consider the usual
m � 2 2Ž . Ž . Ž . Ž .Sobolev spaces H I , where I � a, a and S : H I � L I are the�

semilinear operators given by

d 2 Y
� �S Y � � � g z , Y ,Ž .� 2dz

�Ž . 3where g z, Y � 2Y � zY and 0 � � � 1. It will be assumed through-
out that

2�
�a � � for Pž /a � a

and
2�

�a � for P .ž /a � a
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� �� 2 � 2Ž . � 4 Ž . � 4We denote � � � � min a, 0 and � � � � max a, 0 . In� �a � a a � a

the sequel we shall require the following classical result:

THE LERAY�SCHAUDER FIXED-POINT THEOREM. Let K be a compact
mapping of a Banach space E into itself and suppose there exists a constant M

� � � �such that x � M for all x 	 E and � 	 0, 1 satisfying x � � Kx. Then KE

has a fixed point.

To apply the above result to our boundary value problem, we shall need
the following ‘‘a priori’’ bounds for the operators S �:�

2Ž .LEMMA 1. Let Y , Y 	 H I with Y � Y on � I. Then1 2 1 2

� � �� �S Y � S Y 
 � Y � Y 2� 1 � 2 � 1 22

and
�� a � a dY dYŽ .� 1 2� �S Y � S Y 
 � .� 1 � 2 2 � dz dz 2

Proof. We have that
� � � �S Y � S Y Y � Y 2� 1 � 2 1 22


 � S �Y � S �Y Y � YŽ .Ž .H � 1 � 2 1 2
I

2dY dY1 2 3 3� � � � 2 Y � Y Y � YŽ .Ž .H H 1 2 1 2ž /dz dzI I

2
� � z Y � Y .Ž .H 1 2

I

Ž 3 3.Ž . �Since Y � Y Y � Y 
 0, for S it is seen that1 2 1 2 �

2dY dY1 2 2� � � � � �S Y � S Y Y � Y 
 � � � a Y � Y .2 H 2� 1 � 2 1 2 1 22 ž /dz dzI

� � � �From Poincare’s inequality it is seen that Y � Y � dY �dz �´ 21 2 1a � a
��dY �dz , and the result follows. The proof for S is analogous.22 �

We now apply the Leray�Schauder Theorem to derive the following
result:

THEOREM 1. The Dirichlet problem

� 2d Y
3� 2Y � zY � C , z 	 I � a, aŽ .2� dz�:
Y a � y , Y a � yŽ . Ž .
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2Ž . 2Ž .is uniquely sol�able in H I for any C 	 L I and arbitrary boundary data
y, y 	 �.

1Ž .Proof. For every Y 	 H I let

z
� �G z � C s � g s, Y s ds,Ž . Ž . Ž .Ž .HY

a

a �y � y � H G z dzŽ .a Y
� Y �Ž .

a � a

and define the operator K via

z
�KY z � y � � Y z � a � G s ds.Ž . Ž . Ž . Ž .H Y

a

1 1 1Ž . Ž . Ž . Ž .From the imbedding H I � C I we deduce that K : H I � H I is
well defined and continuous. Moreover, it follows by construction that

d 2 KYŽ .
� �z � C z � g z , Y , KY � � ,Ž . Ž . Ž . � I2dz

where

y � y ya � ya
	 � z � .ž /a � a a � a

� 1Ž . � � 4On the other hand, for Y 	 B � Y 	 H I : Y � R we have that1, 2R
� �Y � cR for some constant c, and then�

� �g 
, Y � c, G � c,Ž . � Y �

2Ž . Ž .for some constant c depending on R. Hence, K B is bounded in H I ,R
2Ž . 1Ž .and the compactness of the imbedding H I � H I implies that K is

� � 2 2 Žcompact. Let � 	 0, 1 and assume that Y � � KY. Then d Y�dz � � C
�Ž .. �� g z, Y and Y � ��. By Lemma 1� I

� � �� �Y � �� � c S Y � S �� � c � C � S ��Ž . Ž .1, 2 � � � � �2 2

� 4 � 4for some constant c . Since c is bounded, the set Y: Y � � KY� � 0 � � �1
1Ž .is uniformly bounded in H I , and by the Leray�Schauder Theorem, K

has a fixed point corresponding to a solution of the Dirichlet problem �.
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3. SOLUTIONS OF THE DIRICHLET PROBLEM
VIA ITERATION

Here, P � is embedded in a one-parameter family of equations to show
that a solution of the boundary value problem � can be obtained by
construction via a continuation-type procedure. Specifically, we consider a
parameter-dependent version of P � as follows:

d 2 Y
� 3P � � 2Y � zY � C .Ž .� 2dz

Starting at a solution corresponding to a value � of the parameter �, we0
construct a solution for � � � as the limit of a recursive sequence in the0

1Ž .Sobolev space H I . We remark that every term of this sequence is
obtained as a solution of a linear Dirichlet problem. Let Y be a solution0

� Ž . Ž .of P with 0 � � � 1 and with Dirichlet conditions Y a � y, Y a � y.� 0 0 00

We consider the sequence of boundary value problems

2d Yn�1 2 3� � � � 6Y � z Y � 4Y � C ,Ž . Ž .0 n n�1 n2dz

Y a � y , Y a � yŽ . Ž .n�1 n�1

� 4for some z 	 I and � � 1 � � to be determined. By classical results, Y0 n
is well defined. For simplicity, we introduce the following notation:

12 � � � a � aŽ .0� � �c R � Y � R ,Ž . 2� 0� ž /��� ��0

��
� 3� �A R � 2Y � zY � C .Ž . 2� 0 0�� a � aŽ .� ��0

We remark that � � 
 � � 0 for some positive constant � , proving that� ��0
�Ž . �Ž .c R is bounded and A R � 0 as � � 0 for any fixed R. The� �

following result may be established:

THEOREM 2. Choose R � 0 and � � 0 such that

1
� �A R � c R � 1.Ž . Ž .� �ž /R

� 4 Ž . 1Ž . Ž � .Then the sequence Y con�erges in B Y � H I to a solution of Pn R 0 � ��0

satisfying the Dirichlet boundary conditions.
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� �Proof. First we establish that dY �dz � dY �dz � R for every n:2n 0
indeed, by definition we have

d 2 Y � YŽ .1 0 2L Y � Y � � � � � 6Y � z Y � YŽ . Ž . Ž .Ž .0 1 0 0 0 1 02dz

� � 2Y 3 � zY � C ,Ž .0 0

and then, after the manner of Lemma 1, we obtain

d Y � Y �Ž .1 0 � L Y � YŽ .0 1 0 2�dz � a � aŽ .2 � ��0

��
3 �� 2Y � zY � C � A R � R .Ž .0 0 �2�� a � aŽ .� ��0

More generally, we define L� as the linear operator given byn

d 2T
� 2L T � � � � � 6Y � z T ,Ž . Ž .n 0 n2dz

and then, for T � Y � Y , we haven n�1 n

L�T � � � �Ž .n n 0

3 3 2� 2 Y � Y � z Y � Y � 6Y � z Y � YŽ . Ž .Ž . Ž .n n�1 n n�1 n�1 n n�1

� 2 � � � 2Y � Y T 2 .Ž . Ž .0 n�1 n n�1

Ž . Ž .Moreover, since T a � T a � 0 it is seen thatn n

dT � 2 � � � �Ž .n 0� 2� �� L T � 2Y � Y TŽ .2n n n�1 n n�1 2� �dz � a � a � a � aŽ . Ž .2 � �� � ��0 0

� �for n 
 1. Assume that dY �dz � dY �dz � R for every n � N; then2n 0

a � a dY dY a � an 0
� �Y � Y � � � R2n 0 � dz dz �2

a � a� � Ž� � .and 2Y � Y � 3 Y � R . As2 2n�1 n 0 �

2dT 2 a � a dTŽ .t n�1 n�12T t � 2 T � ,Ž . Hn�1 n�1 dz � dz 2a
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we conclude that

2 2dT 12 � � � a � a dT dTŽ .n 0 n�1 n�1�� �� Y � R � c R ,Ž .20 �� ž /dz � dz dz�2 2 2� ��0

Hence,

n2 �1
ndT dT dT dT2 �1n 0 0 0� � �� c R � c R A RŽ . Ž . Ž .Ž .� � �ž /dz dz dz dz2 2 2 2

and

N N ndY dY dT dT 2 �1N�1 0 j 0 � �� � � c R A R .Ž . Ž .Ž .Ý Ý � �dz dz dz dz2 2 2n�0 n�0

1� � �Ž . Ž . Ž .By hypothesis, c R A R � 1 � A R , and then� � �R

dY dY dT 1N�1 0 0� � � R .� �dz dz dz 1 � c R A RŽ . Ž .2 2 � �

Our result is now established by induction. Furthermore,

ndY dY dT jn�1 m 0 2 �1� �� � c R A R ,Ž . Ž .Ž .Ý � �dz dz dz2 2 j�m

� 4 1proving that Y is a Cauchy sequence for the H norm. Let Y �n
lim Y ; then Y � Y uniformly. Sincen�� n n

2d Yn 2 3� � � � 6Y � z Y � 4Y � CŽ . Ž .02dz

� � � � 2Y 3 � zY � CŽ . Ž .0

2Ž . �it is clear that Y 	 H I is a solution of P satisfying the stated� ��0

boundary conditions.

y � y� Ž .Remark. P is trivially solvable, and its unique solution is 	 � z0 a � a
ya � ya� . On the other hand, from Lemma 1 we deduce that
a � a

� �� �Y � 	 � c S Y � S 	 � c1, 20 � 0 �0 0 2
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for some fixed constant c, proving that the choice of the step � can be
considered as independent of � . This implies the existence of a sequence0

0 � � � � � 


 � � � 1,0 1 N

where the solutions Y of P � are constructed as in Theorem 2, and Y isj � Nj

the unique solution of the original problem.

4. THE PERIODIC BOUNDARY VALUE PROBLEM FOR P �

In this section, we study the existence of solutions of the periodic
boundary value problem for P �, namely,

� 2d Y
3� 2Y � zY � C , z 	 I2dz��:

dY dY
Y a � Y a , a � a .Ž . Ž . Ž . Ž .
 dz dz

In this connection, define Y as the unique solution of the Dirichlets
problem

� 2d Y
3� 2Y � zY � C , z 	 I� 2dz
Y a � Y a � sŽ . Ž .

Ž .for fixed s 	 �. By Theorem 1, the mapping 
 given by 
 s � Y is wells
defined. Furthermore,

1Ž .LEMMA 2. 
 : � � H I is continuous.

Proof. We have that

a
� �0 � � S Y � S Y Y � YŽ .H Ž .1 s 1 s s s0 0

a

adYdY ss 0
 � Y � Y �Ž .s s0 ž /dz dz a

2dYdYa as 2s 0� � � z Y � Y .Ž .H H s s0ž /dz dza a
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Hence, using that

1�2� � � �Y � Y � Y � Y � s � s � s � s a � aŽ . Ž .2s s s s 0 00 0 2

dYa � a dY ss 1�20 � �� � � s � s a � a ,Ž .0� dz dz 2

we obtain, for P�,

adYdY ss 0s � s �Ž .0 ž /dz dz a

2dYdY as 2s 0
 � � z Y � YŽ .H s s0dz dz 2 a

2dYdY ss 20 � �� 4
 � � min a, 0 Y � Y 2s s0dz dz 2

2 2� dY� a � a dYŽ . s1 s 0
 �2 dz dz� 2

dYa � a dY ss 1�20 � �� 4� min a, 0 2 � s � s a � aŽ .0ž � dz dz 2

2� s � s a � a .Ž . Ž .0 /
In the same way we obtain, for P�,

adYdY ss 0s � s �Ž .0 ž /dz dz a

2 2� dY� a � a dYŽ . s1 s 0
 �2 dz dz� 2

dYa � a dY ss 1�20 � �� 4� max a, 0 2 � s � s a � aŽ .0ž � dz dz 2

2� s � s a � a .Ž . Ž .0 /
� � �Let s � s . Then dY �dz � dY �dz � 0, provided that dY �dz �20 s s s0

a� Ž . �dY �dz and dY �dz � dY �dz are bounded. Since2 as s s0 0

� � 3� �Y � s � c S Y � S s � c C � 2 s � zs ,Ž .1, 2 2s 1 1 s 1 12
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� �we conclude that dY �dz is bounded. Moreover,2s

2d Ys 3� 2Y � zY � C ,s s 22dz 2

2 1Ž . Ž .which establishes that Y is bounded in H I � C I . This implies thes
a� � Ž . �boundedness of dY �dz � dY �dz and dY �dz � dY �dz , and so2 as s s s0 0

completes the proof.

To consider the solvability of the periodic boundary value problem, we
observe that Y is a solution of � if and only if Y � Y for some s such thats

a 2 2H d Y �dz � 0. Thus, we may define the mapping � : � � � given bya s

a 3� s � 2Y � zY � C.Ž . H s s
a

Continuity of � follows immediately from Lemma 2 and the imbedding
1Ž . Ž .H I � C I .

THEOREM 3. The periodic boundary �alue problem � is sol�able for any
�Ž .C 	 L I . Furthermore, there exist s , s 	 � such that any solution of �inf sup

� 4belongs to the compact arc Y : s � s � s .s inf sup

Proof. It suffices to establish the existence of s , s such thatinf sup

� s � 0 � � sŽ . Ž .� �

Ž .for any s � s , s � s . Let s � 0 and consider z such that Y z is� inf � sup 0 s 0
maximum. Note that if we define

	 Y � 2Y 3 � zY � C z ,Ž . Ž .z

then considering Y large we may assume that 	 is increasing for any z.z
Ž .Hence, if Y z � s we obtain thats 0

d 2 Ys 3z � 2 s � zs � C z � 0Ž . Ž .2dz

a.e. in a neighborhood of z , a contradiction. Thus, Y � s, and then0 s

dY dYs s
0 � a � a � � s .Ž . Ž . Ž .

dz dz

The proof for s is analogous.inf

Remark. It is straightforward to compute sufficient values of s andinf
s explicitly in each case. For a general formulation, we may definesup

�� if 6 s2 � z 
 0 for every s 	 �, z 	 I
�� � 2½ � 4sup s 	 �: 6 s � z � 0 for some z 	 I otherwise
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and note that 	 is increasing for Y � � � and Y � �� �. Hence, itz
suffices to take

s � max � �, sup s 	 �: 2 s3 � zs � C z � 0 for some z 	 I� 4Ž .� 4sup

and

s � min �� �, inf s 	 �: 2 s3 � zs � C z 
 0 for some z 	 I .� 4Ž .� 4inf
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