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1. INTRODUCTION

For the simulation of semiconductor devices usually drift-diffusion mod-
els are used. These models consist of the continuity equations expressing
the conservation of mass and a drift-diffusion relation for the electron

� �current density M . In order to model modern submicron devices and hot
electron effects, however, more complicated model equations have to be

� �considered, like energy-transport or hydrodynamic equations Ju . In this
paper, we study the full hydrodynamic model consisting of the continuity
equations expressing the conservation of mass, momentum, and energy,
coupled self-consistently to the Poisson equation for the electric field. The
steady-state equations for the electron density n, the electron temperature
T , and the electric field E read as

mj2 mj
1 � P n , T � �qnE � ,Ž . Ž .ž /n �px

w � w mj3 50
2 a n , T T � qjE � � � jT ,Ž . Ž .Ž .x x 2ž /� 22nw x

q
3 E � � n � C xŽ . Ž .Ž .x �s

Ž . Ž .in the bounded domain 0, 1 . Here, j denotes the constant electron
Ž . Ž .current density, P n, T the pressure, a n, T the heat conductivity, and

Ž .C x the doping profile. The physical constants are the effective electron
mass m, the elementary charge q, the momentum and energy relaxation
times � and � , respectively, and the semiconductor permittivity � . Thep w s

Ž . Ž .energy w � w n, T is written as w � w � � w n, T � T , where T is˜0 w L L
Ž .the lattice temperature and w satisfies w n, 0 � 0 for all n � 0. We recall˜ ˜

� �that the energy cannot be determined from the state equation FW, R .
Ž . Ž .Equations 1 � 3 are supplemented by the boundary conditions

4 E 0 � E , n 0 � n , T 0 � T , T 1 � T .Ž . Ž . Ž . Ž . Ž .0 0 0 1

Notice that we allow general pressure functions and heat conductivities.
Ž . �Often the energy equation 3 is replaced by the relation P � n with

� � 1. The corresponding model is referred to as the isentropic hydrody-
namic model. The existence of solutions to this model has been studied in
the mathematical literature for several years. Degond and Markowich

�proved the existence of steady-state solutions in the subsonic case DM1,
�DM2 . Gamba showed existence of steady-state solutions in the transonic

� �case by means of the vanishing viscosity method G . The transient equa-
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� �tions are studied by several authors; see, e.g., Fang and Ito FI , Jochmann
� � � � � �Jo , and Marcati and Natalini MN for � � 1 and Poupaud et al. PRV
for � � 1.

Ž . Ž .For the full hydrodynamic model 1 � 3 , usually the polytropic gas
ansatz is used to get explicit expressions for the pressure and the energy:

3 j2

5 P n , T � nT , w � nT � .Ž . Ž .
2 2n

Ž . Ž . Ž .The system of equations 1 � 3 with the relations 5 has been studied
only recently. Yeh showed the existence of a unique strong solution in
several space dimensions if the flow is subsonic, the ambient temperature
T is large enough, and the vorticity on the inflow boundary and theL
variation of the electron density on the boundary are sufficiently small
� �Y2 . Zhu and Hattori proved the existence of classical subsonic solutions
in one space dimension for the whole space problem under the additional

� �assumption that the doping profile be close to a constant ZH . The
� � � �transient equations have been considered by Yeh Y1 and Ito I . In the

work of Ito, the energy equation has been replaced by an equation for the
Ž .entropy, assuming the relations 5 . No results, however, are available for

Ž .the hydrodynamic equations with general pressure P n, T . In this paper
Ž . Ž .we prove the existence of classical subsonic solutions to 1 � 4 . More

precisely, our first main result is as follows:

Ž . Ž .THEOREM 1. Let the regularity assumptions A1 � A4 for a, P, w, and˜
Ž .C hold see Section 2 and let n , T , T � 0. Then there exist positi�e0 0 1

constants j , � , K , n, n, T , and T such that if0

� � � � � �6 j � j , T � T � T � T � �Ž . 0 0 L 1 L

and

7 � P � , � 	 K for all n � � � n , T � � � T ,Ž . Ž .n

Ž . Ž . Ž .there is a classical solution n, T , E of 1 � 4 satisfying

� �8 0 � n � n x � n , 0 � T � T x � T for x 
 0, 1 .Ž . Ž . Ž .
The proof of this theorem is based on the Schauder fixed point theorem

Ž .and on the following reformulation of 1 :

mj2 mj
9 � P n , T � n � � � P n , T � qnE � .Ž . Ž . Ž .n x T2ž / ž /�n p

Ž .The first condition in 6 corresponds to a subsonic condition. Indeed,
subsonic flow is characterized by

j
� � P�m .' nn
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'In the proof of Theorem 1 it is shown that j � n K�m . Thus0

j j0 '� � K�m � � P�m .' nn n

Ž .In particular, the bracket on the left-hand side of 9 is positive.
Ž .The second condition in 6 is needed to estimate T in the spacex

	Ž . Ž . 	L 0, 1 . This bound is used in 9 in order to control the L bound on n .x
Ž .Together with the assumption 7 , for given bounds for the right-hand side

Ž . � �of 9 , n can be controlled. Indeed, for sufficiently large K , the variationx
of the electron density is small enough to get positivity of the variable.

Ž . Ž .In the case P n, T � nT , the condition 7 is equivalent to the hypothe-
sis of sufficiently large ambient temperature which has been assumed by

� � Ž . Ž .Yeh Y2 . Hence, the case P n, T � nT is included in condition 7 if TL
is sufficiently large.

Ž .In the case of constant heat conductivity a n, T , the assumption of
� � � �sufficiently small differences T � T , T � T can be dropped. Our0 L 1 L

second main result reads:

Ž . Ž .THEOREM 2. Let the assumptions A1 � A4 hold and let n , T , T � 0.0 0 1

Furthermore, let a � const. Then there exist positi�e constants j , K , n, n, T , T0

Ž .� 0 such that if 0 � j � j hold, there is a classical solution n, T , E of0
Ž . Ž . Ž . Ž .1 � 4 satisfying 8 . Moreo�er, under the additional condition A.5 , this

Ž .solution is unique in the class of classical solutions satisfying 8 .

This paper is organized as follows. In Section 2, we make precise the
Ž . Ž .assumptions A1 � A5 and prove Theorem 1. Theorem 2 is proved in

Section 3.

2. ASSUMPTIONS AND PROOF OF THEOREM 1

For Theorems 1 and 2 we have supposed the following assumptions:

Ž . Ž . Ž . Ž .2A1 P n, T is continuously differentiable in n, T 
 0, 	 .
Ž . Ž . Ž . Ž .A2 a n, T is continuously differentiable and a n, T � 0 in n, T

Ž .2
 0, 	 .
Ž .A3 w is continuous in both arguments, Lipschitz continuous in T ,˜

and

w n , T � T T � T 	 0Ž . Ž .˜ L L

Ž . Ž .2for all n, T 
 0, 	 and some T � 0.L

Ž . 1Ž .A4 C 
 L 0, 1 .
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Ž .For the uniqueness result see Theorem 2 we also need the assumption

Ž . Ž .A5 w n, T is Lipschitz continuous in n and˜

w � , � � T � w � , � � T � � � 	 0 for all � , � , � � 0.Ž . Ž . Ž .Ž .˜ ˜1 L 2 L 1 2 1 2

Ž . Ž Ž ..The monotonicity of w imposed in A5 and in a weaker form in A3˜
is reasonable from physical considerations. Notice that, due to assumption
Ž .A2 , the equation for the temperature is allowed to be of degenerate type.

Proof of Theorem 1. Introduced the closed convex set

0 1� � � �B � � , � 
 C 0, 1 � C 0, 1 : n � � x � n , T � � x � T ,Ž . Ž . Ž .Ž . Ž .�
� �� � 
 x � M for x 
 0, 1 ,Ž . Ž . 4x

Ž . Ž .Ž .where 
 x � T � T � T 1 � x and the positive constants n, n, T , T ,1 0 1
Ž .and M are defined below. Now let �, � 
 B and define

xq
E x � E � C � � ds.Ž . Ž .H0 � 0

1Ž� �.Further, let n 
 C 0, 1 be the unique solution of the linear problem

mj2 jm
10 � P � , � � n � � � P � , � � � q �E � ,Ž . Ž . Ž .n x T x2ž / ž /�� p

11 n 0 � n ,Ž . Ž . 0

'where we take 0 � j � n K�m , K � 0 being defined below. This implies
Ž . Ž .by 7 that the bracket on the left-hand side of 10 is positive.

2Ž� �.Finally, let T 
 C 0, 1 be the unique solution of the monotone
problem

5 mj3

12 a n , � T � qjE � w � , T � T � jT � n ,Ž . Ž . Ž .Ž . ˜x L x xx 32 �

13 T 0 � T , T 1 � T .Ž . Ž . Ž .0 1

Ž . Ž .The existence and uniqueness of a solution to 12 � 13 follow from
Ž � �.standard arguments see, e.g., Tr . This defines the fixed-point operator

0 1 � �S : B � C 0, 1 � C 0, 1 , S � , � � n , T .Ž . Ž . Ž .Ž .

Ž . 1Ž� �. 2Ž� �. Ž .Since n, T 
 C 0, 1 � C 0, 1 , it is easy to see that S B is precom-
pact. Moreover, using standard arguments, S is continuous. In order to
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Ž � �.apply the Schauder fixed-point theorem see GT, Tr , it remains to prove
Ž .that S B � B.

Ž .First we show that there exist constants n, n � 0 such that n � n x � n
� �for x 
 0, 1 . Fix 0 � j � j with arbitrary j � 0, 0 � N � n and1 1 0

� �C � T � T � M max � P � , � : n � � � n , T � � � TŽ .� 4Ž .1 1 0 T

� qjE � j m�� ,	 1 p

� � Ž .Ž� � .where E � E � q�� C � n . Here and in the following, the norm1	 0 s
pŽ . � � Ž .of L 0, 1 is denoted by � . Then, by Assumption 7 , taking K �p

'2C �N and 0 � j � j � n K�2 m , we have1 2

mj2 mj2 K2
� P � , � � 	 K � � ,Ž .n 2 2 2� n

Ž .and from Eq. 10 we obtain the estimate

2 jm 2
� �n � � P � , � � � q �E � � C � N.Ž .x T x 1K � Kp

Ž .Defining n � n � N, n � n � N, this implies that n � n x � n for0 0
� �x 
 0, 1 . Notice that n � 0 since N � n .0

Ž .Next we prove that there exist constants T , T � 0 such that T � T x �
� �T for x 
 0, 1 by employing the Stampacchia truncation method. Accord-

Ž .ing to Assumption A2 and the bounds on n and � , there exists a constant
�Ž . Ž . Ž . � 0 such that  n, � 	  . Set � � max T , T , T and use T � � �0 1 L

Ž . Ž .max 0, T � � as a test function in the weak formulation of 12 :

32 mj� �1 1
 T � � dx � n � qjE T � � dxŽ . Ž .H Hx x3ž /�0 0

�1
� w � , T � T T � � dxŽ . Ž .˜H L

0

5 �1
� j T T � � dx .Ž .H x2 0

The second term on the right-hand side is non-positive due to Assump-
Ž .tion A3 . The last term vanishes since

2� �1 15 5� j T T � � dx � � j T � � dxŽ . Ž .H H ž /x2 4 ž / x0 0

12�5� � j T � � � 0.Ž .ž /4
0
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Therefore, setting

mj2 q2
C � N � E ,2 	3  n

we get

2� �1 1
T � � dx � C j T � � dxŽ . Ž .H Hx 2

0 0

�1�2
� C j meas T � � T � � .Ž . Ž . 22

� �'�Ž . � Ž .�Ž . �Using Poincare’s inequality T � � � 1� 2 T � � , we obtain´ 2 2x

C� 1�22
14 T � � � j meas T � � .Ž . Ž . Ž .x 2 '2

1Ž . rŽ .The imbedding H 0, 1 � L 0, 1 is continuous for any r � 	 and it is
well known that for UU � � and r � 2 the inequality

�1�r
1meas T � UU UU � � � c T � �Ž . Ž . Ž . H

� � Ž .holds St, Chap. 4 . Therefore we get from 14 and Poincare’s inequality,´
for another constant c � 0, for UU � � ,

c r�2
meas T � UU � meas T � � .Ž . Ž .r

UU � �Ž .

� �Choosing r�2 � 1, we can apply Stampacchia’s lemma St, Chap. 4 .
Hence, there is a constant C depending only on C such that T � � � jC3 2 3

� �in 0, 1 . We set T � � � j C .2 3
Ž . Ž .�For the lower bound we set � � min T , T , T and use �T � � as a0 1 L

Ž .test function in the weak formulation of 12 . A similar estimate as above
gives

� 1�2��T � � � jC meas �T � ��Ž . Ž .2x 2

and in an analogous way we conclude the existence of a constant C4
� � �depending only on C such that �T � �� � jC in 0, 1 , i.e.,2 4

� �T 	 � � jC in 0, 1 .4

Setting j � ��2C and T � ��2, we obtain for all 0 � j � j :3 4 3

� �T 	 � � j C � T in 0, 1 .3 4
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�Ž . �It remains to prove that T � 
 � M for an appropriate constant	x
Ž � �.M � 0. By elliptic estimates see, e.g., GT , there exists a constant C � 05

1, 	 Ždepending on the W norms of n and � and hence, on n, N, T , and
� � .T � T � M such that1 0

5 3 �32� �T � C M qjE � w � , T � T � jT � mj � n .Ž . Ž .˜H 5 L x x2 2

Ž .Using the Lipschitz continuity of w �, � and the above bounds, it is clear˜
� � � � 2that if j and T � T � T � T are chosen sufficiently small, the L0 L 1 L

norm on the right-hand side can be made arbitrarily small.
Ž .Thus there exist j � min j , j , j and � � 0 such that for all 0 � j � j4 1 2 3 4

� � � �and T � T � T � T � � ,0 L 1 L

2� � � � � �T � 
 � T � T � T � c T � � � M .Ž . 	 Hx 	 x 1 0

Here we do not need to impose restrictions on M � 0.
Ž .We have shown that S B � B. Hence, Schauder’s Theorem applies and

Ž . Ž .we obtain a classical solution to the boundary-value problem 1 � 4 .

3. PROOF OF THEOREM 2

The proof of the existence result of Theorem 2 is similar to that of
�Ž . � Ž .Theorem 1, except the proof of T � 
 � M. From 12 we get the	x

estimate

5 3 �3� � � � � �a T � qjE � c T � T � j T � mj n N.2 2x x 	 L x2

Ž .Since T � 
 vanishes at x � 0 and x � 1, there exists x 
 0, 1 such0
Ž . Ž .that T � 
 x � 0. Thusx 0

x
T � 
 x � T dsŽ . Ž . Hx x x

x0

and

� � � � � �T � T � T � T .2 2x 1 0 x x

We obtain

5 53 �3� � � � � �a � j T � qjE � c T � T � mj n N � j T � T .Ž . 2x x 	 L 1 02 2

Ž .Taking 0 � j � j � min j , j , j , we can find a constant M � 0 such5 1 2 3 5

that

2� � � �T � 
 � c T � T � T � M .Ž . Hx 	 1 0

This proves the existence of solutions.
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Ž Ž1. Ž1. Ž1.. Ž Ž2. Ž2.To prove the uniqueness of solutions, let n , T , E and n , T ,
Ž2.. Ž . Ž . Ž .E be two classical solutions of 1 � 4 satisfying 8 . Then, taking the

Ž . Ž1. Ž2. Ž1.difference of Eqs. 2 satisfied by T , T , respectively, and using T �
T Ž2. as test function in the difference, we obtain

1 2Ž1. Ž2.a T � T dxŽ .H x
0

1 Ž1. Ž2. Ž1. Ž2.� �qj E � E T � T dxŽ . Ž .H
0

1 Ž1. Ž1. Ž2. Ž2. Ž1. Ž2.� w n , T � T � w n , T � T T � T dxŽ .˜ ˜Ž . Ž .Ž .H L L
0

mj3 1 11 Ž1. Ž2.� � T � T dxŽ .H x2 2Ž1. Ž2.ž /2 0 n nŽ . Ž .
5 1 Ž1. Ž2. Ž1. Ž2.� j T � T T � T dxŽ . Ž .H x2 0

� I � ��� �I .1 4

Ž . Ž .In view of Assumption A5 see Section 2 and Poincare’s inequality, it´
holds

1 Ž1. Ž1. Ž2. Ž1. Ž1. Ž2.I � � w n , T � T � w n , T � T T � T dxŽ .˜ ˜Ž . Ž .Ž .H2 L L
0

Ž1. Ž2. Ž1. Ž2.� c n � n T � T ,Ž .2 x 2

where c � 0 denotes a positive generic constant. Furthermore, the first
and third integral can be estimated as

Ž1. Ž2. Ž1. Ž2. Ž1. Ž2. Ž1. Ž2.I � I � cj E � E T � T � n � n T � TŽ .2 2 2Ž .x 21 3

Ž1. Ž2. Ž1. Ž2.� cj n � n T � T .Ž .2 x 2

Finally, the fourth term vanishes: I � 0. Therefore, we obtain4

Ž1. Ž2. Ž1. Ž2.15 T � T � cj n � n .Ž . Ž . 2x 2

Ž1. Ž2. Ž .To derive an estimate for n � n , we take the difference of Eqs. 1
Ž1. Ž2. Ž �for n , n , respectively, integrate over 0 � � � x for some x 
 0, 1 , and



HYDRODYNAMIC SEMICONDUCTOR MODEL 61

Ž Ž1. Ž2..Ž .multiply the resulting equation with n � n x :

16 P nŽ1. , T Ž1. � P nŽ2. , T Ž2. x nŽ1. � nŽ2. xŽ . Ž . Ž . Ž . Ž . Ž .Ž .
mj2 mj2

Ž1. Ž2.� � � x n � n xŽ . Ž . Ž .Ž1. Ž2.ž /n n

x
Ž1. Ž1. Ž2. Ž2. Ž1. Ž2.� q n E � n E d� n � n x .Ž . Ž . Ž .H

0

We estimate the left-hand side by using the Lipschitz continuity of P in
� � � �n, n � T , T :

P nŽ1. , T Ž1. � P nŽ2. , T Ž2. x nŽ1. � nŽ2. xŽ . Ž . Ž . Ž . Ž .Ž .
1 2Ž1. Ž2. Ž1. Ž1. Ž2.� � P �n � 1 � � n , T x d� n � n xŽ . Ž . Ž . Ž .Ž .H n

0

� P nŽ2. , T Ž1. � P nŽ2. , T Ž2. x nŽ1. � nŽ2. xŽ . Ž . Ž . Ž . Ž .Ž .
2Ž1. Ž2. Ž1. Ž2. Ž1. Ž2.	 K n � n x � c T � T x n � n x .Ž . Ž . Ž . Ž . Ž . Ž .

Ž .The right-hand side of 16 is majorized by

2 2Ž1. Ž2. Ž1. Ž2.cj n � n x � c n � n .Ž . Ž . 1

Ž .Therefore, we get from 16

2 2Ž1. Ž2. Ž1. Ž2. Ž1. Ž2. Ž1. Ž2.K n � n � c T � T n � n � c j � 1 n � n .Ž .	 	 	 	

Choosing K � 0 large enough, we conclude, using Sobolev’s inequality,

Ž1. Ž2. Ž1. Ž2. Ž1. Ž2.n � n � c T � T � c T � T .Ž .	 	 x 2

Ž .Hence, by 15 ,

Ž1. Ž2. Ž1. Ž2. Ž1. Ž2.T � T � cj n � n � cj T � T .Ž . Ž .	x x2 2

Thus, choosing j � 0 small enough, we obtain T Ž1. � T Ž2.. This implies
nŽ1. � nŽ2. and E Ž1. � E Ž2.. The theorem is proved.
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