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We prove the existence of LLLLL p functions satisfying a kind of self-similarity
condition. This is achieved by solving a functional equation by means of the
construction of a contractive operator on an appropriate functional space. The
solution, a fixed point of the operator, can be obtained by an iterative process,
making this model very suitable to use in applications such as fractal image and
signal compression. On the other hand, this ‘‘generalized self-similarity equation’’

Ž . Ž .includes matrix refinement equations of the type f x s Ý c f Ax y k which arek
central in the construction of wavelets and multiwavelets. The results of this paper
will therefore yield conditions for the existence of LLLLL p-refinable functions in a very
general setting. Q 1999 Academic Press
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1. INTRODUCTION

Self-similar objects are those that can be constructed out of smaller
copies of themselves. When we deal with sets, this concept can be formu-

Ž . Žw x. Ž .lated using the notion of iterated function schemes IFS 24, 4 : If X, d
� 4 Ž � 4 .is a metric space and if F s w , . . . , w w : X ª X, w is a set1 n i i is1, . . . , N

Ž .of maps, then AA ; X is self-similar with respect to F if AA s Dw AA . Iti
can be shown, that if X is complete, and the maps are contractive, then
there exists a unique compact self-similar set with respect to F.

This concept can be extended in different ways to different kind of
Ž w x.objects: self-similar measures can also be defined using IFS see 24, 4
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and have been studied by Strichartz using Fourier and wavelet analysis
Žw x.26, 28 . Aiming to recover self-similarity parameters of physical signals,

Žw x.Hwang and Mallat study the self-similarity of the wavelet transform 25 .
One way to extend the notion of self-similarity to functions, is to require

that the graph of the function should be a self-similar set. If the function is
defined on a self-similar set, then we could require that the function share

n Ž .the self-similarity of the domain; i.e., if X s D w X , thenis1 i

f w x s f x , i s 1, . . . , n. 1.1Ž . Ž . Ž .Ž .i

Ž Ž . Ž .For this definition we require the w to be disjoint i.e., w X l w X si i j
.B, i / j .

From IFS-theory it can be shown that if f is a continuous function
Ž .satisfying the self-similarity condition 1.1 , f has to be constant. In order

to consider more general solutions, we relax the condition of self-similarity
Ž .1.1 , introducing a set of functions w , . . . , w and requiring that f satisfy1 n

w f wy1 x s f x , x g w X , i s 1, . . . , n. 1.2Ž . Ž . Ž . Ž .Ž .Ž .i i i

Finally, to allow overlapping maps in the IFS, we introduce a function OO
y1Ž .that combines the values of w ( f (w x for i s 1, . . . , n for the same x.i i

In this paper we study the existence of self-similar functions in different
Ž .contexts and we relax even more the self-similarity condition 1.2 allowing

space-dependent w s and OO.i
The problem of finding a function u that satisfies a self-similarity

equation of the type,

u x s OO x , u( g x , . . . , u( g x , 1.3Ž . Ž . Ž . Ž . Ž . Ž .Ž .1 r

Žw x.has been studied by Bajraktarevic in 1957 2 . In the same year, a similar
Žw x.equation was considered by de Rahm 13 , and conditions for continuous

w xsolutions were found. In 24 Hutchinson, extending the concept of self-
similarity to parametric curves, considered a particular case of this equa-
tion.

Related functional equations were studied in fractal interpolation, in
order to show the existence and construction of continuous fractal func-

Žw x.tions 3, 6, 15]17, 21, 22 .
w x Ž .Cabrelli et al. in 9 constructed an operator of the type 1.3 introducing

a novelty to it: they added a set of gray-level functions w , such that thei
resulting fixed point of their operator would no longer be strictly self-simi-
lar, but w-self-similar. They worked in a particular setting, in which the
functions w had to satisfy very restrictive conditions to guarantee conver-i
gence.
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In this paper we broaden the class of functions and we look at different
functional spaces and we are able to remove most of the previous restric-
tive conditions making this model much more versatile and therefore more
suitable for applications. We study the more general equation,

u x s OO x , w x , u( g x , . . . , w x , u( g x , 1.4Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .1 1 r r

that encloses most of the cases mentioned before and generalizes the
Ž .concept of a self-similar function 1.1 . We find conditions on the compo-

nents in order to assure the existence of solutions.
We construct an operator on a suitable function space and the solution

of our equation is a fixed point of this operator. This not only yields a
solution of the equation, but also shows that this solution can be computa-
tionally efficiently calculated: we obtain it by iterating the operator.

This functional equation and the easy computation of its solution makes
it suitable for many applications. For example, it models two situations
which are of general interest: using fractal compression in image or signal
analysis and the construction of wavelets and multiwavelets.

In the first case, in signal processing, in particular in image representa-
tion, a well-known problem is the design of an adaptive code for a given
target. This has been studied in particular using fractals and self-similar

Ž w x.models see 1, 5, 7, 9, 12, 14, 20 . Some of the advantages of this approach
are the compression rates achieved, and the complexity of the images that
can be represented. Generally the strategy consists in finding an operator

w xT , whose fixed point is the given target. In 12 , it was shown that the
Žw x.previously introduced model 9 had the property of being ‘‘dense,’’

meaning that for any function and for any « one can construct an operator
whose fixed point is closer than « to the function. However, due to the
restrictions on the gray-level maps w , this result was not enough fori
practical implementations. The functional equation considered in this
paper, represents a generalization of the concept of self-similar function
extending the applicability of the model to a wider class of images and
allowing more flexibility in the choice of the parameters. This should in
turn lead to a better compression rate. For work in this direction we refer

w xthe reader to 8 .
In the second case, in the application to the construction of wavelets and

multiwavelets, one wants to find solutions to a refinement equation of the
type,

f x s c f Ax y k , 1.5Ž . Ž . Ž .Ý k
dkgZ

2Ž d.in order to then construct a wavelet decomposition of LLLLL RRRRR . Suitably
Ž . Ž .defining w , g , and OO in 1.4 will yield 1.5 . In the particular case that alli i
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the c are equal, one yields the equation studied by Grochenig and¨k
w x w xMadych in 19 and Strichartz in 27 . Currently there is a growing interest

in ‘‘multiwavelets,’’ which can be constructed using refinement equations
in which the coefficients are matrices and the solutions are vector-valued

Žw x.functions 18, 23 . These matrix refinement equations are particular cases
of our functional equation, and solutions to these equations, using general-

Žwized self-similar functions are studied in Cabrelli, Heil, and Molter 10,
x.11 . In particular the existence of solutions to this equation in a suitable

setting, lead to the construction of one of the first known examples of
2 Žw x.nonseparable orthogonal multiwavelets in RRRRR 11 .

We analyze two different situations: in Section 2 we study the case of
bounded solutions with the uniform metric. In Section 3 we study LLLLL p

solutions for 1 F p - q`. In both cases we give sufficient conditions for
the existence of solutions.

Ž .2. B X, E -CASE

Ž . Ž .Let X, d be a compact metric space and let E, ll be a metric space
m Ž Ž m.where E is a closed subset of RRRRR in particular E could be RRRRR and ll

could be a distance in E induced by some norm of RRRRRm. Let us also
consider a point t g E that remains fixed throughout the whole section.0

We consider the functional space,

� 4BBBBB X , E s u: X ª E, u bounded ,Ž .
with

D u, v s sup ll u x , v x , ;u, v g BBBBB X , E . 2.1Ž . Ž . Ž . Ž . Ž .Ž .
xgX

Ž Ž . .It is well known that BBBBB X, E , D is a complete metric space.
Let us now define the functions OO, w , w , i s 1, . . . , r in order toi i

Ž . rconstruct an operator TTTTT on BBBBB X, E . Let OO: X = E ª E be nonexpan-
sive for each x g X, i.e.,

ª ª ª ª1 2 1 2 1 2 rll OO x , k , OO x , k F sup ll k , k , ;k , k g E . 2.2Ž .Ž . Ž . Ž .ž / i i
1FiFr

Let w : X ª X, i s 1, . . . , r be r injective maps, which are not necessarilyi
contractive, and let w : X = E ª E, i s 1, . . . , r be r functions that fori
each x g X satisfy the Lipschitz condition,

ll w x , k , w x , k F c ll k , k , ;k , k g E, i s 1, . . . , r ,Ž . Ž . Ž .Ž .i 1 i 2 i 1 2 1 2

2.3Ž .

where c G 0 does not depend on x.i
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Ž .In order to be able to define an operator on BBBBB X, E , we need some
Ž .stability conditions. We define a function f to be stable, if f A is

bounded, whenever A is a bounded set. Hence we assume that OO and w ,i
i s 1, . . . , r are stable.

Ž .Now we define an operator TTTTT on BBBBB X, E in the following way,

TTTTTu x s OO x , w x , u x , . . . , w x , u x ; 2.4Ž . Ž . Ž . Ž . Ž .Ž . Ž .˜ ˜Ž .1 1 r r

where

u wy1 x , if x g Img w ,Ž . Ž .Ž .i iu x s 1 F i F r . 2.5Ž . Ž .˜ i ½ t , otherwise,0 6

Ž . Ž .We use OO x, w x , u x for the right-hand side of 2.4 . We can proveŽ .Ž .˜i i
the following.

THEOREM 2.1. With the pre¨ious notation, if c s max c ) 0 is the1F iF r i
Lipschitz constant for the w s, theni

TTTTT : BBBBB X , E ª BBBBB X , E ,Ž . Ž .
and

D TTTTTu, TTTTTv F cD u, v .Ž . Ž .

In particular, if c - 1, TTTTT is contractï e and therefore there exists a unique uU

Ž . U Uin BBBBB X, E such that TTTTTu s u .

Ž . Ž .Proof. If u g BBBBB X, E then it is easy to verify that TTTTTu g BBBBB X, E .
Ž .Now if u, v g BBBBB X, E then

6 6

ll TTTTTu x , TTTTTv x s ll OO x , w x , u x , OO x , w x , v xŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .˜ ˜Ž . Ž .ž /i i i i

F sup ll w x , u x , w x , v xŽ . Ž .Ž . Ž .˜ ˜Ž .i i i i
1FiFr

F sup c ll u x , v xŽ . Ž .Ž .˜ ˜i i
1FiFr

F c sup ll u y , v yŽ . Ž .Ž .
ygX

s c D u, v .Ž .
Therefore,

D TTTTTu, TTTTTv F c D u, v .Ž . Ž .

We then have the following.
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COROLLARY 2.2. If c - 1, the functional equation,

u s OO x , w x , u x , . . . , w x , u x , 2.6Ž . Ž . Ž .Ž . Ž .˜ ˜Ž .1 1 r r

Ž . Ž .where the u are as in 2.5 , has a unique solution in BBBBB X, E .˜ i

Proof. The fixed point of the operator TTTTT is the solution of the equa-
tion.

Ž .Note that 2.6 is a generalization of the original functional equation given
Ž .in 1.3 .

Ž . pIn what follows, we study the operator 2.4 in the LLLLL spaces.

3. LLLLL p-CASE

Let now X : RRRRRn compact, with m the n-dimensional Lebesgue measure
m 5 5 Žand let E s RRRRR with some norm . . Note: E could be chosen to be any
.Banach space. We consider the functions u: X ª E such that the real-val-
5 Ž .5ued function u . is Lebesgue-measurable, and, as usual, functions that

are equal almost everywhere are identified.
If 1 F p - q`, let

ppLLLLL X , E s u: X ª E: u x dm x - q` ,Ž . Ž . Ž .H½ 5
X

5 5 Ž 5 Ž .5 p Ž ..1r pwith u s H u x dm x ; andp X

`LLLLL X , E s u: X ª E: u . essentially bounded ,� 4Ž . Ž .
5 5 5 Ž .5 pŽ .with u s ess.sup. u . . It is well known, that LLLLL X, E , 1 F p F q` is`

a Banach space.
Let as before OO: X = Er ª Er be nonexpansive, i.e.,

1rprª ª p1 2 1 25 5OO x , k y OO x , k F k y k . 3.1Ž .Ž . Ž . Ý i iž /
is1

Ž .For measurable u: X ª E we define as before the operator 2.4 ,

TTTTTu x s OO x , w x , u x , . . . , w x , u x ,Ž . Ž . Ž . Ž .Ž . Ž .˜ ˜Ž .1 1 r r

where the w s and w s are as in the previous section, with the followingi i
additional conditions:

� 41. The maps w satisfy a Lipschitz condition; i.e., there exist s ) 0,i i
Ž Ž . Ž .. Ž .such that d w x , w y F s d x, y where d is the Euclidean distance ini i i

RRRRRn.
2. The functions w , i s 1, . . . , r and OO are Borel measurable.i
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These additional conditions are required in order to guarantee the mea-
surability of TTTTTu. We have the following.

PROPOSITION 3.1. Let TTTTT be defined as in the pre¨ious text, then TTTTTu:
X ª E is measurable for each measurable function u: X ª E and also if u, v
are measurable and u s v a.e. then TTTTTu s TTTTTv a.e.

Proof. The measurability of TTTTTu for measurable u is a consequence of
the stability and the Borel-measurability of OO and the w s and the fact thati

� Ž . Ž .4 � Ž .the w s are Lipschitz. Now if Z s x: u x / v x , then x: TTTTTu x /i
Ž .4 r Ž .TTTTTv x ; D w Z . The Lipschitz condition of the w s implies thatis1 i i
Ž Ž .. Ž .m w Z s 0 if m Z s 0 and therefore the result follows.i

Now we consider first the space LLLLL ` defined before. The case LLLLL p 1 F p -
q` is treated later.

THEOREM 3.2. Let TTTTT be the operator of Proposition 3.1. Then,
TTTTT: LLLLL ` ª LLLLL ` and

5 5 5 5 `TTTTTu y TTTTTv F c u y v , ;u, v g LLLLL .` `

` Ž .Proof. If u g LLLLL then let Z ; X, m Z s 0 and u bounded in X y Z.
If we define v: X ª E by v s u XX , where XX is the characteristicXy Z XyZ
function of X y Z, then v s u a.e. and v is bounded. Then TTTTTv is bounded
and using the preceding proposition, TTTTTu s TTTTTv a.e. and therefore TTTTTu g LLLLL `.

From the proof of Theorem 2.1 we see that for u and v g LLLLL ` we have

5 5TTTTTu x y TTTTTv x F c u y v , a.e. on X ,Ž . Ž . Ž . Ž . ``

which implies that

5 5 5 5TTTTTu y TTTTTv F c u y v .` `

We will now analyze the case LLLLL p 1 F p - `. We have the following.

THEOREM 3.3. Let TTTTT be the operator of Proposition 3.1. Then, if u, v g
pŽ . Ž . pŽ .LLLLL X, E , then TTTTTu y TTTTTv g LLLLL X, E and

1rpr
n p5 5 5 5TTTTTu y TTTTTv F s c u y v ,Ýp pi iž /

is1

where s and c are the Lipschitz constants of w and w , respectï ely, and n isi i i i
Ž .the dimension of X. Furthermore the finiteness of m X yields

TTTTT : LLLLL p X , E ª LLLLL p X , E .Ž . Ž .
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Proof. If u, v g LLLLL p, then by Proposition 3.1, TTTTTu y TTTTTv is measurable
and

5 5 p
TTTTTu y TTTTTv p

ps TTTTTu x y TTTTTv x dm xŽ . Ž . Ž . Ž . Ž .H
X

6 6

p
s OO x , w x , u x y OO x , w x , v x dm xŽ . Ž . Ž .Ž . Ž .˜ ˜Ž . Ž .H i i i i

X

r
p

F w x , u x y w x , v x dm x , by 3.1Ž . Ž . Ž . Ž .Ž . Ž .˜ ˜ÝH i i i i
X is1

r
ppF c u x y v x dm x , by 2.3Ž . Ž . Ž . Ž .˜ ˜Ý Hi i i

Xis1

r pp y1 y1F c u w x y v w x dm xŽ . Ž . Ž .Ž . Ž .Ý Hi i i
Ž .w Xiis1

r
pn pF s c u t y v t dm t , by the Lipschitz condition of wŽ . Ž . Ž . Ž .Ý Hi i i

Xis1

r
pn p 5 5s s c u y v .Ý pi i

is1

From this inequality we see that if u, v g LLLLL p, then

1rpr
n p5 5 5 5 5 5 5 5 5 5TTTTTv F TTTTTv y TTTTTu q TTTTTu F s c u y v q TTTTTu ;Ýp p p p pi iž /

is1

what says that if there exists a function u g LLLLL p such that TTTTTu g LLLLL p then TTTTT
p p Ž . `sends LLLLL into LLLLL , 1 F p - q`. Now, because m X - q` then LLLLL ;

LLLLL p, 1 F p - ` and because, by Theorem 3.2 TTTTT: LLLLL ` ª LLLLL `, we get the
desired result.

Ž n n p.1r pCOROLLARY 3.4. If , with the preceding notation, Ý s c - 1 foris1 i i
some p, 1 F p - `, then TTTTT is a contraction map on LLLLL p and the functional
equation gï en by 2.6,

u s OO x , w x , u x , . . . , w x , u x ,Ž . Ž .Ž . Ž .˜ ˜Ž .1 1 r r

has a unique solution in LLLLL p.

Ž .If the w : X ª X are differentiable and Dw x denotes the differentiali i
matrix of w at the point x, the proof of the last theorem shows that wei
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can improve the Lipschitz property of the operator TTTTT, replacing sn byi
< Ž . < < < nll s sup det Dw x F s . We then have the following theorem.x g X i ii

pŽ .THEOREM 3.5. Let TTTTT be as defined by 3.1. Then, if u, v g LLLLL X, E ,
then

TTTTT : LLLLL p X , E ª LLLLL p X , E ,Ž . Ž .

and

1rpr
p5 5 5 5TTTTTu y TTTTTv F ll c u y v ,Ýp piiž /

is1

< Ž . <where ll s sup det Dw x and c are the Lipschitz constants of w .x g X i i ii

Ž .Note that the solution to the functional Eq. 2.6 presented here can be
obtained as the limit of the iteration of the operator TTTTT at any starting
function.

w xRemark. In 11 we show that using the same techniques than in this
paper, Theorem 3.5 can in some cases be slightly improved weakening the
conditions on the w.
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