On the Multiplicity of Darlington Realizations of Contractive Matrix-Valued Functions

Elsa Cortina*
Departamento de Fisica, Facultad de Ciencias Exactus y Nuturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina

AND

Carlos Enrique D’Attellis

Comisión Nacional de Energia Atómica y Departamento de Matemática. Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires. 1428 Buenos Aires, Argentina
Submitted by G.-C. Rota
Received August 10. 1985

Abstract

We obtain a unique expression for a Darlington realization of a contractive matrix-valued function $S(z) \in \mathscr{F} \pi$, valid for the three following cases: (a) $S(z)$ is inner: (b) $S(z)$ is not inner and $\operatorname{det}\left[I_{n}-S^{*}(\xi) S(\xi)\right] \neq 0$ ae.; (c) $S(z)$ is not inner and $\operatorname{det}\left[I_{n}-S^{*}(1 / z) S(z)\right]=0(z \in D)$. On the basis of this result we examinate the problem of multiplicity of realizations for the case (c). , 1987 Academic Press, Inc.

1. Introduction and Summary of Known Reslets

We shall denote by $L^{2}\left(C^{\prime \prime}\right)$ the class of measurable functions $h(\xi)\left(\xi=e^{i t}\right.$, $0 \leqslant t \leqslant 2 \pi$), with values in C^{n} such that

$$
\|h\|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|h\left(e^{i t}\right)\right\|^{2} d t<\infty
$$

It consists of the functions whose Fourier series is (in the sense of convergence in the mean)

$$
h(\xi)=\sum_{\infty}^{\infty} h_{k} \xi^{k}, \quad h_{k} \in C^{n} \quad \text { and } \quad\|h\|^{2}=\sum_{x}^{\infty}\left\|h_{k}\right\|^{2} \quad(\mathrm{cf} .[1])
$$

We shall denote by $L_{+}^{2}\left(C^{n}\right)$ the subspace of $L^{2}\left(C^{n}\right)$ which consists of those functions for which $h_{k}=0, k<0 . H^{2}\left(C^{n}\right)$ denotes the Hilbert space of

[^0]functions $h(z)=\sum_{k=0}^{\infty} h_{k} z^{k}\left(z=r e^{i t}\right), h_{k} \in C^{n}$, holomorphic in the unit disk $D=\{z ;|z|<1\}$, such that
$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|h\left(r e^{i t}\right)\right\|^{2} d t \quad(0<r<1)
$$
has a bound independent of r.
A function $u(z)$ holomorphic in D is called inner if $|u(z)|<1(z \in D)$ and $|u(\xi)|=1$ a.e. A function $\Phi(z)$, holomorphic in D is called outer if
$$
\Phi(z)=\chi \exp \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{i t}+z}{e^{i t}-z} \ln k(t) d t \quad(z \in D),
$$
where $k(t) \geqslant 0, \ln k(t) \in L^{1}$ and χ is a complex number of modulus 1 . For a function $w(z)$, meromorphic in D, the characteristic of Nevanlinna is defined by the expression
\[

$$
\begin{aligned}
T(w, r)= & \frac{1}{2 \pi} \int_{0}^{2 \pi} \ln ^{+} w\left(r e^{i t}\right) d t \\
& +\int_{0}^{r} \frac{n(t, w)-n(0, w)}{t} d t+n(0, w) \ln r
\end{aligned}
$$
\]

where

$$
\ln +a= \begin{cases}\ln a & \text { if } \quad a \geqslant 1 \\ 0 & \text { if } \quad 0 \leqslant a<1,\end{cases}
$$

and $n(t, w)$ is the number of poles of $w(z)$, each one with its multiplicity, inside the circle $|z|<t$.
We say that $w(z)$ is of bounded characteristic if $\sup _{|r|<1}|T(w ; r)|<\infty$. According to a theorem of Nevanlima [2] the class of functions of bounded characteristic coincides with the class of functions that can be written as the ratio of two bounded holomorphic functions $(z \in D)$. Then, these functions are uniquely defined by their boundary values a.e. in the unit circle.

We design with N_{0} the class of functions $f(z)$ of bounded characteristic ($z \in D$) that can be written as a product of an inner function and an outer function. For functions of N_{0} the maximum principle holds. A matrix S is called contractive iff $I-S^{*} S \geqslant 0$, where I is the unit matrix and the symbol * denotes hermitian conjugation. We use J to design a matrix for which $J^{*}=J$ and $J^{2}=I$. A matrix A is called J-expansive iff $A^{*} J A-J \geqslant 0$, and J-unitary iff $A^{*} J A-J=0$.
We will design by \mathscr{S} the class of contractive matrix-valued functions, i.e.,
the matrix-valued functions holomorphic in D for which $\|S(z)\| \leqslant 1$. $S(z) \in \mathscr{S}$ is inner if $I-S^{*}(\xi) S(\xi)=0$ a.e. We say that a matrix-valued function is of bounded characteristic if all its elements possess that property, and that belongs to the class N_{0} if all its elements are functions of N_{0}. A matrix-valued functions $S(z) \in \mathscr{S}$ belongs to the class $\mathscr{S} \pi$ if it has the additional property that its boundary values a.e. on the unit circle are, simultaneously, boundary values of a matrix-valued function $\tilde{S}(z)$ meromorphic in $D=\{z ;|z|>1\}$ with elements of bounded characteristic there [3], i.e.,

$$
\lim _{|=|+1} \widetilde{S}(z)=\lim _{\mid=1 \uparrow 1} S(z) \quad \text { a.e. }
$$

A meromorphic matrix-valued function $A(z)$ is J-expansive $(z \in D)$ if it assumes J-expanding values at each point of holomorphicity z, i.e.,

$$
A^{*}(z) J A(z)-J \geqslant 0
$$

and a J-expansive matrix-valued function $A(z)$ is J-inner if it is J-unitary a.e. in the unit circle, i.e.,

$$
A^{*}(\xi) J A(\xi)-J=0
$$

An arbitrary J-expansive matrix-valued function is of bounded characteristic [3].

Of importance for us is the
Basic Lemma [3]. Let $A(z)=\left(\begin{array}{cc}x(z) \\ \gamma(z) & \beta(z) \\ \delta(z)\end{array}\right)$ be a matrix-valued function of bounded characteristic of order $n+m$, with diagonal elements $\alpha(z)$ of order n and $\delta(z)$ of order m, where $\operatorname{det} \delta(z) \not \equiv 0(z \in D)$, that satisfies the condition

$$
A^{*}(\xi) j A(\xi)-j \geqslant 0 \quad \text { a.e. }
$$

where

$$
j=\left(\begin{array}{cc}
-I_{n} & 0 \tag{1.1}\\
0 & I_{n}
\end{array}\right)
$$

and

$$
\begin{align*}
& a(z)=\alpha(z)-\beta(z) \delta^{-1}(z) \gamma(z) \in N_{0} ; \\
& b(z)=\beta(z) \delta^{-1}(z) \in N_{0} ; \tag{1.2}\\
& c(z)=\delta^{-1}(z) \gamma(z) \in N_{0} ; \\
& d(z)=\delta^{-1}(z) \in N_{0} .
\end{align*}
$$

Then $A(z)$ is J-expansive $(z \in D)$ and $\|a(z)\| \leqslant 1 ;\|b(z)\| \leqslant 1 ;\|c(z)\| \leqslant 1$; $\|d(z)\| \leqslant 1$.

We will use also

Theorem [4]. Let $S(z)$ be a matrix-valued function of order n, of the class $\mathscr{S} \pi$. Then its boundary values a.e. $S(\xi)$ can be represented in the form

$$
\begin{equation*}
S(\xi)=U_{2}^{-1}(\xi) S^{\prime}(\xi) U_{1}(\xi) \tag{1.3}
\end{equation*}
$$

where $U_{1}(\xi)$ and $U_{2}(\xi)$ are a.e. limiting values of inner matrix-valued functions $U_{1}(z)$ and $U_{2}(z)$, and $S^{\prime}(\xi)$ has a diagonal form with blocks $S_{1}(\xi)$ of order k and $S_{2}(\xi)$ of order $n-k$, i.e.,

$$
\begin{equation*}
S^{\prime}(\xi)=\operatorname{diag}\left(S_{1}(\xi), S_{2}(\xi)\right) \tag{1.4}
\end{equation*}
$$

verifying a.e. the relations $\left\|S_{1}(\xi)\right\|<1$ and $\left\|S_{2}(\xi)\right\|=1$.
We will decribe briefly the way we have constructed in [4] the matrixvalued functions $U_{1}(\xi)$ and $U_{2}(\xi)$, because of their importance in the development that follows. For each fixed ξ where $T(\xi)={ }^{\text {def }} S^{*}(\xi) S(\xi)$ is defined, we arranged the eigenvalues of the nonnegative matrix $I_{n}-T(\xi)$ in nonincreasing order, and considered the orthonormal base of C^{n} formed by the corresponding eigenvectors $\left\{\Phi_{m}(\xi)\right\}_{m-1}^{n}$. Introducing the notation

$$
\Phi_{n}(\xi)=\left(\Phi_{m 1}(\xi), \Phi_{m 2}(\xi), \ldots, \Phi_{m n}(\xi)\right)^{\ell}
$$

where the symbol ($)^{\text {t }}$ denotes transposition, we construct the matrix

$$
U_{1}(\xi)=\left\{\Phi_{i j}(\xi)\right\}_{i, j=1}^{n}
$$

Due to the orthonormality of $\left\{\Phi_{m}(\xi)\right\}_{1}^{n}, U_{1}^{*}(\xi) U_{1}(\xi)=I_{n}$ for each fixed ξ in the unit circle except, possibly, a set of zero measure. According to the way we ordered the eigenvalues, the last $(n-k)$ rows of $U_{1}(\xi)$ are the eigenvectors corresponding to the eigenvalue 0 . We applied a similar procedure to construct $U_{2}(\xi)$, which $T^{\prime}(\xi)={ }^{\operatorname{def}} S(\xi) S^{*}(\xi)$ playing the role of $T(\xi)$.

Arov has proved in [3] that a necessary and sufficient condition for a matrix-valued function $S(z)$ to be Darlington realizable is that $S(z)$ belongs to the class $\mathscr{S} \pi$, and considered separately three cases:
(a) $S(z)$ is inner;
(b) $S(z)$ is not inner and $\operatorname{det}\left[I_{n}-S^{*}(\xi) S(\xi)\right] \neq 0$ a.e.;
(c) $S(z)$ is not inner and $\operatorname{det}\left[I_{n}-S^{*}(1 / z) S(z)\right]=0(z \in D)$.

Using results from [3,4] we obtain in this article a unique expression, valid for the three cases for a Darlington realization of a matrix function
$S(z) \in \mathscr{P} \pi$. This result allows us to examine the problem of multiplicity of realizations not only in Case (b), solved in [3], but also in Case (c) proposed in [3] as an open problem.

2. Darlington Realizations

By Darlington realization of a matrix-valued function $S(z) \in \mathscr{S}$, of order $n \times m$, we mean the representation of $S(z)$ as the linear fractional transformation [3],

$$
\begin{equation*}
S(z)=[\alpha(z) \varepsilon+\beta(z)][\gamma(z) \varepsilon+\delta(z)]^{\prime} . \tag{2.1}
\end{equation*}
$$

over a constant matrix $\varepsilon \in \mathscr{F}$, of order $n \times m$, with a j-inner matrix of coefficients

$$
A(z)=\left(\begin{array}{ll}
\alpha(z) & \beta(z) \\
\gamma(z) & \delta(z)
\end{array}\right) .
$$

Theorem II.1. Let $S(z) \in \mathscr{F} \pi$ be a matrix-valued function of order n. Then $S^{\prime}(\xi)$, defined by (1.3), can be written as the linear fractional transformation

$$
\begin{equation*}
S^{\prime}(\xi)=\left[\alpha^{\prime}(\xi) \varepsilon+\beta^{\prime}(\xi)\right]\left[\gamma^{\prime}(\xi) \varepsilon+\delta^{\prime}(\xi)\right]^{1} \tag{2.2}
\end{equation*}
$$

over a constant matrix $\varepsilon \in \mathscr{F}$, with a matrix of coefficients

$$
A^{\prime}(\xi)=\left(\begin{array}{ll}
\alpha^{\prime}(\xi) & \beta^{\prime}(\xi) \\
\gamma^{\prime}(\xi) & \delta^{\prime}(\xi)
\end{array}\right)
$$

that is i-unitary a.e.
Proof. As an illustration we describe briefly the steps of the proof, which consist of
(1) making a convenient selection of ε (formula (2.5)) and
(2) carry out the demonstration of the thesis with the particular choice of $A^{\prime}(\xi)$ specified in (2.6).
Let us observe that, since $S(z) \in \mathscr{S} \pi$, the nonnegative matrix-valued functions

$$
\begin{array}{ll}
F_{1}(\xi) \stackrel{\text { def }}{=} I_{k}-S_{1}^{*}(\xi) S_{1}(\xi) & \text { a.e., } \\
F_{1}^{\prime}(\xi) \stackrel{\text { def }}{=} I_{k}-S_{1}(\xi) S_{1}^{*}(\xi) & \text { a.e. }
\end{array}
$$

are boundary values of matrix-valued functions $F_{1}(z)$ and $F_{1}^{\prime}(z)$ of bounded characteristic in D. Hence there exist $[5,6]$ solutions $\theta(\xi)$ and $\psi(\xi)$ of the factorization problems

$$
\begin{array}{ll}
F_{1}(\xi)=\theta^{*}(\xi) \theta(\xi) & \text { a.e. } \\
F_{1}^{\prime}(\xi)=\psi(\xi) \psi^{*}(\xi) & \text { a.e. } \tag{2.4}
\end{array}
$$

that are a.e. boundary values of bounded holomorphic functions $\theta(z)$ and $\psi(z)$. These solutions are uniquely defined by the following normalization conditions: $\operatorname{det} \theta(z)$ and $\operatorname{det} \psi(z)$ are outer functions, $\theta(0) \geqslant 0$ and $\psi(0) \geqslant 0$. We will construct the representation (2.2) with

$$
\varepsilon=\left(\begin{array}{cc}
0_{k} & 0 \tag{2.5}\\
0 & I_{n-k}
\end{array}\right)
$$

here $n-k$ is the dimension of the subspace

$$
N=\left\{h \in C^{n} ; S^{*}(\xi) S(\xi) h=h\right\}
$$

for each value of ξ where $S(\xi)$ is defined [4]; and the matrix of coefficients $A^{\prime}(\xi)$ with elements

$$
\begin{align*}
\alpha^{\prime}(\xi)= & \left\{\operatorname{diag}\left(\psi^{*}(\xi), 0_{n-k}\right)+\varepsilon\left[U_{2}^{-1}(\xi)+U_{1}^{-1}(\xi) S^{\prime *}(\xi)\right]\right\}^{-1}+\frac{1}{2} U_{2}(\xi) \varepsilon \\
\beta^{\prime}(\xi)= & S^{\prime}(\xi)\left\{\operatorname{diag}\left(\theta(\xi), 0_{n-k}\right)+\varepsilon\left[U_{1}^{-1}(\xi)+U_{2}^{-1}(\xi) S^{\prime}(\xi)\right]\right\}^{-1}-\frac{1}{2} U_{2}(\xi) \varepsilon \\
\gamma^{\prime}(\xi)= & S^{*}(\xi)\left\{\operatorname{diag}\left(\psi^{*}(\xi), 0_{n-k}\right)\right. \\
& \left.+\varepsilon\left[U_{2}^{-1}(\xi)+U_{1}^{-1}(\xi) S^{*}(\xi)\right]\right\}^{-1}-\frac{1}{2} U_{1}(\xi) \varepsilon \\
\delta^{\prime}(\xi)= & \left\{\operatorname{diag}\left(\theta(\xi), 0_{n-k}\right)+\varepsilon\left[U_{1}^{-1}(\xi)+U_{2}^{-1}(\xi) S^{\prime}(\xi)\right]\right\}^{-1}+\frac{1}{2} U_{1}(\xi) \varepsilon, \tag{2.6}
\end{align*}
$$

where $U_{1}(\xi)$ and $U_{2}(\xi)$ are the unitary matrix-valued functions a.e. involved in (1.3) and defined in [4]. With this choice of ε and $A^{\prime}(\xi)$, (2.2) holds. In fact

$$
\begin{aligned}
S^{\prime}(\xi) & {\left[\gamma^{\prime}(\xi) \varepsilon+\delta^{\prime}(\xi)\right]-\left[\alpha^{\prime}(\xi) \varepsilon+\beta^{\prime}(\xi)\right] } \\
= & \operatorname{diag}\left(S_{1}^{*}(\xi) S_{1}(\xi)-I_{k}, 0_{n-k}\right)\left\{\operatorname{diag}\left(\psi^{*}(\xi), 0_{n-k}\right)\right. \\
& \left.+\varepsilon\left[U_{2}^{-1}(\xi)+U_{1}^{-1}(\xi) S^{\prime *}(\xi)\right]\right\}^{-1} \varepsilon=0 \quad \text { a.e. }
\end{aligned}
$$

To finish the proof we will show that

$$
A^{\prime *}(\xi) j A^{\prime}(\xi)-j=0 \quad \text { a.e. }
$$

or, equivalently, that

$$
\begin{array}{ll}
\alpha^{\prime *}(\xi) \alpha^{\prime}(\xi) \quad \gamma^{\prime *}(\xi) \gamma^{\prime}(\xi)=I_{n} & \text { a.e., } \\
\delta^{\prime *}(\xi) \delta^{\prime}(\xi)-\beta^{\prime *}(\xi) \beta^{\prime}(\xi)=I_{n} & \text { a.e., } \\
\alpha^{\prime *}(\xi) \beta^{\prime}(\xi)-\gamma^{\prime *}(\xi) \delta^{\prime}(\xi)=0 & \text { a.e. } \tag{2.7}
\end{array}
$$

Substituting (2.6) into (2.7) we get

$$
\begin{aligned}
& \alpha^{*}(\xi) \alpha^{\prime}(\xi)-\gamma^{\prime *}(\xi) \gamma^{\prime}(\xi) \\
& =\operatorname{diag}\left(\nmid y^{-1}(\xi)\left[I_{k}-S_{1}(\xi) S_{1}^{*}(\xi)\right] \psi^{*-1}(\xi), 0_{n-k}\right) \\
& +\frac{1}{2}\left\{\left[U_{2}(\xi)+S^{\prime}(\xi) U_{1}(\xi)\right]^{-1} \operatorname{diag}\left(\psi(\xi), 0_{n} \quad k\right)+\varepsilon\right\}^{\prime}{ }^{1} \varepsilon \\
& +\frac{1}{2} \varepsilon\left\{\operatorname{diag}\left(\psi^{*}(\xi), 0_{n-k}\right)\left[U_{2}^{1}(\xi)+U_{1}^{-1}(\xi) S^{*}(\xi)\right]^{-1}+\varepsilon\right\}^{1}=I_{n} \quad \text { a.e } \\
& \delta^{\prime *}(\xi) \delta^{\prime}(\xi)-\beta^{*}(\xi) \beta^{\prime}(\xi) \\
& =\operatorname{diag}\left(\theta^{*}{ }^{1}(\xi)\left[I_{k}-S_{1}^{*}(\xi) S_{1}(\xi)\right] \theta^{-1}(\xi), 0_{n \cdot k}\right) \\
& +\frac{1}{2} \varepsilon\left\{\operatorname{diag}\left(\theta(\xi), 0_{n \quad k}\right)\left[U_{1}{ }^{\prime}(\xi)+U_{2}{ }^{1}(\xi) S^{\prime}(\xi)\right]^{1}+\varepsilon\right\}^{t}+\varepsilon \\
& =I_{n} \quad \text { a.e. }, \\
& \alpha^{\prime *}(\xi) \beta^{\prime}(\xi)-\gamma^{\prime *}(\xi) \delta^{\prime}(\xi) \\
& =\frac{1}{2} \varepsilon\left\{\operatorname{diag}\left(\theta(\xi), 0_{n-k}\right)\left[U_{1}^{-1}(\xi)+U_{2}^{-1}(\xi) S^{\prime}(\xi)\right]^{-1}+\varepsilon\right\}^{-1} \\
& -\frac{1}{2}\left\{\left\lceil U_{2}(\xi)+S^{\prime}(\xi) U_{1}(\xi)\right]^{-1} \operatorname{diag}\left(\psi(\xi) . O_{n} \quad k\right)+\varepsilon\right\}^{1}=0 \quad \text { a.e. }
\end{aligned}
$$

This completes the proof of Theorem II.1.
Using this theorem and (1.3) we obtain

$$
\begin{aligned}
S(\xi)= & U_{2}^{-1}(\xi)\left[\alpha^{\prime}(\xi) \varepsilon+\beta^{\prime}(\xi)\right]\left[\gamma^{\prime}(\xi) \varepsilon+\delta^{\prime}(\xi)\right]{ }^{1} U_{1}^{-1}(\xi) \\
= & {\left[U_{2}^{-1}(\xi) \alpha^{\prime}(\xi) \varepsilon+U_{2}^{-1}(\xi) \beta^{\prime}(\xi)\right]\left[U_{1}^{-1}(\xi) \gamma^{\prime}(\xi) \varepsilon\right.} \\
& \left.+U_{1}^{-1}(\xi) \delta^{\prime}(\xi)\right]^{-1} \quad \text { a.e. }
\end{aligned}
$$

This is a linear fractional transformation of $S(\xi)$ over the same constant matrix ε, given by (2.5), with a matrix of coefficients $A(\xi)=U(\xi) A^{\prime}(\xi)$, where

$$
\begin{equation*}
U(\xi)=\operatorname{diag}\left(U_{2}^{-1}(\xi), U_{1}^{-1}(\xi)\right) \tag{2.8}
\end{equation*}
$$

Note that $A(\xi)$ verifies

$$
A(\xi)=\lim _{|z| \rightarrow 1} A(z) \quad \text { a.c. }
$$

where

$$
\begin{equation*}
A(z)=U(z) A^{\prime}(z) \tag{2.9}
\end{equation*}
$$

is a matrix-valued function of bounded characteristic in D. This is due to the construction of $U_{1}(\xi), U_{2}(\xi)$ (cf. [4]) and $A^{\prime}(\xi)$. We shall prove now

Theorem II.2. Let $S(z) \in \mathscr{P} \pi$ be a matrix-valued functions of order n. Then the representation

$$
\begin{equation*}
S(z)=[\alpha(z) \varepsilon+\beta(z)][\gamma(z) \varepsilon+\delta(z)]^{-1} \tag{2.10}
\end{equation*}
$$

with ε specified by (2.5) and $A(z)=\left(\begin{array}{cc}\alpha(z) & \beta(z) \\ \gamma(z) & \delta(z)\end{array}\right)$ given by (2.9) is a Darlington realization of $S(z)$.

Proof. To prove the thesis we will show that $A(\xi)$ is j-unitary a.e., and $A(z)$ is j-expansive $(z \in D)$. Since $U_{1}(\xi)$ and $U_{2}(\xi)$ are unitary a.e. by construction, using (2.7), (2.8), and (2.9) we have

$$
\begin{align*}
A^{*}(\xi) j A(\xi)-j & =U^{*}(\xi) A^{\prime *}(\xi) j A^{\prime}(\xi) U(\xi)-j \\
& =U^{*}(\xi) j U(\xi)-j=0 \quad \text { a.e. } \tag{2.11}
\end{align*}
$$

In view of this result, we will verify that the elements of $A(\xi)$ are a.e. boundary values of matrix-valued functions that satisfy the hypotheses of the Basic Lemma [3].

Let us consider the function

$$
\begin{align*}
d(z)= & \left\{\left[\operatorname{diag}\left(\theta(z), 0_{n-k}\right)\right] U_{1}(z)+\varepsilon\left[I_{n}+S(z)\right]\right\} \\
& \times\left\{I_{n}+\varepsilon\left[I_{n}+S(z)\right]\right\}^{-1} \quad(z \in D) . \tag{2.12}
\end{align*}
$$

Assuming that the unity is not an eigenvalue of $-S(z)$, the function $\left\{I_{n}+\varepsilon\left[I_{n}+S(z)\right]\right\}^{-1}$ exists [3], and taking into account that $\theta(z), U_{1}(z)$, and $S(z)$ are bounded and holomorphic $(z \in D)$, we conclude that $d(z) \in N_{0}$. Note that

$$
d^{-1}(\xi)=\delta(\xi)=\lim _{|z| \rightarrow 1} \delta(z) \quad \text { a.e }
$$

From (2.11) we know that

$$
\begin{array}{rll}
\alpha^{*}(\xi) \alpha(\xi)-\gamma^{*}(\xi) \gamma(\xi) & =I_{n} & \text { a.e., } \\
\gamma^{*}(\xi) \delta(\xi)-\alpha^{*}(\xi) \beta(\xi) & =0 & \text { a.e. }
\end{array}
$$

Then, using (1.2) we obtain

$$
\alpha^{*-1}(\xi)=a(\xi) \quad \text { a.e }
$$

This relationship leads us to examine if $a(\xi)$ is the boundary value of a matrix-valued function $a(z)$ satisfying the hypothesis of the Basic Lemma. The expression (2.6) of $\alpha^{\prime}(\xi)$ may be used to derive a formal expression for $a(z)$,

$$
\begin{align*}
a(z)= & 2\left\{2 I_{n}+\left[I_{n}+S(z)\right] \varepsilon\right\}^{1}\left\{U_{z}^{-1}(z) \operatorname{diag}\left(\psi(z), O_{n-k}\right)\right. \\
& \left.+\left[I_{n}+S(z)\right] \varepsilon\right\} . \tag{2.13}
\end{align*}
$$

Admitting, without restriction, that unity is not an eigenvalue of $S(z)$ $(z \in D)$, it can be seen that $\left\{2 I_{n}+\left[I_{n}+S(z)\right] \varepsilon\right\}^{-1}$ exists and its elements are functions of N_{0} (cf. [3]).

Consider now the second factor in (2.13). The matrix-valued function $U_{2}^{-1}(z)$ is, by its construction, of bounded characteristic in D. We can select an inner scalar function $b_{1}(z)$ being common denominator of all the elements of $U_{2}^{-1}(z)$, and construct a function $\psi(\xi)=\psi_{0}(\xi) b_{1}(\xi)$, where $\psi_{0}(\xi)$ is a solution of (2.4) uniquely defined by the normalization conditions. Therefore $\psi(\xi)$ is also solution of (2.4). Furthermore,

$$
\psi(\xi)=\lim _{\mid=1 \rightarrow 1} \psi(z) \quad \text { a.e. }
$$

where $\psi(z)=\psi_{0}(z) b_{1}(z)$ is bounded and holomorphic in D. With this choice of $\psi(z)$ the elements of $U_{2}^{-1}(z) \operatorname{diag}\left(\psi(z), O_{n-k}\right)$ are scalar functions of N_{0}. Since $\left[I_{n}+S(z)\right]$ is holomorphic and bounded ($z \in D$), the above conclusions allow us to afirm that $a(z) \in N_{0}$.

Consider now the element

$$
b(\xi)=\beta(\xi) \delta \quad{ }^{1}(\xi)=\beta(\xi) d(\xi) \quad \text { a.e. }
$$

Using (2.6) and (2.12), $b(z)$ may be written

$$
b(z)=\left\{S(z)-\frac{1}{2} \varepsilon\left[I_{n}+S(z)\right]\right\}\left\{I_{n}+\varepsilon\left[I_{n}+S(z)\right]\right\}^{1} \quad(z \in D) .
$$

When we examined the element $d(z)$, we have shown that $I_{n}+\varepsilon\left[I_{n}+S(z)\right]$ is invertible. This fact, together with property of boundedness and holomorphicity of $S(z)$, implies that $b(z) \in N_{0}$.

Let us now consider the block

$$
\begin{aligned}
c(\xi)= & \delta^{-1}(\xi) \gamma(\xi)=d(\xi) U_{1}^{-1}(\xi) \operatorname{diag}\left(S_{1}^{*}(\xi), S_{2}^{*}(\xi)\right) \\
& \times\left\{\operatorname{diag}\left(\psi^{*}(\xi), O_{n-k}\right)+\operatorname{diag}\left(O_{k}, I_{n-k}\right)\left[U_{2}^{-1}(\xi)+U_{1}^{-1}(\xi)\right.\right. \\
& \left.\times \operatorname{diag}\left(S_{1}^{*}(\xi), S_{2}^{*}(\xi)\right]\right\}^{-1}-\frac{1}{2} d(\xi) U_{1}^{-1}(\xi) \operatorname{diag}\left(O_{k}, I_{n-k}\right)
\end{aligned}
$$

Since we have proved that $d(\xi) \in N_{0}$, it follows immediately that the second term at the right also satisfies that condition. Hence it is left to show that the first term belongs to the class N_{0}. We denote this term by $c^{\prime}(\xi)$. Replacing $d(\xi)$ in it and using the equality

$$
\begin{aligned}
&\left\{I_{n}+\right. \frac{1}{2} \\
&\left.\operatorname{diag}\left(O_{k}, I_{n-k}\right)\left[I_{n}+S(\xi)\right]\right\}^{-1} \\
&= I_{n}-\left\{I_{n}+\frac{1}{2} \operatorname{diag}\left(O_{k}, I_{n-k}\right)\left[I_{n}+S(\xi)\right]\right\}^{-1} \frac{1}{2} \operatorname{diag}\left(O_{k}, I_{n-k}\right) \\
& \times\left[I_{n}+S(\xi)\right]
\end{aligned}
$$

we obtain

$$
\begin{equation*}
c^{\prime}(\xi)=c_{1}(\xi)-c_{2}(\xi) \tag{2.14}
\end{equation*}
$$

where

$$
\begin{aligned}
c_{1}(\xi)= & \left\{\operatorname{diag}\left(\theta(\xi), O_{n-k}\right) U_{1}(\xi)+\operatorname{diag}\left(O_{k}, I_{n-k}\right)\left[I_{n}+S(\xi)\right]\right. \\
& \times U_{1}^{-1}(\xi) \operatorname{diag}\left(S_{1}^{*}(\xi), S_{2}^{*}(\xi)\right)\left\{\operatorname{diag}\left(\psi^{*}(\xi), O_{n-k}\right)\right. \\
& \left.+\operatorname{diag}\left(O_{k}, I_{n-k}\right)\left[U_{2}^{-1}(\xi)+U_{1}^{-1}(\xi) \operatorname{diag}\left(S_{1}^{*}(\xi), S_{2}^{*}(\xi)\right)\right]\right\}^{-1}
\end{aligned}
$$

and

$$
\begin{aligned}
c_{2}(\xi)= & \frac{1}{2} d(\xi) \operatorname{diag}\left(O_{k}, I_{n-k}\right)\left[I_{n}+S(\xi)\right] U_{1}^{-1}(\xi) \operatorname{diag}\left(S_{1}^{*}(\xi), S_{2}^{*}(\xi)\right) \\
& \times\left\{\operatorname{diag}\left(\psi^{*}(\xi), O_{n-k}\right)+\operatorname{diag}\left(O_{k}, I_{n-k}\right)\left[U_{2}^{-1}(\xi)+U_{1}^{-1}(\xi)\right.\right. \\
& \left.\left.\times \operatorname{diag}\left(S_{1}^{*}(\xi), S_{2}^{*}(\xi)\right)\right]\right\}^{-1} .
\end{aligned}
$$

The term $c_{1}(\xi)$ can be rewritten in the form

$$
\begin{equation*}
c_{1}(\xi)=c_{3}(\xi)+2 c_{2}(\xi) \tag{2.15}
\end{equation*}
$$

where

$$
\begin{aligned}
c_{3}(\xi)= & \operatorname{diag}\left(\theta(\xi) S_{1}^{*}(\xi), O_{n-k}\right)\left\{\operatorname{diag}\left(\psi^{*}(\xi), O_{n-k}\right)\right. \\
& \left.+\operatorname{diag}\left(O_{k}, I_{n-k}\right)\left[U_{2}^{-1}(\xi)+U_{1}^{-1}(\xi) \operatorname{diag}\left(S_{1}^{*}(\xi), S_{2}^{*}(\xi)\right)\right]\right\}^{-1} .
\end{aligned}
$$

Observe that the factor between brackets is, due to its construction, a triangular matrix-valued function, with its right superior block equal to zero. Therefore

$$
\begin{equation*}
c_{3}(\xi)=\operatorname{diag}\left(\theta(\xi) S_{1}^{*}(\xi) \psi^{*-1}(\xi), O_{n-k}\right) \tag{2.16}
\end{equation*}
$$

Replacing (2.16) and (2.15) in (2.14) we obtain

$$
c^{\prime}(\xi)=\operatorname{diag}\left(0(\xi) S_{1}^{*}(\xi) \psi^{-1 *}(\xi), O_{n-k}\right)+c_{2}(\xi) .
$$

The matrix-valued function defined by (2.16) is the boundary value a.e. of the matrix-valued function

$$
c_{3}(z)=\operatorname{diag}\left(\theta(z) S_{1}^{*}(1 / \bar{z}) \psi^{*} \quad 1(1 / \bar{z}), O_{n} k\right) \quad(z \in D)
$$

of bounded characteristic in D. Let $b_{2}(z)$ be an inner scalar function that is the common denominator of $S_{1}^{*}(1 / \bar{z}) \psi^{*-1}(1 / \bar{z})$. If $\theta_{0}(\xi)$ is a solution of the factorization problem (2.3) satisfying the normalization conditions, then $\theta(\xi)=b_{2}(\xi) \theta_{0}(\xi)$ is also a solution of that problem. Moreover, $\theta(\xi)$ verifies

$$
\theta(\xi)=\lim _{\mid=1 \rightarrow 1} \theta(z) \quad \text { a.e. }
$$

where $\theta(z)$ is an holomorphic and bounded matrix-valued function $(z \in D)$. Therefore we can conclude that $c_{3}(\xi) \in N_{0}$. To prove that $c(\xi) \in N_{0}$ it is only left to show that $c_{2}(\xi) \in N_{0}$. By virtue of (1.3) the term $c_{2}(\xi)$ can be written as follows:

$$
\begin{aligned}
c_{2}(\xi)= & \frac{1}{2} d(\xi) \operatorname{diag}\left(O_{k}, I_{n-k}\right)\left[U_{1}^{-1}(\xi) \operatorname{diag}\left(S_{1}^{*}(\xi), S_{2}^{*}(\xi)\right)+U_{2}^{\prime}(\xi)\right. \\
& \left.\times \operatorname{diag}\left(S_{1}(\xi) S_{1}^{*}(\xi), I_{n-k}\right)+U_{2}^{-1}(\xi)-U_{2}^{1}(\xi)\right]\left\{\operatorname{diag}\left(\psi^{*}(\xi), O_{n-k}\right)\right. \\
& \left.\left.+\operatorname{diag}\left(O_{k}, I_{n-k}\right)\left[U_{2}^{-1}(\xi)+U_{1}^{-1}(\xi) \operatorname{diag}\left(S_{1}^{*}(\xi), S_{2}^{*}(\xi)\right)\right]\right\}\right\}^{1} \\
= & \frac{1}{2} d(\xi) \operatorname{diag}\left(O_{k}, I_{n-k}\right)\left\{U_{2}^{-1}(\xi) \operatorname{diag}\left(S_{1}(\xi) S_{1}^{*}(\xi)-I_{k}, O_{n k}\right)\right. \\
& +\left[U_{2}^{-1}(\xi)+U_{1}^{-1}(\xi) \operatorname{diag}\left(S_{1}^{*}(\xi), S_{2}^{*}(\xi)\right]\right\}\left\{\operatorname{diag}\left(\psi^{*}(\xi), O_{n-k}\right)\right. \\
& \left.+\operatorname{diag}\left(O_{k}, I_{n-k}\right)\left[U_{2}^{1}(\xi)+U_{1}^{-1}(\xi) \operatorname{diag}\left(S_{1}^{*}(\xi), S_{2}^{*}(\xi)\right)\right]\right\}^{-1} \\
= & \frac{1}{2} d(\xi) \operatorname{diag}\left(O_{k}, I_{n-k}\right) U_{2}^{-1}(\xi) \\
& \times \operatorname{diag}\left(\left[S_{1}(\xi) S_{1}^{*}(\xi)-I_{k}\right] \psi^{*-1}(\xi), O_{n-k}\right) \\
& +\frac{1}{2} d(\xi) \operatorname{diag}\left(O_{k}, I_{n-k}\right)\left[U_{2}^{-1}(\xi)+U_{1}^{-1}(\xi) \operatorname{diag}\left(S_{1}^{*}(\xi), S_{2}^{*}(\xi)\right)\right] \\
& \times\left\{\operatorname{diag}\left(\psi^{*}(\xi), O_{n} k\right)+\operatorname{diag}\left(O_{k}, I_{n} k\right)\left[U_{2}^{-1}(\xi)+U_{1}^{-1}(\xi)\right.\right. \\
& \left.\left.\quad \operatorname{diag}\left(S_{1}^{*}(\xi), S_{2}^{*}(\xi)\right)\right]\right\}^{-1} .
\end{aligned}
$$

Without loss of generality we can suppose that the unity is not eigenvalue of $S(z)$, and, using the same argument we have mentioned when we consider the block $b(z)$, we can afirm that $[I+S(\xi)]$ is invertible, therefore $\left[U_{2}^{-1}(\xi)+U_{1}^{-1}(\xi) \operatorname{diag}\left(S_{1}^{*}(\xi), S_{2}^{*}(\xi)\right)\right]$ is also invertible. Taking this into
account and recalling that $\psi(\xi)$ is solution of the factorization problem (2.4) we arrive at the conclusion that

$$
\begin{aligned}
c_{2}(\xi)= & \frac{1}{2} d(\xi) U_{2}^{-1}(\xi) \operatorname{diag}\left(\psi(\xi), O_{n-k}\right)+\frac{1}{2} d(\xi) \operatorname{diag}\left(O_{k}, I_{n-k}\right) \\
& \times\left\{\operatorname { d i a g } (\psi ^ { * } (\xi) , O _ { n - k }) \left[U_{2}^{-1}(\xi)+U_{1}^{-1}(\xi)\right.\right. \\
& \left.\left.\times \operatorname{diag}\left(S_{1}^{*}(\xi), S_{2}^{*}(\xi)\right)\right]^{-1}+\operatorname{diag}\left(O_{k}, I_{n-k}\right)\right\}^{-1} \\
= & \frac{1}{2} d(\xi) \operatorname{diag}\left(O_{k}, I_{n-k}\right) U_{2}^{-1}(\xi) \operatorname{diag}\left(\psi(\xi), O_{n-k}\right)+\frac{1}{2} d(\xi) \\
& \times \operatorname{diag}\left(O_{k}, I_{n-k}\right) .
\end{aligned}
$$

Recalling that with the convenient construction of $\psi(\xi)$ we have set when the block $a(z)$ was examined, the elements of $U_{2}^{-1}(z) \operatorname{diag}\left(\psi(z), O_{n-k}\right)$ are bounded and holomorphic scalar functions $(z \in D)$, we arrive to the conclusions that $c_{2}(\xi) \in N_{0}$. Therefore, $c(\xi) \in N_{0}$. Hence the matrix of coefficients $A(z)$, defined by (2.9) is j-inner and the proof that (2.10) is a Darlington realization is finished.

3. Set or Realizations

The Darlington realization of a matrix-valued function $S(z) \in \mathscr{Y} \pi$ is not unique [3]. It is important for a practical viewpoint (synthesis of an n-port with specified scattering matrix) to describe all the possible realizations of $S(z)$. An analogous problem has been cited by Cauer [6], in the case of reactance matrices, the equivalence problem.

Let us consider an arbitrary realization of $S(z) \in \mathscr{S} \pi$,

$$
\begin{equation*}
S(z)=[\alpha(z) \varepsilon+\beta(z)][\gamma(z) \varepsilon+\delta(s)]^{-1} \tag{3.1}
\end{equation*}
$$

over a constant matrix $\varepsilon(\epsilon \mathscr{S}$) with a j-expansive matrix of coefficients

$$
A(z)=\left(\begin{array}{ll}
\alpha(z) & \beta(z) \\
\gamma(z) & \delta(z)
\end{array}\right)
$$

since $\varepsilon \in \mathscr{P}$, the matrices

$$
\begin{aligned}
F & =\operatorname{In}-\varepsilon^{*} \varepsilon, \\
F^{\prime} & =\operatorname{In}-\varepsilon \varepsilon^{*},
\end{aligned}
$$

are nonnegative, and there exist unitary matrices V_{1} and V_{2} diagonalizing them. If we denote by r the dimension of the range of F, and introduce the matrix

$$
\begin{equation*}
\varepsilon^{\prime} \stackrel{\text { def }}{=} V_{2} \in V_{1}^{-1}, \tag{3.2}
\end{equation*}
$$

we know (cf. 4, Theorem III.1]) that ε^{\prime} may be written in a diagonal form, i.e.,

$$
\begin{equation*}
\varepsilon^{\prime}=\operatorname{diag}\left(\varepsilon_{1}, \varepsilon_{2}\right) \tag{3.3}
\end{equation*}
$$

with blocks ε_{1} of order r and ε_{2} of order $n-r$ satisfying $\left\|\varepsilon_{1}\right\|<1$ and $\left\|\varepsilon_{2}\right\|=1$. Note that

$$
\begin{aligned}
& F_{1}=I_{r}-\varepsilon_{1}^{*} \varepsilon_{1}, \\
& F_{1}^{\prime}=I_{r}-\varepsilon_{1} \varepsilon_{1}^{*},
\end{aligned}
$$

are positive definite matrices.
Consider now the linear fractional transformation

$$
\varepsilon^{\prime}=\left[\alpha_{\varepsilon}^{\prime} \varepsilon_{0}+\beta_{\varepsilon}^{\prime}\right]\left[\gamma_{\varepsilon}^{\prime} \varepsilon_{0}+\delta_{z}^{\prime}\right]^{-1}
$$

specified by

$$
\begin{equation*}
\varepsilon_{0}=\operatorname{diag}\left(O_{r}, I_{n-r}\right) \tag{3.4}
\end{equation*}
$$

and the j-unitary matrix

$$
U_{\varepsilon^{\prime}}=\left(\begin{array}{ll}
\alpha_{\varepsilon^{\prime}} & \beta_{\varepsilon^{\prime}} \\
\gamma_{\varepsilon^{\prime}} & \delta_{\varepsilon^{\prime}}
\end{array}\right)
$$

where

$$
\begin{array}{ll}
\alpha_{\varepsilon^{\prime}}=\operatorname{diag}\left(F_{1}^{\prime-1 / 2}, \varepsilon_{2}\right), & \beta_{\varepsilon^{\prime}}=\operatorname{diag}\left(F_{1}^{1 / 2}, O_{n}\right), \\
\gamma_{\varepsilon^{\prime}}=\operatorname{diag}\left(\varepsilon_{1}^{*} F_{1}^{\prime-1 / 2}, O_{n-r}\right), & \delta_{\varepsilon^{\prime}}=\operatorname{diag}\left(F_{1}^{-1 / 2}, I_{n-r}\right) \tag{3.5}
\end{array}
$$

Using this construction we conclude that

$$
\begin{equation*}
\varepsilon=\left[\alpha_{\varepsilon} \varepsilon_{0}+\beta_{\varepsilon}\right]\left[\gamma_{\varepsilon} \varepsilon_{0}+\delta_{\varepsilon}\right]^{\prime} \tag{3.6}
\end{equation*}
$$

where

$$
U_{\varepsilon}=\left(\begin{array}{ll}
\alpha_{\varepsilon} & \beta_{c} \tag{3.7}\\
\gamma_{\varepsilon} & \delta_{c}
\end{array}\right)=\operatorname{diag}\left(V_{2}^{-1}, V_{1}^{-1}\right) \times U_{\varepsilon},
$$

is j-unitary. This is due to (3.2) and the fact that V_{1} and V_{2} are unitary. Substituting (3.6) into (3.1), the resultant expression for $S(z)$ is

$$
\begin{equation*}
S(z)=\left[\alpha_{0}(z) \varepsilon_{0}+\beta_{0}(z)\right]\left[\gamma_{0}(z) \varepsilon_{0}+\delta_{0}(z)\right]^{1} \quad(z \in D) \tag{3.8}
\end{equation*}
$$

with a matrix of coefficients

$$
\begin{equation*}
A_{0}(z)=A(z) U_{\iota} \tag{3.9}
\end{equation*}
$$

Using (1.2) together with (3.7) we obtain a linear fractional transformation of

$$
\begin{equation*}
S^{\prime}(\xi)=\left[\alpha^{\prime}(\xi) \varepsilon_{0}+\beta^{\prime}(\xi)\right]\left[\gamma^{\prime}(\xi) \varepsilon_{0}+\delta^{\prime}(\xi)\right]^{-1} \quad \text { a.e., } \tag{3.10}
\end{equation*}
$$

with a matrix of coefficients, expressed in terms of $A_{0}, A^{\prime}(\xi)=$ $\operatorname{diag}\left(U_{2}(\xi), U_{1}(\xi)\right) A_{0}(\xi) . A^{\prime}(\xi)$ is j-unitary a.e. because the unitarity of $U_{1}(\xi)$ and $U_{2}(\xi)$, and the j-unitarity of $A_{0}(\xi)$. For a matrix-valued function $S(z) \in \mathscr{S} \pi$, we define [4]

$$
\begin{equation*}
N_{s}-\left\{h(\xi) \in L_{+}^{2}\left(C^{n}\right), \quad T(\xi) h(\xi)=h(\xi) \text { a.e. }\right\} \tag{3.11}
\end{equation*}
$$

where $T(\xi)=S^{*}(\xi) S(\xi)$, we have proved in [4] that N_{s} is a closed linear manifold and, consequently, that

$$
L_{+}^{2}\left(C^{n}\right)=N_{s} \oplus N_{s \perp},
$$

where the symbol \perp denotes orthogonal complement. For each value of ξ where $T(\xi)$ is denoted we set [4],

$$
\begin{aligned}
& N_{\xi}=\left\{h \in C^{n}, T(\xi) h=h\right\}, \\
& N_{\xi}^{\prime}=\left\{h^{\prime} \in C^{n}, T^{\prime}(\xi) h^{\prime}=h^{\prime}\right\},
\end{aligned}
$$

where $T^{\prime}(\xi)=S(\xi) S^{*}(\xi)$ a.e. These relations imply

$$
\begin{aligned}
& C^{n}=N_{\xi} \oplus N_{\xi \perp} \\
& C^{n}=N_{\xi}^{\prime} \oplus N_{\varepsilon \perp}^{\prime}
\end{aligned}
$$

and we known from [4] that the subspaces N_{ξ} have the same dimension for almost every ξ in the unit circle.

Let us consider a vector-valued function $h(\xi) \in N_{s}$. From definition (3.11) it follows that

$$
\left[I_{n}-T(\xi)\right] h(\xi)=0 \quad \text { a.e }
$$

This relationship, together with (1.3), may be used to derive

$$
\begin{equation*}
U_{1}^{-1}(\xi)\left[I_{n}-S^{\prime *}(\xi) S^{\prime}(\xi)\right] U_{1}(\xi) h(\xi)=0 \quad \text { a.e. } \tag{3.12}
\end{equation*}
$$

Taking into account the particular way of constructing $U_{1}(\xi)$ and the fact that $h(\xi) \in N_{s}$, we conclude that

$$
\begin{equation*}
x(\xi)=U_{1}(\xi) h(\xi)=\left(0, \ldots, 0, x_{k+1}(\xi), \ldots, x_{n}(\xi)\right)^{t} \tag{3.13}
\end{equation*}
$$

Since $U_{1}(\xi)$ is unitary a.e. from (3.12) it follows that

$$
\left[I_{n}-S^{\prime *}(\xi) S^{\prime}(\xi)\right] x(\xi)=0 \quad \text { a.e }
$$

Recalling that the dimension of the range of F is r, we suppose without loss of generality, that $\operatorname{dim} N_{\xi}=n-k$, and introduce the notation

$$
w^{\prime}(\xi) \stackrel{\text { der }}{=}\left[\gamma^{\prime}(\xi) \varepsilon_{0}+\delta^{\prime}(\xi)\right] \quad{ }^{\prime}=\left(\begin{array}{ll}
w_{11}^{\prime}(\xi) & w_{12}^{\prime}(\xi) \tag{3.14}\\
w_{21}^{\prime}(\xi) & w_{22}^{\prime}(\xi)
\end{array}\right)
$$

where $w_{11}^{\prime}(\xi)$ is a block of $k \times r$ (k columns and r rows , $w_{12}^{\prime}(\xi)$ of $(n-k) \times r, w_{21}^{\prime}$ of $k x(n-r)$ and $w_{22}^{\prime}(\xi)$ of $(n-k) \times(n-r)$. Therefore, the expression (3.13) may be written using (3.4) in the alternative form

$$
\begin{equation*}
w^{\prime *}(\xi) \operatorname{diag}\left(I_{r}, 0_{n}, r\right) w^{\prime}(\xi) x(\zeta)=0 \quad \text { a.e. } \tag{3.15}
\end{equation*}
$$

This relationship, together with (3.13) and (3.14), ensures that $w_{12}^{\prime}(\xi)=0$ a.e. Using for $\gamma^{\prime}(\xi)$ and $\delta^{\prime}(\xi)$ a notation consistent with (3.14), it is easy now to express the blocks of $w^{\prime}(\xi)$ in terms of the blocks of $;^{\prime}(\xi)$ and $\delta^{\prime}(\xi)$, i.e.,

$$
\gamma^{\prime}(\xi)=\left(\begin{array}{ll}
\gamma_{11}^{\prime}(\xi) & \gamma_{12}^{\prime}(\xi) \\
\gamma_{21}^{\prime}(\xi) & \gamma_{22}^{\prime}(\xi)
\end{array}\right), \quad \delta^{\prime}(\xi)=\left(\begin{array}{ll}
\delta_{11}^{\prime}(\xi) & \delta_{12}^{\prime}(\xi) \\
\delta_{21}^{\prime}(\xi) & \delta_{22}^{\prime}(\xi)
\end{array}\right),
$$

where the blocks $\gamma_{11}^{\prime}(\xi)$ and $\delta_{11}^{\prime}(\xi)$ are of $r \times k ; \gamma_{21}^{\prime}(\xi)$ and $\delta_{21}^{\prime}(\xi)$ of $r \times(n-k) ; \gamma_{12}^{\prime}(\xi)$ and $\delta_{12}^{\prime}(\xi)$ of $(n-r) \times k:$ and $\gamma_{22}^{\prime}(\xi)$ and $\delta_{22}^{\prime}(\xi)$ of $(n-r) \times(n-k)$; and

$$
w^{\prime}(\xi)=\left(\begin{array}{ccc}
\delta_{11}^{\prime}(\xi) & 0 \tag{3.16}\\
{\left[\gamma_{22}^{\prime}(\xi)+\delta_{22}^{\prime}(\xi)\right]^{-1} \delta_{22}^{\prime}(\xi) \delta_{11}^{\prime}(\xi)} & {\left[\gamma_{22}^{\prime}(\xi)+\delta_{22}^{\prime}(\xi)\right]} & 1
\end{array}\right) .
$$

On examinating the expressions (3.16), (3.15), and (1.4) it is found that

$$
\begin{equation*}
I_{k}-S_{1}^{*}(\xi) S_{1}(\xi)=\delta_{11}^{\prime}{ }^{\prime *}(\xi) \delta_{11}^{*}(\xi) \quad \text { a.e. } \tag{3.17}
\end{equation*}
$$

we know [5] that there exists a solution $\theta_{0}(\xi)$ of the factorization problem (3.17), verifying

$$
\theta_{0}(\xi)=\lim _{\mid=1 \rightarrow 1} \theta_{0}(z),
$$

where $\theta_{0}(z)$ is bounded and holomorphic in D, uniquely defined among the infinite set of solutions by the normalization conditions $\theta_{0}(0)>0$ and $\operatorname{det} \theta_{0}(z)$ is an outer function. We also know [5] that any solution of (3.17) satisfies $\theta(\xi)=V(\xi) \theta_{0}(\xi)$ a.e., where $V(\xi)$ is a unitary matrix valued function a.e. This fact and (3.17) imply

$$
\begin{equation*}
\delta_{11}^{\prime}(\xi)=\theta^{-1}(\xi) \quad \text { a.e. } \tag{3.18}
\end{equation*}
$$

where $\theta(\xi)$ is the boundary value a.e. of a bounded holomorphic matrixvalued function $(z \in D)$ and solution of the factorization problem (3.17).

We introduce now the notation

$$
\alpha^{\prime}(\xi)=\left(\begin{array}{cc}
\alpha_{11}^{\prime}(\xi) & \alpha_{12}^{\prime}(\xi) \\
\alpha_{21}^{\prime}(\xi) & \alpha_{22}^{\prime}(\xi)
\end{array}\right), \quad \beta^{\prime}(\xi)=\left(\begin{array}{cc}
\beta_{11}^{\prime}(\xi) & \beta_{12}^{\prime}(\xi) \\
\beta_{21}^{\prime}(\xi) & \beta_{22}^{\prime}(\xi)
\end{array}\right),
$$

and consider again a vector-valued function $h(\xi) \in N_{s}$. We know [4] that for each fixed value of ξ except, possibly, a set of zero measure it holds that

$$
S(\xi) h(\xi)=h^{\prime}(\xi) \in N_{\zeta}^{\prime}
$$

which may be written in the equivalent form

$$
\begin{equation*}
S^{\prime}(\xi) x(\xi)=\left[\alpha^{\prime}(\xi) \varepsilon_{0}+\beta^{\prime}(\xi)\right] w^{\prime}(\xi) x(\xi)=x^{\prime}(\xi) \tag{3.19}
\end{equation*}
$$

where $x(\xi)$ is defined by (3.13) and

$$
\begin{equation*}
x^{\prime}(\xi)=U_{2}(\xi) h^{\prime}(\xi)=\left(0, \ldots, 0, x_{k+1}^{\prime}(\xi), \ldots, x_{n}^{\prime}(\xi)\right)^{\mathrm{t}} \tag{3.20}
\end{equation*}
$$

To derive this last expression we use analogous arguments to those we mentioned in obtaining (3.13). A vector-valued function $g(\xi) \in N_{s \perp}$ verifies the following expression [4] for almost every fixed ξ on the unit circle

$$
S(\xi) g(\xi)=g^{\prime}(\xi) \in N_{\xi \perp}^{\prime}
$$

which may be written in the alternative form

$$
\begin{equation*}
S^{\prime}(\xi) y(\xi)=y^{\prime}(\xi) \tag{3.21}
\end{equation*}
$$

where

$$
\begin{align*}
y(\xi) & =U_{1}(\xi) g(\xi)=\left(y_{1}(\xi), \ldots, y_{k}(\xi), 0, \ldots, 0\right)^{\mathrm{t}} \tag{3.22}\\
y^{\prime}(\xi) & =U_{2}(\xi) g^{\prime}(\xi)=\left(y_{1}^{\prime}(\xi), \ldots, y_{k}^{\prime}(\xi), 0, \ldots, 0\right)^{\mathrm{t}}
\end{align*}
$$

From (3.19), (3.20), (3.21), and (3.22) we conclude, after a simple calculation, that

$$
\begin{align*}
{\left[\alpha_{22}^{\prime}(\xi)+\beta_{22}^{\prime}(\xi)\right]\left[\gamma_{22}^{\prime}(\xi)+\delta_{22}^{\prime}(\xi)\right]^{-1} } & =S_{2}(\xi) & & \text { a.e., } \tag{3.23}\\
\beta_{11}^{\prime}(\xi) \delta_{11}^{\prime-1}(\xi) & =S_{1}(\xi) & & \text { a.e. } \tag{3.24}\\
\alpha_{12}^{\prime}(\xi)+\beta_{12}^{\prime}(\xi) & =0 & & \text { a.e., } \tag{3.25}\\
S_{2}(\xi) \delta_{21}^{\prime}(\xi) \delta_{11}^{\prime-1}(\xi)-\beta_{21}^{\prime}(\xi) \delta_{11}^{\prime-1}(\xi) & =0 & & \text { a.e. }
\end{align*}
$$

where the last equality may be immediately rewritten as

$$
\begin{equation*}
\beta_{21}^{\prime}(\xi)=S_{2}(\xi) \delta_{21}^{\prime}(\xi) \quad \text { a.e. } \tag{3.26}
\end{equation*}
$$

The fact that $A^{\prime}(\xi)$ is j-unitary a.e. is equivalent to the following system for the blocks of $A^{\prime}(\xi)$,

$$
\begin{array}{ll}
\alpha^{\prime *}(\xi) \alpha^{\prime}(\xi)-\gamma^{\prime *}(\xi) \gamma^{\prime}(\xi)=I_{n} & \text { a.e., } \\
\delta^{\prime *}(\xi) \delta^{\prime}(\xi)-\beta^{\prime *}(\xi) \beta^{\prime}(\xi)=I_{n} & \text { a.e., } \\
\alpha^{\prime *}(\xi) \beta^{\prime}(\xi)-\gamma^{\prime *}(\xi) \delta^{\prime}(\xi)=0 & \text { a.e. }
\end{array}
$$

Let us develop these equations using the notation we introduce for the block of $A^{\prime}(\xi)$,

$$
\begin{array}{lcc}
\alpha_{11}^{\prime *}(\xi) \alpha_{11}^{\prime}(\xi)+\alpha_{21}^{*}(\xi) \alpha_{21}^{\prime}(\xi)-\gamma_{11}^{\prime *}(\xi) \gamma_{11}^{\prime}(\xi)-\gamma_{21}^{\prime *}(\xi) \gamma_{21}^{\prime}(\xi)=I_{k} & \text { a.e., } \\
\alpha_{22}^{*}(\xi) \alpha_{22}^{\prime}(\xi)+\alpha_{12}^{\prime *}(\xi) \alpha_{12}^{\prime}(\xi)-\gamma_{22}^{\prime *}(\xi) \gamma_{22}^{\prime}(\xi)-\gamma_{12}^{\prime *}(\xi) \gamma_{12}^{\prime}(\xi)=I_{n} k & \text { a.e., } \\
\alpha_{11}^{\prime *}(\xi) \alpha_{12}^{\prime}(\xi)+\alpha_{21}^{\prime *}(\xi) \alpha_{22}^{\prime}(\xi)-\gamma_{11}^{\prime *}(\xi) \gamma_{12}^{\prime}(\xi)-\gamma_{12}^{\prime *}(\xi) \gamma_{22}^{\prime}(\xi)=0 & \text { a.e.. } \\
& (3.28) \\
\delta_{11}^{*}(\xi) \delta_{11}^{\prime}(\xi)+\delta_{21}^{\prime *}(\xi) \delta_{21}^{\prime}(\xi)-\beta_{11}^{\prime *}(\xi) \beta_{11}^{\prime}(\xi)-\beta_{21}^{*}(\xi) \beta_{21}^{\prime}(\xi)=I_{k} & \text { a.e., } \\
\delta_{22}^{\prime *}(\xi) \delta_{22}^{\prime}(\xi)+\delta_{12}^{*}(\xi) \delta_{12}^{\prime}(\xi)-\beta_{22}^{*}(\xi) \beta_{22}^{\prime}(\xi)-\beta_{12}^{\prime *}(\xi) \beta_{12}^{\prime}(\xi)=I_{n-k} & \text { a.e., } \\
\delta_{11}^{*}(\xi) \delta_{12}^{\prime}(\xi)+\delta_{21}^{*}(\xi) \delta_{22}^{\prime}(\xi)-\beta_{11}^{\prime *}(\xi) \beta_{12}^{\prime}(\xi)-\beta_{21}^{\prime *}(\xi) \beta_{22}^{\prime}(\xi)=0 & \text { a.e., } \\
\alpha_{11}^{\prime *}(\xi) \beta_{11}^{\prime}(\xi)+\alpha_{21}^{\prime *}(\xi) \beta_{21}^{\prime}(\xi)-\gamma_{11}^{\prime *}(\xi) \delta_{11}^{\prime}(\xi)-\gamma_{21}^{\prime *}(\xi) \delta_{21}^{\prime}(\xi)=0 & \text { a.e., } \\
& \text { (3.29) } \tag{3.30}\\
\alpha_{12}^{\prime *}(\xi) \beta_{12}^{\prime}(\xi)+\alpha_{21}^{\prime *}(\xi) \beta_{22}^{\prime}(\xi)-\gamma_{11}^{\prime *}(\xi) \delta_{12}^{\prime}(\xi)-\gamma_{21}^{\prime *}(\xi) \delta_{22}^{\prime}(\xi)=0 & \text { a.e., } \\
\alpha_{12}^{\prime *}(\xi) \beta_{11}^{\prime}(\xi)+\alpha_{22}^{\prime *}(\xi) \beta_{21}^{\prime}(\xi)-\gamma_{12}^{\prime}(\xi) \delta_{11}^{\prime}(\xi)-\gamma_{22}^{\prime *}(\xi) \delta_{12}^{\prime}(\xi)=0 & \text { a.e., } \\
\alpha_{12}^{\prime *}(\xi) \beta_{12}^{\prime}(\xi)+\alpha_{22}^{\prime *}(\xi) \beta_{22}^{\prime}(\xi)-\gamma_{12}^{\prime *}(\xi) \delta_{12}^{\prime}(\xi)-\gamma_{11}^{\prime *}(\xi) \delta_{22}^{\prime}(\xi)=0 & \text { a.e. }
\end{array}
$$

From (3.28) and (3.30), we get

$$
\begin{equation*}
\gamma_{21}^{\prime}(\xi)=S_{2}^{*}(\xi) \alpha_{21}^{\prime}(\xi) \quad \text { a.e. } \tag{3.31}
\end{equation*}
$$

and replacing the above equation, together with (3.24) and (3.26), in (3.29) we find that

$$
\begin{equation*}
\gamma_{11}^{\prime}(\xi)=S_{1}^{*}(\xi) \alpha_{11}^{\prime}(\xi) \quad \text { a.e } \tag{3.32}
\end{equation*}
$$

Let us consider now the factorization problem

$$
I_{k}-S_{1}(\xi) S_{1}^{*}(\xi)=\psi(\xi) \psi^{*}(\xi) \quad \text { a.e. }
$$

From among the infinite set of solutions we uniquely define a function $\psi_{0}(\xi)$, which is the boundary value of a bounded and holomorphis matrixvalued function $\psi_{0}(z)(z \in D)$ satisfying the normalization conditions $\psi_{0}(0)>0$ and $\operatorname{det} \psi(z)$ is an outer function. Any solution of this problem is obtained by means of

$$
\psi(\xi)=\psi_{0}(\xi) V_{2}(\xi)
$$

where $V_{2}(\xi)$ is an isometric matrix-valued function [5]. Substituting (3.31) and (3.32) into (3.27) we obtain

$$
\begin{array}{ll}
\alpha_{11}^{\prime}(\xi)=\psi^{-1 *}(\xi) & \text { a.e. } \\
\gamma_{11}^{\prime}(\xi)=S_{1}^{*}(\xi) \psi^{-1 *}(\xi) & \text { a.e. }
\end{array}
$$

and recalling that the functions $\theta(\xi)$ and $\psi(\xi)$ may be expressed in terms of the solutions $\theta_{0}(\xi)$ and $\psi_{0}(\xi)$, i.e.,

$$
\begin{align*}
\theta(\xi) & =V_{1}(\xi) \theta_{0}(\xi) \tag{3.33}\\
\psi(\xi) & =\psi_{0}(\xi) V_{2}(\xi) \tag{3.34}
\end{align*}
$$

using (3.18) and (3.24) we arrive at the following results:

$$
\begin{aligned}
& \delta_{11}^{\prime}(\xi)=\theta_{0}^{-1}(\xi) V_{1}^{-1}(\xi) \\
& \beta_{11}^{\prime}(\xi)=S_{1}(\xi) \theta_{0}^{-1}(\xi) V_{1}^{-1}(\xi) \\
& \alpha_{11}^{\prime}(\xi)=\psi^{-1 *}(\xi) V_{2}(\xi) \\
& \gamma_{11}^{\prime}(\xi)=S_{1}^{*}(\xi) \psi^{*-1}(\xi) V_{2}(\xi)
\end{aligned}
$$

where $V_{1}(\xi)$ and $V_{2}(\xi)$ are unitary matrix-valued functions a.e. We know also from (3.16) that

$$
\gamma_{12}^{\prime}(\xi)=-\delta_{12}^{\prime}(\xi) \quad \text { a.e. }
$$

Finally, by virtue of the above results, we get the following expression for the matrix-valued function $A^{\prime}(\xi)$,

$$
A^{\prime}(\xi)=\left(\begin{array}{cccc}
\psi_{0}^{*-1}(\xi) V_{2}(\xi) & \alpha_{12}^{\prime}(\xi) & S_{1}(\xi) \theta_{0}^{-1}(\xi) V_{1}^{-1}(\xi) & -\alpha_{12}^{\prime}(\xi) \\
\alpha_{21}^{\prime}(\xi) & \alpha_{22}^{\prime}(\xi) & S_{2}(\xi) \delta_{21}^{\prime}(\xi) & \beta_{22}(\xi) \\
S_{1}^{*}(\xi) \psi_{0}^{*-1}(\xi) V_{2}(\xi) & \gamma_{12}^{\prime}(\xi) & \theta_{0}^{-1}(\xi) V_{1}^{-1}(\xi) & -\gamma_{12}^{\prime}(\xi) \\
S_{2}^{*}(\xi) \alpha_{21}^{\prime}(\xi) & \gamma_{22}^{\prime}(\xi) & \delta_{21}^{\prime}(\xi) & \delta_{22}^{\prime}(\xi)
\end{array}\right)
$$

and, recalling that $S(z) \in \mathscr{S} \pi$,

$$
A^{\prime}(z)=\left(\begin{array}{cccc}
\psi_{0}^{*-1}(1 / \bar{z}) V_{2}(z) & \alpha_{12}^{\prime}(z) & S_{1}(z) \theta_{0}^{-1}(z) V_{1}^{-1}(z) & -\alpha_{12}^{\prime}(z) \\
\alpha_{21}^{\prime}(z) & \alpha_{22}^{\prime}(z) & S_{2}(z) \delta_{21}^{\prime}(z) & \beta_{22}^{\prime}(z) \\
S_{1}^{*}(1 / \bar{z}) \psi_{0}^{*-1}(1 / \bar{z}) V_{2}(z) & \gamma_{12}^{\prime}(z) & \theta_{0}{ }^{\prime}(z) V_{1}^{\prime}(z) & -\gamma_{12}^{\prime}(z) \\
S_{2}^{*}(1 / \bar{z}) \alpha_{21}^{\prime}(z) & \gamma_{22}^{\prime}(z) & \delta_{21}^{\prime}(z) & \delta_{22}^{\prime}(z)
\end{array}\right)
$$

The relationships (3.8) and (3.9) allows us to conclude that the matrix of coefficients of any Darlington realization of a matrix-valued function $S(z)(\in \mathscr{P} \pi)$, may be written in the form

$$
\begin{equation*}
A(z)=\operatorname{diag}\left(U_{1}^{-1}(z), U_{2}^{-1}(z)\right) A^{\prime}(z) U_{b}^{-1}, \tag{3.36}
\end{equation*}
$$

where $A^{\prime}(z)$ is specified by (3.3) and U_{ε} by (3.5); and verify the hypothesis of the Basic Lemma [3]. The formula (3.36) is a solution to the problem of multiplicity of Darlington realizations. Varying $V_{1}(\xi)$ and $V_{2}(\xi)$ [3] we obtain all the possible realizations of $S(z)$.

To complete this development it is convenient to show that (3.36) contains, as a particular case, formula (4.14) obtained by Arov in [3]. When the condition $I-T(\xi)>0$ a.e. is satisfied, $\operatorname{dim} N_{S}=0$ and (3.35) is reduced to

$$
A^{\prime}(z)=\left(\begin{array}{cc}
\psi_{0}^{*-1}(1 / \bar{z}) & S_{1}(z) \theta_{0}^{1}(z) \\
S_{1}^{*}(1 / \bar{z}) \psi_{0}^{*}{ }^{1}(1 / \bar{z}) & \theta_{0}^{-1}(z)
\end{array}\right)\left(\begin{array}{cc}
V_{2}(z) & 0 \\
0 & V_{1}^{\prime}(z)
\end{array}\right)
$$

and, in addition, it holds that

$$
S(\xi)=U_{2}^{-1}(\xi) S_{1}(\xi) U_{1}(\xi) \quad \text { a.e. }
$$

The above relationship, together with

$$
\begin{aligned}
I_{n}-T(\xi) & =U_{1}^{-1}(\xi) \theta_{0}^{*}(\xi) \theta_{0}(\xi) U_{1}(\xi) \\
I_{n}-T^{\prime}(\xi) & =U_{2}^{-1} \psi_{0}(\xi) \psi_{0}^{*}(\xi) U_{2}(\xi)
\end{aligned}
$$

Introducing the notation

$$
\begin{aligned}
& P(\xi) \stackrel{\text { def }}{=} \theta_{0}(\xi) U_{1}(\xi) \\
& \Omega(\xi) \stackrel{\text { def }}{=} U_{2}^{-1}(\xi) \psi_{0}(\xi)
\end{aligned}
$$

we conclude that

$$
A(z)=\left(\begin{array}{cccc}
Q^{*-1}(1 / \bar{z}) & S(z) P^{-1}(z) & V_{2}(z) & 0 \\
S^{*}(1 / \bar{z}) \Omega^{*-1}(1 / \bar{z}) & P^{-1}(z) & 0 & V_{1}^{-1}(z)
\end{array}\right) U_{\varepsilon}^{-1}
$$

which coincides with formula (4.14) from [3] obtained by Arov as a description of the set of realizations of $S(z)$ when $I_{n}-T(\xi)>0$ a.e.

References

1. B. Sz.-Nagy and C. Folas, "Harmonic Analysis of Operators on Hilbert Spaces," NorthHolland, Amsterdam/New York; Akad. Kiadó, Budapest, 1970.
2. R. Nevalinna, "Eindeutige analitische funktionen," Springer-Verlag, Berlin/Gottingen/ Heidelberg, 1953.
3. D. Z. Arov, Darlington realization of matrix-valued functions, Izv. Akad. Nauk SSSR, Ser. Mat. 37 (6) (1973); English Translation, Math. USSR Izv. 7 (6) (1973), 1295-1326.
4. E. Cortina and C. D'Attellis, On the representation of a class of contractive matrixvalued functions, J. Math. Anal. Appl., in press.
5. D. Z. Arov, On unitary coupling with losses, Funktional Anal. i Prilozhen 8 (4) (1974), English Translation, Funct. Anal. Appl. 8 (1974), 280-294.
6. W. Cauer, "Synthesis of Linear Communications Networks," McGraw-Hill, New York, 1958.

[^0]: * Instituto Argentino de Matemática, Viamonte 1636. 2° "A", 1055 Buenos Aires, Argentina.

