A Diffusion Problem with a Measure as Initial Datum

NOEMÍ I. WOLANSKI

Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Beunos Aires (1428), Argentina

Submitted by G.-C. Rota

INTRODUCTION

In the present paper we study the equation

$$u_t = D_{rr}(\varphi(u))$$
 in the sense of distributions, (1)

where $\varphi : \mathbb{R} \to \mathbb{R}$ is a strictly increasing continuous function, set on a bounded interval with boundary conditions of mixed type and a measure, which needs not be nonnegative, as initial datum.

There is considerable literature about Eq. (1) set in \mathbb{R} or in bounded domains. The reason for this is that Eq. (1) is a model for many physical phenomena, for example, diffusion of a gas through a porous medium and heat conduction with or without interfaces (which corresponds to Eq. (1) with φ strictly increasing if there are not interfaces and monotone increasing in the other case). See, for example, [2, 4, 5, 6, 8, 9], and the references they contain.

Among all these papers, only [8] and [9] consider a measure as initial datum. However, Widder in [12] proved, for the linear equation, that for every nonnegative solution u in (t > 0) there is one and only one measure μ such that

$$\int u(x,t) g(x) dx \to \int g(x) d\mu(x) \qquad (t \to 0) \qquad \forall g \in C_0(\mathbb{R}).$$

These results have been generalized by Aronson (see [1]) to the *N*-dimensional case and a general linear parabolic equation. Pierre (see [9]) has obtained a similar result for nonnegative solutions of

$$u_t = \Delta \varphi(u).$$

This, and the fact that Eq. (1) with a measure as initial datum is also a model for physical phenomena (see [14]), motivate the present paper.

We prove a result similar to those of Widder and Pierre but without the restriction that the solution be nonnegative (Theorem 2). We prove existence and uniqueness of a strong solution, that is $u_t \in L^2_{Loc}(0, T; L^2(0, 1))$ (Theorem 1).

We also obtain two comparison theorems. One of them compares the solutions pointwise (Theorem 4) and the other one compares the distribution functions

$$v(x,t) = \int_0^x u(s,t) \, ds$$

(Theorem 3).

The fundamental idea is that the distribution function v(x, t) also satisfies a differential equation and that we can obtain the estimate

Total variation of
$$v(x, t)$$
 on $[0, 1] = V_0^1 v(x, t) \leq \int_0^1 d|\mu| \quad \forall t > 0.$

The existence of a strong solution seems to be new because the only works we know which deal with measures as initial datum ([8, 9]), prove the existence of weak solutions and only for nonnegative measures. As we deal with finite, arbitrary measures, the comparison Theorems 3 and 4 also seem to be new.

NOTATION

We will denote by u_t or $D_t u$ the partial derivative of the function u with respect to the variable t. Analogously for the other derivatives. And

$$V_0^1 v(x,t)$$

will denote the total variation of v(x, t), as a function of x, on the interval [0, 1].

The results stated above are a consequence of the following theorem proved in a previous paper (see [13]), which establishes

THEOREM 0. Let φ , $\psi : \mathbb{R} \to \mathbb{R}$ be strictly increasing continuous functions, such that $\psi^{-1} : \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous and φ satisfies

$$\exists c > 0$$
 such that $|\varphi(x)| \ge c |x|$ when $|x| \to \infty$.

Suppose $\varphi(0) = \psi(0) = 0$. Then for every $F \in L^1(0, 1)$ there exists one and only one function $v \in C([0, T]; L^1(0, 1))$ which satisfies

- (a) $v_t \in L^2_{\text{Loc}}(0, T; L^2(0, 1));$
- (b) $\psi(v) \in H^1(0, 1)$ in x a.e. t and $\psi(v)(0, t) = 0$ a.e. t;

(c) $\varphi(D_x(\psi(v))) \in H^1(0, 1)$ in x a.e. t and $\varphi(D_x(\psi(v)))(1, t) = 0$ a.e. t (in particular $\varphi(D_x(\psi(v))) \in C([0, 1])$ in x a.e. t and therefore $D_x(\psi(v)) \in C([0, 1])$ in x a.e. t and $D_x(\psi(v))(1, t) = 0$ a.e. t);

- (d) $\lim_{t\to 0} \int_0^1 |v(x,t) F(x)| \, dx = 0;$
- (e) $v_t = D_x(\varphi(D_x(\psi(v))))$ a.e. $(x, t) \in (0, 1) \times (0, T)$.

We will make use of Theorem 0 only when $\psi = \text{identity}$ and $F \in L^{\infty} \subset L^2$. In this case, Theorem 0 is a consequence of the theory of subdifferentials in L^2 (see [16]).

We prove the following theorem.

THEOREM 1. Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a strictly increasing continuous function such that $\varphi^{-1} : \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous, $\varphi(0) = 0$.

Let μ be a finite Borel measure on [0, 1). Then there exists one and only one function $u \in L^{\infty}(0, T; L^{1}(0, 1))$ which satisfies

- (a) $u_t \in L^2_{Loc}(0, T; L^2(0, 1));$
- (b) $\varphi(u) \in C^1([0, 1])$ in x a.e. t and $D_x(\varphi(u))(0, t) = 0$ a.e. t;
- (c) u(1, t) = 0 a.e. t; (1.1)
- (d) $u_t = D_{xx}(\varphi(u)) a.e. (x, t) \in (0, 1) \times (0, T);$
- (e) $\lim_{t \to 0} \int_0^x u(s, t) \, ds = \mu([0, x)) \text{ for every } x \in (0, 1)$ such that $\mu(\{x\}) = 0.$

Proof. (1) *Existence.* Let v(x, t) be the solution of the problem

(a)
$$v_t = D_x(\varphi(v_x))$$
 a.e. (x, t) ;
(b) $v(0, t) = 0$ a.e. t ;
(c) $v_x(1, t) = 0$ a.e. t ; (1.2)

(d)
$$\lim_{t\to 0} \int_0^t |v(x,t) - F(x)| \, dx = 0,$$

where F(x) is the distribution function of the measure μ (that is, $F(x) = \mu([0, x))$). We know that F(0) = 0, F is left-continuous and of bounded variation; this implies that $F \in L^{\infty} \subset L^1$ and therefore there is one and only one solution of (1.2) given by Theorem 0.

Let $u(x, t) = v_x(x, t)$. By (1.2c), we have u(1, t) = 0 a.e. t, therefore u

satisfies (1.1c). Let us see that u satisfies (1.1a). As φ^{-1} is a strictly increasing Lipschitz continuous function,

$$\begin{split} \int_{t_0}^{t_1} \int_0^1 \left| \frac{v_x(x,t+h) - v_x(x,t)}{h} \right|^2 dx \, dt \\ &\leqslant c \int_{t_0}^{t_1} \int_0^1 \left(\frac{v_x(x,t+h) - v_x(x,t)}{h} \right) \\ &\times \left(\frac{\varphi(v_x(x,t+h)) - \varphi(v_x(x,t))}{h} \right) dx \, dt \\ &= -c \int_{t_0}^{t_1} \int_0^1 \left(\frac{v(x,t+h) - v(x,t)}{h} \right) \\ &\times \left(\frac{D_x(\varphi(v_x(x,t+h))) - D_x(\varphi(v_x(x,t))))}{h} \right) dx \, dt \\ &= -c \int_{t_0}^{t_1} \int_a^1 \left(\frac{v(x,t+h) - v(x,t)}{h} \right) \left(\frac{v_t(x,t+h) - v_t(x,t)}{h} \right) dx \, dt \\ &= -c \int_{t_0}^{t_1} \int_0^1 \frac{1}{2} D_t \left(\left(\frac{v(x,t+h) - v(x,t)}{h} \right)^2 \right) dx \, dt \\ &= \frac{c}{2} \int_0^1 \frac{v(x,t_0 + h) - v(x,t_0)}{h} dx - \frac{c}{2} \int_0^1 \frac{v(x,t_1 + h) - v(x,t_1)}{h} dx. \end{split}$$

The last member is bounded for almost every $t_0, t_1 \in (0, T]$ and $|h| < \delta(t_b, t_1)$ because $v_t \in L^2_{Loc}(0, T; L^2(0, 1))$. Therefore, for almost every $t_0, t_1 \in (0, T]$,

$$\int_{t_0}^{t_1}\int_0^1 \left|\frac{v_x(x,t+h)-v_x(x,t)}{h}\right|^2 dx dt \leq c \quad \text{if} \quad |h| < \delta(t_0,t_1),$$

and we deduce $v_{x_i} \in L^2_{\text{Loc}}(0, T; L^2(0, 1))$, that is, $u_i \in L^1_{\text{loc}}(0, T; L^2(0, 1))$.

Let us prove that u satisfies (1.1b). As $D_x(\varphi(u)) = v_t$, we want to see that

$$\lim_{x \to 0} v_t(x, t) = 0 \text{ a.e. } t.$$

We will prove that

$$\lim_{(x,h)\to(0,b)}\frac{v(x,t+h)-v(x,t)}{h}=0 \text{ a.e. } t,$$

which implies (1.1b).

In fact, as v(0, t) = 0 a.e. t,

$$\frac{v(x,t+h) - v(x,t)}{h} = \int_0^x \frac{v_x(s,t+h) - v_x(s,t)}{h} \, ds.$$

We know that $v_{xt} \in L^2_{Loc}(0, T; L^2(0, 1))$, and therefore

$$\frac{v_x(s,t+h) - v_x(s,t)}{h} \to v_{xt}(s,t) \qquad (h \to 0) \text{ in } L^2(0,1) \text{ a.e. } t \in (0,T).$$

Therefore, there exists $\delta_1(t)$ a.e. t, such that

$$\int_0^1 \left| \frac{v_x(s,t+h) - v_x(s,t)}{h} \right|^2 ds \leqslant c \quad \text{if} \quad |h| < \delta_1(t)$$

Then we have

$$\left|\frac{v(x,t+h)-v(x,t)}{h}\right| \leqslant x^{1/2}c^{1/2} < \varepsilon \quad \text{if} \quad |h| < \delta_1(t), \quad |x| < \frac{\varepsilon^2}{c}.$$

We have that u satisfies (1.1a, b, c, d), because

$$u_t = v_{xt} = v_{tx} = D_{xx}(\varphi(v_x)) = D_{xx}(\varphi(u)).$$

This implies that $D_x(\varphi(u)) \in C([0, 1])$ in x a.e. t, which was stated in (1.1b).

We only have to prove that $u \in L^{\infty}(0, T; L^{1}(0, 1))$ and satisfies (1.1e). Eq. (1.1e) states that $v(x, t) \to F(x)$ if F is continuous at x. We will prove that $V_0^1 v(x, t) \leq V_0^1 F(x)$ for every $t \in (0, T]$. This, and the fact that $v(x, t) \to F(x)$ in $L^{1}(0, 1)$ imply (1.1e).

As $u(x, t) \in L^{1}(0, 1)$ for every $t \in (0, T]$,

$$\int_0^1 |u(x,t)| \, dx = V_0^1 v(x,t) \leqslant V_0^1 F(x) = \int_0^1 d |\mu|$$

and we have $u \in L^{\infty}(0, T; L^{1}(0, 1))$.

Thus, to conclude the proof we only have to see that $V_0^1 v(x, t) \leq V_0^1 F(x)$. This is a version of the saw theorem in [10] for solutions which are not continuous up to the boundary, and is based on the comparison theorem in [3].

Let us first remark that as $v_{xt} \in L^2_{Loc}(0, T; L^2(0, 1))$, we have

- (i) $v_t \in L^2_{Loc}(0, T) \ \forall x \in (0, 1);$
- (ii) $v_x \in L^{\infty}_{\text{Loc}}(0, T; L^2(0, 1));$

and therefore, v(x, t) is continuous in $(0, 1) \times (0, T)$. In fact,

$$|v(x+h,t+\delta)-v(x,t)| \leq \int_x^{x+h} |v_x(s,t+\delta)| \, ds + \int_t^{t+\delta} |v_t(x,\tau)| \, d\tau \leq c(h^{1/2}+\delta^{1/2}).$$

Let $0 = x_0 < x_1 < \cdots < x_k = 1$ be such that $d_i = v(x_i, t_0) - v(x_{i-1}, t_0)$ is always different from 0 and alternating in sign. Let $0 < 2a < d_i$ for every *i*. Then there exist k + 1 points $0 = x_0^0 < x_1^0 < \cdots < x_k^0 \leq 1$ such that

$$sign(F(x_i^0) - F(x_{i-1}^0)) = sign d_i,$$

$$|d_i| \leq |F(x_i^0) - F(x_{i-1}^0)| + 2a,$$

$$i = 1,...,k.$$

From this fact we deduce that

$$\sum_{i=1}^{k} |v(x_i, t_0) - v(x_{i-1}, t_0)| \leq V_0^1 F(x) + 2ak$$

As $0 < a < \frac{1}{2} |d_i|$ is arbitrarily small, we obtain

$$V_0^1 v(x, t_0) \leqslant V_0^1 F(x).$$

Let then $0 = x_0 < x_1 < \cdots < x_k = 1$ as above. We define $x_0^0 = 0$. Let $i \ge 1$ and

$$A_i = \{(x, t) \in (0, 1) \times (0, t_0) / v(x, t) > v(x_i, t_0) - a\}$$

if (x_i, t_0) is a high point (HP),

that is,

$$v(x_i, t_0) > \begin{cases} v(x_{i-1}, t_0) \\ v(x_{i+1}, t_0) \end{cases}$$
$$A_i = \{ (x, t) \in (0, 1) \times (0, t_0) / v(x, t) < v(x_i, t_0) + a \}$$
if (x_i, t_0) is a low point (LP).

Then A_i is an open set. Let H_i be the component of A_i for which $(x_i, t_0) \in \overline{H_i}$. We have $H_i \cap H_{i+1} = \emptyset$, i = 1, ..., k-1.

We see that meas $\{x \in (0, 1)/(x, 0) \in \partial H_1\} > 0$, where ∂H_1 is the boundary of the set H_1 . In fact, suppose it doesn't occur, then v(x, t) is the solution in H_1 of the following problem:

- (a) $v_t = D_x(\varphi(v_x))$ a.e. in H_1 ,
- (b) if $(\tilde{x}, \tilde{t}) \in \partial_p H_1$, $0 < \tilde{x} < 1, \tilde{t} > \tilde{t}$

(i)
$$\lim_{x \to \tilde{x}} \chi_{H_1}(x, \tilde{t}) v(x, \tilde{t}) = v(x_1, t_0) - a$$

or
(ii)
$$\lim_{t \to \tilde{t}} \chi_{H_1}(\tilde{x}, t) v(\tilde{x}, t) = v(x_1, t_0) - a,$$

(1.3)
(c) if $(0, t) \in \partial_p H_1$,
$$\lim_{x \to 0} \chi_{H_1}(x, t) v(x, t) = 0,$$

(d) if $(1, t) \in \partial_p H_1$,
$$\lim_{x \to 1} \chi_{H_1}(x, t) v_x(x, t) = 0,$$

(e)
$$\lim_{t \to \tilde{t}} \int_0^1 \chi_{H_1}(x, t) |v(x, t) - (v(x_1, t_0) - a)| \, dx = 0,$$

when (x_1, t_0) is HP and $[\tilde{t}, t_0]$ is the projection of H_1 on the interval [0, T]. We have denoted by $\partial_p H_1$ the subset of ∂H_1 , $(\tilde{x}, \tilde{t}) \in \partial_p H_1$ if there exists $\varepsilon > 0$ such that

(i)
$$(\tilde{x} - \varepsilon, \tilde{x}) \times {\tilde{t}} \subset H_1$$
 or $(\tilde{x}, \tilde{x} + \varepsilon) \times {\tilde{t}} \subset H_1$

or

(ii)
$$\{\tilde{x}\} \times (\tilde{t}, \tilde{t} + \varepsilon) \subset H_1,$$

which corresponds to conditions (b.i) and (b.ii), respectively.

We remark that it may happen that i = 0; in this case (1.3e) becomes true because $\chi_{H_1}(x, t) \to 0$ a.e. x as $t \to 0$.

When (x_1, t_0) is LP, v(x, t) is the solution of the problem (1.3a, c, d), and

(b') if
$$(\tilde{x}, \tilde{t}) \in \partial_p H_1$$
, $0 < \tilde{x} < 1, \tilde{t} > \tilde{t}$
(i) $\lim_{x \to \tilde{x}} \chi_{H_1}(x, \tilde{t}) v(x, \tilde{t}) = v(x_1, t_0) + a$
or
(ii) $\lim_{x \to \tilde{x}} (\tilde{x}, t) v(\tilde{x}, \tilde{t}) = v(x_1, t_0) + a$

(ii)
$$\lim_{t \to \bar{t}} \chi_{H_1}(\bar{x}, t) v(\bar{x}, t) = v(x_1, t_0) + a,$$

(e')
$$\lim_{t \to \bar{t}} \int_0^1 \chi_{H_1}(x, t) |v(x, t) - (v(x_1, t_0) + a)| dx = 0.$$

We make use of the comparison theorem of [3], which applies on every measurable set H_1 . We conclude that

if (x_1, t_0) is HP then

$$v(x, t) \leq \max\{0, v(x_1, t_0) - a\} \text{ in } H_1,$$
 (1)

if (x_1, t_0) is LP then

$$v(x, t) \ge \min\{0, v(x_1, t_0) + a\} \text{ in } H_1.$$
 (2)

As v(0, t) = 0,

$$(x_1, t_0)$$
 HP implies $v(x_1, t_0) > 2a$, and therefore
 $v(x_1, t_0) - a > 0$,
 (x_1, t_0) LP implies $v(x_1, t_0) < -2a$, and therefore
 $v(x_1, t_0) + a < 0$.

Then (1) and (2) become

if
$$(x_1, t_0)$$
 is HP then $v(x, t) \leq v(x_1, t_0) - a$ in H_t , (1)

if
$$(x_1, t_0)$$
 is LP then $v(x, t) \ge v(x_1, t_0) + a \text{ in } H_1$, (2)

which is absurd. Therefore, meas $\{x \in (0, 1)/(x, 0) \in \partial H_1\} > 0$.

As $H_1 \cap H_2 = \emptyset$, there are no points of the form (0, t) on the boundary of H_2 . In fact, suppose $(0, t) \in \partial H_2$. Let $\bar{x} \in (0, 1)$ be such that $(\bar{x}, 0) \in \partial H_1$ and let C_1 be a Jordan curve connecting (x_1, t_0) and $(\bar{x}, 0)$, which is contained in H_1 . C_1 divides the rectangle $(0, 1) \times (0, t_0)$ into two regions. There also exists a Jordan curve C_2 connecting (0, t) and (x_2, t_0) in H_2 and therefore it must be $C_1 \cap C_2 \neq \emptyset$, absurd.

We will prove that meas $\{x \in (0, 1)/(x, 0) \in \partial H_2\} > 0$, and therefore inductively deduce that $(0, t) \notin \partial H_i$ i = 2,..., k, and meas $\{x \in (0, 1)/(x, 0) \in \partial H_i\} > 0$, i = 2,..., k.

In fact, suppose meas $\{x \in (0, 1)/(x, 0) \in \partial H_2\} = 0$; then v(x, t) is the solution in H_2 of the following problem:

(a)
$$v_t = D_x(\varphi(v_x))$$
 a.e. in H_2 ,

(b) if
$$(\tilde{x}, \tilde{t}) \in \partial_{\rho} H_2$$
, $\tilde{x} < 1$, $\tilde{t} > \tilde{t}$ (we know that $\tilde{x} > 0$)

(i)
$$\lim_{x \to \tilde{x}} \chi_{H_2}(x, \tilde{t}) v(x, \tilde{t}) = \begin{cases} v(x_2, t_0) - a & (\text{HP}) \\ v(x_2, t_0) + a & (\text{LP}) \end{cases}$$

or

(ii)
$$\lim_{t \to \tilde{t}} \chi_{H_2}(\tilde{x}, t) v(\tilde{x}, t) = \begin{cases} v(x_2, t_0) - a & (\text{HP}) \\ v(x_2, t_0) + a & (\text{LP}) \end{cases}$$

(c) if
$$(1, t) \in \partial_p H_2$$
, $\lim_{x \to 1} \chi_{H_2}(x, t) v_x(x, t) = 0$,

(d)
$$\lim_{t \to \bar{t}} \int_0^1 \chi_{H_2}(x, t) \left| v(x, t) - \begin{bmatrix} v(x_2, t_0) - a & (HP) \\ v(x_2, t_0) + a & (LP) \end{bmatrix} \right| dx = 0.$$

We deduce that

$$v(x,t) \leq v(x_2,t_0) - a \text{ in } H_2 \qquad (\text{HP}),$$

$$v(x,t) \geq v(x_2,t_0) + a \text{ in } H_2 \qquad (\text{LP}),$$

which is absurd.

We will prove that

meas
$$\left|x \in (0, 1)/(x, 0) \in \partial H_i \text{ and } F(x) \left[\begin{array}{cc} > v(x_i, t_0) - a & (\mathrm{HP}) \\ < v(x_i, t_0) + a & (\mathrm{LP}) \end{array}\right] > 0.$$

In fact, v(x, t) is the solution in H_i , i = 1,...,k; of the following problem:

(a)
$$v_i = D_x(\varphi(v_x))$$
 a.e. in H_i ,
(b) if $(\tilde{x}, \tilde{t}) \in \partial_p H_i$, $0 < \tilde{x} < 1, \tilde{t} > \tilde{t} = 0$
(i) $\lim_{x \to \tilde{x}} \chi_{H_i}(x, \tilde{t}) v(x, \tilde{t}) = \begin{cases} v(x_i, t_0) - a & (\text{HP}) \\ v(x_i, t_0) + a & (\text{LP}) \end{cases}$
or

(ii)
$$\lim_{t \to \tilde{t}} \chi_{H_i}(\tilde{x}, t) v(\tilde{x}, t) = \begin{cases} v(x_i, t_0) - a & (\text{HP}) \\ v(x_i, t_0) + a & (\text{LP}) \end{cases}$$

(c) if
$$(1, t) \in \partial_p H_i$$
, $\lim_{x \to 1} \chi_{H_i}(x, t) v_x(x, t) = 0$,

(d)
$$\lim_{t\to 0} \int_0^1 \chi_{H_i}(x,t) |v(x,t) - F(x)| dx = 0.$$

When i = 2,..., k, $(0, t) \notin \partial_p H_i$. When i = 1, v(x, t) satisfies

(e) if $(0, t) \in \partial_p H_1$, $\lim_{x \to 0} \chi_{H_1}(x, t) v(x, t) = 0$.

Therefore, suppose

$$F(x) = \begin{cases} \leqslant v(x_i, t_0) - a & (\text{HP}) \\ \geqslant v(x_i, t_0) + a & (\text{LP}) \end{cases}$$

a.e. in $\{x \in (0, 1)/(x, 0) \in \partial H_i\}$, we may one more time apply the comparison theorem of [3] to conclude that

when
$$i = 2,..., k$$
,
 $v(x, t) \begin{cases} \leqslant v(x_i, t_0) - a & (\text{HP}) & \text{a.e. in } H_i \\ \geqslant v(x_i, t_0) + a & (\text{LP}) & \text{a.e. in } H_i \end{cases}$ absurd;

when i = 1, v(x, t) $\begin{cases} \leq \max\{0, v(x_1, t_0) - a\} & (\text{HP}) & \text{a.e. in } H_1 \\ \geqslant \min\{0, v(x_1, t_0) + a\} & (\text{LP}) & \text{a.e. in } H_1 \end{cases}$ absurd.

Let therefore $x_i^0 \in (0, 1)$ be such that $(x_i^0, 0) \in \partial H_i$ and

$$F(x_i^0) \begin{cases} > v(x_i, t_0) - a & (\text{HP}) \\ < v(x_i, t_0) + a & (\text{LP}) \end{cases}$$

Then we have

(1) if
$$(x_i, t_0)$$
 is (HP), then $F(x_i^0) > \begin{cases} F(x_{i-1}^0) \\ F(x_{i+1}^0) \end{cases}$

In fact,

$$F(x_i^0) > v(x_i, t_0) - a > \begin{cases} v(x_{i-1}, t_0) + 2a - a \\ v(x_{i+1}, t_0) + 2a - a \end{cases}$$
$$= \begin{cases} v(x_{i-1}, t_0) + a > F(x_{i-1}^0) \\ v(x_{i+1}, t_0) + a > F(x_{i+1}^0) \end{cases},$$

(2)
$$|F(x_i^0) - F(x_{i-1}^0)| \ge |v(x_i, t_0) - v(x_{i-1}, t_0)| - 2a;$$

in fact, suppose (x_i, t_0) HP,

$$|F(x_i^0) - F(x_{i-1}^0)| = F(x_i^0) - F(x_{i-1}^0)$$
$$F(x_i^0) > v(x_i, t_0) - a$$
$$F(x_{i-1}^0) < v(x_{i-1}, t_0) + a$$

therefore,

$$F(x_i^0) - F(x_{i-1}^0) > v(x_i, t_0) - v(x_{i-1}, t_0) - 2a$$

= $|v(x_i, t_0) - v(x_{i-1}, t_0)| - 2a.$

It only remains to see that $0 = x_0^0 < x_1^0 < \cdots < x_k^0 \le 1$. We will prove it inductively.

 $x_0^0 = 0$ by definition, $x_1^0 > 0$ because we can choose it in such a way since the set from where we choose it is of positive measure. Let us see that $x_2^0 > x_1^0$. In fact, $x_2 > x_1$ and $(x_2^0, 0) \in \partial H_2$, we deduce that $x_2^0 > x_1^0$ in the same way as we have proved that $(0, t) \notin \partial H_2$.

In the same way it can be proved that $x_{i+1}^0 > x_i^0$, i = 2,..., k - 1. The proof is finished.

374

(2) Uniqueness. Suppose there exist two functions u_1 and u_2 in $L^{\infty}(0, T; L^1(0, 1))$ which satisfy (1.1a, b, c, d, e). As $D_t u_i \in L^2_{Loc}(0, T; L^2(0, 1))$, i = 1, 2, it is easy to see that both functions

$$v_i(x,t) = \int_0^x u_i(s,t) \, ds$$

satisfy (1.2a, b, c). We know that

$$\lim_{t \to 0} v_i(x, t) = \lim_{t \to 0} \int_0^x u_i(s, t) \, ds = \mu([0, x)) = F(x)$$

if F is continuous at $x \in (0, 1)$. As $u_i \in L^{\infty}(0, T; L^1(0, 1))$, $v_i \in L^{\infty}((0, 1) \times (0, T))$ and therefore

$$\lim_{t \to 0} v_i(x, t) = F(x) \text{ in } L^1(0, 1),$$

That is v_i satisfies (1.2d) for i = 1, 2. By Theorem 0 we know that (1.2) has a unique solution, therefore $v_1(x, t) = v_2(x, t)$ a.e. $(x, t) \in (0, 1) \times (0, T)$, and we deduce

$$u_1(x,t) = D_x v_1(x,t) = D_x v_2(x,t) = u_2(x,t)$$
 a.e.

The proof is finished.

COROLLARY. Let $\varphi : \mathbb{R} \to \mathbb{R}$ satisfy the hypothesis of Theorem 1. Let μ be a finite Borel measure on [0, 1). Then there exists one and only one function u(x, t) that satisfies,

(a) $u_t \in L^2_{Loc}(0, T; L^2(0, 1)),$

(b)
$$\varphi(u) \in C^1([0, 1])$$
 in x, a.e. t and $D_x(\varphi(u))(0, t) = 0$ a.e. t,

(c)
$$u(1, t) = 0$$
 a.e. t ,

(d)
$$u_t = D_{xx}(\varphi(u)) a.e. (x, t) \in (0, 1) \times (0, T),$$
 (1.4)

(e)
$$u(x, t) \rightarrow \mu(t \rightarrow 0)$$
, that is,

$$\int_0^1 u(x, t) g(x) dx \rightarrow \int_0^1 g(x) d\mu(x), \quad \text{for every} \quad g \in C([0, 1]).$$

Proof. (1) *Existence.* Let u(x, t) be the solution of (1.1) obtained in Theorem 1. We know that if

$$v(x,t) = \int_0^x u(s,t) \, ds$$

then, if $F(x) = \mu([0, x))$,

$$\mathcal{V}_0^1 v(x, t) \leqslant \mathcal{V}_0^1 F(x)$$
 for every $t > 0$
and $v(x, t) \to F(x)$ if F is continuous at x.

We will prove that $v(1, t) \rightarrow F(1)$ and then applying Helly's first theorem we will deduce that $u(x, t) \rightarrow \mu(t \rightarrow 0)$, and this will finish the proof of the existence.

We prove the following lemma and then we continue with the proof of uniqueness.

LEMMA. Let F_n , F be functions of bounded variation such that $F_n(0) = F(0) = 0$ and $V_0^1 F_n \leq V_0^1 F$ for every $n \in \mathbb{N}$. Suppose that F is left-continuous and $F_n(x) \to F(x)$ if F is continuous at $x \in (0, 1)$. Then $F_n(1) \to F(1)$.

Proof of the Lemma. Let $\varepsilon > 0$; there exist points of continuity of F, $0 < x_1 < \cdots < x_N < 1$ such that

$$\sum_{i=1}^{N} |F(x_i) - F(x_{i-1})| > V_0^1 F - \varepsilon$$

and x_N can be chosen arbitrarily close to 1.

This election may be done in the following way. One can choose N points of continuity of F, $x_1,...,x_N$ such that if we put $x_0 = 0$,

$$\sum_{i=1}^{N} |F(x_i) - F(x_{i-1})| + |F(1) - F(x_N)| > V_0^1 F - \varepsilon/2.$$

As F is left-continuous at x = 1, we have $|F(x) - F(1)| < \varepsilon/2$ if $1 - \delta < x < 1$ for some $\delta > 0$. We choose the point x_N of the partition on the interval $(1 - \delta, 1)$, and we have what we wanted.

As $F_n(x_i) \rightarrow F(x_i)$ for i = 0, ..., N, we have

$$\sum_{i=1}^{N} |F_n(x_i) - F_n(x_{i-1})| > V_0^1 F - 2\varepsilon \qquad \text{if} \quad n \ge n_0(\varepsilon).$$

And on the other hand, as $V_0^1 F_n \leq V_0^1 F$ for every *n*,

$$|F_n(1) - F_n(x_N)| + \sum_{i=1}^N |F_n(x_i) - F_n(x_{i-1})| \leq V_0^1 F.$$

376

Therefore,

$$|F_n(1) - F_n(x_N)| + V_0^1 F - 2\varepsilon < |F_n(1) - F_n(x_N)| + \sum_{i=1}^N |F_n(x_i) - F_n(x_{i-1})| \le V_0^1 F \quad \text{if} \quad n \ge n_0(\varepsilon).$$

Then,

$$|F_n(1) - F_n(x_N)| \leq 2\varepsilon \qquad \text{if} \quad n \geq n_0(\varepsilon)$$

As $F_n(x_N) \to F(x_N) \ (n \to \infty)$

$$\begin{aligned} |(\limsup F_n(1)) - F(x_N)| &\leq 2\varepsilon, \\ |(\limsup F_n(1)) - F(x_N)| &\leq 2\varepsilon. \end{aligned}$$

As $x_N \in (1 - \delta, 1)$ can be chosen arbitrarily close to 1, and $F(x) \to F(1)$ when $x \swarrow 1$,

$$\begin{aligned} |(\limsup F_n(1)) - F(1)| &\leq 2\varepsilon, \\ |(\liminf F_n(1)) - F(1)| &\leq 2\varepsilon. \end{aligned}$$

As ε is arbitrary

$$\lim_{n\to\infty} F_n(1) = F(1).$$

The proof is finished.

We continue with the proof of the corollary.

(2) Uniqueness. Let u_1 and u_2 be two solutions of (1.4). As $u_i(x, t) \rightarrow \mu(t \rightarrow 0)$, there exist $\delta > 0$ and c > 0 such that $V_0^1 v_i(x, t) \leq c$ if $0 < t < \delta$, where

$$v_i(x,t) = \int_0^x u_i(s,t) \, ds.$$

Therefore $\int_0^1 |u_i(x, t)| dx = V_0^1 v_i(x, t) \leq c$ if $0 < t < \delta$.

Let us see that $\int_0^1 |u_i(x, t)| dx \leq \int_0^1 |u_i(x, t_0)| dx$ if $t > t_0$.

In fact, let S(t) be the semigroup associated to the *m*-accretive operator $-D_{xx}(\varphi(u))$ with the corresponding boundary conditions (see [13]). We prove that

$$u_i(x, t) = S(t - t_0) u_i(x, t_0)$$
 if $t > t_0$,

and this implies what we have stated above.

Therefore $u_i \in L^{\infty}(0, T; L^1(0, 1))$. As $u_i(x, t) \rightarrow \mu$ $(t \rightarrow 0)$,

$$\int_{0}^{x} u_{i}(s, t) \, ds \to \mu([0, x)) \qquad \text{if} \quad \mu(\{x\}) = 0.$$

Therefore, by Theorem 1, $u_1(x, t) = u_2(x, t)$ a.e. $(x, t) \in (0, 1) \times (0, T)$.

Let us prove that if u is solution of (1.4), then

$$u(x, t) = S(t - t_0) u(x, t_0)$$
 for $t > t_0 > 0$.

In fact, as $u_t \in L^1_{Loc}(0, T; L^1(0, 1))$,

$$u(x, t) - u(x, t_0) = \int_{t_0}^t u_t(x, z) dz$$
 a.e. $x \in (0, 1)$,

therefore

$$\int_0^1 |u(x,t) - u(x,t_0)| \, dx \leq \int_0^1 \int_{t_0}^t |u_t(x,z)| \, dz \, dx$$

and we deduce

$$\lim_{t \to t_0} \int_0^1 |u(x, t) - u(x, t_0)| \, dx = 0.$$

Then u(x, t) is a solution in $(0, 1) \times (t_0, T)$ of

$$u_t = D_{xx}(\varphi(u)),$$
$$\lim_{x \to 0} D_x(\varphi(u))(x, t) = 0 \text{ a.e. } t,$$
$$u(1, t) = 0,$$
$$\lim_{t \to t_0} \int_0^1 |u(x, t) - u(x, t_0)| dx = 0.$$

By uniqueness we deduce that $u(x, t) = S(t - t_0) u(x, t_0)$ (see [13]). The proof is finished.

We prove now a theorem which states the existence of a weak limit (in the sense of measures) for every solution of the equation with the corresponding boundary conditions in $(0, 1) \times (0, T)$.

THEOREM 2. Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a strictly increasing continuous function such that $\varphi(0) = 0$ and there exists a constant c > 0 with $|\varphi(p)| \ge c |p|$ for $|p| \to \infty$. Let $u(x, t) \in L^{\infty}(0, T; L^{1}(0, 1))$ be a solution of

378

- (a) $u_t \in L^1_{\text{Loc}}(0, T; L^1(0, 1)),$
- (b) $\varphi(u) \in C^1([0, 1])$ in x, a.e. t and $D_x(\varphi(u))(0, t) = 0$ a.e. t,
- (c) u(1, t) = 0 a.e. t,
- (d) $u_t = D_{xx}(\varphi(u)) a.e.(x,t) \in (0,1) \times (0,T).$ (2.1)

Then, there exists one and only one finite Borel measure μ such that

$$u(x, t) \rightarrow \mu(t \rightarrow 0).$$

If $u \ge 0$, then $\mu \ge 0$. If $u \le 0$, then $\mu \le 0$.

Proof. As $u \in L^{\infty}(0, T; L^{1}(0, 1))$, there exist a sequence (t_n) with $t_n \to 0$ and a finite Borel measure μ such that

$$u(x, t_n) \rightarrow \mu(n \rightarrow \infty).$$

We will prove that $u(x, t) \rightarrow \mu$ $(t \rightarrow 0)$.

Let F be the distribution function of μ and let $v(x, t) = \int_0^x u(s, t) ds$. Then, we have $v(x, t_n) \to F(x)$ if F is continuous at $x \in (0, 1)$.

Let us observe that if $u \ge 0$ then v is nondecreasing and therefore F is nondecreasing. This implies that $\mu \ge 0$. Analogously if $u \le 0$, then $\mu \le 0$.

It can be easy proved that $v_t \in L^1_{Loc}(0, T; L^1(0, 1))$ and v(x, t) is a solution of

$$v_t = D_x(\varphi(v_x)) \text{ a.e.},$$

$$v(0, t) = 0 \text{ a.e. } t,$$

$$v_x(1, t) = 0 \text{ a.e. } t,$$

$$v(x, t_n) \to F(x) \text{ a.e.} \qquad (n \to \infty).$$

As $v \in L^{\infty}((0, 1) \times (0, T))$ we have $v(x, t_n) \to F(x)$ in $L^1(0, 1)$. We prove that $v(x, t) \to F(x)$ in $L^1(0, 1)$ $(t \to 0)$. In fact, let w(x, t) be the solution of the problem

$$w_t = D_x(\varphi(w_x)) \text{ a.e.},$$

$$w(0, t) = 0 \text{ a.e. } t,$$

$$w_x(1, t) = 0 \text{ a.e. } t,$$

$$w(x, t) \to F(x) \text{ in } L^1(0, 1) \quad (t \to 0).$$

with $w_t \in L^2_{Loc}(0, T; L^2(0, 1))$, given by Theorem 0. Then v and w are two

solutions of the problem: differential equation + boundary conditions + the following initial condition

$$w(x, t_n) \rightarrow F(x)$$
 in $L^1(0, 1)$ $(n \rightarrow \infty)$

with $t_n \to 0$ and w_t , $v_t \in L^1_{Loc}(0, T; L^1(0, 1))$.

By the uniqueness of the solution of this problem (see the proof of the comparison theorem in [3]), we get

$$v(x, t) = w(x, t)$$
 a.e.

and therefore $v(x, t) \rightarrow F(x)$ in $L^{1}(0, 1)$ $(t \rightarrow 0)$.

As was proved in Theorem 1, $V_0^1 v(x, t) \leq V_0^1 F$ for every t > 0 and $v(x, t) \rightarrow F(x)$ $(t \rightarrow 0)$ if F is continuous at x.

Again as in the proof of the Corollary we deduce that $v(1, t) \rightarrow F(1)$ $(t \rightarrow 0)$ and therefore

$$u(x, t) \rightarrow \mu$$
 $(t \rightarrow 0).$

The uniqueness is a consequence of the uniqueness of the weak limit of measures. The theorem is proved.

We will now prove a comparison theorem between the distribution functions of two solutions in terms of the distribution functions of the initial measures.

THEOREM 3. Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a strictly increasing continuous function. Let u_1 and u_2 be solutions of (2.1) with

$$u_i(x, t) \rightarrow \mu_i$$
 $(t \rightarrow 0), i = 1, 2.$

Suppose that the distributions functions of the initial measures, F_1 and F_2 satisfy

$$F_1(x) \leqslant F_2(x) \qquad a.e. \quad x \in (0, 1)$$

Then

$$\int_0^x u_1(s,t) \, ds \leqslant \int_0^x u_2(s,t) \, ds \qquad a.e. \quad (x,t) \in (0,1) \times (0,T).$$

Proof. Let $v_i(x, t) = \int_0^x u_i(s, t) ds$. Then $D_t v_i \in L^1_{\text{Loc}}(0, T; L^1(0, 1))$, $V_0^1 v_i(x, t) \leq c \quad \forall t$ (see the proof of the corollary) and v_i satisfies

- (a) $D_t v_i = D_x(\varphi(D_x v_i))$ a.e.,
- (b) $v_i(0, t) = 0$ a.e. t,

(c)
$$D_x v_i(1, t) = 0$$
 a.e. t ,

(3.1)

(d)
$$v_i(x, t) \rightarrow F_i(x)$$
 a.e. x.

As $v_i(0, t) = 0$, $|v_i(x, t)| \le c$ a.e. and therefore $v_i(x, t) \to F_i(x)$ in $L^1(0, 1)$ $(t \to 0), i = 1, 2.$

As $F_1(x) \leq F_2(x)$ a.e. x, we deduce that

$$v_1(x,t) \leqslant v_2(x,t) \qquad \text{a.e.}$$

(see [13]). The theorem is proved.

This result has been proved by J. L. Vásquez (see [11]) in the case $\mu_i = \delta_{x_i}$, the measure of mass concentrated at the point x_i , or $\mu_i \in L^1(\mathbb{R})$ and nonnegative. He uses this result to estimate the free boundary of a solution with initial datum of compact support.

THEOREM 4. Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a strictly increasing continuous function such that $\varphi(0) = 0$ and there exists a constant c > 0 such that $|\varphi(p)| \ge c |p|$, $|p| \to \infty$. Let u_1 and u_2 be two solutions of (2.1) with

$$u_i(x, t) \rightarrow \mu_i, \qquad i = 1, 2.$$

Suppose $\mu_1 \leq \mu_2$, then

$$u_1(x, t) \leq u_2(x, t)$$
 a.e. $(x, t) \in (0, 1) \times (0, T)$.

Proof. Let $v_i(x, t) = \int_0^x u_i(s, t) ds$, then $D_t v_i \in L^1_{\text{Loc}}(0, T; L^1(0, 1))$ and v_i is the solution of (3.1) with F_i the distribution function of the measure μ_i , and $v_i(x, t) \to F_i(x)$ in $L^1(0, 1)$ $(t \to 0)$.

As $\mu_1 \leq \mu_2$, $F_2 - F_1$ is nondecreasing and nonnegative because $F_1(0) = F_2(0) = 0$. Therefore $v_1(x, t) \leq v_2(x, t)$ a.e.

Let us remark that v_i is continuous in $(0, 1) \times (0, T)$. In fact, it is easy to see that $D_i v_i \in L^1_{\text{Loc}}(0, T) \ \forall x \in (0, 1)$. We will prove that $D_x v_i \in L^\infty_{\text{Loc}}(0, T; L^2(0, 1))$ and deduce that $v \in C((0, 1) \times (0, T))$ as in Theorem 1.

In fact, let $t_0 > 0$, then $u_i(x, t_0) \in C([0, 1])$ and therefore it is a bounded function. As we know that $u_i(x, t) = S(t - t_0) u_i(x, t_0)$ for $t > t_0$,

$$|u_i(x,t)| \leq \max_{0 \leq x \leq 1} |u_i(x,t_0)|, \quad t \geq t_0, \quad x \in (0,1),$$

and therefore $D_x v_i = u_i \in L^{\infty}_{Loc}(0, T; L^{\infty}(0, 1)) \subset L^{\infty}_{Loc}(0, T; L^2(0, 1)).$

We will prove that $v_2 - v_1$ is a nondecreasing function of x for every t > 0. Suppose it does not happen. Let $t_0 > 0$, x_1 , x_2 and c be such that

$$(v_2 - v_1)(x_1, t_0) > c > (v_2 - v_1)(x_2, t_0)$$
 with $x_1 < x_2$.

We may suppose that c = 0; in fact we will prove the following, if v_2 is a solution of (3.1a, b, c), with $v_2(x, t) \rightarrow F_2(x)$ in $L^1(0, 1)$ and v_1 is a solution of (3.1a, c) with $v_1(x, t) \rightarrow F_1(x)$ in $L^1(0, 1)$ and satisfying

(b')
$$v_1(0, t) = c > 0$$
 a.e. t ,

and if $F_2 - F_1$ is nondecreasing, then it is impossible that

$$(v_2 - v_1)(x_1, t_0) > 0 > (v_2 - v_1)(x_2, t_0)$$

with $x_1 < x_2$.

This can be done because $w_1(x, t) = v_1(x, t) + c$ also satisfies (3.1a, c), and we know that c > 0 because $v_2 \ge v_1$ a.e.

We may also observe that if $F_2 - F_1$ is nondecreasing, then it is also true for $F_2 - (F_1 + c)$.

Let then G be the component of the open set,

$$\{(x, t) \in (0, 1) \times (0, t_0) / (v_2 - v_1)(x, t) > 0\}$$

such that $(x_1, t_0) \in \partial G$.

Let H be the component of the open set

$$\{(x, t) \in (0, 1) \times (0, t_0) / (v_2 - v_1)(x, t) < 0\}$$

such that $(x_2, t_0) \in \partial H$. Then,

meas
$$\{x \in (0, 1)/(x, 0) \in \partial G\} > 0.$$

In fact, if not, v_2 would be a solution in G of the problem,

(a)
$$v_t = D_x(\varphi(v_x))$$
 a.e.,
(b) if $(\tilde{x}, \tilde{t}) \in \partial_p G$, $0 < \tilde{x} < 1$, $\tilde{t} > \tilde{t}$
(i) $\lim_{x \to \tilde{x}} \chi_G(x, \tilde{t}) v(x, \tilde{t}) = \lim_{x \to \tilde{x}} \chi_G(x, \tilde{t}) v_1(x, \tilde{t})$

or

(ii)
$$\lim_{t \to \tilde{t}} \chi_G(\tilde{x}, t) v(\tilde{x}, t) = \lim_{t \to \tilde{t}} \chi_G(\tilde{x}, t) v_1(\tilde{x}, t)$$

(b') if
$$(0, t) \in \partial_p G$$
, (4.1)
$$\lim_{x \to 0} \chi_G(x, t) v(x, t) = 0 < c = \lim_{x \to 0} \chi_G(x, t) v_1(x, t),$$

(c) if
$$(1, t) \in \partial_p G$$
,

$$\lim_{x \to 1} \chi_G(x, t) v_x(x, t) = 0 = \lim_{x \to 1} \chi_G(x, t) (v_1)_x (x, t),$$
(d)
$$\lim_{t \to t} \int_0^1 \chi_G(x, t) |v(x, t) - v_1(x, t)| \, dx = 0,$$

where (d) holds because $v_i \in L^{\infty}((0, 1) \times (0, T))$ and

(i) if
$$\bar{t} > 0$$
, $(v_2(x, t) - v_1(x, t)) \chi_G(x, t) \to 0$ $(t \to \bar{t})$

(ii) if
$$\bar{t} = 0$$
, $\chi_G(x, t) \to 0$ $(t \to 0)$ a.e. x.

We may once more apply the comparison theorem in [3] and deduce

$$v_2(x,t) \leq v_1(x,t)$$
 a.e. in G,

which is an absurd.

As in Theorem 1, we deduce that $(0, t) \notin \partial H$ for every t > 0 and we deduce that

$$meas(\{x \in (0, 1)/(x, 0) \in \partial H\}) > 0.$$

Let us prove that

meas
$$(\{x \in (0, 1)/(x, 0) \in \partial G \text{ and } F_2(x) > F_1(x)\} > 0,$$

(meas $(\{x \in (0, 1)/(x, 0) \in \partial H \text{ and } F_2(x) < F_1(x)\}) > 0).$

In fact, in G (in H) v_i is a solution of (4.1a, b, b') (this condition does not appear in the case of H), (4.1c) and

(d')
$$\lim_{t \to 0} \int_0^1 \chi_G(x, t) |v(x, t) - F_i(x)| \, dx = 0$$
$$\left(\lim_{t \to 0} \int_0^1 \chi_H(x, t) |v(x, t) - F_i(x)| \, dx = 0\right).$$

Therefore if we have $F_2(x) \leq F_1(x)$ a.e. in $\{x \in (0, 1)/(x, 0) \in \partial G\}$ $(F_2(x) \geq F_1(x)$ a.e. in $\{x \in (0, 1)/(x, 0) \in \partial H\}$, we deduce

$$v_2(x, t) \leq v_1(x, t)$$
 a.e. in G,
 $(v_2(x, t) \geq v_1(x, t)$ a.e. in H),

which is absurd.

Let then x_1^0 , x_2^0 be such that $F_2(x_1^0) > F_1(x_1^0)$, $(x_1^0, 0) \in \partial G$ and $F_2(x_2^0) < F_1(x_2^0)$, $(x_2^0, 0) \in \partial H$. As x_1^0 must be less than x_2^0 we have a contradiction.

Therefore $v_2 - v_1$ is nondecreasing as a function of x for every t > 0 and then

$$u_2(x, t) - u_1(x, t) = D_x(v_2(x, t) - v_1(x, t)) \ge 0$$
 a.e.

The proof is finished.

Remark. With an argument similar to those used in Theorems 1 and 4, it

can be proved the following estimate (which was obtained by Pierre (see [9]) when μ_i are nonnegative measures),

$$\int_0^1 |u_1(x, t) - u_2(x, t)| \, dx \leq \int_0^1 d |\mu_1 - \mu_2|$$

if u_i is a solution of (2.1) with

$$u_i(x, t) \rightarrow \mu_i, \qquad i = 1, 2.$$

References

- 1. D. G. ARONSON, Nonnegative solutions of linear parabolic equations, Ann. Sc. Norm. Sup. Pisa Classe di Scienze 22 (1968), 607-694.
- PH. BÉNILAN, H. BRÉZIS, AND M. G. CRANDALL, A semilinear equation in L¹(ℝ^N), Ann. Sc. Norm. Sup. Pisa, Ser. IV, 2 (1975), 523-555.
- 3. J. E. BOUILLET AND C. ATKINSON, A generalized diffusion equation: Radial symmetries and comparison theorems, J. Math. Anal. Appl., in press.
- 4. H. BRÉZIS AND M. G. CRANDALL, Uniqueness of solutions of the initial-value problem for $u_t \Delta \varphi(u) = 0$, J. Math. Pures Appl 58 (1979), 153-163.
- 5. M. G. CRANDALL, Semigroups of nonlinear transformations in Banach spaces, *in* "Contributions to Nonlinear Functional Analysis" (E. Zarantonello, Ed.), Academic Press, New York, 1971.
- 6. M. G. CRANDALL AND M. PIERRE, "Regularizing Effects for $u_t \Delta \phi(u) = 0$," MRC Technical Summary Report 2166, January 1981.
- L. C. EVANS, Differentiability of a nonlinear semigroup in L¹, J. Math. Anal. Appl. 60, No. 3 (1977), 703-715.
- 8. S. KAMIN, Source-type solutions for equations of nonstationary filtration, J. Math. Anal. Appl. 64 (1978), 263–276.
- 9. M. PIERRE, "Uniqueness of the Solutions of $u_t \Delta \varphi(u) = 0$ with Initial Datum a Measure," MRC Technical Summary Report 2171, January 1981.
- R. M. REDHEFFER AND W. WALTER, The total variation of solutions of parabolic differential equations and a Maximum Principle in unbounded domains, *Math. Ann.* 209 (1974), 57-67.
- 11. J. L. VÁZQUEZ, Large-time behaviour of the solutions of the one-dimensional porous media equation, in "Proceedings of the Symposium on Free Boundary Problems: Theory and Applications, Montecatini, Italy, 1981," Lecture Notes in Mathematics, Springer-Verlag, Berlin/New York/Heidelberg, in press.
- 12. D. V. WIDDER, Positive temperature on the infinite rod, Trans. Amer. Math. Soc. 55 (1944), 85–95.
- 13. N. I. WOLANSKI, Degenerate nonlinear parabolic equations. Comparison and existence theorems, submitted.
- YA. B. ZEL'DOVICH AND YU. P. RAIZER, "Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena," Vol. II, Academic Press, New York, 1969.
 O. A. LADYZENSKAJA, V. A. SOLONNIKOV, AND N. N. URAL'CEVA, "Linear and
- O. A. LADYZENSKAJA, V. A. SOLONNIKOV, AND N. N. URAL'CEVA, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, Vol. 23, Amer. Math. Soc., Providence, R. I., 1968.
- H. BREZIS, "Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert," North-Holland, Amsterdam, 1973.