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In the present paper we study the equation 

u, = ~A~(~>) in the sense of distributions, (1) 

where 9 : R -+ R is a strictly increasing continuous function, set on a 
bounded interval with boundary conditions of mixed type and a measure, 
which needs not be nonnegative, as initial datum. 

There is considerable literature about Eq. (1) set in R or in bounded 
domains. The reason for this is that Eq. (1) is a model for many physical 
phenomena, for example, diffusion of a gas through a porous medium and 
heat conduction with or without interfaces (which corresponds to Eq. (1) 
with p strictly increasing if there are not interfaces and monotone increasing 
in the other case). See, for example, [2,4, 5, 6, 8, 91, and the references they 
contain. 

Among all these papers, only [8] and [9] consider a measure as initial 
datum. However, Widder in [ 121 proved, for the linear equation, that for 
every nonnegative solution u in (t > 0) there is one and only one measure p 
such that 

These results have been generalized by Aronson (see [ 1 ]) to the N- 
dimensional case and a general linear parabolic equation. Pierre (see (91) 
has obtained a similar result for nonnegative solutions of 

24, = L@(u). 

This, and the fact that Eq. (1) with a measure as initial datum is also a 
model for physical phenomena (see [ 14]), motivate the present paper. 
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We prove a result similar to those of Widder and Pierre but without the 
restriction that the solution be nonnegative (Theorem 2). We prove existence 
and uniqueness of a strong solution, that is U, E L:,,(O, T, L*(O, 1)) 
(Theorem 1). 

We also obtain two comparison theorems. One of them compares the 
solutions pointwise (Theorem 4) and the other one compares the distribution 
functions 

Y(X, t) = 1’ u(s, t) ds 

(Theorem 3). 
The fundamental idea is that the distribution function v(x, t) also satisfies 

a differential equation and that we can obtain the estimate 

Total variation of v(x, t) on [0, 1 ] = VA V(X, t) < j’ d ],u) vt > 0. 

The existence of a strong solution seems to be new because the only works 
we know which deal with measures as initial datum ([ 8,9]), prove the 
existence of weak solutions and only for nonnegative measures. As we deal 
with finite, arbitrary measures, the comparison Theorems 3 and 4 also seem 
to be new. 

NOTATION 

We will denote by uI or D,u the partial derivative of the function u with 
respect to the variable t. Analogously for the other derivatives. And 

will denote the total variation of V(X, t), as a function of x, on the interval 
[O, 11. 

The results stated above are a consequence of the following theorem 
proved in a previous paper (see [ 13]), which establishes 

THEOREM 0. Let rp, w: I?-+ R be strictly increasing continuous 
functions, such that I+‘-’ : R --t R is Lipschitz continuous and rp satisfies 

3c > 0 such that Irp(x)l > c 1x1 when IxJ-+ 00. 

Suppose ~(0) = w(0) = 0. Then for every F E L’(0, 1) there exists one and 
only one function u E C([O, T]; L’(0, 1)) which satisfies 
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(a) vt EL&JO, T; L’(O, 1)); 
(b) v(v) E H’(0, 1) in x a.e. t and y(v)(O, t) = 0 a.e. t; 

(c) fp(D,(y(u))) E H’(0, 1) in x f2.e. t and q@,(yl(v)))(l, t) = 0 a.e. t 
(in particular q(D,(w(v))) E C( [0, 11) in x a.e. t and therefore D,(yl(v)) E 
C([O, 11) in x a.e. t and D,(w(v))(l, t) = 0 u.e. t); 

(d) lim,,, IA 1 v(x, t) - F(x)1 dx = 0; 

(e> 0, = ~,Ci@,(v(~)))) t2.e. (x9 t) E (0, 1) X P,T)- 

We will make use of Theorem 0 only when y = identity and FE Lm c L*. 
In this case, Theorem 0 is a consequence of the theory of subdifferentials in 
L2 (see [16]). 

We prove the following theorem. 

THEOREM 1. Let v, : R + R be a strictly increasing continuous function 
such that qi~ - ’ : R + R is Lipschitz continuous, ~(0) = 0. 

Let ,u be a finite Bore1 measure on [0, 1). Then there exists one and only 
one function u E L”O(0, T, L ‘(0, 1)) which satisfies 

(4 
(b) 
(cl 
(4 

(4 

ProoJ (1) Existence. Let v(x, t) be the solution of the problem 

(4 ut = D,(v(~,)) a.e. (x, t); 

@I ~(0, t) = 0 a.e. t; 

cc> u,( 1, t) = 0 a.e. 2; (1.2) 

(d) l/j i,’ ( v(x, t) - F(x)/ dx = 0, 

u, E LZ,,(O, T; L2(0, 1)); 
(P(u) E C’([OT 11) in x u.e. t and D,(p(u))(O, t) = 0 u.e. t; 

u( 1, t) = 0 u-e. t; 

u, = ~,,(v(u>> a.e. (x, t) E (0, 1) X (0, T); 

Fz j: u(s, t) ds = ,u( [0, x)) fir every x E (0, 1) 
such that ,u( {x}) = 0. 

(1.1) 

where F(x) is the distribution function of the measure ,U (that is, F(x) = 
p([O, x))). We know that F(0) = 0, F is left-continuous and of bounded 
variation; this implies that FE Lto c L’ and therefore there is one and only 
one solution of (1.2) given by Theorem 0. 

Let u(x, t) = ux(x, t). By (1.2c), we have ~(1, t) = 0 a.e. t, therefore u 

409/102/2-6 
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Satisfies (1.1~). Let us see that u satisfies (l.la). As y-l is a strictly 

increasing Lipschitz continuous function, 

The last member is bounded for almost every t,, t, E (0, T] and ) h 1 < 
S(&, II) because Y, E L:,, (0, T; L2(0, 1)). Therefore, for almost every I,, I, E 
(03 TI, 

dx, t + h) - %t% t) 
h 

2 dx dt < c 
\ if 1121 < @to, t,), 

and we deduce u,, E Ltoc(O, T; L2(0, l)), that is, ut E L:,,(o, T; L2(0, 1)). 
Let us prove that u satisfies (1. lb). As D,(q(u)) = v,, we want to see that 

lh v,(x, t) = 0 a.e. t. r-b 

We will prove that 

which implies (1. lb), 
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In fact, as v(0, t) = 0 a.e. t, 

u(x, t -I- h) - v(x, t) .r x = 
h 

u,(s, t + h) - u,(s, t) ds 
0 h 

We know that uXI E Lt,,(O, T, L’(O, l)), and therefore 

u,(s, t + h) - ox@, 0 
h -t vxt(s, 0 (h -+ 0) in L*(O, 1) a.e. t E (0, 7’). 

Therefore, there exists d,(t) a.e. t, such that 

u,(s, t + h) - ux(s, 0 
h 

* ds < c 
\ if lhj <d,(r). 

Then we have 

a, t + h) - 4% 0 
h 

< x*,2c,,* < E if IhJ < d,(t), 1x1 cc. 

We have that u satisfies (1. la, b, c, d), because 

u, = v,, = vt, = ~.rx(d~x)) = I,,)* 

This implies that D,(v(u)) E C([O, I]) in x a.e. t, which was stated in 
(l.lb). 

We only have to prove that u E L”(0, T; t’(0, 1)) and satisfies (1. le). Eq. 
(1. le) states that U(X, t) -+ F(x) if F is continuous at x. We will prove that 
Vi U(X, t) < VAF(x) for every t E (0, T]. This, and the fact that u(x, t) -+ F(x) 
in L’(0, 1) imply (l.le). 

As u(x, t) E L’(0, 1) for every t E (0, T], 

and we have u E La(O, C L’(0, 1)). 
Thus, to conclude the proof we only have to see that Vt u(x, t) < VA F(x). 

This is a version of the saw theorem in [IO] for solutions which are not 
continuous up to the boundary, and is based on the comparison theorem in 
[31* 

Let us first remark that as v,( E L[oc(O, T, L’(O, l)), we have 

(i) ul E G,,(O, r) Vx E (0, 1); 
(ii) v, E LF&(O, T; L’(O, 1)); 
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and therefore, u(x, t) is continuous in (0, 1) x (0, 9. In fact, 

I u(x + h, t + S) - u(x, t)l 

< lx+” I ux(s, t + S)l ds + jf’+’ 1 u,(x, z)l dr < c(h”* + al”). 
x 

Let 0=x0 <xi < . . . < xk = 1 be such that di = v(xi, to) - v(xi- 1, t,) is 
always different from 0 and alternating in sign. Let 0 ( 2a ( di for every i. 
Then there exist k + 1 points 0 = xi < xy ( . . . ( xi Q 1 such that 

sign(J’(xy) - F(xy- i)) = sign di, 

ldil Q IF(XP)-F(Xy-,)) + h, 
i = l,..., k. 

From this fact we deduce that 

i / U(Xi, to) - U(Xi-l) to)1 < viF(X) + 2Uk* 
i=l 

As 0 < a < 4 ( di( is arbitrarily small, we obtain 

v:, u(x, I,) < V$(x). 

Let then 0=x,(x, < ... < xk = 1 as above. We define x”, = 0. Let i > 1 
and 

Ai = {(X3 t, E (Oy l) X (0, t,)/U(X, t) > u(Xi, to) - U} 

if (xi, to) is a high point (HP), 

that is, 

Ai = {(xV t, e (O, l) X (07 to)/u(x, t) < u(Xiy to) + U} 

if (xi, to) is a low point (LP). 

Then Ai is an open set. Let Hi be the component of Ai for which 
(xi, to) E Hi. We have Hi n H,, i = 0, i = l,..., k - 1. 

We see that meas{x E (0, 1)/(x, 0) E SZ,} > 0, where CM, is the boundary 
of the set Hi. In fact, suppose it doesn’t occur, then u(x, t) is the solution in 
H, of the following problem: 

(a) u, = D,(cp(u,)) a.e. in Hi, 

(b) if (2, $ E a,H,, O<x”<l,t’>i 
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(1.3) 

when (x,, to) is HP and [i, t,] is the projection of H, on the interval [0, T]. 
We have denoted by a$!, the subset of SZ,, (2, ?) E a,&, if there exists 

E > 0 such that 

or (if, x’ + E) x (F) c H, 

or 

(ii) {Z} x (2, t”+ E) c H,, 

which corresponds to conditions (b.i) and (b.ii), respectively. 
We remark that it may happen that i= 0; in this case (1.3e) becomes true 

because x,,(x, t) + 0 a.e. x as t --t 0. 
When (x, , to) is LP, U(X, t) is the solution of the problem (1.3a, c, d), and 

(b’) if (5 9 E a,I-I,, O<x’<l,t>i 

(9 l$ x,,(x, t’ Nx, t’, = 4x1, to> + a 

or 

(ii) ljy x,,(f, t) ~(2, t) = u(x, , to) + a, 

We make use of the comparison theorem of [3], which applies on every 
measurable set H, . We conclude that 

if (x,, t,) is HP then 

21(x, t) < max{O, v(x, , to) - a} in H, , (1) 
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if (xl, to) is LP then 

@, t) > min{O, u(xI, to) -t a} in H, . (2) 

As ~(0, t) = 0, 

(xl, tO) HP implies v(xl, to) > 2a, and therefore 

u(x, > 43) - a > 0, 

(x,, r,) LP implies u(x!, fD) < -2a, and therefore 

v(x,, to> + a < 0. 

Then (1) and (2) become 

if (x, , c,) is HP then v(x, t) < v(x, , to) - Q in H,, (1) 
if (x1, to) is LP then u(x, t) > u(x,, t,) + a in H,, (2) 

which is absurd. Therefore, meas{x E (0, 1)/(x, 0) E aZ!Z,) > 0. 
As H, nH, = 0, there are no points of the form (0, 1) on the boundary of 

H,. In fact, suppose (0, f) E aH,. Let X E (0, 1) be such that (f, 0) e 8H, 
and let C, be a Jordan curve connecting (x,, to) and (2, 0), which is 
contained in H,. C, divides the rectangle (0, 1) x (0, toj into two regions. 
There also exists a Jordan curve C, connecting (0, t) and (x2, to) in H, and 
therefore it must be C, n C, # 0, absurd. 

We will prove that meas{x E (0, 1)/(x, 0) 65 8H,} > 0, and therefore induc- 
tively deduce that (0, t) & 8Hi i = 2,..., k, and meas{x E (0, 1)/(x, 0) E 
aHi} > 0, i = 2 ,..., k. 

In fact, suppose meas{x E (0, 1)/(x5 0) E c?H,} = 0; then V(X, t) is the 
solution in H, of the following problem: 

(a) ut = D,(rp(v,)) a.e. in H,, 

(b) if (2, fi E %H,, I < 1, I> i (we know that 2> 0) 

or 

(ii) ‘;‘T x& 0 4% 4 = + i 
u(xz, GJ - a (HP) u(x*) to) + a 

04 

Cc> if(l,f)Ea,H,, Fy X&(X t> u,(x, t) = 0, 
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We deduce that 

v(x, t) ,< v(xz, to) - a in H, (HP), 

v(x, t) > v(x2, to> + a in H, w-79 

which is absurd. 
We will prove that 

meas 
i 
x E (0, 1)/(x, 0) E 8Hi and F(x) 

>U(Xi, to) - a P-3 
<U(Xi, t()) + U I 

> o 
(W * 

In fact, v(x, t) is the solution in Hi, i = l,..., k; of the following problem: 

(a) U, = D,(~(v,)) a.e. in Hi, 

(b) if (2, 0 E apHi, o<x”< l,t’>i=O 

or 

(4 pz I,’ x@, 1) I+, t) - F(x)1 dx = 0. 

When i= 2 ,..., k, (0, t) 6? apHi. When i = 1, U(X, t) satisfies 

(e) if (0, t> E a,H, , iii XH ,(x, l) 44 0 = 0. 

Therefore, suppose 

a.e. in {x E (0, 1)/(x, 0) E aHi}, we may one more time apply the 
comparison theorem of [3] to conclude that 

when i = 2,..., k, 

44 t> 
! 
<“(xi9 li)) --a (I-=‘) a.e. in Hi 

>U(Xj, 4)) + a w a.e. in Hi 
absurd; 
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when i= 1, 

4% t) 
1 
@ax{% v(xl, f,) -a) (HP) a.e. in U, 
>min(O, v(x,, to) + a} WY a.e. in H, 

Let therefore x7 E (0, 1) be such that (x9,0) E SJi and 

absurd. 

Then we have 

F(x;> 
I 

>U(Xi, to) - a (HP) 
<V(Xj, to) + U u-8 * 

(1) if (xi, to) is (HP), then 

In fact, 

F(x~) > v(Xiy to) - u > 
jV(Xi-~vt~)+2U-U 
IL’(xi+,,t,)+2a-a 

= \ +I- 1, to> -t- a > F(-+‘- J 
1 ~(xi+l,tO)+a>Ftxp+,)’ 

(2) IF($) - F(x~- i >I Z I V(Xj 7 to) - u(xi- 1, to)) - 2a; 

in fact, suppose (xi, to) HP, 

) F(x;) - F(x;- J = F(x;) - F(x;- ,) 

F(X3) > U(Xj, t,) - U 

F(x9-,) < v(Xi-l, to) + U 

therefore, 

F(x~) - F(x~- 1) > U(Xi, to) - U(Xi- 1, to) - 2a 

= ) v(xi, to> - v(Xj- 17 to)/ - 2a. 

It only remains to see that 0 = A$ < xt < -.- < xi 4 1. We will prove it 
inductively. 

xi = 0 by definition, x’: > 0 because we can choose it in such a way since 
the set from where we choose it is of positive measure. Let us see that 
xy > xy . In fact, x2 > x1 and (xi, 0) E CM,, we deduce that x,” > A-: in the 
same way as we have proved that (0, t) 6C aH,. 

In the same way it can be proved that xp+, > xp, i = 2 ,..., k - 1. 
The proof is finished. 
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(2) Uniqueness. Suppose there exist two functions U, and u2 in 
L”O(0, T;L’(O, 1)) which satisfy (l.la, b, c, d, e). As D,u, E Li,,(O, T; 
L*(O, l)), i = 1, 2, it is easy to see that both functions 

UI(X, t) = Jo Ui(S, t) dS 

satisfy (1.2a, b, c). 
We know that 

v-f Ui(Xv t) = !+Tj: Ui(S, I) ds =jl([09x)) =F(x) 

if F is continuous at x E (0, 1). AS Ui E L”(0, T; L ‘(0, I)), Ui E 
L”O((0, 1) x (0, r>) and therefore 

‘,‘y ui(x, t) = F(x) in L ‘(0, 1 ), + 

That is zli satisfies (1.2d) for i = 1,2. By Theorem 0 we know that (1.2) 
has a unique solution, therefore 0,(x, t) = u,(x, t) a.e. (x, t) E (0, 1) X (0, T), 
and we deduce 

24,(x, t) = Dxu,(x, t) = Dxu2(x, t) = u2(x, t) a.e. 

The proof is finished. 

COROLLARY. Let v, : R -+ R satisfy the hypothesis of Theorem 1. Let p be 
a finite Bore1 measure on [0, 1). Then there exists one and only one function 
u(x, t) that satisfies, 

(a) u, E LLd4 T; L*(O, l)), 

@I P(U) E C’(P~ 11) in x, a.e. t and DJrp(u))(O, t) = 0 a.e. t, 

(c) u(l,t)=Oa.e.t, 

(d) U, = D,&(U)) a.e. (x, t) E (0, 1) X (0, T), 

(e) u(x, t) 2 ,u(t -+ 0), that is, 

(l-4) 

j; u(x, 0 g(x) dx + j; g(x) 44x), for every g E C( [0, 1 I). 

Proof (1) Existence. Let u(x, t) be the solution of (1.1) obtained in 
Theorem 1. We know that if 

u(x, t) = jx u(s, t) ds 
0 
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then, if F(x) = P([O, x)), 

v; v(x, t) < ViF(x) for every t > 0 

and U(X, t) -+ F(x) if F is continuous at x. 

We will prove that v( 1, t) + F( 1) and then applying Helly’s first theorem 
we will deduce that u(x, t) - ,u(t + 0), and this will finish the proof of the 
existence. 

We prove the following lemma and then we continue with the proof of uni- 
queness. 

LEMMA. Let F,, F be functions of bounded variation such that F,(O) = 
F(0) = 0 and ViF, < VAF for every n E N. Suppose that F is left-continuous 
and F,(x) --t F(x) if F is continuous at x E (0, 1). Then F,( 1) -+ F( 1). 

Proof of the Lemma. Let E > 0; there exist points of continuity of F, 
0 <x, < “. < xN < 1 such that 

and xN can be chosen arbitrarily close to 1. 
This election may be done in the following way. One can choose N points 

of continuity of F, x, ,..., x,,, such that if we put x,, = 0, 

N 

\‘ IF(x,)-F(xip,)/+)F(l)-F(x,)l > V;F-42. 
ET, 

As F is left-continuous at x = 1, we have IF(x) - F(l)( < c/2 if 
1 - 6 < x < 1 for some 6 > 0. We choose the point xN of the partition on the 
interval (1 - 6, l), and we have what we wanted. 

As F,(xi) -t F(xi) for i = O,..., N, we have 

,tl IFn(Xi) - Fn(Xi- 111 > ViF- 2~ if II > no(c). 

And on the other hand, as ViF, < VAF for every II, 

IFn(l)-Fn(x,v)I + 5 IFn(Xi)-Fn(Xi-l)I G VAF. 
i=l 
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Therefore. 

Then, 

J(lim sup F,( 1)) - F(G) ,< 2e, 

((rim inf Fn( I)) - F(xA,)l ,< 2~. 

As X, E (1 - 6, 1) can be chosen arbitrarily close to 1, and F(x) * F( 1) 
when x / 1, 

[(lim sup F,(l)) - F(l)\ < 2% 

I(lim inf F,( 1)) - F( 1)l G 2~. 

As E is arbitrary 

lim F,(l) = F(i). 
n-cc 

The proof is finished. 
We continue with the proof of the corollary. 

(2) Uniqueness. Let U, and u2 be two solutions of (1.4). As z+(x, t)- 
~(1 -+ 0), there exist 6 > 0 and c > 0 such that Viui(x, t) < c if 0 < t < 6, 
where 

I 

i 
Uj(X, l) = u &, f) ds. 

0 

Therefore j: I ui(x, t)l dx = VA ui(x, t) < c if 0 < t < 6. 
Let us see that j: ) ui(x, t)] dx < j; J +(x, t,)) dx if t > t,. 
In fact, let S(l) be the semigroup associated to the m-accretive operator 

--D,,(rp(u)) with the corresponding boundary conditions (see [ 131). We 
prove that 

Uj(X, I) = S(t - to) Ui(X, r,) if t>t,, 

and this implies what we have stated above. 



378 NOEMiI.WOLANSKI 

Therefore ui E L”(0, T; L’(0, 1)). As uI(x, I) - ,U (t -+ 0), 

I ’ ui(s9 t) dS + P( [09 X)) if ,u((x}) = 0. 
0 

Therefore, by Theorem 1, u,(x, f) = Q(X, t) a.e. (x, t) E (0, 1) X (0, 7’). 
Let us prove that if u is solution of (1.4), then 

u(x, t) = S(t - to) u(x, to) 

In fact, as u, E L&(0, T; L ‘(0, l)), 

for t > t, > 0. 

24(x, 1) - 24(x, to) = j’ u,(x, 2) dz a.e. x E (0, l), 
fo 

therefore 

j’ I u(x, t) - I.44 to)1 dx <jol jt’ I q(x, z)l dz dx 
0 0 

and we deduce 

I’lyo 1,’ ) u(x, t) - u(x, to)/ dx = 0. 

Then u(x, t) is a solution in (0, 1) X (to, r) of 

ut = ~Af?o(~))~ 
iii D,(cp(u))(x, t) = 0 a.e. t, 

U(1, t) = 0, 

!<T j: I u(x, 4 - u(x, to)1 dx = 0. 

By uniqueness we deduce that u(x, t) = S(t - to) u(x, to) (see [ 131). The 
proof is finished. 

We prove now a theorem which states the existence of a weak limit (in the 
sense of measures) for every solution of the equation with the corresponding 
boundary conditions in (0, 1) X (0, T’). 

THEOREM 2. Let p : R + R be a strictly increasing continuous function 
such that q(O) = 0 and there exists a constant c > 0 wirh ( p(p)l > c I pi for 
(p\ + co. Let u(x, t) E Lm(O, T, L’(0, 1)) be a solution of 
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(a) u, E Lt,,(O, T; L’(O, l)), 

@I v(u) E C’@, 11) in x, ae. t and D,(q(u))(O, t) = 0 ae. t, 

(c) ~(1, t) = 0 a.e. t, 

(d) U, = D,,(v(u)) a.e. (x, 0 E (0, 1) x (0, T). (2.1) 

Then, there exists one and only one finite Bore1 measure p such that 

u(x, t) - p(t + 0). 

If u > 0, then p > 0. If u < 0, then ,u < 0. 

Proof As u E L”O(0, T, L’(O, l)), there exist a sequence (t,) with t, + 0 
and a finite Bore1 measure ,D such that 

We will prove that U(X, t) - p (t -+ 0). 
Let F be the distribution function of ,D and let U(X, t) = ji U(S, t) ds. Then, 

we have V(X, t,) + F(x) if F is continuous at x E (0, 1). 
Let us observe that if ZJ > 0 then v is nondecreasing and therefore F is 

nondecreasing. This implies that ,U > 0. Analogously if u < 0, then ,U < 0. 
It can be easy proved that v, E LL,,(O, T; L’(0, 1)) and v(x, t) is a 

solution of 

v, = D,(v(v,)) a.e., 
~(0, t) = 0 a.e. t, 

v,(l, t) = 0 a.e. t, 

v(x, t,) - F(x) a.e. (n -+ 00). 

As v E L”((0, 1) x (0, 7)) we have v(x, t,)- F(x) in L’(0, 1). We prove 
that v(x, t) + F(x) in L’(0, 1) (t -+ 0). In fact, let w(x, t) be the solution of 
the problem 

wI = ~,(~(~,>> a.e., 
~(0, t) = 0 a.e. t, 

wx( 1, t) = 0 a.e. t, 

w(x, t> + F’(x) in L’(0, 1) (t + 0). 

with w, E Lt,, (0, T; L’(O, l)), given by Theorem 0. Then v and w are two 
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solutions of the problem: differential equation + boundary conditions + the 
following initial condition 

4-G tn> + F(x) in L’(0, 1) (n-+a> 

with t, + 0 and w,, u, E L&(0, T, L ‘(0, 1)). 
By the uniqueness of the solution of this problem (see the proof of the 

comparison theorem in [3]), we get 

u(x, t) = w(x, t) a.e. 

and therefore v(x, t) -+ F(x) in L’(0, 1) (t -+ 0). 
As was proved in Theorem 1, Viu(x, t) < VAF for every t > 0 and 

v(x, t) -+ F(x) (t -+ 0) if F is continuous at x. 
Again as in the proof of the Corollary we deduce that u( 1, t) -+ F(1) 

(t + 0) and therefore 

u(x, t) - P (t + 0). 

The uniqueness is a consequence of the uniqueness of the weak limit of 
measures. The theorem is proved. 

We will now prove a comparison theorem between the distribution 
functions of two solutions in terms of the distribution functions of the initial 
measures. 

THEOREM 3. Let rp : R -+ R be a strictly increasing continuous function. 
Let u, and u2 be solutions of (2.1) with 

ui(xY t>- Pi (t + O), i= 1,2. 

Suppose that the distributions functions of the initial measures, F, and F, 
satisfy 

F, (xl G F, (x> a.e. x E (0, 1). 
Then 

I 
x 

.r 
x 

u,(s, t) ds G & 0 ds a.e. (x, t) E (0, 1) x (0, T). 
0 0 

Proof: Let ui(x, t) = 1: ui(s, t) ds. Then D,vi E Lt,,(O, T, L’(0, l)), 
ViVr(X, t) < c Vt (see the proof of the corollary) and oi satisfies 

(a> DtUi = Dx(cP(Dxui)) a.e., 
(b) ~~(0, t) = 0 a.e. t, 

(c) D,u,(l, t) = 0 a.e. t, 

(d) ui(x, t) -+ Fi(x) a.e. x. 

(3.1) 
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As ~~(0, t) = 0, ] ui(x, t)] ( c a.e. and therefore u!(x, t) + Fi(x) in t ‘(0, 1) 
(t -+ O), i = 1, 2. 

As F,(x) <F,(x) a.e. x, we deduce that 

u,(x, t) < u2(x, t) a.e. 

(see [ 131). The theorem is proved. 
This result has been proved by J. L. Vasquez (see [ 111) in the case 

p’i = S,., the measure of mass concentrated at the point xi, or pi E L ‘(IR) and 
nonnegative. He uses this result to estimate the free boundary of a solution 
with initial datum of compact support. 

THEOREM 4. Let q : R + R be a strictly increasing continuous function 
such that q(O) = 0 and there exists a constant c > 0 such that 1 q(p)1 > c 1 p 1, 
Ipj -+ 00. Let u, and u2 be two solutions of (2.1) with 

ui(x9 t> - Pi 9 i= 1, 2. 

Suppose p 1 < p, , then 

u*(x, 0 < u,(x, t) a.e. (x, t) E (0, 1) X (0, 7). 

ProoJ Let ui(x, t) = lg u&, t) ds, then D,u, E Lt,,(O, T; L ‘(0, 1)) and ui 
is the solution of (3.1) with Fi the distribution function of the measure pi, 
and Ui(X, t) + Fi(x) in L’(0, 1) (t -+ 0). 

As p, < ,uu,, F, - F, is nondecreasing and nonnegative because F,(O) = 
F*(O) = 0. Therefore u,(x, t) < v2(x, t) a.e. 

Let us remark that vi is continuous in (0, 1) x (0, 7). In fact, it is easy to 
see that D,u, E LL,,(O, 7’) Vx E (0, 1). We will prove that DXui E LFO’,,(O, T, 
L*(O, 1)) and deduce that u E C((0, 1) x (0, r)) as in Theorem 1. 

In fact, let t, > 0, then ui(x, to) E C([O, 11) and therefore it is a bounded 
function. As we know that ui(x, t) = S(t - to) ui(x, t,J for t > t,, 

I ui(x3 t)l G oyf:, I ui(x3 tO)l 3 t>t,, x E (0, l), 

and therefore D, vi = ui E L FO”,, (0, T;La’(O, l>>~L~c(o, T;L2(0, 1)). 
We will prove that u2 - vi is a nondecreasing function of x for every t > 0. 

Suppose it does not happen. Let t, > 0, x, , x2 and c be such that 

(02 - U,)(XI 9 44 > c > (02 - u,)(x*v to> with x1 < x2. 

We may suppose that c = 0; in fact we will prove the following, if v2 is a 
solution of (3.la, b, c), with uz(x, t)+ F*(x) in L’(0, 1) and u, is a solution 
of (3.la, c) with u,(x, t)+ F,(x) in L’(0, 1) and satisfying 

(b’) v,(O,t)=c>Oa.e.t, 
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and if F, -I;, is nondecreasing, then it is impossible that 

with x1 < x,. 
This can be done because w,(x, t) = v,(x, t) + c also satisfies (3. la, c), and 

we know that c > 0 because v2 > v1 a.e. 
We may also observe that if F, -F, is nondecreasing, then it is also true 

for F, - (Fl + c). 
Let then G be the component of the open set, 

{(xv t> E (0, 1) x (0, bJ/(v, - VI)@, 4 > 0 1 

such that (x,, to) E aG. 
Let H be the component of the open set 

such that (x2, to) E cYH. Then, 

meas(x E (0, 1)/(x, 0) E aG} > 0. 

In fact, if not, v, would be a solution in G of the problem, 

(a> v, = D,(rp(v,)) a.e., 

(b) if ($9 E a,G, O<x”<l,?>i 

(9 limX,(x,i)v(x,i)=limX,(x,i)vl(x,i) 

or 

(ii) !iy xc($ t)v(Z, t) = ‘,‘r X&, t) V,(f, t) 
* * 

(b’) if (0, t) E a,G, (4.1) 

lim xc(x, t) v(x, t) = 0 < c = l;‘_mu xc(x, t) vl(x, t), 
x-0 

(c) if (1, t)E a,G, 

li-“: &(X, f) vx(x, f> = 0 = $ XF(4 av,>, (x3 t>, 
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where (d) holds because ui E Lm((O, 1) x (0, T) and 

(i) if i> 0, (%(X3 t> - u, (4 t>> xc(x, 4 -+ 0 (t+ r> 

(ii) if t= 0, X&G 4 -b 0 (t + 0) a.e. x. 

We may once more apply the comparison theorem in [ 3 ] and deduce 

u2(x, t) < u,(x, t) a.e. in G, 

which is an absurd. 
As in Theorem 1, we deduce that (0, t) 6Z aH for every t > 0 and we 

deduce that 

meas({x E (0, 1)/(x, 0) E BH}) > 0. 

Let us prove that 

meas({x E (0, 1)/(x, 0) E 8G and F*(x) > F,(x)} > 0, 

(meas({x E (0, 1)/(x, 0) E aH andF,(x) < F,(x)}) > 0). 

In fact, in G (in H) ui is a solution of (4.la, b, b’) (this condition does not 
appear in the case of H), (4.1~) and 

(d’) ‘,‘y 1’ xc(x, t) 1 Y(X, t) - Fi(x)l dx = 0 
* 0 

x,.,(x, t) 1 u(x, t) - F,(x)/ dx = 0) < 

Therefore if we have P,(x) <F,(x) a.e. in (x E (0, 1)/(x, 0) E aG} (F,(x) > 
F,(x) a.e. in {x E (0, 1)/(x, 0) E 8H}), we deduce 

u,(x, t) < u,(x, t) a.e. in G, 

(u2(x, t) > u,(x, t) a.e. in H), 

which is absurd. 
Let then xy , xy be such that F2(xy) > F,(xy), (xy , 0) E 8G and F’*(xi) < 

F,(x!& (xi, 0) E 8H. As xy must be less than xt we have a contradiction. 
Therefore vz - U, is nondecreasing as a function of x for every t > 0 and 

then 

24,(x, t) - 24,(x, t) = D,(u2(x, t) - 21,(x, t)) > 0 a.e. 

The proof is finished. 

Remark. With an argument similar to those used in Theorems 1 and 4, it 

409/102!2 7 
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can be proved the following estimate (which was obtained by Pierre (see [9]) 
when ,u~ are nonnegative measures), 

if ui is a solution of (2.1) with 

ui(x3 l> - Pi 3 i= 1,2. 
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