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1. NOTATION AND STATEMENT OF THE MAIN RESULTS

By x, Y,..., X = (x,,..., X,) we denote points in the n-dimensional Euclidean
space R". Given an n-tuple a = (a,...., a,) of real numbers a; > 1, 1 <ign,
we will consider the multiplicative group of matrices

If x # O there exists a unique ¢ € R such that |[4,_,x| =1 (cf. |1]); then we
define [x] =1t If x=0 we set [x| =0. Therefore, the parabolic metric given
by d(x,y) = |x — ]| is naturally attached to the group of matrices 4,.

The following properties are satisfied (cf. |1]):

(i) [4,x]=z[x], >0, xeR",

(ii) [x] € Ce(R™\{0}),

(iii) [x+y]<[x]+[»], and

(iv) |x;] < [x]% for every x E R", i < j< n.

—

If a=(a,,..,a,), where the «; are nonnegative integers, then ja|=
a4+ 4 a,, xT=x§ o xgn

n o

a aj a ap
Def= (c’}_x1> (8_x,,) ¥a and a-a=aa + - +a,a,.

Let L., 1 < g < oo, be the space of all the real functions defined in R"
that are locally in L% We set B(x,p)={yER": |y — x| <p} and it is easy
to verify that the Lebesgue measure |B(x, p)| equals Cp'®' (cf. [10]), where
|a|=a, + --- +a, and C is a constant depending only on a.

130
0022-247X/84 $3.00

Copyright © 1984 by Academic Press, Inc.
All rights of reproduction in any form reserved.



PARABOLIC MAXIMAL FUNCTIONS 131

We will consider in LY, the topology given by the L7 convergence over
compact sets which is induced by the family of seminorms

\ /g

Foa= (1817 [ 7O )

where B=B(x,p), p >0, x€ER".
Let u be a positive real number. If f€ L{ ., we define a maximal function

locs
n, .(f, x) as

ntl,u(fs x) = S]i% p—u lf|q.B(x.p)'
o

By %, we will denote the subspace of L7, which consists of all
polynomial functions of the form

P(y)= Y a,»*

a-a<u

This subspace has finite dimension and, therefore, is a closed subspace of
L{,.. The quotient space of L{ by .7, will be called EZ. For F € E? we
define the family of seminorms

“Fllq,E: inf{‘f|q,B fe F}a

where B =B(x,p), p >0, x € R". This family of seminorms induce the
quotient topology in £ which is a locally convex and complete metric space.
For F € EY, we define the maximal function

N, F,x)=inf{n, (fix):fE F}.

This maximal function is lower semicontinuous as we can see following the
proof in {4] for the elliptic case.
We will call #7 ,, 0 <p <1, the set of all F € E{ such that its maximal
function N, ,(F, x) belongs to L”.

For the sake of simplicity we will denote N=N,,, n=n,,,
AP = 4.u» Whenever this notation does not bring up any confusion.

Given F € #?, we define

and

|1F o= (j N(F, xY’ dx) .

The set #7 with the distance d(F, G)=|F — G|%, is a complete metric
space.
As usual, we denote by . the space of all infinitely differentiable
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functions which are rapidly decreasing at infinity together with their
derivatives. Given j, A nonnegative integers and ¢ € % we define

P;(®) = max sup [D*(x)| (1 + [x])"

This family of norms p; , defines the usual topoiogy of the space .. The
letter C will stand for a constant, not necessarilly the same in each
occurrence.

(1.1) DEFINITION. A class 4 € EY is a p-atom in E? if there exists a
member b of A4 and a ball B such that supp b = B and N(4, x) < |B| .

In Section 2 we will prove the following characterization of the space
2 '
q.u

TueoreM 1. (i) Ifp<|a|(u+|al/q)”", then the space #7 reduces to
0.

(ii) Let p be such that \a|(u+\al/g)”' <p< 1. If FEE? then
Fe#" if and only if there exist a numerical sequence {u;} such that
> u;|P < oo and a sequence {A;} of p-atoms in E] such that

F=> A

J

; in E}.
Moreover, this series converges in #7 and there exist two positive
constants C, and C, such that

C1F N <inf X 417 < Co [ F )l %,
J

where the infimum is taken over all decompositions of F.

Section 3 deals with the connection between #7 and the space H” of
Calderon-Torchisnky (cf. [1]) when a = (a, ..., a,) has rational components.

Let k be the smallest positive integer such that k/a, is an even number for
every i. We denote by L the differential operator associated with P(¢) =
gkav g . gMan that is, Lf = (P(¢)f)", where f€ % and f, f stand for the
Fourier transform an its inverse, respectively.

Given ¢ €. such that [g(x)dx#0 and f€ .5, we set f*(x)=
SUP(x_y<( |/ * 8 ¥), where g,(x) =t"'“'¢(4; 'x). The space of all tempered
distributions f such that f*& L? is called H” and it is defined
1= ££%(0) dx (cf. [1])

We will prove

THEOREM 2. If |a|/p < km + |a|/q, then the differential operator L™ is
an isomorphism between #° . and H”.
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2. PrRoOOF OoF THEOREM 1
For the proof of this theorem we need the following lemmas:

(2.1) LemMa. Let f, and f, be two members of the class F € E7. If
P =f, —f, thenfor every o there exists a constant C, such that

|D*P(y)| < Co(n(fy, x,) + n(fy, ;D% —p] + [x, —p])* ",
Sfor every x,,x,, yER".

Proof. Let ¢ € C™ with suppdc{[x]<1} such that if ¢,(x)=
A'%'9(4,x) then Q=Q ¢, for every Q€ .7 and every A >0; for the
existence of such ¢ cf. [5]. Differentiating P =P x ¢, we have

DeP(y)=at+ee |

[y—z]<A™

(1(2) = f(2)D*¢)D PN A (Y — 2)) dz.
If p=2{y—x,]+2[y—x,] =21"" we have

| DP(y)| <A™ “’"’J (D) AA(y — 2)) dz

[x,—zl<p

+ platrea | /@) (D*$)AA(y — 2))] dz.

[x;—z]<p

Thus, applying Hdlder’s inequality to these integrals we obtain the desired
result.

(2.2) LeMMA. The following properties are satisfied.
(i) Given F€ E? and x, € R" such that N(F, x,) < o0, there exists a
unique f € F such that n(f, x,) < oo and then n(f, x,) = N(F, x,).

(i) If {F;} is a sequence of elements of Ej and F; converges to F in
#P for some p, 0 < p < 1, then F; converges to F in E.

(i) If {F;} is a sequence of elements of EY and there exists x,€ R"
such that ) N(F;,x,) < oo then )" F; converges in E} to an element F and
N(F, x,) < X N(F;, x,). Moreover, if f; € F; is such that n(f;, x,) = N(F;, x,)
then 3 f; converges in L. to the function f€ F which satisfies n(f, x,) =
N(F, x;).

(iv) The space #7 is complete.

For the proof of this lemma cf. [2].

(2.3) LeMma. Let f be a function with compact support such that for
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la| <u+ 1, D°f is a continuous function. Let us denote by F the class of f in
E3. Then there exists a real number A such that AF is a p-atom in EY.

Proof. First, we prove that N(F, x) € L™. This follows immediately if we
prove first the inequality

|f(y)— N DYy — x) e

a-a<u

<Cly—x]™

If [y —x] <1, this inequality is obtained by applying Taylor’s formula. In
fact,

‘f(y)— ¥ D“f(x)(y~x)a/az]

a-a<u

N O DYX)(y—x)at+ N DY(x+ Oy —x)(y—x)*/al
lal<u utal<u+1
a-azu

<Cly—x|“

On the other hand, if [y —x] > 1, we have

|f<y>— N DYy — 0 al [ <1t N DY [y — X1l

a-a<u a-a<u

<Cly—x]*.

Let B be a ball such that suppf< B and let C, be a constant such that
N(F,x)< C,.If A=|B|~"? C, ' then it follows easily that AF is a p-atom in
Eq.

(2.4) LEmMA (Partition of unity). Let Q be a proper subset of R". There
exists a sequence {¢,} of functions C* with compact support which satisfies:

() 0< o)< 1 and 3, 6,(x) = xo(x);
(ii) for every k, there is a ball B,=B(x,,r,)<Q such that
supp ¢, < B, and for every z € B,, r, < d(z, 2°) L Cry;
(iii)) for every k we have B(x,,2r,) = 2, moreover, there exists an

integer M such that the number of balls B(x;, 2r;) which intersect B(x,, 2r,)
is not greater than M;

(iv) for every a we have |D*¢(x)| < C,ry* % with c, independent

of k.

Progf. For the existence of the family B(x,, r,) cf. [6], and the partition
of unity is obtained in the same way as in {9].
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(2.5) LEMMA. Let p be such that |a|(u+|al/q)”' <p<1, and let
Fe#*. Givent>0let Q=20,={x:N(F,x)>t}; Q is an open set because
N(F, x) is lower semicontinuous. Let {¢,} be the partition of unity associated
with Q in Lemma (2.4). For every k, let y,€Q° such that
d(B(x,, 2r,), 2°) = d(B(x,, 2r,), y,)- Given a member f of the class F, by
Lemma (2.2), there exists a polynomial P(y,,y) in .7, which satisfies,

N(F, y,) =n(f(¥) = P(yis ¥) Vi)

For every k, we set

wi() =D (¥) = P(yis 1))

and we denote by W, the class of w, in E%. Then, the following conditions
are satisfied:

(i) N(W,,x)< CN(F,x) if x € B(x,, 2r,);

(i) N(W,,x) < Ce(r/(ry + [x —x, 1)) 19 if x & B(xy, 2r,);

(iii) the series >, N(W,,x) converges almost everywhere in R",
moreover,

| (% N(Wk,x))pdx< k’jN(Wk,x)ﬂ dx<C[ NFxY dx;

(iv) the series 3, W,= W converges in E} and we have N(W, x) <
> N(W,, x) almost everywhere;

(v) [NW,x)dx<C [y N(F, x)* dx; and

(vi) if G=F— W then N(G, x) < Ct.

Proof. (1) We assume N(F,x) < oo, since otherwise the inequality is
trivial. For every x, let P(x, y) be the polynomial which satisfies

n(f(y)—P(x,y),x):N(F,x).

We set
0,(x,y) = }_ D24, (VNP ¥) = P(3is ) ]y=x (y — x) !
-T ¥ (‘;)D;**wk(y)D;[P(x,y)—P(yk,y)ny:x(y—x)“/a!.

Let us estimate p~“[p 7' [|,_ ., wi(¥) — Qulx, »)? dy]'/%. By Lemma
(2.1) and taking into account that [x, —y,] < Cr, and that N(F,y )<<
N(F, x) we have

| D3(P(x, y) — Py, V) < CN(F, x)(p + 1, )74 (2.6)

409/100/1-10
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Assume p > 2r,; in this case,
[wi(¥) = Qu(x, I BV (¥) — P(x, p))|
+ [8(V)P(x, ¥) — Py, ) + [ Qilx, p).

By (2.6), we have

|84 (P)(PCx, ¥) = P(y, ) < CN(F, x) p*.
On the other hand, by Lemma (2.1), we obtain
|DS(P(x, ¥) = P(yi Py = x| S CN(E, x)|x =y, |*7 4 SON(F, x) r” @7

Therefore, since [y — x| < p and p/r, > 2, we have

Qe < N N Cr T AN(F, x) T

ara<u y<a

K CN(F, x) p*.
Then for p> 2r,, the following inequality is satisfied:

[wi() — Qulx, V) < CLS(¥) — Plx, y)| + CN(F, x) p*.

Now we consider the case p < 2r,. By definition of Q,(x, y), we have

wi(¥) — Qu(x, ») = g (D) = P(yio 1)) — X [D%(X)((y —x)*/BY)

B-a<u

X N DUPX,Y) = P(r o (= X)¥! |

y-a<u—pB-a

Adding and substracting the expression

8NP, y)+ N Do (x)(y — x)°/BY(P(x, ¥) — P(34-¥))

Bra<u

we obtain
Iwil(¥) — Qe M S[f (1) — P(x, y)| + 4, + 4,,

where

A= 16,0~ X DPh(x)y—x)°/B!| |P(x,y) — P(y,, y)l

Bra<u
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and

A,=| S D0 - 28 [P(x,y>—P(yk,y)

B-a<u

N DUPG ) — Py (y—x)y/y!j ( .

yra<u—pB-a

By (2.6) and applying Taylor’s formula we have

A, < CN(F,x)r;

Y D, (x)(y —x)"/p!

B-azu
1Bl <u

+ > DRy —x)/p

u|Bl<u+l

[}

where y, belongs to the segment joining x and y.
Since p/2r, < 1, it follows that

A <CNF, x)ry Y r. 29" L CN(F, x) p*.
mlni

Applying Taylor’s formula in 4, we obtain

A4,<C N nhptel N DIPEY) = P(p Pl (7 = X!
Bea<u u—B-asya<u
lYI<u—B-a
+ h) DUP(, y) — Py sy, (9 — XV |,
u—Braglyl<u—-B-a+l
ya<lu

where y, belongs to the segment joining x and y.
Since [y, — x] < p and [y, — y,] < Cry, then

4,<C Y Y NEXp/r) P ri < CN(F, x) p*
Bra<u u—B-agy-a<u
IPI<u—B-a+1

Therefore, for every p > 0 and for [y — x] < p we have
[wi(¥) — Qulx, I < Lf () — P(x, )l + CN(F, x) p*.
Then
n(Wk(y) - Qk(x’ y)a x) < CN(F9 x)

and (i) is proved.
For the proof of (ii), (iii), (iv), and (v) cf. [2].
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Now we prove (vi). Let x,& Q such that ), N(W,,x,) < oco. Since
xo &€ B(x,, 2r,) for k=1, 2,..., we know that w, is the unique member of the
class W, which satisfies n(w,, x,) = N(W., x,).

Then, by (iii} of Lemma (2.2) the series }_, w, converges in L to a
function w which is the member of the class W=}, W, which satisfies
n{w, x,) = N(W, x,).

Therefore, the function g =/ — w is a member of the class G = F — W and
we have

g)=/(y) if yen
=N 6(»P(y.y) if yeEQ
k
We observe that g is an infinitely differentiable function in £2. Let
b,(x)=D"g(x) if xen,
=DsP(x,y),_, if x€Q"

We will prove that for o - a < u, x € 2¢, and ¥ € R" we have
N e R )
B

In fact, if x € 2¢ we know by Lemma (2.1) that
|DS(P(X,y) — P,y K CH([X — p| + [x —p )7 ?

and, taking y = X, we have

‘ ba(®) = X ba ) x)P/B! | < Ce[g—x]*

Now we consider ¥ € Q. Let j be such that X € supp ¢; and [y, — X| <
[y, — X] for every k such that X € supp ¢,. Then

Dag(f) —D;'P(X,y)h,:;

=Y A a 8 = _py . -
T [54'27;& <ﬂ )D ¢k(x)(DZ’P(yk’y){y:x DyP(y.l’y)|y—x)

+ [D;')(P(yj’y)|y=f_D:P(x’y)'y:f}'

Therefore, applying Lemma (2.1) and taking into account that [y, — x| +
[y, — %] < Cry, [£—p;] <[ —x], and r, < [£— x| we get

| D2g(X) — DyP(x, y)ly—xl < Ct[X — x]*" 4

Then (2.7) is satisfied for every x € R".
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Next, we will prove that for every x € £2 and every X € R” the following
inequality is satisfied:

bo(X) — Y b(x)(x—x)%/al | < Ct|x — x]“ (2.8)

In order to prove (2.8) we need the estimate
|Dg(x)| < Ctd(x, Q)¢ (2.9)

for every x € 2 and for « - a > u. In fact, if x’ € Q° and [x — x| = d(x, 2°)
then

- 3 a a ’
Dogx)=Y N ( )D%k(x)DzP(yk,y»,,:x—D,.P<x,y)l,,,,x

k Bty=a

A \T a B 7 !
=YY () P WIDIPR ) P

k Bt+y=a

Again applying Lemma (2.1) and taking into account that [x' —x]|=
d(x, 2°) < Cr, and [y, — x| < Cr,, we obtain (2.9).

Now we prove (2.8). We consider the cases [x— X] < 3d(x,2¢) and
[x — %] > 1d(x, 2°). In the first case, applying Taylor’s formula we have

bo(B) = X ba(x)(X—x)*/a!

ara<u

= Y b (X)X —x)*/al + N b, (x + s(Xx — x))(x —x)*/a!,
lal<u u<lal<u+t
a-azu

where s € |0, 1].
As d(x + s(¥ — x), 2°) > Ld(x, Q°), applying (2.9) we get

bo() — N b, (x)(X —x)*/a!

a-a<u

<Ct N dx, Q9 (£ —x]7 < Ct]F— x]".
131'554'.'1

Now we consider the case [x —X]| > 3d(x, 2°). Let z € 2° be such that
[z — x| =d(x, 2°). Adding and substracting the expressions

> b (z)(X—2z)%/a!  and > DSP(z,p)ly-, (X —x)/al,

a-a<u a‘a<u
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and by (2.7) we have

bo(®)— Y by(2)E —2)*/al

ara<u

SCtx—z]* < C(|z — x] + [x — x])* < Ct[x — %%,

N [ba(x) — DEP(z, )y _ )& — x)*/a!

a-a<u

<Ct N [x—z]*Te0 [ —x]|* L Ct[xX — x]¥,

a-a<u

and
N b (2)(X — 2)%/al = P(z, %)

-
a-a<u

= N DeP(z,y),_, (F—x)*/al.

a-a<u

Then (2.8) follows. Applying (2.7) and (2.8) and since b,=g almost
everywhere (cf. [4]), we obtain

N(G,x)< Ct.

Proof of Theorem 1. (i) Let p<|a|(u+|al/g)”" and let f& 7. If F is
the class of fin E7, then N(F,x)& L”?. In fact, since f& .7, there exist a
ball B = B(0, r) and a real number § > 0 such that

1/q
(J |f(y)—P(y)|"dy) >0  forevery P€.7,.
B

On the other hand,

1/
n(f—Px)=supp* (1Bl IFG) PO A)

B(x,

If [x] > r, then B(O, r) = B(x, 2[x]). Therefore, taking p = 2[x] we have

1/q
1£(3) — P()l° dy)

> Co[x]~wrlava and then N(F,x)€& L”.

n(f—P, x)> C[x]*(u+|a|/q) (J
B(x.2[xD)

(ii) Let p>|a|(u+|al/q)~'. We know, by Lemma (2.3) that there
exist p-atoms in EY. Moreover, we know that if 4 is a p-atom in E7, then
[ N(4,x)?dx < C, where C is a constant independent of 4, (cf. [2]).
Therefore, #7 contains nontrivial elements. If {4,} is a sequence of p-atoms
in E? and {g,} is a numerical sequence such that }_; |u#,|” < co then the series
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3, u;A4; converges absolutely in #77. Even more, if we denote by F the sum
of this series we have

[ NExp axr<C S jup.

Following the same method as in [3] we get the second part of the proof.

3. THE PROOF OF THEOREM 2

Let m € N. In the sequel, we will prove some properties of an elementary
solution of L™.

(3.1) DeFINITION. A function f is called quasi-homogeneous of degree /
if £(4,x)=A'f(x) for every A > 0 and every x # 0.

(3.2) DEFINITION. A distribution T is called quasi-homogeneous of
degree [ if for every €% and every A >0, (T,¢,)=4T,¢), where

Balx)=A71"g(d ; 'x).
It is easy to prove that the following properties are verified:

If TE€.¥" is a quasi-homogeneous distribution of degree /, then T
is a quasi-homogeneous distribution of degree —|a|— L 3.3)

If T is a quasi-homogeneous distribution of degree / and there
exists a function g continuous in R"\{0} such that (7, ¢)=
[g(x) ¢(x)dx for every ¢€ Z(R"\{0}), then g is a quasi-
homogeneous function of degree /. (3.4)

Let g€ C*(R"\{0}) be quasi-homogeneous of degree I Then
D°g is quasi-homogeneous of degree /—a-a. Moreover,
|D?g(x)| < C,fx])'m . (3.5)

(3.6) LEMMA. (a) If km < |althen (P(&))™™ is a tempered distribution
and ((P(£))~™) is an elementary solution of L™ and
(i) it agrees with a function h € L|,. "\ C*(R"\{0}),
(ii) & is quasi-homogeneous of degree km — |a|.
(b) Let km>|a|. We define
mo=[ |s0- 3 puorem]Ee)

Bra<km—|al

+OPE) e
[£1>1
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Then T is an elementary solution of L™ and
(i) it agrees with a function h € L|,.N C*(R"\{0}),
(i) fa-a<km—|a|+ 1 then D*hE L),

(i) if a-a>km—|a| then D°h is a quasi-homogeneous
Sfunction of degree km —|a|—a - a.

Proof. (a) Since km <|a|, (P(£))"™ € L|,.; moreover, it defines a
tempered distribution.

In order to prove (i), we show first, that ((P(£))™™)" agrees with a
function h € C*(R"\{0}) in the complement of the origin. Let ¥ € & be
such that P(&)=11in {[£] < 1} and P(£) =0 in {[&] > 2}, then

((PE) ™) = (FPE)™™) + (1 = ¥ENPE))™ ") =h + hy.

Since Y(&)(P(€)) ™ has compact support, £, is an analytic function. Let us
prove that h, agrees in the complement of the origin with a C* function.
Given a and § we have

xDPhy = C, 4(D*[(1 ~ (&) EPE)) ")
and by (3.5) we obtain

1D2[(1 = ¥(©) EPE) "I Copl)FmHPremme for [¢]> 2.

If a is such that —km+pf-a—a-a<—Ja] then D<[(1— ¥(S))
E(PE)~™) € L' (R"). Therefore, x*D?h, is a continuous and bounded
function.

Taking appropriate values of a it follows that D®h, agrees in the
complement of the origin with a continuous function in R"\{0}. Therefore,
((P(&)) ™) agrees in the complement of the origin with a function
h € C®(R™\{0}). Moreover, by (3.4) we obtain (ii) and by (3.5) h € L,
and, therefore, ((P(¢)~™)" — h defines a distribution supported at {0}. Then

(PE) " — k(&)= Q(&),

where Q is a polynomial. Since # vanishes at infinity, then Q =0 and part
(a) of the theorem follows.

(b) Let T, and T, be defined by

Tepy=[  (6@- N DO PE) "

[£1<1 Boa<km—|al

(Tog)=|  oQPE) "d.

Then T=T, + T,.
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We begin with (i). Following the proof of (a), we can prove that T agrees
in the complement of the origin with a function A € C*(R"\{0}). Since T,
has compact support, T, is an analytic function. On the other hand, since
km>|a|, T, € L% and, therefore, T, € L>. Then T is a locally integrable
function and we have T = h.

In order to prove (ii) we observe that

DT, = C, & x(O®EE) ™),

where y(&) is the characteristic function of {[¢] > 1}. Asa -a —km < 1—|a|
and 2 < |a|, we obtain E*x(E)(P(E)) "€ L™

Finally, if a - a > km — |a|, then &°T agrees with the function E*(P(£)) ™™
which is quasi-homogeneous of degree a - @ — km. Then by (3.3) and (3.4)
we obtain (iii).

(3.7) LEMMA. Let f€ C®(R™\{0}) be a quasi-homogeneous function of
degree —|a| + a;. Then, k = df/ox; verifies:
(i) ke C(R™\{0}),
(ii) k is quasi-homogeneous of degree —|a|, and
(i) [ eqeren k() dx =0.
Then k is a singular integral kernel of parabolic type {(cf. [7]).

Proof. Part (i) is obvious. Part (ii) follows immediately from (3.5). In
order to prove (iii) we will show first that the following limit exists and it is
finite for every ¢ € &,

lim J k(x) ¢(x) dx. (3.8)

20 Jix) >

We have

e-0 [

0 , 0
(ache)=—tm| o5 perax
After the change of variables 4, y = x, we obtain

<aixjf,¢>= —lim J | >1f(y)%(¢(A6y)) dy.

£=0J1y)

Then by Green’s formula we have

<éa?,ﬁ¢>= firm U[ym k(y) 9(4, ) dy

H 065, do0) .
[yl=1
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Since lim,_q [1y=1 S(3) ¢(A,¥) y; do(p) = $(0) [(,,_, f(¥) y; do(y), we
obtain that

lim k(y) 94, y)dy

£-0 [y]>1

exists. It is easily seen that, after a change of variables, it agrees with (3.8).
Taking an appropriate ¢ it follows that

lim k(x) dx

e20 Jecx]<2

exists. On the other hand, after a change of variables, we have

k(x) dx = J k(x) dx

J1<[x]<2 A<[x]<2A

for every A > 0. Taking A=2"% k=1, 2,..., we get

k(x) dx = J k(x) dx.

J1<[x]<2 2-k<[x] <2 -k+!

Now

i
k(x)dx = lim

lim ' k(x) dx
£-0 J£<[X]<2 jow i:0J2—i<|x]<2f,'+1 ( )
= lim (j+1) J k(x) dx;
= 1<fx]<2

since this limit is finite, (iii) follows.

(3.9) CorOLLARY. Let h be the elementary solution of L™ which is
defined in Lemma (3.6). If a - a = km then D*h is a singular integral kernel
of parabolic type.

(3.10) LEMMA. The differential operator L™ is well defined in Ef,, and
is injective on Y .

Proof. If f, and f, are two members of the class F € Ej,, then L"f, =
L™f, because f, —f, € F,,. Therefore, we may define L™F = L"f, where f is
any member of F. Given FE€#7} ,, and f a member of F, we know that
fE &' (cf. [2]). Then if L™f=0, we have (P(£))” f=0 and, therefore, f is
supported at the origin. Now, the proof follows as in [4, Lemma 9].
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(3.11) LeMMA. Let g€LYL NS and f=L"g. If j>km+|a| and
¢ € S then

S*) < Cyam(®#) (8 )
Proof. IfhE LY and ¥E€.¥ then

 1h)| 19 de < Cp o #) ik, O). (3.12)

For the proof of (3.12) see [2]. Now
(/*8)(3) = (L7g * 8)() = (8 + L"8)(»).

Since 6,(¢) = 6(4,&), we have

L") = [ e T4 (P(&))" §(4,8) dE.
If we set =4, then

L78(y)=t"""I""(L7G)(A, ).
Therefore,
[ 940) =17 [ g2)L9), (y — 2) dz.
If z=x+ A,u, we get
(F* () =17 [ gl + A, u)L™), (v — x — A ,u) 19 d.

Applying  (3.12)  with  Au)=g(x+4,4) and W)= (L"9),

(y—x—A,u)t', and taking into account that n(h,0)=t""n(g, x) we
obtain

(/% 8)(0) < Cn( g, %) by, (L"$)A ' (y — x) — u)).

Since [y — x| <t, we have 1 + [u] <2(1 + [4; '(y — x) — u]); then

P LA (v = x) —w)
<C sup (LA (y =)= w)| (1 + [4; ' =) —u)Y

= Cp, oL"$) < CD, 4n(®)

and the lemma is proved.

(3.13) LemMA. Let b be a p-atom with null moments up to order
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N>km, suppb<B(0,r), and ||b|,,<|B|~"". Let f be the solution of
L™f=0b obtained as f=h b, where h is the elementary solution of L™
obtained in Lemma (3.6). Then

(i) if [x] > 2r, we have

(DY G < Crr e xfm=e e 1/ [x]) 5 for every a
(ii)
Proof.

if [x] < 2r, | f(x)| < Cr'ePHkm polds.
(i) Since [x]|>2r and L™ is a hypoelliptic operator, f is
infinitely differentiable at x and

D°f(x) = |

[z1<r

D%h(x —z)b(z) dz

= J N' DEDh(x)((—2)%/B!) b(z) dz
[z1<r |BI<N

+|

v
tz1<r 1gI=N

DPD®h(x — Az)((—2)*/B") b(z) dz
N+1
with 0 < A < 1. Since b has null moments up to order N, the first addend
equals zero.
If |8|=N + 1, then, by Lemma (3.6), D®"%h is a quasi-homogeneous
function. Then

|IDf(x)<C N r*\ﬂ\/ﬁrlkaJ
1BI=N+1

IX _ /lzlkm—ml—ra-aflba dz.
[z]<r

Since [Az] < r < [x]/2, we have |x — Az] > |x]/2. Therefore,

|IDf(x) < C : r*'a\/P[xlkmfma (r/lxl)lbuﬂa\'
[Bl=N+1
As r/|x] <} and f-a>|f|=N+1, part (i) follows.

In order to prove (ii), we first assume km < |a|. In this case, # is quasi-
homogeneous of degree —|a| + km and, therefore,

SEI] k= 2llb@ldz <O | e~ ) dz

e[ Jh(pldy<Crt | p]ietan gy
{yl<3r [¥]1<3r
— Cr—al/pi+km

On the other hand, if km >|a| we have f(x)=(hT)" (x), where T is the
Fourier transform of A.
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Applying Taylor’s formula to the function e*"”*, we have

Boy=| ety

[yl<r

= Y [ emyotansmd+ Y| @/
[yl<r ri<r

lal <N la]=N+1
1
X (j QITi)'* y* e {1 — )Y (N + l)dz) b( ) dy.
0
Since » has null moments up to order N, the first addend equals zero. Then

BOI<KC X gl rearielo (3.14)

lal=N+1

with C independent of b. Moreover, if f-a<km—|a] we have
(D%5)(0) = 0. Then AT = b(&)(P(&))~™ € L'(R"). Therefore,

S() = [ e M) (PE) " de.
Then
I [ 1B@)| PE) ™

= b PE) T +| b (PE) "
[{1<r-t ig>r-!
By (3.14) we get

Jo. 5@ @) mae

S

<CJ Z [é]a-ara-a—la\/p+|a1[é]—kmd§

[E1<r-T jal=N+1

<C Z ra-a~|a|/p+|a|r7a-a+kmr7|a| :Crvlal/p+km'
lal=N+1

On the other hand, applying Schwartz inequality we obtain

[ b ee de<clbl (e a) "

172 0 1/2
_ C (J. Ib(y)|2 dy) <j S-ka+|a|—l dS)
[y1<r r=1

< Cr—al/pplal/2 pkm—1al/2 _ Cp—lal/p+km

Then (ii) is proved.
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(3.15) LEMMA. Let |a|/p < km + |a|/q and let b be a p-atom with null
moments up to order N> km+|al/q. Let [ be the solution of L™f=b
obtained as in Lemma (3.13). If F is the class of f in E{,, then there exists a
constant C, independent of b, such that

j N(F, x)’ dx < C.

Proof. By translation, we may assume that supp b is centered at the
origin. That is, supp b = B(0,r) and ||b|,, <|B| "". In order to estimate
N(F, x), we first assume that [x] > 4r. In this case, if [x] > 2p we have

prm [p""f

[ylI<o

L Cr=ae(p/|x])lal ¥ 41 (3.16)

1/q
7G4 ) — PG ) dy]

with POx, y) =3, . acam D%f (x) y*/al. In fact,

fx+y)—Px,y)= N Df(x)y*/al
lal<km
a-a>km

+ N D*Y(x+8y)y/al  with 0<O<L

la|=km

Then

t/q
£ G+ 7) — Px, p) dy)

p=km+1al/ (J

1/q
gpf(kmﬂai/q) [ S ( |Daf(x)ya/a!|q dy)
la| < km [yl<p
a-azkm

O (T

lal=km

=p—(km+|a|/q)([1 +12)'

[¥1<o

Applying Lemma (3.13), we obtain

p—(km+|a|/q)1l £C Z (p/[x])a-a—km rfial/p(r/[x])laHNH.

la|<km
a-axkm

Since p/[x] < | and a - a — km > 0, we have

p*(km-f- |a|/q)]1 g Cr‘lal/l’(r/[x])ml +N+ 1‘
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As [By]<p<|x]/2, we have [x+6y]>[x]—[0y]>[x]/2>2r and,
therefore, we can estimate /, in the same way as I,.
Following with {x] > 4r, we assume now. [x] < 2p. Then

p—(km+ lai/q) (J'

[yl<p

1/q
f(x +3) — Px, p)f dy)

g p~hmtlala [ (( 1f(x +p)? dv v + ( | P(x, y))? dy) l/q}

(vl<p Viyi<o

___p—(kmnclal/q)(]1 +12)'

For I, we have

1/q

1/q
<UL ( rwrd) (] o a)
By (ii) of Lemma (3.13) we get

1/
(J |f(“)|q du) ! < Cr‘lal/p+km+\al/q_
[u]l<2r

Q
=]
-+
-
o
Q
=
-
o
14
j=ul
f2+]
=
(=%
(=n
~
~—
\-/
_.,
=
SS

(3.13) we obtain

1/q
[u]kmq—IaM*Nq‘q du)

1/q
<J |f)? du) L Cp-latp+ial+N+1 (J
{ul>2r

(ul>2r

- +km+tal/
LCr lal/p+km+lal/q

Then,

p—(km+|a|/q)11 < C([x]/z)—(kmﬂal/q) plal/p+km+lal/q
For I, by (i) of Lemma (3.13), we have

e

i/q
N D (x) y¥/al)? dy)

yl<p | a.a<km
gcr—lal/p(r/[x])lal+N+1 Z [x]kmw-apa-aplal/{
a-a<km

Therefore,

pTmHAUDL, & Cr P (r/[x]) A S ([x ),

a-a<km
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Since [x] £ 2p, we have

N ([xlp)mma g

el
a-a<km

Then
p~(km+|a¢/q)[2 < Cr—lal/p(r/{xJ)IaHNH‘

As |al/q + km < N, it holds that

pkm+1ai/a) U

[¥l<p

|/ (x +y)— P(x, | dy) v < Cr—lal/p(r/[x])km+la|/q
(3.17)

for 4r < [x] < 2p. By (3.16) and (3.17) it follows that

N(F, x) < Crf'“'/p(r/[x])"'"”"‘/q.

Then

j N(F, x)" dx < C,

[x}>4r

where C is a constant independent of 5. For (x| < 4r we have
S(x+z)—P(x,z)

[ (hextz=p)= N Dohtx—y)z/at) H(» dy

\ a-a<km

- (h(x+z—y)— v D"h(x—y)z"/a!) b(y) dy

[x—y]l<2[z] a-a<km
+ (h(x+z—y)— v D"h(x—y)z"/a!) b(y) dy
[x—y]>2[z} a-a<km
—1, 41,

After the change of variables x — y = u, we have

mgj hu+z2)— > D%h(u)z%/a! | |b(x — u) du
[u]<2[z] a-a<km—|al (318)
+ h Dh(u) z%/a! | |b(x — u)| du.
[ul<2[z) | km—lal<a-a<km

As D“h is quasi-homogeneous for a - a > km — |a|, the second part of the
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sum is bounded by Cr~='"?[z]*™ If km < |a|, then the first addend reduces
to

J It 2) b )| d
[ul<2(z]

and since # is quasi-homogeneous, it holds the same estimate. On the other
hand, if km > |a| we have

j hu+z)— S Dh(u)z%/al | |b(x — u) du
[u]<2[z] ara<km—|al
L Crmlap f hu+z)— N D%h(u)z%/a!| du.
[u]l<2[z} a-a<km-la|
Applying Taylor’s formula we have
j hu+z)— N Dh(u)z%/a! | du
[u]<2[z] a-a<km—lal
:j N Deh(w) z%/al (3.19)
(u]<2[z] |al<km—lal
a-a>km—lal|
1
+ N (zﬂ/a!)j Dh(u + tz)(1 — £)° 1 s dt du,
km—ljal<|a|<km—ial+1 0
where s is the integral part of km —|a] + 1.
If we set u=A,v and =4, z, then (3.19) equals
J [Z]|a| ‘ z [z]A|a|+km—a-a D"‘h(v)z“/a!
[vl<2 lal<km—lal
a-a>km-—lal
. 1
+ Z (za/a!)J’ [z}—LaHkmfa-a
km—lal<la|<km—|a|+1 Y
X D®h(v +2)(1 — 1) 'sdt ’ dv
= [z]km j S D°h(v) £%/a!
[v]<2 la| <km—|a|
a-a>km—|al
1
+ D (z'“/a!)J’ D®h(v +t2)(1 — t)* ' s dt ‘ dv
km—lal<|a|<km—|al+1 0
= [z]*m J ho+2)— S D) £*/a!| dv.
[v]<2 a-a<km—|al

409/100/1-11
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By Lemma (3.6) we know that D®h € L. for a - a < km — |a|, then

J hu+z)— Y D%h(u)z°/a! | du
[u]<2[z] a-a<km—la|
= [z]km J Rv+2)— Y Doh@)°/a!| dv
[v]<2 a-a<km—|al

< [z]* (LM hw+ D) do+ N jm(z |Dh(v) |Z]**/a! dv)

a-a<km—|al

< Clz]*m,

where C is a constant which depends on 4 and its derivatives of order o, with
a - a< km—|a|. Therefore,

|11| < Cr—la\/ﬂ[zlkm'

For I, we have

N DohGr—p) 2°/al) () dy

a-a<km

n=| (h(x+z—y)—
[x—y]22[z]

= (hctz=0= X Doher—y)z°/at) b(y)dy
tx—»1>2iz] a-a<km
+] N Dh(x—y)zt/al) b(y) dy =, + ;.

[x—y1>2(z) a-a=km
By Taylor’s formula we get

5= ( N\ DeR(x— ) 2%/l
[x—yl>2]z]

lal <km
a-a>km

+ N Deh(x—y+62) z“/a!) b(y)dy

la|=km+1

with 0< @< 1. Since [x—y+6z|>|x—p|/2 and as D°h is quasi-
homogeneous for a - @ > km, we obtain

|J | < Cr1aip|z]km,

On the other hand, by Corollary (3.9), D®h is a singular integral kernel of
parabolic type for a - a = km. Therefore, the maximal operator

| Dhx—y)e(»ay

[x—yl>e¢

KXg(x)= sup

0
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is bounded in L?* (cf. [7]). Moreover,
Vo< Clz]™ Y K¥b(x).
a-a=km
Then, we have obtained
[f(x +2) = P, 2) S Cr= ' [z]*" 4+ Clz[*" N K¥b(x).
a-a=km
Therefore, for [x] < 4r we have
N(F,x)<C (r”“'/" + N K;:b(x)) .
a-a=km

Then

j NF,xPdx<C+C Y\ j (K*b(x))? dx.

[x]<ar a-a=km "’ Ix1<4r
Applying Holder’s inequality with r = 2/p and taking into account that K} is

bounded in L? we get

[ N@xpax<c
[x1<4r

Then the lemma is proved.

Proof of Theorem 2. Given F€#7 ,,, by Lemma (3.11) we have
(L™F)*(x) < CN(F, x).
Then

IL"Flly» < ClIFlleg,,-

q.km

Moreover, by Lemma (3.10) we know that L™ is injective. On the other
hand, given f€ H?, there exist a sequence {b;} of p-atoms with null moments
up to order N>km +|al/qg and a numerical sequence {4;} such that
S=24;b; and 37 |4,]” < C|| flly» (cf. [8]). The proof will be finished if we
show that L™ is surjective. This follows from Lemma (3.15) in the same way
as in [2].
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