Parabolic Maximal Functions and Potentials of Distributions in H^{p}

Ricardo G. Durán
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428)Buenos Aires, Argentina

Submitted by G.-C. Rota

1. Notation and Statement of the Main Results

By $x, y, \ldots, x=\left(x_{1}, \ldots, x_{n}\right)$ we denote points in the n-dimensional Euclidean space R^{n}. Given an n-tuple $a=\left(a_{1}, \ldots, a_{n}\right)$ of real numbers $a_{i} \geqslant 1,1 \leqslant i \leqslant n$, we will consider the multiplicative group of matrices

$$
A_{t}=\left[\begin{array}{ccc}
t^{a_{1}} & & 0 \\
& \ddots & \\
0 & & t^{a_{n}}
\end{array}\right], \quad t>0
$$

If $x \neq 0$ there exists a unique $t \in R$ such that $\left|A_{t_{-1}} x\right|=1$ (cf. $|1|$); then we define $[x]=t$. If $x=0$ we set $[x]=0$. Therefore, the parabolic metric given by $d(x, y)=[x-y]$ is naturally attached to the group of matrices A_{t}.

The following properties are satisfied (cf. |1|):
(i) $\left.\left[A_{t} x\right]=t \mid x\right], t>0, x \in R^{n}$,
(ii) $\quad|x| \in C^{\infty}\left(R^{n} \backslash\{0\}\right)$,
(iii) $|x+y| \leqslant\lfloor x \mid+[y]$, and
(iv) $\left|x_{j}\right| \leqslant|x|^{a_{j}}$ for every $x \in R^{n}, i \leqslant j \leqslant n$.

If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, where the α_{j} are nonnegative integers, then $|\alpha|=$ $\alpha_{1}+\cdots+\alpha_{n}, x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$,

$$
D^{\alpha} f=\left(\frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}} \cdots\left(\frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}} f \quad \text { and } \quad \alpha \cdot a=\alpha_{1} a_{1}+\cdots+\alpha_{n} a_{n}
$$

Let $L_{\text {loc }}^{q}, 1<q<\infty$, be the space of all the real functions defined in R^{n} that are locally in L^{q}. We set $B(x, \rho)=\left\{y \in R^{n}:[y-x]<\rho\right\}$ and it is easy to verify that the Lebesgue measure $|B(x, \rho)|$ equals $C \rho^{|a|}$ (cf. [10]), where $|a|=a_{1}+\cdots+a_{n}$ and C is a constant depending only on a.

We will consider in $L_{\text {loc }}^{q}$ the topology given by the L^{q} convergence over compact sets which is induced by the family of seminorms

$$
|f|_{q, B}=\left(|B|^{-1} \int_{B}|f(y)|^{q} d y\right)^{1 / q}
$$

where $B=B(x, \rho), \rho>0, x \in R^{n}$.
Let u be a positive real number. If $f \in L_{\text {loc }}^{q}$, we define a maximal function $n_{q, u}(f, x)$ as

$$
n_{q, u}(f, x)=\sup _{\rho>0} \rho^{-u}|\cdot f|_{q \cdot B(x, \rho)}
$$

By \mathscr{F}_{u} we will denote the subspace of $L_{\text {loc }}^{q}$ which consists of all polynomial functions of the form

$$
P(y)=\sum_{\alpha \cdot a<u} a_{\alpha} y^{\alpha}
$$

This subspace has finite dimension and, therefore, is a closed subspace of $L_{\text {ioc }}^{q}$. The quotient space of $L_{\text {ioc }}^{q}$ by \mathscr{P}_{u} will be called E_{u}^{q}. For $F \in E_{u}^{q}$ we define the family of seminorms

$$
\|F\|_{q, B}=\inf \left\{|f|_{q, B}: f \in F\right\}
$$

where $B=B(x, \rho), \rho>0, x \in R^{n}$. This family of seminorms induce the quotient topology in E_{u}^{q} which is a locally convex and complete metric space. For $F \in E_{u}^{q}$, we define the maximal function

$$
N_{q, u}(F, x)=\inf \left\{n_{q, u}(f, x): f \in F\right\} .
$$

This maximal function is lower semicontinuous as we can see following the proof in [4] for the elliptic case.

We will call $\mathscr{H}_{q, u}^{p}, 0<p \leqslant 1$, the set of all $F \in E_{u}^{q}$ such that its maximal function $N_{q, u}(F, x)$ belongs to L^{p}.

For the sake of simplicity we will denote $N=N_{q, u}, n=n_{q, u}$, and $\mathscr{H}^{p}=\mathscr{H}_{q, u}^{p}$, whenever this notation does not bring up any confusion.

Given $F \in \mathscr{H}^{D}$, we define

$$
\|F\|_{\infty}=\left(\int N(F, x)^{p} d x\right)^{1 / p}
$$

The set \mathscr{P}^{p} with the distance $d(F, G)=\|F-G\|_{\neq p}^{p}$ is a complete metric space.

As usual, we denote by \mathscr{S} the space of all infinitely differentiable
functions which are rapidly decreasing at infinity together with their derivatives. Given j, h nonnegative integers and $\phi \in \mathscr{S}$ we define

$$
p_{j, h}(\phi)=\max _{\alpha \cdot a \leqslant h} \sup _{x \in R^{n}}\left|D^{\alpha} \phi(x)\right|(1+[x])^{k} .
$$

This family of norms $p_{j, h}$ defines the usual topology of the space \mathscr{S}. The letter C will stand for a constant, not necessarilly the same in each occurrence.
(1.1) Definition. A class $A \in E_{u}^{q}$ is a p-atom in E_{u}^{q} if there exists a member b of A and a ball B such that supp $b \subset B$ and $N(A, x) \leqslant|B|^{-1 / p}$.

In Section 2 we will prove the following characterization of the space $\mathscr{H}_{q, u}^{p}$:

Theorem 1. (i) If $p \leqslant|a|(u+|a| / q)^{-1}$, then the space \mathscr{H}^{p} reduces to 0.
(ii) Let p be such that $|a|(u+|a| / q)^{-1}<p \leqslant 1$. If $F \in E_{u}^{q}$ then $F \in \mathscr{H}^{p}$ if and only if there exist a numerical sequence $\left\{\mu_{j}\right\}$ such that $\sum_{j}\left|\mu_{j}\right|^{p}<\infty$ and a sequence $\left\{A_{j}\right\}$ of p-atoms in E_{u}^{q} such that

$$
F=\sum_{j} \mu_{j} A_{j} \quad \text { in } \quad E_{u}^{q}
$$

Moreover, this series converges in \mathscr{A}^{p} and there exist two positive constants C_{1} and C_{2} such that

$$
C_{1}\|F\|_{\neq p}^{p} \leqslant \inf \sum_{j}\left|\mu_{j}\right|^{p} \leqslant C_{2}\|F\|_{P_{p}}^{p},
$$

where the infimum is taken over all decompositions of F.
Section 3 deals with the connection between \mathscr{A}^{p} and the space H^{p} of Calderón-Torchisnky (cf. [1]) when $a=\left(a_{1}, \ldots, a_{n}\right)$ has rational components.

Let k be the smallest positive integer such that k / a_{i} is an even number for every i. We denote by L the differential operator associated with $P(\xi)=$ $\xi_{1}^{k / a_{1}}+\cdots+\xi_{n}^{k / a_{n}}$, that is, $L f=(P(\xi) \hat{f})^{2}$, where $f \in \mathscr{F}^{\prime}$ and \hat{f}, \check{f} stand for the Fourier transform an its inverse, respectively.

Given $\phi \in \mathscr{S}$ such that $\int \phi(x) d x \neq 0$ and $f \in \mathscr{S}^{\prime}$, we set $f^{*}(x)=$ $\sup _{|x-y|<t}\left|f * \phi_{t}(y)\right|$, where $\phi_{t}(x)=t{ }^{|a|} \phi\left(A_{t}{ }^{1} x\right)$. The space of all tempered distributions f such that $f^{*} \in L^{p}$ is called H^{p} and it is defined $\|f\|_{H^{p}}^{p}=\int f^{* p}(x) d x$ (cf. [1]).

We will prove
Theorem 2. If $|a| / p<k m+|a| / q$, then the differential operator L^{m} is an isomorphism between $\mathscr{P}_{q, k m}^{p}$ and H^{p}.

2. Proof of Theorem 1

For the proof of this theorem we need the following lemmas:
(2.1) Lemma. Let f_{1} and f_{2} be two members of the class $F \in E_{u}^{q}$. If $P=f_{1}-f_{2}$ then for every α there exists a constant C_{α} such that

$$
\left|D^{\alpha} P(y)\right| \leqslant C_{\alpha}\left(n\left(f_{1}, x_{1}\right)+n\left(f_{2}, x_{2}\right)\right)\left(\left[x_{1}-y\right]+\left[x_{2}-y\right]\right)^{u-\alpha \cdot a}
$$

for every $x_{1}, x_{2}, y \in R^{n}$.
Proof. Let $\phi \in C^{\infty}$ with supp $\phi \subset\{[x] \leqslant 1\}$ such that if $\phi_{\lambda}(x)=$ $\lambda^{|a|} \phi\left(A_{\lambda} x\right)$ then $Q=Q * \phi_{\lambda}$ for every $Q \in \mathscr{P}_{u}$ and every $\lambda>0$; for the existence of such ϕ cf. [5]. Differentiating $P=P * \phi_{\lambda}$ we have

$$
D^{\alpha} P(y)=\lambda^{|a|+\alpha \cdot \alpha} \int_{[y-z]<\lambda-1}\left(f_{1}(z)-f_{2}(z)\right)\left(D^{\alpha} \phi\right)\left(D^{\alpha} \phi\right)\left(A_{\lambda}(y-z)\right) d z
$$

If $\rho=2\left[y-x_{1}\right]+2\left[y-x_{2}\right]=2 \lambda^{-1}$ we have

$$
\begin{aligned}
\left|D^{\alpha} P(y)\right| \leqslant & \lambda^{|a|+\alpha \cdot a} \int_{\left[x_{1}-z \mid<\rho\right.}\left|f_{1}(z)\right|\left|\left(D^{\alpha} \phi\right)\left(A_{\lambda}(y-z)\right)\right| d z \\
& +\lambda^{|a|+\alpha \cdot a} \int_{\left\{x_{2}-z \mid<\rho\right.}\left|f_{2}(z)\right|\left|\left(D^{\alpha} \phi\right)\left(A_{\lambda}(y-z)\right)\right| d z
\end{aligned}
$$

Thus, applying Hölder's inequality to these integrals we obtain the desired result.
(2.2) Lemma. The following properties are satisfied.
(i) Given $F \in E_{u}^{q}$ and $x_{0} \in R^{n}$ such that $N\left(F, x_{0}\right)<\infty$, there exists a unique $f \in F$ such that $n\left(f, x_{0}\right)<\infty$ and then $n\left(f, x_{0}\right)=N\left(F, x_{0}\right)$.
(ii) If $\left\{F_{j}\right\}$ is a sequence of elements of E_{u}^{q} and F_{j} converges to F in \mathscr{R}^{p} for some $p, 0<p \leqslant 1$, then F_{j} converges to F in E_{u}^{q}.
(iii) If $\left\{F_{j}\right\}$ is a sequence of elements of E_{u}^{q} and there exists $x_{0} \in R^{n}$ such that $\sum N\left(F_{j}, x_{0}\right)<\infty$ then $\sum F_{j}$ converges in E_{u}^{q} to an element F and $N\left(F, x_{0}\right) \leqslant \sum_{j} N\left(F_{j}, x_{0}\right)$. Moreover, if $f_{j} \in F_{j}$ is such that $n\left(f_{j}, x_{0}\right)=N\left(F_{j}, x_{0}\right)$ then $\sum f_{j}$ converges in $L_{\text {loc }}^{q}$ to the function $f \in F$ which satisfies $n\left(f, x_{0}\right)=$ $N\left(F, x_{0}\right)$.
(iv) The space \mathscr{H}^{p} is complete.

For the proof of this lemma cf. [2].
(2.3) Lemma. Let f be a function with compact support such that for
$|\alpha|<u+1, D^{\alpha} f$ is a continuous function. Let us denote by F the class off in E_{u}^{q}. Then there exists a real number λ such that λF is a p-atom in E_{u}^{q}.

Proof. First, we prove that $N(F, x) \in L^{\infty}$. This follows immediately if we prove first the inequality

$$
\left|f(y)-\sum_{a \cdot a<u} D^{\alpha} f(x)\left(y-x^{\alpha}\right) / \alpha!\right| \leqslant C[y-x]^{u} .
$$

If $[y-x] \leqslant 1$, this inequality is obtained by applying Taylor's formula. In fact,

$$
\begin{aligned}
& \left|f(y)-\sum_{\alpha \cdot a<u} D^{\alpha} f(x)(y-x)^{\alpha} / \alpha!\right| \\
& =\left|\sum_{\substack{|\alpha|<u \\
\alpha \cdot a \geqslant u}} D^{\alpha} f(x)(y-x)^{\alpha} / \alpha!+\sum_{u \leqslant|\alpha|<u+1} D^{\alpha} f(x+\Theta(y-x))(y-x)^{\alpha} / \alpha!\right| \\
& \leqslant C\left[y-\left.x\right|^{u} .\right.
\end{aligned}
$$

On the other hand, if $|y-x| \geqslant 1$, we have

$$
\begin{aligned}
\left|f(y)-\sum_{\alpha \cdot a<u} D^{\alpha} f(x)(y-x)^{a} / \alpha!\right| & \leqslant\|f\|_{\infty}+\sum_{\alpha \cdot a<u}\left\|D^{\alpha} f\right\|_{\infty}|y-x|^{\alpha \cdot a} / \alpha! \\
& \leqslant C|y-x|^{u}
\end{aligned}
$$

Let B be a ball such that $\operatorname{supp} f \subset B$ and let C_{1} be a constant such that $N(F, x) \leqslant C_{1}$. If $\lambda=|B|^{-1 / p} C_{1}^{-1}$ then it follows easily that λF is a p-atom in E_{u}^{q}.
(2.4) Lemma (Partition of unity). Let Ω be a proper subset of R^{n}. There exists a sequence $\left\{\phi_{k}\right\}$ of functions C^{∞} with compact support which satisfies:
(i) $0 \leqslant \phi_{k}(x) \leqslant 1$ and $\sum_{k} \phi_{k}(x)=\chi_{\Omega}(x)$;
(ii) for every k, there is a ball $B_{k}=B\left(x_{k}, r_{k}\right) \subset \Omega$ such that $\operatorname{supp} \phi_{k} \subset B_{k}$ and for every $z \in B_{k}, r_{k} \leqslant d\left(z, \Omega^{c}\right) \leqslant C r_{k}$;
(iii) for every k we have $B\left(x_{k}, 2 r_{k}\right) \subset \Omega$, moreover, there exists an integer M such that the number of balls $B\left(x_{j}, 2 r_{j}\right)$ which intersect $B\left(x_{k}, 2 r_{k}\right)$ is not greater than M;
(iv) for every α we have $\left|D^{\alpha} \phi_{k}(x)\right| \leqslant C_{\alpha} r_{k}^{-\alpha \cdot a}$ with c_{a} independent of k.

Proof. For the existence of the family $B\left(x_{k}, r_{k}\right)$ cf. [6], and the partition of unity is obtained in the same way as in [9].
(2.5) Lemma. Let p be such that $|a|(u+|a| q)^{-1}<p \leqslant 1$, and let $F \in \mathscr{H}^{p}$. Given $t>0$ let $\Omega=\Omega_{t}=\{x: N(F, x)>t\} ; \Omega$ is an open set because $N(F, x)$ is lower semicontinuous. Let $\left\{\phi_{k}\right\}$ be the partition of unity associated with Ω in Lemma (2.4). For every k, let $y_{k} \in \Omega^{c}$ such that $d\left(B\left(x_{k}, 2 r_{k}\right), \Omega^{c}\right) \fallingdotseq d\left(B\left(x_{k}, 2 r_{k}\right), y_{k}\right)$. Given a member f of the class F, by Lemma (2.2), there exists a polynomial $P\left(y_{k}, y\right)$ in \mathscr{P}_{u} which satisfies,

$$
N\left(F, y_{k}\right)=n\left(f(y)-P\left(y_{k}, y\right), y_{k}\right) .
$$

For every k, we set

$$
w_{k}(y)=\phi_{k}(y)\left(f(y)-P\left(y_{k}, y\right)\right),
$$

and we denote by W_{k} the class of w_{k} in E_{u}^{q}. Then, the following conditions are satisfied:
(i) $N\left(W_{k}, x\right) \leqslant C N(F, x)$ if $x \in B\left(x_{k}, 2 r_{k}\right)$;
(ii) $N\left(W_{k}, x\right) \leqslant C t\left(r_{k} /\left(r_{k}+\left[x-x_{k}\right]\right)\right)^{n+|a| / q}$ if $x \notin B\left(x_{k}, 2 r_{k}\right)$;
(iii) the series $\sum_{k} N\left(W_{k}, x\right)$ converges almost everywhere in R^{n}, moreover,

$$
\int\left(\sum_{k} N\left(W_{k}, x\right)\right)^{p} d x \leqslant \sum_{k} \int N\left(W_{k}, x\right)^{p} d x \leqslant C \int_{\Omega} N(F, x)^{p} d x
$$

(iv) the series $\sum_{k} W_{k}=W$ converges in E_{u}^{q} and we have $N(W, x) \leqslant$ $\sum_{k} N\left(W_{k}, x\right)$ almost everywhere;
(v) $\int N(W, x)^{p} d x \leqslant C \int_{\Omega} N(F, x)^{p} d x$; and
(vi) if $G=F-W$ then $N(G, x) \leqslant C t$.

Proof. (i) We assume $N(F, x)<\infty$, since otherwise the inequality is trivial. For every x, let $P(x, y)$ be the polynomial which satisfies

$$
n(f(y) \quad P(x, y), x)=N(F, x) .
$$

We set

$$
\begin{aligned}
Q_{k}(x, y) & =\sum_{\alpha \cdot a<u} D_{y}^{\alpha}\left[\phi_{k}(y)\left(P(x, y)-P\left(y_{k}, y\right)\right)\right]_{y=x}(y-x)^{\alpha /} \alpha! \\
& =\left.\sum_{\alpha \cdot a<u} \sum_{y \leqslant \alpha}\binom{\alpha}{\gamma} D_{y}^{a-\gamma} \phi_{k}(y) D_{y}^{\gamma}\left[P(x, y)-P\left(y_{k}, y\right)\right]\right|_{y=x}(y-x)^{\alpha} / \alpha!
\end{aligned}
$$

Let us estimate $\rho^{-u}\left[\rho^{-|a|} \int_{[y x \mid<\rho}\left|w_{k}(y)-Q_{k}(x, y)\right|^{q} d y\right]^{1 / q}$. By Lemma (2.1) and taking into account that $\left[x_{k}-y_{k}\right] \leqslant C r_{k}$ and that $N\left(F, y_{k}\right) \leqslant t<$ $N(F, x)$ we have

$$
\begin{equation*}
\left|D_{y}^{\alpha}\left(P(x, y)-P\left(y_{k}, y\right)\right)\right| \leqslant C N(F, x)\left(\rho+r_{k}\right)^{u-\alpha \cdot a} . \tag{2.6}
\end{equation*}
$$

Assume $\rho \geqslant 2 r_{k}$; in this case,

$$
\begin{aligned}
\left|w_{k}(y)-Q_{k}(x, y)\right| \leqslant & \left|\phi_{k}(y)(f(y)-P(x, y))\right| \\
& +\left|\phi_{k}(y)\left(P(x, y)-P\left(y_{k}, y\right)\right)\right|+\left|Q_{k}(x, y)\right| .
\end{aligned}
$$

By (2.6), we have

$$
\left|\phi_{k}(y)\left(P(x, y)-P\left(y_{k}, y\right)\right)\right| \leqslant C N(F, x) \rho^{u} .
$$

On the other hand, by Lemma (2.1), we obtain

$$
\left|D_{y}^{\alpha}\left(P(x, y)-P\left(y_{k}, y\right)\right)\right|_{y=x}|\leqslant C N(F, x)| x-\left.y_{k}\right|^{u-\alpha, a} \leqslant C N(F, x) r_{k}^{u-\alpha \cdot a} .
$$

Therefore, since $[y-x]<\rho$ and $\rho / r_{k} \geqslant 2$, we have

$$
\begin{aligned}
\left|Q_{k}(x, y)\right| & \leqslant \sum_{\alpha \cdot a<u} \sum_{\gamma \leqslant \alpha} C r_{k}^{-a \cdot a+\gamma \cdot a} N(F, x) r_{k}^{u-\gamma \cdot a} \rho^{\alpha \cdot a} \\
& \leqslant C N(F, x) \rho^{u} .
\end{aligned}
$$

Then for $\rho \geqslant 2 r_{k}$, the following inequality is satisfied:

$$
\left|w_{k}(y)-Q_{k}(x, y)\right| \leqslant C|f(y)-P(x, y)|+C N(F, x) \rho^{u} .
$$

Now we consider the case $\rho<2 r_{k}$. By definition of $Q_{k}(x, y)$, we have

$$
\begin{aligned}
w_{k}(y)-Q_{k}(x, y)= & \phi_{k}(y)\left(f(y)-P\left(y_{k}, y\right)\right)-\sum_{\beta \cdot a<u} \mid D^{\beta} \phi_{k}(x)\left((y-x)^{3} / \beta!\right) \\
& \times\left.\sum_{y \cdot a<u-\beta \cdot a} D_{y}^{\gamma}\left(P(x, y)-P\left(y_{k}, y\right)\right)\right|_{y=x}(y-x)^{y} / \gamma!\mid
\end{aligned}
$$

Adding and substracting the expression

$$
\phi_{k}(y) P(x, y)+\sum_{\beta \cdot a<u} D^{\beta} \phi_{k}(x)\left((y-x)^{3} / \beta!\right)\left(P(x, y)-P\left(y_{k}, y\right)\right)
$$

we obtain

$$
\left|w_{k}(y)-Q_{k}(x, y)\right| \leqslant|f(y)-P(x, y)|+A_{1}+A_{2},
$$

where

$$
A_{1}=\left|\phi_{k}(y)-\sum_{\beta \cdot a<u} D^{\beta} \phi_{k}(x)(y-x)^{\beta} / \beta!\right|\left|P(x, y)-P\left(y_{k}, y\right)\right|
$$

and

$$
\begin{aligned}
A_{2}= & \left|\sum_{\beta \cdot a<u} D^{\beta} \phi_{k}(x)\left((y-x)^{\beta} / \beta!\right)\right| P(x, y)-P\left(y_{k}, y\right) \\
& \left.-\left.\sum_{\gamma \cdot a<u-\beta \cdot a} D_{y}^{\gamma}\left(P(x, y) \quad P\left(y_{k}, y\right)\right)\right|_{y=x}(y-x)^{\gamma / \gamma!}\right] \mid .
\end{aligned}
$$

By (2.6) and applying Taylor's formula we have

$$
\begin{aligned}
A_{1} \leqslant & C N(F, x) r_{k}^{u} \mid \sum_{\substack{\beta \cdot a \geqslant u \\
|\beta|<u}} D^{\beta} \phi_{k}(x)(y-x)^{\beta} / \beta! \\
& +\sum_{u \leqslant|\beta|<u+1} D^{\beta} \phi_{k}\left(y_{0}\right)(y-x)^{\beta} / \beta!\mid
\end{aligned}
$$

where y_{0} belongs to the segment joining x and y.
Since $\rho / 2 r_{k}<1$, it follows that

$$
A_{1} \leqslant C N(F, x) r_{k}^{u} \sum_{\substack{\beta, a>u \\|\beta|<u+1}} r_{k}^{-\beta \cdot a} \rho^{\beta \cdot a} \leqslant C N(F, x) \rho^{u} .
$$

Applying Taylor's formula in A_{2} we obtain

$$
\begin{aligned}
A_{2} \leqslant & C \sum_{\beta \cdot a<u} r_{k}^{-\beta \cdot a} \rho^{\beta \cdot a}\left|\sum_{\substack{u-\beta \cdot a \leqslant y<u \\
|\gamma|<u-\beta \cdot a}} D_{y}^{\gamma}\left(P(x, y)-P\left(y_{k}, y\right)\right)\right|_{y=x}(y-x)^{\gamma} / \gamma! \\
& +\left.\sum_{\substack{u-\beta \cdot a<\mid \gamma \cdot \ll u-\beta \cdot a+1 \\
\gamma \cdot a<u}} D_{y}^{\gamma}\left(P(x, y)-P\left(y_{k}, y\right)\right)\right|_{y-y_{0}}(y-x)^{\gamma} / \gamma!\mid
\end{aligned}
$$

where y_{0} belongs to the segment joining x and y.
Since $\left[y_{0}-x\right] \leqslant \rho$ and $\left[y_{0}-y_{k}\right] \leqslant C r_{k}$, then

$$
A_{2} \leqslant C \sum_{\beta \cdot a<u} \sum_{\substack{u-\beta \cdot a \leqslant \gamma \cdot a<u \\|\gamma|<u-\beta \cdot a+1}} N(F, x)\left(\rho / r_{k}\right)^{\gamma \cdot a+\beta \cdot a} r_{k}^{u} \leqslant C N(F, x) \rho^{u} .
$$

Therefore, for every $\rho>0$ and for $[y-x]<\rho$ we have

$$
\left|w_{k}(y)-Q_{k}(x, y)\right| \leqslant|f(y)-P(x, y)|+C N(F, x) \rho^{u} .
$$

Then

$$
n\left(w_{k}(y)-Q_{k}(x, y), x\right) \leqslant C N(F, x)
$$

and (i) is proved.
For the proof of (ii), (iii), (iv), and (v) cf. [2].

Now we prove (vi). Let $x_{0} \notin \Omega$ such that $\sum_{k} N\left(W_{k}, x_{0}\right)<\infty$. Since $x_{0} \notin B\left(x_{k}, 2 r_{k}\right)$ for $k=1,2, \ldots$, we know that w_{k} is the unique member of the class W_{k} which satisfies $n\left(w_{k}, x_{0}\right)=N\left(W_{k}, x_{0}\right)$.

Then, by (iii) of Lemma (2.2) the series $\sum_{k} w_{k}$ converges in $L_{\text {loc }}^{q}$ to a function w which is the member of the class $W=\sum_{k} W_{k}$ which satisfies $n\left(w, x_{0}\right)=N\left(W, x_{0}\right)$.

Therefore, the function $g=f-w$ is a member of the class $G=F-W$ and we have

$$
\begin{aligned}
g(y) & =f(y) & & \text { if } \quad y \in \Omega^{c}, \\
& =\sum_{k} \phi_{k}(y) P\left(y_{k}, y\right) & & \text { if } \quad y \in \Omega .
\end{aligned}
$$

We observe that g is an infinitely differentiable function in Ω. Let

$$
\begin{aligned}
b_{a}(x) & =D^{\alpha} g(x) & & \text { if } \quad x \in \Omega, \\
& =\left.D_{y}^{\alpha} P(x, y)\right|_{y=x} & & \text { if } \quad x \in \Omega^{c} .
\end{aligned}
$$

We will prove that for $\alpha \cdot a \leqslant u, x \in \Omega^{c}$, and $\bar{x} \in R^{n}$ we have

$$
\begin{equation*}
\left|b_{\alpha}(\bar{x})-\vdots_{\beta} b_{\alpha+\beta}(x)(\bar{x}-x)^{\beta} / \beta!\right| \leqslant C t|\bar{x}-x|^{u-\alpha \cdot a} . \tag{2.7}
\end{equation*}
$$

In fact, if $\bar{x} \in \Omega^{c}$ we know by Lemma (2.1) that

$$
\left|D_{y}^{\alpha}(P(\bar{x}, y)-P(x, y))\right| \leqslant C t(|\bar{x}-y|+|x-y|)^{u-a \cdot a}
$$

and, taking $y=\bar{x}$, we have

$$
\left|b_{\alpha}(\bar{x})-\frac{_{\beta}}{} b_{\alpha+\beta}(x)(\bar{x}-x)^{\beta} / \beta!\right| \leqslant C t|\bar{x}-x|^{u-\alpha \cdot a} .
$$

Now we consider $\bar{x} \in \Omega$. Let j be such that $\bar{x} \in \operatorname{supp} \phi_{j}$ and $\left[y_{j}-\bar{x}\right] \leqslant$ $\left[y_{k}-\bar{x}\right]$ for every k such that $\bar{x} \in \operatorname{supp} \phi_{k}$. Then

$$
\begin{aligned}
D^{\alpha} g(\bar{x}) & -\left.D_{y}^{\alpha} P(x, y)\right|_{y=\bar{x}} \\
& =\sum_{k}\left[\sum_{\beta+\gamma=\alpha}\binom{\alpha}{\beta} D^{\beta} \phi_{k}(\bar{x})\left(\left.D_{y}^{\gamma} P\left(y_{k}, y\right)\right|_{y=\bar{x}}-\left.D_{y}^{\gamma} P\left(y_{j}, y\right)\right|_{y=\bar{x}}\right)\right] \\
& +\left[\left.D_{y}^{\alpha} P\left(y_{j}, y\right)\right|_{y=\bar{x}}-\left.D_{y}^{\alpha} P(x, y)\right|_{y=\bar{x}}\right] .
\end{aligned}
$$

Therefore, applying Lemma (2.1) and taking into account that $\left|y_{k}-\bar{x}\right|+$ $\left[y_{j}-\bar{x}\right] \leqslant C r_{k},\left[\bar{x}-y_{j}\right] \leqslant[\bar{x}-x]$, and $r_{k} \leqslant[\bar{x}-x]$ we get

$$
\left|D^{\alpha} g(\bar{x})-D_{y}^{\alpha} P(x, y)\right|_{y=\bar{x}}|\leqslant C t| \bar{x}-\left.x\right|^{u-\alpha \cdot a} .
$$

Then (2.7) is satisfied for every $\bar{x} \in R^{n}$.

Next, we will prove that for every $x \in \Omega$ and every $\bar{x} \in R^{n}$ the following inequality is satisfied:

$$
\begin{equation*}
\left|b_{0}(\bar{x})-\sum_{\alpha \cdot a<u} b_{a}(x)(\bar{x}-x)^{\alpha} / \alpha!\right| \leqslant C t|\bar{x}-x|^{u} \tag{2.8}
\end{equation*}
$$

In order to prove (2.8) we need the estimate

$$
\begin{equation*}
\left|D^{\alpha} g(x)\right| \leqslant C t d\left(x, \Omega^{c}\right)^{u-a \cdot a} \tag{2.9}
\end{equation*}
$$

for every $x \in \Omega$ and for $\alpha \cdot a \geqslant u$. In fact, if $x^{\prime} \in \Omega^{c}$ and $\left[x-x^{\prime}\right]=d\left(x, \Omega^{c}\right)$ then

$$
\begin{aligned}
D^{a} g(x) & =\left.\sum_{k} \sum_{\beta+\gamma=\alpha}\binom{\alpha}{\beta} D^{\beta} \phi_{k}(x) D_{y}^{\gamma} P\left(y_{k}, y\right)\right|_{y=x}-\left.D_{y}^{\alpha} P\left(x^{\prime}, y\right)\right|_{y-x} \\
& \left.=\sum_{k} \sum_{\beta+\gamma=\alpha}\binom{\alpha}{\beta} D^{\beta} \phi_{k}(x)\left|D_{y}^{\gamma}\left(P\left(y_{k}, y\right)-P\left(x^{\prime}, y\right)\right)\right|_{y=x}\right]
\end{aligned}
$$

Again applying Lemma (2.1) and taking into account that $\left|x^{\prime}-x\right|=$ $d\left(x, \Omega^{c}\right) \leqslant C r_{k}$ and $\left[y_{k}-x\right] \leqslant C r_{k}$, we obtain (2.9).

Now we prove (2.8). We consider the cases $[x-\bar{x}] \leqslant \frac{1}{2} d\left(x, \Omega^{c}\right)$ and $[x-\bar{x}]>\frac{1}{2} d\left(x, \Omega^{c}\right)$. In the first case, applying Taylor's formula we have

$$
\begin{aligned}
b_{0}(\bar{x}) & -\sum_{a \cdot a<u} b_{a}(x)(\bar{x}-x)^{\alpha} / \alpha! \\
& =\sum_{\substack{|\alpha|<u \\
\alpha \cdot a \geqslant u}} b_{\alpha}(x)(\bar{x}-x)^{\alpha} / \alpha!+\sum_{u \leqslant|\alpha|<u+1} b_{a}(x+s(\bar{x}-x))(\bar{x}-x)^{\alpha} / \alpha!,
\end{aligned}
$$

where $s \in[0,1]$.
As $d\left(x+s(\bar{x}-x), \Omega^{c}\right) \geqslant \frac{1}{2} d\left(x, \Omega^{c}\right)$, applying (2.9) we get

$$
\begin{aligned}
& \left|b_{0}(\bar{x})-\sum_{\alpha \cdot a<u} b_{a}(x)(\bar{x}-x)^{\alpha} / \alpha!\right| \\
& \quad \leqslant C t \sum_{\substack{\alpha \cdot a \gg \\
|\alpha|<u+1}} d\left(x, \Omega^{c}\right)^{u-\alpha \cdot a}[\bar{x}-x]^{\alpha \cdot a}<C t[\bar{x}-x]^{u} .
\end{aligned}
$$

Now we consider the case $[x-\bar{x}]>\frac{1}{2} d\left(x, \Omega^{c}\right)$. Let $z \in \Omega^{c}$ be such that $[z-x]=d\left(x, \Omega^{c}\right)$. Adding and substracting the expressions

$$
\sum_{\alpha \cdot a<u} b_{\alpha}(z)(\bar{x}-z)^{\alpha} / \alpha!\quad \text { and }\left.\quad \sum_{\alpha \cdot a<u} D_{y}^{\alpha} P(z, y)\right|_{y=x}(\bar{x}-x)^{\alpha} / \alpha!
$$

and by (2.7) we have

$$
\begin{aligned}
& \left|b_{0}(\bar{x})-\sum_{\alpha \cdot a<u} b_{\alpha}(z)(\bar{x}-z)^{\alpha} / \alpha!\right| \\
& \quad \leqslant C t[\bar{x}-z]^{u} \leqslant C t([z-x]+[x-\bar{x}])^{u} \leqslant C t[x-\bar{x}]^{u}, \\
& \sum_{\alpha \cdot a<u}\left[b_{\alpha}(x)-\left.D_{y}^{\alpha} P(z, y)\right|_{y=x}\right](\bar{x}-x)^{\alpha} / \alpha!\mid \\
& \quad \leqslant C t \sum_{\alpha \cdot a<u}[x-z]^{u-\alpha \cdot a}[\bar{x}-x]^{\alpha \cdot a} \leqslant C t[\bar{x}-x]^{u},
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{\alpha \cdot a<u} b_{\alpha}(z)(\bar{x}-z)^{\alpha} / \alpha! & =P(z, \bar{x}) \\
& =\left.\sum_{\alpha \cdot a<u} D_{y}^{\alpha} P(z, y)\right|_{y=x}(\bar{x}-x)^{\alpha} / \alpha!
\end{aligned}
$$

Then (2.8) follows. Applying (2.7) and (2.8) and since $b_{0}=g$ almost everywhere (cf. [4]), we obtain

$$
N(G, x) \leqslant C t .
$$

Proof of Theorem 1. (i) Let $p \leqslant|a|(u+|a| / q)^{-1}$ and let $f \notin, \mathscr{P}_{u}$. If F is the class of f in E_{u}^{q}, then $N(F, x) \notin L^{p}$. In fact, since $f \notin \mathscr{P}_{u}$, there exist a ball $B=B(0, r)$ and a real number $\delta>0$ such that

$$
\left(\int_{B}|f(y)-P(y)|^{q} d y\right)^{1 / q}>\delta \quad \text { for every } \quad P \in \mathscr{P}_{u}
$$

On the other hand,

$$
n(f-P, x)=\sup _{\rho>0} \rho^{-u}\left(|B(x, \rho)|^{-1} \int_{B(x, \rho)}|f(y)-P(y)|^{q} d y\right)^{1 / q}
$$

If $[x] \geqslant r$, then $B(0, r) \subset B(x, 2[x])$. Therefore, taking $\rho=2[x]$ we have

$$
\begin{aligned}
n(f-P, x) & \geqslant C[x]^{-(u+|a| / q)}\left(\int_{B(x, 2|x|)}|f(y)-P(y)|^{q} d y\right)^{1 / q} \\
& \geqslant C \delta[x]^{-(u+|a| / q)} \quad \text { and then } \quad N(F, x) \notin L^{p} .
\end{aligned}
$$

(ii) Let $p>|a|(u+|a| / q)^{-1}$. We know, by Lemma (2.3) that there exist p-atoms in E_{u}^{q}. Moreover, we know that if A is a p-atom in E_{u}^{q}, then $\int N(A, x)^{p} d x \leqslant C$, where C is a constant independent of A, (cf. [2]). Therefore, \mathscr{H}^{p} contains nontrivial elements. If $\left\{A_{i}\right\}$ is a sequence of p-atoms in E_{u}^{q} and $\left\{\mu_{i}\right\}$ is a numerical sequence such that $\sum_{i}\left|\mu_{i}\right|^{p}<\infty$ then the series
$\sum_{i} \mu_{i} A_{i}$ converges absolutely in \mathscr{R}^{p}. Even more, if we denote by F the sum of this series we have

$$
\int N(F, x)^{p} d x \leqslant C \sum_{i}\left|\mu_{i}\right|^{p}
$$

Following the same method as in [3] we get the second part of the proof.

3. The Proof of Theorem 2

Let $m \in N$. In the sequel, we will prove some properties of an elementary solution of L^{m}.
(3.1) Definition. A function f is called quasi-homogeneous of degree l if $f\left(A_{\lambda} x\right)=\lambda^{\prime} f(x)$ for every $\lambda>0$ and every $x \neq 0$.
(3.2) Definition. A distribution T is called quasi-homogeneous of degree l if for every $\phi \in \mathscr{D}$ and every $\lambda\rangle 0,\left\langle T, \phi_{\lambda}\right\rangle=\lambda^{l}\langle T, \phi\rangle$, where $\phi_{\lambda}(x)=\lambda^{-|a|} \phi\left(A_{\lambda}^{-1} x\right)$.

It is easy to prove that the following properties are verified:
If $T \in \mathscr{S}^{\prime}$ is a quasi-homogeneous distribution of degree l, then \hat{T} is a quasi-homogeneous distribution of degree $-|a|-l$.

If T is a quasi-homogeneous distribution of degree l and there exists a function g continuous in $R^{n} \backslash\{0\}$ such that $\langle T, \phi\rangle=$ $\int g(x) \phi(x) d x$ for every $\phi \in \mathscr{D}\left(R^{n} \backslash\{0\}\right)$, then g is a quasihomogeneous function of degree l.
Let $g \in C^{\infty}\left(R^{n} \backslash\{0\}\right)$ be quasi-homogeneous of degree l. Then $D^{\alpha} g$ is quasi-homogeneous of degree $l-\alpha \cdot a$. Moreover, $\left|D^{\alpha} g(x)\right| \leqslant C_{\alpha}[x]^{1-\alpha \cdot a}$.
(3.6) Lemma. (a) If $\mathrm{km}<|a|$ then $(P(\xi))^{-m}$ is a tempered distribution and $\left((P(\xi))^{-m}\right)^{v}$ is an elementary solution of L^{m} and
(i) it agrees with a function $h \in L_{\text {loc }}^{1} \cap C^{\infty}\left(R^{n} \backslash\{0\}\right)$,
(ii) h is quasi-homogeneous of degree $k m-|a|$.
(b) Let $k m \geqslant|a|$. We define

$$
\begin{aligned}
\langle T, \phi\rangle= & \int_{[\delta] \leqslant 1}\left[\phi(\xi)-\sum_{\beta \cdot a \leqslant k m-|a|} D^{\beta} \phi(0) \xi^{\beta} / \beta!\right](P(\xi))^{-m} d \xi \\
& +\int_{[\xi]>1} \phi(\xi)(P(\xi))^{-m} d \xi .
\end{aligned}
$$

Then \check{T} is an elementary solution of L^{m} and
(i) it agrees with a function $h \in L_{\mathrm{loc}}^{\mathrm{t}} \cap C^{\infty}\left(R^{n} \backslash\{0\}\right)$,
(ii) if $\alpha \cdot a<k m-|a|+1$ then $D^{\alpha} h \in L_{\text {loc }}^{1}$,
(iii) if $\alpha \cdot a>k m-|a|$ then $D^{\alpha} h$ is a quasi-homogeneous function of degree $\mathrm{km}-|a|-\alpha \cdot a$.

Proof. (a) Since $k m<|a|,(P(\xi))^{-m} \in L_{\text {loc }}^{1}$; moreover, it defines a tempered distribution.

In order to prove (i), we show first, that $\left((P(\xi))^{-m}\right)^{2}$ agrees with a function $h \in C^{\infty}\left(R^{n} \backslash\{0\}\right)$ in the complement of the origin. Let $\Psi \in \mathscr{D}$ be such that $\Psi(\xi)=1$ in $\{[\xi] \leqslant 1\}$ and $\Psi(\xi)=0$ in $\{[\xi] \geqslant 2\}$, then

$$
\left((P(\xi))^{-m}\right)^{-}=\left(\Psi(\xi)(P(\xi))^{-m}\right)^{\check{ }}+\left((1-\Psi(\xi))(P(\xi))^{-m}\right)^{\check{ }}=h_{1}+h_{2}
$$

Since $\Psi(\xi)(P(\xi))^{-m}$ has compact support, h_{1} is an analytic function. Let us prove that h_{2} agrees in the complement of the origin with a C^{∞} function. Given α and β we have

$$
x^{\alpha} D^{\beta} h_{2}=C_{\alpha, \beta}\left(D^{\alpha}\left[(1-\Psi(\xi)) \xi^{\beta}(P(\xi))^{-m}\right]\right)^{\vee}
$$

and by (3.5) we obtain

$$
\left.\left|D^{\alpha}\right|(1-\Psi(\xi)) \xi^{\beta}(P(\xi))^{-m}\right]\left.\left|\leqslant C_{\alpha, \beta}\right| \xi\right|^{-k m+\beta \cdot a-a \cdot a} \quad \text { for } \quad[\xi]>2
$$

If α is such that $-k m+\beta \cdot a-\alpha \cdot a<-|a|$ then $D^{\alpha}[(1-\Psi(\xi))$ $\xi^{3}(P(\xi))^{-m} \mid \in L^{1}\left(R^{n}\right)$. Therefore, $x^{\alpha} D^{\beta} h_{2}$ is a continuous and bounded function.

Taking appropriate values of α it follows that $D^{\beta} h_{2}$ agrees in the complement of the origin with a continuous function in $R^{n} \backslash\{0\}$. Therefore, $\left((P(\xi))^{-m}\right)^{r}$ agrees in the complement of the origin with a function $h \in C^{\infty}\left(R^{n} \backslash\{0\}\right)$. Moreover, by (3.4) we obtain (ii) and by (3.5) $h \in L_{\text {loc }}^{1}$ and, therefore, $\left(\left(P(\xi)^{-m}\right)^{v}-h\right.$ defines a distribution supported at $\{0\}$. Then

$$
(P(\xi))^{-m}-\hat{h}(\xi)=Q(\xi)
$$

where Q is a polynomial. Since \bar{h} vanishes at infinity, then $Q \equiv 0$ and part (a) of the theorem follows.
(b) Let T_{1} and T_{2} be defined by

$$
\begin{aligned}
& \left\langle T_{1}, \phi\right\rangle=\int_{[\xi] \leqslant 1}\left(\phi(\xi)-\sum_{\beta \cdot a \leqslant k m-|a|} D^{\beta} \phi(0) \xi^{\beta} / \beta!\right)(P(\xi))^{-m} d \xi \\
& \left\langle T_{2}, \phi\right\rangle=\int_{[\xi \mid>1} \phi(\xi)(P(\xi))^{-m} d \xi .
\end{aligned}
$$

Then $T=T_{1}+T_{2}$.

We begin with (i). Following the proof of (a), we can prove that \check{T} agrees in the complement of the origin with a function $h \in C^{\infty}\left(R^{n} \backslash\{0\}\right)$. Since T_{1} has compact support, \check{T}_{1} is an analytic function. On the other hand, since $k m \geqslant|a|, T_{2} \in L^{2}$, and, therefore, $\check{T}_{2} \in L^{2}$. Then \check{T} is a locally integrable function and we have $\check{T}=h$.

In order to prove (ii) we observe that

$$
D^{\alpha} \check{T}_{2}=C_{\alpha}\left(\xi^{\alpha} \chi(\xi)(P(\xi))^{-m}\right)^{\kappa}
$$

where $\chi(\xi)$ is the characteristic function of $\{[\xi]>1\}$. As $\alpha \cdot a-k m<1-|a|$ and $2 \leqslant|a|$, we obtain $\xi^{\alpha} \chi(\xi)(P(\xi))^{-m} \in L^{2}$.

Finally, if $\alpha \cdot a>k m-|a|$, then $\xi^{\alpha} T$ agrees with the function $\xi^{\alpha}(P(\xi))^{-m}$ which is quasi-homogeneous of degree $\alpha \cdot a-k m$. Then by (3.3) and (3.4) we obtain (iii).
(3.7) Lemma. Let $f \in C^{\infty}\left(R^{n} \backslash\{0\}\right)$ be a quasi-homogeneous function of degree $-|a|+a_{j}$. Then, $k=\partial f / \partial x_{j}$ verifies:
(i) $k \in C^{\infty}\left(R^{n} \backslash\{0\}\right)$,
(ii) k is quasi-homogeneous of degree $-|a|$, and
(iii) $\int_{1 \leqslant\lfloor x]<2} k(x) d x=0$.

Then k is a singular integral kernel of parabolic type (cf. [7]).
Proof. Part (i) is obvious. Part (ii) follows immediately from (3.5). In order to prove (iii) we will show first that the following limit exists and it is finite for every $\phi \in \mathscr{D}$,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{[x]>\varepsilon} k(x) \phi(x) d x . \tag{3.8}
\end{equation*}
$$

We have

$$
\left\langle\frac{\partial}{\partial x_{j}} f, \phi\right\rangle=-\lim _{\varepsilon \rightarrow 0} \int_{[x]>\varepsilon} f(x) \frac{\partial}{\partial x_{j}} \phi(x) d x
$$

After the change of variables $A_{\varepsilon} y=x$, we obtain

$$
\left\langle\frac{\partial}{\partial x_{j}} f, \phi\right\rangle=-\lim _{\varepsilon \rightarrow 0} \int_{[y]>1} f(y) \frac{\partial}{\partial y_{j}}\left(\phi\left(A_{\varepsilon} y\right)\right) d y
$$

Then by Green's formula we have

$$
\begin{aligned}
\left\langle\frac{\partial}{\partial x_{j}} f, \phi\right\rangle= & \lim _{\varepsilon \rightarrow 0}\left[\int_{[y]>1} k(y) \phi\left(A_{\varepsilon} y\right) d y\right. \\
& \left.+\int_{[y]=1} f(y) \phi\left(A_{\varepsilon} y\right) y_{j} d \sigma(y)\right] .
\end{aligned}
$$

Since $\lim _{\varepsilon \rightarrow 0} \int_{[y]=1} f(y) \phi\left(A_{\varepsilon} y\right) y_{j} d \sigma(y)=\phi(0) \int_{[y]=1} f(y) y_{j} d \sigma(y)$, we obtain that

$$
\lim _{\varepsilon \rightarrow 0} \int_{[y]>1} k(y) \phi\left(A_{\varepsilon} y\right) d y
$$

exists. It is easily seen that, after a change of variables, it agrees with (3.8).
Taking an appropriate ϕ it follows that

$$
\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon<[x]<2} k(x) d x
$$

exists. On the other hand, after a change of variables, we have

$$
\int_{1<[x]<2} k(x) d x=\int_{\lambda<|x|<2 \lambda} k(x) d x
$$

for every $\lambda>0$. Taking $\lambda=2^{-k}, k=1,2, \ldots$, we get

$$
\int_{1<|x|<2} k(x) d x=\int_{2-k<|x|<2 * k+1} k(x) d x .
$$

Now

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon<|x|<2} k(x) d x & =\lim _{j \rightarrow \infty} \sum_{i=0}^{j} \int_{2-i<\mid x]<2-i+1} k(x) d x \\
& -\lim _{j \rightarrow \infty}(j+1) \int_{1<|x|<2} k(x) d x
\end{aligned}
$$

since this limit is finite, (iii) follows.
(3.9) Corollary. Let h be the elementary solution of L^{m} which is defined in Lemma (3.6). If $\alpha \cdot a=k m$ then $D^{\alpha} h$ is a singular integral kernel of parabolic type.
(3.10) Lemma. The differential operator L^{m} is well defined in $E_{k m}^{q}$ and is injective on $\mathscr{O}_{q, k m}^{p}$.

Proof. If f_{1} and f_{2} are two members of the class $F \in E_{k m}^{q}$ then $L^{m} f_{1}=$ $L^{m} f_{2}$ because $f_{1}-f_{2} \in \mathscr{P}_{k m}$. Therefore, we may define $L^{m} F=L^{m} f$, where f is any member of F. Given $F \in \mathscr{X}_{q, k m}^{p}$ and f a member of F, we know that $f \in \mathscr{S}^{\prime}$ (cf. [2]). Then if $L^{m} f=0$, we have $(P(\xi))^{m} \hat{f}=0$ and, therefore, \hat{f} is supported at the origin. Now, the proof follows as in [4, Lemma 9].
(3.11) Lemma. Let $g \in L_{\text {loc }}^{q} \cap \mathscr{S}^{\prime}$ and $f=L^{m} g$. If $j>k m+|a|$ and $\phi \in \mathscr{S}$ then

$$
f^{*}(x) \leqslant C p_{j, k m}(\phi) n(g, x) .
$$

Proof. If $h \in L_{\text {loc }}^{q}$ and $\Psi \in \mathscr{S}$ then

$$
\begin{equation*}
\int|h(u)||\Psi(u)| d u \leqslant C p_{j, 0}(\Psi) n(h, 0) \tag{3.12}
\end{equation*}
$$

For the proof of (3.12) see [2]. Now

$$
\left(f * \phi_{t}\right)(y)=\left(L^{m} g * \phi_{t}\right)(y)=\left(g * L^{m} \phi_{t}\right)(y)
$$

Since $\hat{\phi}_{t}(\xi)=\hat{\phi}\left(A_{t} \xi\right)$, we have

$$
L^{m} \phi_{t}(y)=\int e^{-2 \Pi i y t}(P(\xi))^{m} \hat{\phi}\left(A_{t} \xi\right) d \xi
$$

If we set $\eta=A_{t} \xi$, then

$$
L^{m} \phi_{t}(y)=t^{-|a|-k m}\left(L^{m} \phi\right)\left(A_{t}^{-1} y\right)
$$

Therefore,

$$
f * \phi_{t}(y)=t^{-k m} \int g(z)\left(L^{m} \phi\right)_{t}(y-z) d z
$$

If $z=x+A_{t} u$, we get

$$
\left(f * \phi_{t}\right)(y)=t^{-k m} \int g\left(x+A_{t} u\right)\left(L^{m} \phi\right)_{t}\left(y-x-A_{t} u\right) t^{|a|} d u
$$

Applying (3.12) with $h(u)=g\left(x+A_{t} u\right) \quad$ and $\quad \Psi(u)=\left(L^{m} \phi\right)_{t}$ $\left(y-x-A_{t} u\right) t^{|a|}$, and taking into account that $n(h, 0)=t^{k m} n(g, x)$ we obtain

$$
\left|\left(f * \phi_{t}\right)(y)\right| \leqslant C n(g, x) p_{j, 0}\left(\left(L^{m} \phi\right)\left(A_{t}^{-1}(y-x)-u\right)\right)
$$

Since $[y-x]<t$, we have $1+[u] \leqslant 2\left(1+\left[A_{t}^{-1}(y-x)-u\right]\right)$; then

$$
\begin{aligned}
p_{j, 0} & \left(\left(L^{m} \phi\right)\left(A_{t}^{-1}(y-x)-u\right)\right) \\
& \leqslant C \sup _{u \in R^{n}}\left|\left(L^{m} \phi\right)\left(A_{t}^{-1}(y-x)-u\right)\right|\left(1+\left|A_{t}^{-1}(y-x)-u\right|\right)^{j} \\
& =C p_{j .0}\left(L^{m} \phi\right) \leqslant C p_{j . k m}(\phi)
\end{aligned}
$$

and the lemma is proved.
(3.13) Lemma. Let b be a p-atom with null moments up to order
$N \geqslant k m$, supp $b \subset B(0, r)$, and $\|b\|_{\infty} \leqslant|B|^{-1 / p}$. Let f be the solution of $L^{m} f=b$ obtained as $f=h * b$, where h is the elementary solution of L^{m} obtained in Lemma (3.6). Then
(i) if $[x] \geqslant 2 r$, we have

$$
\left|D^{\alpha} f(x)\right| \leqslant C r^{-|a| / p}[x]^{k m-\alpha \cdot a}(r /[x])^{|a|+N+1} \quad \text { for every } \alpha
$$

(ii) if $[x] \leqslant 2 r,|f(x)| \leqslant C r^{-|a| / p+k m}$ holds.

Proof. (i) Since $[x] \geqslant 2 r$ and L^{m} is a hypoelliptic operator, f is infinitely differentiable at x and

$$
\begin{aligned}
D^{\alpha} f(x)= & \int_{|z| \leqslant r} D^{\alpha} h(x-z) b(z) d z \\
= & \int_{|z| \leqslant r} \sum_{|B| \leqslant N} D^{\beta} D^{\alpha} h(x)\left((-z)^{\beta} / \beta!\right) b(z) d z \\
& +\int_{\mid z] \leqslant r} \sum_{|\beta|=N+1} D^{\beta} D^{\alpha} h(x-\lambda z)\left((-z)^{\beta} / \beta!\right) b(z) d z
\end{aligned}
$$

with $0<\lambda<1$. Since b has null moments up to order N, the first addend equals zero.

If $|\beta|=N+1$, then, by Lemma (3.6), $D^{3+a} h$ is a quasi-homogeneous function. Then

$$
\left|D^{\alpha} f(x)\right| \leqslant C \sum_{|\beta|=N+1} r^{-|a| / p} r^{\beta \cdot a} \int_{|z| \leqslant r}|x-\lambda z|^{k m-|a|-a \cdot a-\beta \cdot a} d z
$$

Since $[\lambda z|\leqslant r<|x| / 2$, we have $[x-\lambda z] \geqslant|x| / 2$. Therefore,

$$
\left|D^{\alpha} f(x)\right| \leqslant C \underset{|B|=N+1}{\^{\prime}} r^{-|a| / p}[x]^{k m-\alpha \cdot a}(r /|x|)^{\beta \cdot a+|a|} .
$$

As $r /[x] \leqslant \frac{1}{2}$ and $\beta \cdot a \geqslant|\beta|=N+1$, part (i) follows.
In order to prove (ii), we first assume $k m<|a|$. In this case, h is quasihomogeneous of degree $-|a|+k m$ and, therefore,

$$
\begin{aligned}
|f(x)| & \leqslant \int_{[z \mid \leqslant r}|h(x-z)||b(z)| d z \leqslant C r^{-|a| / p} \int_{|z| \leqslant r}|h(x-z)| d z \\
& \leqslant C r^{-|a| / p} \int_{\{y \mid \leqslant 3 r}|h(y)| d y \leqslant C r^{-|a| / p} \int_{|y| \leqslant 3 r}|y|^{-|a|+k m} d y \\
& =C r^{-(|a| / p)+k m} .
\end{aligned}
$$

On the other hand, if $k m \geqslant|a|$ we have $f(x)=(\hat{b} T)^{\wedge}(x)$, where T is the Fourier transform of h.

Applying Taylor's formula to the function $e^{2 \Pi i y s}$, we have

$$
\begin{aligned}
\hat{b}(\xi)= & \int_{|y| \leqslant r} e^{2 \Pi i y \xi} d y \\
= & \sum_{|\alpha| \leqslant N} \int_{[y] \leqslant r}(2 \Pi i)^{|\alpha|}\left(y^{\alpha} / \alpha!\right) b(y) d y+\sum_{|\alpha|=N+1} \int_{|y| \leqslant r}\left(\xi^{\alpha} / \alpha!\right) \\
& \times\left(\int_{0}^{1}(2 \Pi i)^{|\alpha|} y^{\alpha} e^{i t y \cdot \xi}(1-t)^{N}(N+1) d t\right) b(y) d y
\end{aligned}
$$

Since b has null moments up to order N, the first addend equals zero. Then

$$
\begin{equation*}
|\hat{b}(\xi)| \leqslant C \sum_{|\alpha|=N+1}[\xi]^{\alpha \cdot a} r^{\alpha \cdot a} r^{-|a| / p} r^{|a|} \tag{3.14}
\end{equation*}
$$

with C independent of b. Moreover, if $\beta \cdot a \leqslant k m-|a|$ we have $\left(D^{\beta} \hat{b}\right)(0)=0$. Then $\hat{b} T=\hat{b}(\xi)(P(\xi))^{-m} \in L^{1}\left(R^{n}\right)$. Therefore,

$$
f(x)=\int e^{-2 \Pi i x \xi} \hat{b}(\xi)(P(\xi))^{-m} d \xi
$$

Then

$$
\begin{aligned}
|f(x)| & \leqslant \int|\hat{b}(\xi)|(P(\xi))^{-m} d \xi \\
& =\int_{[\xi] \leqslant r^{-1}}|\hat{b}(\xi)|(P(\xi))^{-m} d \xi+\int_{[\xi]>r^{-1}}|\hat{b}(\xi)|(P(\xi))^{-m} d \xi
\end{aligned}
$$

By (3.14) we get

$$
\begin{aligned}
& \int_{[\xi \mid \leqslant r-1}|\hat{b}(\xi)|(P(\xi))^{-m} d \xi \\
& \quad \leqslant C \int_{|\xi| \leqslant r-1} \sum_{|\alpha|=N+1}[\xi]^{\alpha \cdot a} r^{\alpha \cdot a-|a| / p+|a|}[\xi]^{-k m} d \xi \\
& \leqslant C \sum_{|\alpha|=N+1} r^{\alpha \cdot a-|a| / p+|a|} r^{-\alpha \cdot a+k m} r^{-|a|}=C r^{-|a| / p+k m} .
\end{aligned}
$$

On the other hand, applying Schwartz inequality we obtain

$$
\begin{aligned}
& \int_{[\xi]>r-1}|\hat{b}(\xi)|(P(\xi))^{-m} d \xi \leqslant C\|\hat{b}\|_{L^{2}}\left(\int_{[\xi]>r-1}[\xi]^{-2 k m} d \xi\right)^{1 / 2} \\
& \quad=C\left(\int_{[y] \leqslant r}|b(y)|^{2} d y\right)^{1 / 2}\left(\int_{r^{-1}}^{\infty} s^{-2 k m+|a|-1} d s\right)^{1 / 2} \\
& \quad \leqslant C r^{-|a| / p} r^{|a| / 2} r^{k m-|a| / 2}=C r^{-|a| / p+k m}
\end{aligned}
$$

Then (ii) is proved.
(3.15) Lemma. Let $|a| / p<k m+|a| / q$ and let b be a p-atom with null moments up to order $N \geqslant k m+|a| / q$. Let f be the solution of $L^{m} f=b$ obtained as in Lemma (3.13). If F is the class of f in $E_{k m}^{q}$ then there exists a constant C, independent of b, such that

$$
\int N(F, x)^{p} d x \leqslant C
$$

Proof. By translation, we may assume that supp b is centered at the origin. That is, supp $b \subset B(0, r)$ and $\|b\|_{\infty} \leqslant|B|^{-1 / p}$. In order to estimate $N(F, x)$, we first assume that $[x]>4 r$. In this case, if $[x]>2 \rho$ we have

$$
\begin{align*}
& \rho^{-k m}\left[\rho^{-|a|} \int_{[y]<\rho}|f(x+y)-P(x, y)|^{a} d y\right]^{1 / q} \\
& \quad \leqslant C r^{-|a| / p}(r /[x])^{|a|+N+1} \tag{3.16}
\end{align*}
$$

with $P(x, y)=\sum_{\alpha \cdot a<k m} D^{\alpha} f(x) y^{\alpha} / \alpha!$. In fact,

$$
\begin{aligned}
f(x+y)-P(x, y)= & \sum_{\substack{|\alpha|<k m \\
\alpha \cdot a \geqslant k m}} D^{\alpha} f(x) y^{\alpha} / \alpha! \\
& +\sum_{|\alpha|=k m} D^{\alpha} f(x+\theta y) y^{\alpha} / \alpha!\quad \text { with } \quad 0<\theta<1 .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \rho^{-(k m+|a| / a)}\left(\int_{[y]<\rho}|f(x+y)-P(x, y)|^{q} d y\right)^{1 / a} \\
& \leqslant \rho^{-(k m+|a| / a)}\left[\sum_{\substack{|\alpha|<k m \\
\alpha \cdot a \geqslant k m}}\left(\int_{[y]<\rho}\left|D^{\alpha} f(x) y^{\alpha} / \alpha!\right|^{q} d y\right)^{1 / q}\right. \\
&\left.+\sum_{|\alpha|=k m}\left(\int_{\mid y]<\rho}\left|D^{\alpha} f(x+\theta y) y^{\alpha} / \alpha!\right|^{a} d y\right)^{1 / q}\right] \\
&= \rho^{-(k m+|\alpha| / a)}\left(I_{1}+I_{2}\right) .
\end{aligned}
$$

Applying Lemma (3.13), we obtain

$$
\rho^{-(k m+|a| / a)} I_{1} \leqslant C \sum_{\substack{|\alpha|<k m \\ \alpha \cdot a \geqslant k m}}(\rho /[x])^{\alpha \cdot a-k m} r^{-|a| / p}(r /[x])^{|a|+N+1} .
$$

Since $\rho /[x]<1$ and $\alpha \cdot a-k m \geqslant 0$, we have

$$
\rho^{-(k m+|a| / 4)} I_{1} \leqslant C r^{-|a| / p}(r /[x])^{|u|+N+1}
$$

As $[\theta y] \leqslant \rho<[x] / 2$, we have $[x+\theta y] \geqslant[x]-[\theta y] \geqslant[x] / 2>2 r$ and, therefore, we can estimate I_{2} in the same way as I_{1}.

Following with $[x] \geqslant 4 r$, we assume now $[x] \leqslant 2 p$. Then

$$
\begin{aligned}
& \rho^{-(k m+|a| / q)}\left(\int_{[y \mid<\rho}|f(x+y)-P(x, y)|^{q} d y\right)^{1 / q} \\
& \quad \leqslant \rho^{-(k m+|a| / q)}\left[\left(\int_{[y \mid<\rho}|f(x+y)|^{q} d y\right)^{1 / q}+\left(\int_{|y|<\rho}|P(x, y)|^{q} d y\right)^{1 / q}\right] \\
& \quad=\rho^{-(k m+|a| / q)}\left(I_{1}+I_{2}\right) .
\end{aligned}
$$

For I_{1} we have

$$
I_{1} \leqslant\|f\|_{q} \leqslant\left(\int_{[u] \leqslant 2 r}|f(u)|^{q} d u\right)^{1 / q}+\left(\int_{[u] \geqslant 2 r}|f(u)|^{q} d u\right)^{1 / q}
$$

By (ii) of Lemma (3.13) we get

$$
\left(\int_{[u] \leqslant 2 r}|f(u)|^{q} d u\right)^{1 / q} \leqslant C r^{-|a| / p+k m+|a| / q} .
$$

On the other hand, by (i) of Lemma (3.13) we obtain

$$
\begin{aligned}
\left(\int_{|u|>2 r}|f(u)|^{q} d u\right)^{1 / q} & \leqslant C r^{-|a| / p+|a|+N+1}\left(\int_{(u \mid>2 r}[u]^{k m q-|a| q-N q-q} d u\right)^{1 / q} \\
& \leqslant C r^{-|a| / p+k m+|a| / q}
\end{aligned}
$$

Then,

$$
\rho^{-(k m+|a| / q)} I_{1} \leqslant C([x] / 2)^{-(k m+|a| / q)} r^{-|a| / p+k m+|a| / q} .
$$

For I_{2} by (i) of Lemma (3.13), we have

$$
\begin{aligned}
I_{2} & =\left(\left.\int_{|y|<\rho}\right|_{\alpha \cdot a<k m} D^{\alpha} f(x) y^{\alpha} /\left.\alpha!\right|^{a} d y\right)^{1 / a} \\
& \leqslant C r^{-|a| / p}(r /[x])^{|a|+N+1} \sum_{\alpha \cdot a<k m}[x]^{k m-\alpha \cdot a} \rho^{\alpha \cdot a} \rho^{|a| / a}
\end{aligned}
$$

Therefore,

$$
\rho^{-(k m+|a| / q)} I_{2} \leqslant C r^{-|a| / p}(r /[x])^{|a|+N+1} \sum_{\alpha \cdot a<k m}([x] / \rho)^{k m-\alpha \cdot a} .
$$

Since $[x] \leqslant 2 \rho$, we have

$$
\sum_{\alpha \cdot a<k m}([x] / \rho)^{k m-\alpha \cdot a} \leqslant C .
$$

Then

$$
\rho^{-(k m+|a| / q)} I_{2} \leqslant C r^{-|a| / p}(r /[x])^{|a|+N+1}
$$

As $|a| / q+k m \leqslant N$, it holds that

$$
\begin{equation*}
\rho^{-(k m+|a| / q)}\left(\int_{[y \mid<\rho}|f(x+y)-P(x, y)|^{q} d y\right)^{1 / q} \leqslant C r^{-|a| / p}(r /[x])^{k m+|a| / q} \tag{3.17}
\end{equation*}
$$

for $4 r<[x] \leqslant 2 \rho$. By (3.16) and (3.17) it follows that

$$
N(F, x) \leqslant C r^{-|a| / p}(r /[x])^{k m+|a| / q} .
$$

Then

$$
\int_{[x]>4 r} N(F, x)^{p} d x \leqslant C,
$$

where C is a constant independent of b. For $[x] \leqslant 4 r$ we have

$$
\begin{aligned}
f(x+ & z)-P(x, z) \\
= & \int_{\alpha}\left(h(x+z-y)-\sum_{\alpha \cdot a<k m} D^{\alpha} h(x-y) z^{\alpha} / \alpha!\right) b(y) d y \\
= & \int_{[x-y]<2[z]}\left(h(x+z-y)-\sum_{\alpha \cdot a<k m} D^{\alpha} h(x-y) z^{\alpha} / \alpha!\right) b(y) d y \\
& +\int_{\lfloor x-y] \geqslant 2[z]}\left(h(x+z-y)-\sum_{\alpha \cdot a<k m} D^{\alpha} h(x-y) z^{\alpha} / \alpha!\right) b(y) d y \\
= & I_{1}+I_{2} .
\end{aligned}
$$

After the change of variables $x-y=u$, we have

$$
\begin{align*}
\left|I_{1}\right| \leqslant & \int_{[u]<2[z]}\left|h(u+z)-\sum_{\alpha \cdot a \leqslant k m-|a|} D^{\alpha} h(u) z^{\alpha} / \alpha!\right||b(x-u)| d u \tag{3.18}\\
& +\int_{[u]<2[z]}\left|\sum_{k m-|a|<\alpha \cdot a<k m} D^{\alpha} h(u) z^{\alpha} / \alpha!\right||b(x-u)| d u
\end{align*}
$$

As $D^{\alpha} h$ is quasi-homogeneous for $\alpha \cdot a>k m-|a|$, the second part of the
sum is bounded by $C r^{-|a| / p}[z]^{k m}$. If $k m<|a|$, then the first addend reduces to

$$
\int_{[u]<2[z]}|h(u+z)||b(x-u)| d u
$$

and since h is quasi-homogeneous, it holds the same estimate. On the other hand, if $k m \geqslant|a|$ we have

$$
\begin{aligned}
& \int_{\{u \mid<2[z]}\left|h(u+z)-\sum_{\alpha \cdot a \leqslant k m-|a|} D^{\alpha} h(u) z^{\alpha} / a!\right||b(x-u)| d u \\
& \quad \leqslant C r^{-|a| / p} \int_{[u]<2[z \mid}\left|h(u+z)-\sum_{\alpha \cdot a \leqslant k m-|a|} D^{\alpha} h(u) z^{\alpha} / \alpha!\right| d u .
\end{aligned}
$$

Applying Taylor's formula we have

$$
\begin{align*}
& \int_{[u]<2[z]}\left|h(u+z)-\sum_{\alpha \cdot a \leqslant k m-|a|} D^{\alpha} h(u) z^{\alpha} / \alpha!\right| d u \\
& \quad=\int_{\mid u]<2 \mid z] \mid} \sum_{\substack{|\alpha| \leqslant k m-|a| \\
\alpha \cdot a>k m-|a|}} D^{\alpha} h(u) z^{\alpha} / \alpha! \tag{3.19}\\
& \quad+\sum_{k m-|a|<|\alpha| \leqslant k m-|a|+1}\left(z^{\alpha} / \alpha!\right) \int_{0}^{1} D^{\alpha} h(u+t z)(1-t)^{s-1} s d t d u
\end{align*}
$$

where s is the integral part of $k m-|a|+1$.
If we set $u=A_{[z]} v$ and $\bar{z}=A_{[z]}^{-1} z$, then (3.19) equals

$$
\begin{aligned}
& \int_{[v]<2}[z]^{|a|} \mid \sum_{\substack{|\alpha| \leqslant k m-|a| \\
\alpha \cdot a>k m-|a|}}[z]^{-|a|+k m-\alpha \cdot a} D^{\alpha} h(v) z^{\alpha} / \alpha! \\
&+\sum_{k m-|a|<|\alpha| \leqslant k m-|a|+1}\left(z^{\alpha} / \alpha!\right) \int_{0}^{1}[z]^{-|a|+k m-\alpha \cdot a} \\
& \times D^{\alpha} h(v+t \bar{z})(1-t)^{s-1} s d t \mid d v \\
&=[z]^{k m} \int_{[v 1<2} \mid \sum_{\substack{|\alpha| \leqslant k m-|a| \\
\alpha \cdot a>k m-|a|}} D^{\alpha} h(v) \bar{z}^{\alpha} / \alpha! \\
&+\sum_{k m-|a|<|\alpha| \leqslant k m-|a|+1}\left(\bar{z}^{\alpha} / \alpha!\right) \int_{0}^{1} D^{\alpha} h(v+t \bar{z})(1-t)^{s-1} s d t \mid d v \\
&=[z]^{k m} \int_{[v]<2}\left|h(v+\bar{z})-\sum_{\alpha \cdot a \leqslant k m-|a|} D^{\alpha} h(v) \bar{z}^{\alpha} / \alpha!\right| d v .
\end{aligned}
$$

By Lemma (3.6) we know that $D^{\alpha} h \in L_{\mathrm{loc}}^{\mathrm{I}}$ for $\alpha \cdot a \leqslant k m-|a|$, then

$$
\begin{aligned}
& \int_{[u]<2[z]}\left|h(u+z)-\sum_{\alpha \cdot a \leqslant k m-|a|} D^{\alpha} h(u) z^{\alpha} / \alpha!\right| d u \\
& \quad=[z]^{k m} \int_{[v]<2}\left|h(v+\bar{z})-\sum_{\alpha \cdot a \leqslant k m-|a|} D^{\alpha} h(v) \bar{z}^{\alpha} / \alpha!\right| d v \\
& \left.\quad \leqslant[z]^{k m}\left(\int_{[v]<2}|h(v+\bar{z})| d v+\sum_{\alpha \cdot a \leqslant k m-|a|} \int_{[u \mid<2}\left|D^{\alpha} h(v)\right| \mid \bar{z}\right]^{\alpha \cdot a} / \alpha!d v\right) \\
& \quad \leqslant C[z]^{k m},
\end{aligned}
$$

where C is a constant which depends on h and its derivatives of order α, with $\alpha \cdot a \leqslant k m-|a|$. Therefore,

$$
\left|I_{1}\right| \leqslant C r^{-|a| / p}|z|^{k m} .
$$

For I_{2} we have

$$
\begin{aligned}
I,= & \int_{|x-y| \geqslant 2 \mid z]}\left(h(x+z-y)-\sum_{\alpha \cdot a<k m} D^{\alpha} h(x-y) z^{\alpha} / \alpha!\right) b(y) d y \\
= & \int_{|x-y| \geqslant 2|z|}\left(h(x+z-y)-\sum_{\alpha \cdot a \leqslant k m} D^{\alpha} h(x-y) z^{\alpha} / \alpha!\right) b(y) d y \\
& +\int_{|x-y| \geqslant 2|z|} \sum_{\alpha \cdot a=k m} D^{\alpha} h(x-y)\left(z^{\alpha} / \alpha!\right) b(y) d y=J_{1}+J_{2}
\end{aligned}
$$

By Taylor's formula we get

$$
\begin{aligned}
J_{1}= & \int_{|x-y| \geqslant 2|z|}\left(\sum_{\substack{|\alpha| \leqslant k m \\
\alpha \cdot a>k m}} D^{\alpha} h(x-y) z^{\alpha} / \alpha!\right. \\
& \left.+\sum_{|\alpha|=k m+1} D^{\alpha} h(x-y+\theta z) z^{\alpha} / \alpha!\right) b(y) d y
\end{aligned}
$$

with $0<\theta<1$. Since $|x-y+\theta z| \geqslant|x-y| / 2$ and as $D^{a} h$ is quasihomogeneous for $\alpha \cdot a>k m$, we obtain

$$
\left|J_{1}\right| \leqslant C r^{-|a| / p}[z]^{k m}
$$

On the other hand, by Corollary (3.9), $D^{\alpha} h$ is a singular integral kernel of parabolic type for $\alpha \cdot a=k m$. Therefore, the maximal operator

$$
K_{\alpha}^{*} g(x)=\sup _{\varepsilon>0}\left|\int_{|x-y|>\varepsilon} D^{\alpha} h(x-y) g(y) d y\right|
$$

is bounded in L^{2} (cf. [7]). Moreover,

$$
\left|J_{2}\right| \leqslant C[z]^{k m} \sum_{\alpha \cdot a=k m} K_{\alpha}^{*} b(x) .
$$

Then, we have obtained

$$
|f(x+z)-P(x, z)| \leqslant C r^{-|a| / p}[z]^{k m}+C[z]^{k m} \underset{\alpha \cdot a=k m}{\sum_{\alpha}} K_{\alpha}^{*} b(x) .
$$

Therefore, for $[x] \leqslant 4 r$ we have

$$
N(F, x) \leqslant C\left(r^{-|a| / p}+\sum_{\alpha \cdot a=k m} K_{a}^{*} b(x)\right) .
$$

Then

$$
\int_{\{x] \leqslant 4 r} N(F, x)^{p} d x \leqslant C+C \sum_{a \cdot a=k m}^{\Gamma} \int_{|x| \leqslant 4 r}\left(K_{a}^{*} b(x)\right)^{p} d x .
$$

Applying Hölder's inequality with $r=2 / p$ and taking into account that K_{α}^{*} is bounded in L^{2} we get

$$
\int_{[x] \leqslant 4 r} N(F, x)^{p} d x \leqslant C .
$$

Then the lemma is proved.
Proof of Theorem 2. Given $F \in \mathscr{A}_{q, k m}^{p}$, by Lemma (3.11) we have

$$
\left(L^{m} F\right)^{*}(x) \leqslant C N(F, x)
$$

Then

$$
\left\|L^{m} F\right\|_{A_{P} p} \leqslant C\|F\|_{\boldsymbol{r}_{q, k m}^{o}} .
$$

Moreover, by Lemma (3.10) we know that L^{m} is injective. On the other hand, given $f \in H^{p}$, there exist a sequence $\left\{b_{j}\right\}$ of p-atoms with null moments up to order $N \geqslant k m+|a| / q$ and a numerical sequence $\left\{\lambda_{j}\right\}$ such that $f=\sum_{j} \lambda_{j} b_{j}$ and $\sum_{j}\left|\lambda_{j}\right|^{p} \leqslant C\|f\|_{H^{p}}$ (cf. [8]). The proof will be finished if we show that L^{m} is surjective. This follows from Lemma (3.15) in the same way as in [2].

References

[^0]2. A. B. Gatto, J. R. Giménez, and C. Segovia, On the solutions of the equation $\Delta^{m} F=f$ for $f \in H^{p}$, in "Actas de A Conference on Harmonic Analysis and a Celebration of Professor Antoni Zygmund 80th Birthday, 1981."
3. R. A. Macías and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Advan. in Math. 33 (1979), 271-309.
4. A. P. Calderón, Estimates for singular integral operators in terms of maximal functions, Studia Math. 44 (1972), 563-582.
5. A. P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171-225.
6. R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certain espaces homogènes, Lecture Notes in Math. No. 242, Springer-Verlag, Berlin, 1971.
7. C. Sadosky, On some properties of a class of singular integrals, Studia Math. 27 (1966), 73-86.
8. A. B. E. Gatto, An atomic decomposition of distributions in parabolic H^{D} spaces. Rev. Un. Mat. Argentina 29 (1980), 169-179.
9. E. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton Univ. Press, Princeton, N. J. 1970.
10. E. b. Fabes and N. M. Riviere, Singular integrals with mixed homogeneity. Studia Math. 27 (1966), 19-38.

[^0]: 1. A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, Advan. in Math. 16 (1975), 1-64.
