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1. NOTATION AND STATEMENT OF THE MAIN RESULTS 

By x, y ,..., x = (xi ,..., x”) we denote points in the n-dimensional Euclidean 
space R”. Given an n-tuple a = (a, ,..., a,) of real numbers a, > 1, 1 < i < n, 
we will consider the multiplicative group of matrices to’ 0 

A,= i I . . . ) t > 0. 
0 t",, 

If x f 0 there exists a unique t E R such that IA I I~ 1 = 1 (cf. 11 I); then we 
define [xl = t. If x = 0 we set [xl = 0. Therefore, the parabolic metric given 
by W,Y) = Ix -YI is naturally attached to the group of matrices A,. 

The following properties are satisfied (cf. [ 1 I): 

(i) [A,x] = t[x], t > 0, x E R”, 

(ii> [xl E Cm(R”\{O}), 

(iii) [x +yl< [x] + [JJ], and 
(iv) lxil < (x]‘/ for every x E R”, i <j < n. 

If a = (a, ,...’ cl& where the aj are nonnegative integers, then /aI = 
aI + . . . + an, xa =x7’ . . . ,yEfl, 

D”f= (&)O’ ... (&)nnf and a.a=a,a,+.+.+a,u,. 

Let LP,,, 1 < q < co, be the space of all the real functions defined in R” 
that are locally in Lq. We set B(x, p) = { y E R” : [v - x] < p} and it is easy 
to verify that the Lebesgue measure IB(x, p)I equals Cp’“’ (cf. [lo]), where 
I a / = a, + .. . + Q, and C is a constant depending only on a. 
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We will consider in Lp,c the topology given by the Lq convergence over 
compact sets which is induced by the family of seminorms 

Ifl,,B = (PI - 1 i, If(Y 4J) 1’q2 

whereB=B(x,p),p>O,xER”. 
Let u be a positive real number. IffE Lp,,, we define a maximal function 

n,,,(f, 4 as 

%,u(f, x> = ;;; P-u Iflq.Bkp). 

By <YU we will denote the subspace of L$, which consists of all 
polynomial functions of the form 

This subspace has finite dimension and, therefore, is a closed subspace of 
LPOC. The quotient space of La,, by *YU will be called Ez. For FE E4, we 
define the family of seminorms 

IIF1lq,B = inf{lflq,B :fE FI, 

where B=B(x,p), p>O, xER”. This family of seminorms induce the 
quotient topology in E4, which is a locally convex and complete metric space. 
For FE Ee, we define the maximal function 

Nq,,P’~ x> = Wn,,,(f, x) :f~ F). 

This maximal function is lower semicontinuous as we can see following the 
proof in [4] for the elliptic case. 

We will call Z,“,,, 0 < p < 1, the set of all F E Ef, such that its maximal 
function N,,,(F, x) belongs to Lp. 

For the sake of simplicity we will denote N = N,,,, n = n,,,, and 
Gvp = oqU) whenever this notation does not bring up any confusion. 

Given F E GYP, we define 

The set Xp with the distance d(F, G) = IIF - G]]“ap is a complete metric 
space. 

As usual, we denote by 9 the space of all infinitely differentiable 
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functions which are rapidly decreasing at infinity together with their 
derivatives. Given j, h nonnegative integers and d E 9 we define 

This family of norms pj,h defines the usual topology of the space Y. The 
letter C will stand for a constant, not necessarilly the same in each 
occurrence. 

(1.1) DEFINITION. A class A E Ez is a p-atom in Ez if there exists a 
member b of A and a ball B such that supp b c B and N(A, x) < 1 B 1~ I”‘. 

In Section 2 we will prove the following characterization of the space 

q,u: 

THEOREM 1. (i) If p < 1 a I (u + / a l/q) - I, then the space .P’ reduces to 
0. 

(ii) Let p be such that Jai (u+)aJ/q)-’ <p< 1. rf FEE: then 
FE Zp if and only if there exist a numerical sequence (luj} such that 
zj I,ujlp < a~ and a sequence {Aj} of p-atoms in Ei such that 

F=xpjAj in E4,. 
j 

Moreover, this series converges in ,fp and there exist two positive 
constants C, and C, such that 

where the inj?mum is taken over all decompositions of F. 

Section 3 deals with the connection between ,Pp and the space HP of 
Calderon-Torchisnky (cf. [ 11) when a = (a, ,..., a,) has rational components. 

Let k be the smallest positive integer such that k/ai is an even number for 
every i. We denote by L the differential operator associated with P(r) = 
r:‘“l + . . . + <i’nn, that is, Lf = @‘(c)f)‘, where f E , Y” and x f stand for the 
Fourier transform an its inverse, respectively. 

Given Q E .Y such that J”$(x)dx# 0 and fE P’, we set f*(x)= 
SUP,,.~,<~ If + $,( y)l , where 4,(x) = t ‘“‘#(A; ‘x). The space of all tempered 
distributions f such that f * E Lp is called HP and it is defined 
IlfllL = sf *“(x) dx (cf. [lb 

We will prove 

THEOREM 2. If I a i/p < km + la I/q, then the differential operator L” is 
an isomorphism between YYt,k,,, and HP. 
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2. PROOF OF THEOREM 1 

For the proof of this theorem we need the following lemmas: 

(2.1) LEMMA. Let f, and fi be two members of the class FE E4,. If 
P = f, -fi then for every a there exists a constant C, such that 

ID"P(Y)I< C,(4fi,xl> + n(fi,x,)>([x, -VI + [x2 -vl>“-“‘“5 
for every x,,x2, y E R”. 

Proof Let I$ E C” with supp 4 c ([xl < 1) such that if CA(x) = 
A’“‘&~,x) then Q=Q* #n f or every Q E <YU and every A > 0; for the 
existence of such 4 cf. [5]. Differentiating P = P * o,, we have 

gap(y)=~lal+a.a 
!’ [y-rJ<A.-’ 

(f,(z) -fXz))(V)(WWn(y - z)) dz. 

Ifp=2[y-x,]+2[y-xx,]=2A-’ we have 

ID”P(y)l < k’a’+a.a 
s ,x,~zl<p lfl(Zl IPvwA(Y - z>>I dz 

+ p+a.a 
I If&)l W!wA(Y - z)I dz. [XZ~Ll<p 

Thus, applying Holder’s inequality to’ these integrals we obtain the desired 
result. 

(2.2) LEMMA. The following properties are satisfied. 

(i) Given FE EP, and x, E R” such that N(F, x0) < 00, there exists a 
unique f E F such that n(f, x0) < 00 and then n(f, x,,) = N(F, x0). 

(ii) If (Fj} is a sequence of elements of Ez and Fj converges to F in 
Zp for some p, 0 < p < 1, then Fj converges to F in E9,. 

(iii) If {Fj} is a sequence of elements of E9, and there exists x0 E R” 
such that C N(Fj, x,,) < 03 then ,c Fj converges in E4, to an element F and 
N(F, x0) < xj N(Fj, x0). Moreover, iffy E Fj is such that n(fj, x0) = N(Fj, x,,) 
then Cf. converges in L&, to the function f E F which satisfies n(f, x,,) = 
N(F, xo). 

(iv) The space Xp is complete. 

For the proof of this lemma cf. [2]. 

(2.3) LEMMA. Let f be a function with compact support such that for 
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ja 1 < u + 1, D”f is a continuous function. Let us denote by F the class off in 
E;. Then there exists a real number 1 such that AF is a p-atom in Ez. 

Proof: First, we prove that N(F, x) E L”. This follows immediately if we 
prove first the inequality 

f(y)- x D*f(x)(y-xx”)/a! <<[y-x]“. 
a.aiu 

If ] y - x] < 1, this inequality is obtained by applying Taylor’s formula. In 
fact, 

f(Y) - x D”f(x)(y-x)a/a! 1 
l?.O<U 

= \‘ D”f(x)(y--)“/a!+ y 
ICiT;U uslnl<u+l 

D”f(x+O(y-x))(y--)“/a! I 
a.o>u 

<C[y-xl”. 

On the other hand, if [ y -xl > 1, we have 

f(y) - x D”f (x)(y - xY/a ! < llf IL + 1 IlPf llm Iv -xl”‘“la! 
n.a<u n.a<u 

< C[ y-x]“. 

Let B be a ball such that suppf c B and let C, be a constant such that 
N(F, x) < C, . If 2. = 1 B I -‘M CL i then it follows easily that AF is a p-atom in 
EZ. 

(2.4) LEMMA (Partition of unity). Let B be a proper subset of R”. There 
exists a sequence {#k} of functions Cm with compact support which satisfies: 

6) 0 < h(x) < 1 and Ck h(x) =x0(x>; 
(ii) for every k, there is a ball B, = B(x,, rk) c Q such that 

supp 4k c B, and for every z E B,, rk < d(z, Qc) < Cr,; 
(iii) for every k we have B(xk, 2r,) c 0, moreover, there exists an 

integer M such that the number of balls B(xj, 2r.J which intersect B(x,, 2rJ 
is not greater than M; 

(iv) for every a we have ) DLl#Jx)I < CarkQ” with c, independent 
of k. 

Proof: For the existence of the family B(x,, r,J cf. [6], and the partition 
of unity is obtained in the same way as in [9]. 
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(2.5) LEMMA. Let p be such that Ial (u + ia j/q)-’ <p < 1, and let 
FE ,rp. Given t > 0 let R = 0, = {x : N(F, x) > t); Q is an open set because 
N(F, x) is lower semicontinuous. Let {#k} be the partition of unity associated 
with R in Lemma (2.4). For every k, let y, E Bc such that 
d(B(x,, 2r,), Qc) Z d(B(x,, 2r,), y,J. Given a member f of the class F, by 
Lemma (2.2), there exists a polynomial P( y,, y) in %YU which satisfies, 

N(F3 yk) = n(f(v> - P(Y~,Y), ~~1. 

For every k, we set 

Wk(Y) = #k(Y)(f(Y) - P(Yk,Y)), 

and we denote by W, the class of wk in E,. q Then, the following conditions 
are satisfied: 

(i) N(W,,x)<CN(F,x) ifxEB(x,,2r,); 

(ii) N( W,, x) < Ct(r,/(r, + [x - x~]))~+““~ ifx 6? B(xk, 2r,); 

(iii) the series Ck N(W,, x) converges almost everywhere in R”, 
moreover, 

1 (~N(w,,x,)pdx~~~N(W,,x)pdx$Cj N(F, x)” dx; 
k k n 

(iv) the series Ck W, = W converges in E4, and we have N( W, x) < 
Ck N( W,, x) almost everywhere; 

(v) 1 N( W, x)” dx < C jn N(F, x)” dx; and 

(vi) if G = F - W then N(G, x) < Ct. 

Proof (i) We assume N(F, x) < 00, since otherwise the inequality is 
trivial. For every x, let P(x, y) be the polynomial which satisfies 

We set 

n(f(v>-P(x,y),x)=N(F,x). 

Q&Y) = x D;[#k(Y)(P(Xd) -p(Ykd))l,=, (Y -x)“‘a! 
a.o<u 

=.2.& (3 
~,“~Y~k~~~DI;~P~X~~~-pP(~k~~~~~~=x~~-x)a/a~~ 

Let us estimate p-“[p-‘“I ILY-xI<r, / wk(y) - Qk(x, y)Iq dy]l’q. By Lemma 
(2.1) and taking into account that [xk - yk] Q Cr, and that N(F, yk) < t < 
N(F, x) we have 

I D;(p(xy y) - p(ykT y))l < cN(F, x>@ + rk)u-a’ae (2.6) 
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Assume p > 2r,; in this case, 

I WAY) - Qdx, YI G I h(~)(f(~) - J'(x, VII 
+ I h(~)V’(x, Y) - P(Y,, ~111 + I Q&, YI s 

By (2.6), we have 

Ih(YwTGY) -p(YkTy))l< cw-c X)P”- 

On the other hand, by Lemma (2.1), we obtain 

Therefore, since [ y-x] < p and p/r, > 2, we have 

lQ,(x,y)( < x x Crkn’a+y’~N(F,x)rku~Y’apa’o 
a~ll<u y<a 

,< CN(F, x) p’. 

Then for p’> 2rk, the following inequality is satisfied: 

I wdy) - Q,k~)l< C If(u) - f’(x, y)l + CWK x1 P’. 

NOW we consider the case p < 2r,. By definition of Q&c, y), we have 

WRY) - Q&Y) = ~,AYK~(Y) - ~‘(Y,,Y)) - 1 
I 

WWMY - x>w> 
LJ.a<u 

x 1 qw~Y) -~(Y,~Y))l,=.~ (Y -X)‘/Y! . 
Y.l7<U-d.l7 

Adding and substracting the expression 

$4JY)%Y) + 5,y<, Wk(X)((Y - mw(%Y) - fYYk?Y>) 
a 

we obtain 

where 

A,= h(Y)- x mh(X)(Y - 4w I % Y> - P(Y/o Y)l 
4.a<u 
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and 

- z: 
y.o<u-4.a 

qu-Yw) - w,, Y))l,=, 0 - X>‘/Y! ] / . 

By (2.6) and applying Taylor’s formula we have 

A, < CN(F, x) r; \‘ ~5h(x>(Y - x>V! 
o.;u 
lBl<U 

+ x 
u<l5l<u+l 

where y, belongs to the segment joining x and y. 
Since p/2r, < 1, it follows that 

Applying Taylor’s formula in A, we obtain 

A, < C x r;5’ap5’a \‘ - qPwJ) - mw9)l,=, (Y - X)‘/Y! 
5.a<u u-b.a<ya<u 

Iyl<u-5.a 

where y, belongs to the segment joining x and y. 
Since [y,-x]<p and [y,-.vk]<C~k, then 

A,<C 2 t: WY xw!J y’a+5’a rf: < CN(F, x) p’. 
5.a<u up5.n<y.a<u 

Iyl<u-O.a+1 

Therefore, for every p > 0 and for [ y - x] < p we have 

Then 
IWO) - Q& YI < IJO) - P(x, YI + CNK x> P’. 

and (i) is proved. 

4~0) - Q,(x, Y>, x> < CNK x> 

For the proof of (ii), (iii), (iv), and (v) cf. [2]. 
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Now we prove (vi). Let x0 6? fl such that Ck N( IV,, x0) < co. Since 
x0 c?G B(x,, 2r,) for k = 1, 2 ,..., we know that wk is the unique member of the 
class W, which satisfies n(~~, x,) = N( W,, x0). 

Then, by (iii) of Lemma (2.2) the series Ck wk converges in L&, to a 
function w which is the member of the class W= Ck W, which satisfies 
n(w, x0) = N( w, x0). 

Therefore, the function g = f - w is a member of the class G = F - W and 
we have 

i?(Y) =f(y) if y E Q”, 

= 1 #k(Y) JYY, 3 Y> if yE (2. 

We observe that g is an infinitely differentiable function in a. Let 

b,(x) = D”&) if xE Q, 

= qw,Y)l,=, if xEQ’. 

We will prove that for a . a ,< U, x E .R’, and X E R” we have 

b,(x)-pb,+,(x)(x-X)5/p! <Ct(X-x]U-n’o. (2.7) 
B 

In fact, if X E Rc we know by Lemma (2.1) that 

ID;(P(~,y)-P(x,Y))l< Cl([X-Yl + Ix-Yl)“-“‘o 

and, taking ,v = X, we have 

/ b,(X) -y b,+,(x)(x-x)flp! 1 < CtlX-x]U-a’o. 
4 

Now we consider X E a. Let j be such that X E supp tij and [ yj - X] < 
[ y, - X] for every k such that X E supp #k. Then 

Dug(i) - D;P(x, y)l,=, 

+ [D,“P(Yj,Y)I,=,--D~P(x,Y)I,=,I. 

Therefore, applying Lemma (2.1) and taking into account that [ y, - X] + 
[yj-X] <Cr,, [x-yj] < [T-X], and rk< [3-x] we get 

I D”g(X) - D;P(x, y)J,=,-1 < Ct[f - x]~~~‘~. 

Then (2.7) is satisfied for every X E R”. 
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Next, we will prove that for every x E R and every X E R” the following 
inequality is satisfied: 

/ b,(F) - x b,(x)(Y- x)“/a! / < Ctlx - xl”. (2.8) CY.ll<U 
In order to prove (2.8) we need the estimate 

ID”g(x)l < ct d(x, .c)u-a’a (2.9) 

for every x E Q and for a . a > U. In fact, if x’ E Sz’ and [x -x’] = d(x, 0“) 
then 

Again applying Lemma (2.1) and taking into account that [x’ - x] = 
d(x, 0’) < Cr, and [ y, -xl < Cr,, we obtain (2.9). 

Now we prove (2.8). We consider the cases [x-X] < fd(x, 0‘) and 
[X-X] > id(x, P). In th e us case, applying Taylor’s formula we have f t 

b,(T) - y b,(x)@ - x)a/a! 
a.a<u 

= L b,(x)(f- x)“/a! + x b,(x + s(X - x))(X - x)Q/a!, 
lWl<U U<lClCU+l u.o>u 

where s E 10, 11. 
As d(x + s(zF - x), Q’) > jd(x, a“), applying (2.9) we get 

b,(Z) - x b,(x)(.f - x)“/a! 
a.a<u 

<ct 1 d(x,LqU-a’(2 [X-X]a.a < Ct[f-Xl”. 
a.a>u 

lal<u+1 

Now we consider the case [x-X] > fd(x, 52’). Let z E R’ be such that 
[z - x] = d(x, 0’). Adding and substracting the expressions 
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and by (2.7) we have 

and 

= K’ D,“P(z, y)l,=, (2 - x)“/a!. 
a.ll<u 

Then (2.8) follows. Applying (2.7) and (2.8) and since b, =g almost 
everywhere (cf. [4]), we obtain 

N(G, x) ,< Ct. 

Proof of Theorem 1. (i) Let p< ]a] (u + lal/q)-’ and letf@ ,YU. If F is 
the class off in E4,, then N(F, x) @ L p. In fact, since f6Z ,YU”,, there exist a 
ball B = B(0, r) and a real number 6 > 0 such that 

(I 1 
1/q 

B If(Y) - P(Y)14 4 > 6 for every P E Yu. 

On the other hand, 

( 
l/q 

n(f- P, x) = sup p -14 1% PI - ’ I,,, p) If(Y) -W)14 & . P>O 1 

If [x] > r, then B(0, r) c B(x, 2[x]). Therefore, taking p = 2[x] we have 

n(f- P, x) > C[x] -Cut ‘0”q) 
(1 . 

R(x z,x,) If(Y> - P(Y)14 dy) “q 

> C(qx] -(u+lol/4) and then N(F, x) fZ Lp. 

(ii) Let p > ]a] (U + lal/q)-‘. We know, by Lemma (2.3) that there 
exist p-atoms in E9,. Moreover, we know that if A is a p-atom in Ez, then 
J- N(A, x)” dx < C, where C is a constant independent of A, (cf. 121). 
Therefore, SP contains nontrivial elements. If {A i} is a sequence of p-atoms 
in Ez and {pi} is a numerical sequence such that Ci ],cilp < co then the series 
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Ci,uiA, converges absolutely in Rp. Even more, if we denote by F the sum 
of this series we have 

Following the same method as in [3] we get the second part of the proof. 

3. THE PROOF OF THEOREM 2 

Let m E N. In the sequel, we will prove some properties of an elementary 
solution of Lm. 

(3.1) DEFINITION. A function f is called quasi-homogeneous of degree I 
iff(A*x) = n/f(x) for every A > 0 and every x # 0. 

(3.2) DEFINITION. A distribution T is called quasi-homogeneous of 
degree I if for every 4 E a and every 2. > 0, (T, $*) = A’(T, #), where 
4*(x) = A - ‘“‘#(/Ii lx). 

It is easy to prove that the following properties are verified: 

If T E Y” is a quasi-homogeneous distribution of degree 1, then f 
is a quasi-homogeneous distribution of degree -1 a / - 1. (3.3) 

If T is a quasi-homogeneous distribution of degree I and there 
exists a function g continuous in R”\(O) such that (T, 4) = 
j”g(x)$~(x)dx for every Q E GJ(R”\{O}), then g is a quasi- 
homogeneous function of degree 1. (3.4) 

Let gE C”(R”\{O}) be q uasi-homogeneous of degree 1. Then 
D”g is quasi-homogeneous of degree I - a . a. Moreover, 
1 D”g(x)l < CJX]‘-~“. (3.5) 

(3.6) LEMMA. (a) If km < la/then (P(l))-m is a tempered distribution 
and ((P(r))-m)’ is an elementary solution of L” and 

(i) it agrees with a function h E L&, n C”O(R”\{O}), 

(ii) h is quasi-homogeneous of degree km - 1 a I. 

(b) Let km > 1 a I. We define 

+ 1,,l>1 &W’(t))-“’ dt. 
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Then F is an elementary solution of L” and 
(i) it agrees with a function h E L/,, n C”O(R”\(O}), 

(ii) ifa.a<km-(al+ 1 then D=hEL,‘,,, 
(iii) if a + a > km - la / then D”h is a quasi-homogeneous 

function of degree km - Ial - a . a. 

Proof (a) Since km < la /, (P(r))-” E L:,,; moreover, it defines a 
tempered distribution. 

In order to prove (i), we show first, that ((P(r))-“‘)” agrees with a 
function h E Cm(Rn\(O}) in the complement of the origin. Let YE 9 be 
such that Y(l) = 1 in {[(I < 1) and Y(c) = 0 in {[<I > 2}, then 

((P(t))-“)’ = (VW(O)-“‘)” + ((1 - ~~t))(P(~))-“)’ = h, + h,. 

Since Y([)(P(<))-m h as compact support, h, is an analytic function. Let us 
prove that h, agrees in the complement of the origin with a C”O function. 
Given a and /3 we have 

xaDDhZ = C,,,(D=l(l - y(t)) t4(P(T>)-ml)” 

and by (3.5) we obtain 

lD”[(l - Y(t))t5(P(t))Y’]l < Cc&-km+5’o-rr’o for [r] > 2. 

If a is such that -km + /3 . a - a e a < -] a I then D” [ (1 - Y(r)) 
<4(P(Q-“] E L’(R”). Therefore, xaD4hZ is a continuous and bounded 
function. 

Taking appropriate values of a it follows that D4h, agrees in the 
complement of the origin with a continuous function in R”\{O}. Therefore, 
((P(r))pm)” agrees in the complement of the origin with a function 
h E C”O(R”\{O}). M oreover, by (3.4) we obtain (ii) and by (3.5) h EL;,, 
and, therefore, ((P(c)pm)” - h defines a distribution supported at (O}. Then 

(P(t))-“’ - &) = Q(O. 

where Q is a polynomial. Since h” vanishes at infinity, then Q = 0 and part 
(a) of the theorem follows. 

(b) Let T, and T, be defined by 

Then T= T, + T,. 
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We begin with (i). Following the proof of (a), we can prove that F agrees 
in the complement of the origin with a function h E C”(R”\(O}). Since T, 
has compact support, f, is an analytic function. On the other hand, since 
km>ja(, T,EL’. and, therefore, 7’, E L2. Then f is a locally integrable 
function and we have T”= h. 

In order to prove (ii) we observe that 

Daf2 = C,(~“x(W’(C>)-“)‘, 

where x(T) is the characteristic function of { [<I > 1). As a . a - km < 1 - la 1 
and 2 < 1 al, we obtain &(<)(P(<)))” E L2. 

Finally, if a . a > km - 1 al, then <“T agrees with the function <“(P(<)))” 
which is quasi-homogeneous of degree a . a -km. Then by (3.3) and (3.4) 
we obtain (iii). 

(3.7) LEMMA. Let f E C~(R”\(O}) b e a quasi-homogeneous function of 
degree -I a / + aj. Then, k = af/axj verljies: 

(i) k E C”(R”\{O}), 
(ii) k is quasi-homogeneous of degree -1 a 1, and 

(iii) j,G,x1<2 k(x) dx = 0. 

Then k is a singular integral kernel of parabolic type (cf. [7]). 

Proof. Part (i) is obvious. Part (ii) follows immediately from (3.5). In 
order to prove (iii) we will show first that the following limit exists and it is 
finite for every 4 E 9, 

lim ’ 
J k(x)#(x) dx. (3.8) 

E-0 [XI>& 
We have 

After the change of variables A, y = x, we obtain 

Then by Green’s formula we have 
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Since lim,,, .flyj=~ f(Y) WeY) Yj do(Y) = 4(O) Slyj=~ f(Y) Yj WY), we 
obtain that 

lim 
i c-0 [Yl>l 

k(Y) +w,Y) dY 

exists. It is easily seen that, after a change of variables, it agrees with (3.8). 
Taking an appropriate Q it follows that 

lim 
1 E+o &<[X]<Z 

k(x) dx 

exists. On the other hand, after a change of variables, we have 

J k(x)dx= . 
J 

k(x) dx 
1 <[xl < 2 A<lxl<21 

for every A > 0. Taking 1 = 2 -k, k = 1, 2 ,..., we get 

I k(x) dx = 1 k(x) dx. 
I<[Xl<Z 2-K<l.r1<2 k+’ 

Now 

lim . 
I 

k(x) dx = lim (7 j 
i+m iE0 

k(x) dx 
c-0 &<lX]<Z Zmi<lx]<2-ltl 

= ,,‘\; (I- + l)j k(x) dx; 
I<lXI<Z 

since this limit is finite, (iii) follows. 

(3.9) COROLLARY. Let h be the elementary solution of L” which is 
defined in Lemma (3.6). If a . a = km then D”h is a singular integral kernel 
of parabolic type. 

(3.10) LEMMA. The d@erential operator Lm is well defined in E&, and 
is injective on RgP,km. 

Proof. If f, and f2 are two members of the class FE E&,, then Lmf, = 
Lmf2 because f, -f, E ‘P,.,, . Therefore, we may define L”F = Lmf, where f is 
any member of F. Given FE oV~P,~~ and f a member of F, we know that 
f E 9' (cf. [2]). Th en if L”f = 0, we have (P(r))mf= 0 and, therefore, f is 
supported at the origin. Now, the proof follows as in [4, Lemma 91. 
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(3.11) LEMMA. Let gEL~,,nci”’ and f=Lmg. Zfj>km+lal and 
4 E 9 then 

f *Cx> G cPj,km(#) n(g7 x>* 

Proof. If h E Lp,, and Y/E 9 then 

i Ih( I ytu)l du Q CPj,,(W n(h, 0). 

For the proof of (3.12) see [2]. Now 

(f* h)(v) = (Lrng * 4,)(Y) = (g * LYAY). 

Since i,(r) = $(A,<), we have 

L”h(y) =J e- 2”‘y”(W))m &A ,t) &. 

If we set q =Al<, then 

LrnQ,(Y) = t- ‘=I -kyL”qq(A; ‘y). 

Therefore, 

(3.12) 

f* MY)= t-""'jkW='~), b-z)dz. 

If z=x+A,u, we get 

Applying (3.12) with h(u)=g(x+A,u) and vu> = (LrnQ>t 
(y-X--A,u)t’“‘, and taking into account that n(h, 0) = tkmn(g, x) we 
obtain 

IU* 4t)(Y)l G cn(g3 x>Pj,,((Lm#)(A ;‘(Y - X) - U))* 

Since [y-x] <t, we have 1 + [u] <2(1 + [A;‘(y--X)-U]); then 

pi,OwmTw;l(Y - x> - u>> 

G c ,syn l(LYM;‘(Y -x> - u)l (1 + [A,‘(y -x) - u]y’ 

= Cpj,o(Lm#) < CPj,km(#h 

and the lemma is proved. 

(3.13) LEMMA. Let b be a p-atom with null moments up to order 
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N > km, supp b c B(0, r), and (1 bll, < IBj-“p. Let f be the solution of 
L”f = b obtained as f = h * b, where h is the elementary solution of L” 
obtained in Lemma (3.6). Then 

(i) if [x] > 2r, we have 

lD*f(x)[ < Cr-‘““P[x]km-a’n (r/[x])lnl+N+’ for every a. 

(ii) if [x] < 2r, 1 f (x)1 < Cr-‘a”p+km holds. 

Proof: (i) Since [x] > 2r and L”’ is a hypoelliptic operator, f is 
infinitely differentiable at x and 

LYf (x) = J D”h(x - z) b(z) dz 
lzl<r 

zz 
1 

1 D4D*h(x)((-z)4//3!) b(z) dz 
l;l<r IDI <P. 

f‘ J \’ I D”D”h(x - lz)((-z)4/~!) b(z) dz 
I;l<r 141 =N-t I 

with 0 < 1 < 1. Since b has null moments up to order N, the first addend 
equals zero. 

If I/I/ = N + 1, then, by Lemma (3.6) D’+“h is a quasi-homogeneous 
function. Then 

Since [AZ] < r < [x1/2, we have [X-AZ] > 1x)/2. Therefore, 

ID"f(x)l,< C \‘ 
IbIG+ I 

r-lal/PIX]k~-n~a (r/[X1)4~"tlal, 

As r/(x] < 4 and p. a > I/? = N + 1, part (i) follows. 
In order to prove (ii), we first assume km < /a 1. In this case, h is quasi- 

homogeneous of degree -Ial + km and, therefore, 

If (XI <j 
lzI<r 

Ih(x-z)lIb(z)idz<Cr~‘““P\ ih(x-z)ldz 
.1:1&r 

< Cr-lallP . 

J 
I h( y)l dy < Cr.-‘““P 

fYl63r 
J-<3r lYl-‘“‘+kmdY 

= cr-(lallP)+km 

On the other hand, if km > Ial we have f(x) = (67’)” (x), where T is the 
Fourier transform of h. 
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Applying Taylor’s formula to the function eZniYL, we have 

b(l) = J,,, <r ezniyt dy 

= \‘ I &N [yl<r 

(2fli)‘“’ (~“/a!) b(y) dy + 

X 
u 

1 (2I.E)‘” y” eiry’I(l -t)“(N+ l)dt b(y)dy. 
0 1 

Since b has null moments up to order N, the first addend equals zero. Then 

(3.14) 

with C independent of 6. Moreover, if /3 . a < km - la 1 we have 
(D”&)(O) = 0. Then b^T = 6(<)@‘(c))-“’ E L’(R”). Therefore, 

Then 

=i I &Ol Q’(t)) - m &. 
[Il<rm’ 

I &)I P’(t)) -in dt + j 
iIl>rm’ 

By (3.14) we get 

<c 2 p’o-lal/P+lalr ~a.atky.4 = c,.-lallptkm 

lal=N+ I 

On the other hand, applying Schwartz inequality we obtain 

,I,>r-l l&3 V’(Wmd~~CIlb^ll~~ (l,,,,,mI [tI-2kmdtj 1’2 

=c (jlYl<rjb(y)12 dy)‘” [/~,s-~~~+‘+’ ds) 1’2 
, 

Then (ii) is proved. 
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(3.15) LEMMA. Let lal/p < km + /al/q and let b be a p-atom with null 
moments up to order N 2 km + 1 a i/q. Let f be the solution of L”f = b 
obtained as in Lemma (3.13). If F is the class off in E&, then there exists a 
constant C, independent of b, such that 

I N(F, x)” dx < C. 

Proof: By translation, we may assume that supp b is centered at the 
origin. That is, supp b c B(0, r) and 1) 611, < IBI -‘lp. In order to estimate 
N(F, x), we first assume that [x] > 4r. In this case, if [x] > 2p we have 

1 
1/q 

< Cr- l”l/P(r/[X])l~l fNf 1 (3.16) 

with P(x,y) = za.a<km Oaf (x)y=/a!. In fact, 

f (x ty) - P(x,y) = , Zkm oaf (x)JJ”la! 
a 

a.a>km 

+ L’ D”f (x + By) y”/a! with 0<8< 1. 
Iczl=km 

Then 

0 
1/q 

P 
-(km+ 14/s) If(x+Y) -W,Y)I~~Y ,y,<p 

\P < -(km+'a"q) [ ,zkm (I,,,,, Ioaf (x)yala!lq &) 'lq 
a.o>km 

+ -s 
lapkm 

(I,,,,, loy(x+&)V”Ia!lqdy)“q] 

-p-(k~+l~l/4)(~1 + I*). 

Applying Lemma (3.13), we obtain 

p-(km+ lal/q)~, < c x @/[X])a.a-km r-lall~(r/[X])lnl +N+ 1. 

lal<km 
a.a>km 

Since p/[x] < 1 and a . a - km > 0, we have 

P 
-(kmtlal/q)I, G cr-lai/~ Ial tN+ 1 Phi) . 
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As [@I <P < [x1/2, we have [x + Sy] >, [x] - [0y] > [x1/2 > 2r and, 
therefore, we can estimate I, in the same way as I,. 

Following with [x] > 4r, we assume now. [x] Q 2p. Then 

P -(km+ lai/q) (1 v-(x +y> - fPtY)lQ dY [yI<p ) 
l/q 

GP- (km+ lal/q) 
[(I 

[y,<p 1.m +Ylq dY )l” + (j,,,,, IW9Y)14 dY) ““1 

=P -(km+l~liq)(~I + I*). 

For I, we have 

ZIG Ilfll, G (jIn,,2r Lm>14 du) ‘lq + (jlul)2r If(u>lq du) 1’q. 

By (ii) of Lemma (3.13) we get 

(j,.,,* 
r 

lf(u),q du) 1’q Q cr-‘““p+k”+lallq. 

On the other hand, by (i) of Lemma (3.13) we obtain 

(j,u,>2r ,j$>,q du)"q < cr-'a"p+'a'+N+' (j, 
u 

I>*r [U]kmq-lolq-Nq-q du) liS 

< ~r-lall~+km+lol/~ 

Then, 

For I, by (i) of Lemma (3.13), we have 

I* = 

Therefore, 

P -(km+la1/q)12 G c,-l~llP(r/[X])l~l+N+l C ([x]/p)km-a.ae 
a.oikm 
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Since [x] < 2p, we have 

s ([XJ/py”.” < c. 
a.a<km 

Then 

As Ia I/q + km ,< N, it holds that 

I/q 
P -(km+lal/q) 

<p If@ + Y> - w, YP dY 
,< ,,-l~ll~(,/[X]>~“+‘“1/9 

(3.17) 

for 4r < [x] < 2p. By (3.16) and (3.17) it follows that 

N(F, x) < Cr-lal’P(r/[~])km+ ‘a”q. 

Then 

I N(F, x)” dx < C, 
[xl>4r 

where C is a constant independent of b. For [x] < 4r we have 

f(x + z> - P(x, z) 

=j (h(x+z-y)- x D*h(x - y) ~“/a! b(y) dy 
a.aikm 

=i h(x+z-y)- x D”h(x - y) Z”/CY! b(y) dy 
IX-Y1 < 2121 a.oikm 

+ 1 h(x+z-y)- x D”h(x - y) ~“/a! b(y) dy 
ix~Yla2rzl a.a<km 

=I, +I,. 

After the change of variables x -y = U, we have 

IIll 9j h(u +z>- x Dab(u) ~“/a! I b(x - u)j du 
Iul< 2121 o.a<km-Ial 

(3.18) 

+i 
\’ D”h(u) ~*/a! I b(x - u)l du. 

[ul<2[zl km-lal<a.a<km 

As D”h is quasi-homogeneous for a . a > km - 1 al, the second part of the 
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sum is bounded by Cr-‘a”p[~]km. If km < Ial, then the first addend reduces 
to 

J Ih(u + z>l I b(x - u)l du, 
[ul<21zl 

and since h is quasi-homogeneous, it holds the same estimate. On the other 
hand, if km > la I we have 

J I 
h(u+z)- 5 lYh(u) ~“/a! (b(x - u)l du 

lul<2[zl a.a<km-la 

< cr- Ml/P 

j I 

h(u +z)- 1 D”h(u) ~*/a! du. 
[ul<2[zl n.a<km-Ial 

Applying Taylor’s formula we have 

j I 
h(u +z)- 1 Dab(u) ~“/a! du 

lul<2Izl a.o<km-Ial 

zz 
I [ ]<2[ ] , ,<~-,~, Dah(u)zn’a! u .? 

,‘ta>k”,-,a 

(3.19) 

+ \‘ 

km~lal<la<km-laltl 
V/a!> j: D”h(u + tz)(l - Q-’ s dt du, 

where s is the integral part of km - [al + 1. 
If we set u =A,,, v and ,F=A [,,‘z, then (3.19) equals 

I, ]<2 ‘Z”a’ 1 I”b~K~l,~l, ‘zl - 
lal+km-a.o ~ah(~) z”/a! 

” 

+ c 
km-lal<lal4km-lal+l 

(z-/a!)j: [z]-lof+km~~.a 

x D”h(u + tY)(l - Q-’ s dt dv 

= [Zlkmj, I<* 1 C D”h(v)z”/a! 
L’ lal<km-la 

a.o>kmplal 

+ c (P/a!) j’ D”h(v + fF)( 1 - t)S-’ s dr dv 
km-lal<lal<km-laltl 0 

=[~l”“‘j~ l<2 1 h(u+f)- 1 
u a.o<km-Ial 

D”h(v)P/a! / dv. 

409/100/1 I I 
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By Lemma (3.6) we know that D”h E L:,, for a . a < km - 1~1, then 

j i 
h(u +z)- 7 Dab(u) ~“/a! du 

lul<2lzl ,.L7<‘,-,a, 

= [zlk-j., I<* / h(v +F) - 1 
I> a.n<km-la 

D”h(v)F/a! 1 du 

< klkrn 
(i' 

,ul<2 Ih(v + FlI dv + m~o<;m-,o, I,[,,<* ID"h(v)l IA"'"la! duj 

< C[z] km, 

where C is a constant which depends on h and its derivatives of order a, with 
a . a < km - I a I. Therefore, 

lZ,l < CY-‘a”p[Zlkm. 

For I, we have 

I,= . ! h(x+z-y)- y D”h(x -y) z”/a! b(y) dy 
IX-YlZ2l~l n.a<km 

zz 
J t 

h(x + z -y) - x D”h(x - y) z”/a! b(y) dy 
IX~Yl>2iZl a.a<km 1 

+I 

\‘ 

[x-Y1>2[Zl n.a=km 

D”h(x - y)(z^/a!) b(y) dy = J, + J,. 

By Taylor’s formula we get 

J, = 
1 

\’ 
IaEkm 

D”h(x - y) z”/a! 
I.~~Yl>2lZl 

n.a>km 

+ “ 

I~l=Zl+l 
D”h(x - y + Oz) z”/a! b(y) dy 

with 0 < 8 < 1. Since [x-y + @z] > [x-y]/2 and as D”h is quasi- 
homogeneous for a . a > km, we obtain 

IJ,I < Cr-‘““P[z]km. 

On the other hand, by Corollary (3.9), D”h is a singular integral kernel of 
parabolic type for a . a = km. Therefore, the maximal operator 

c%(x) = “,“,; f D”h(x - y) g(y) dy 
[X-Yl>E 
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is bounded in L* (cf. [7]). Moreover, 

IJ,I < C[zlkm s K,*b(x). 
a.a=km 

Then. we have obtained 

lf(x + z) - P(x, z)l < Cr-‘““P[Z]km + C[z]km K,*b(x). 
a.o=km 

Therefore, for [x] Q 4r we have 

K,*b(x) . 
n.a=km 

Then 

(K,*~(x))~ dx. 

Applying Holder’s inequality with r = 2/p and taking into account that K,* is 
bounded in L2 we get 

i 
N(F, x)” dx < C. 

[x1<4r 

Then the lemma is proved. 

Proof of Theorem 2. Given F E RqP,km, by Lemma (3.11) we have 

(L “F)*(x) < CN(F, x). 

Then 

Moreover, by Lemma (3.10) we know that L” is injective. On the other 
hand, given f E HP, there exist a sequence { bj} of p-atoms with null moments 
up to order N > km + ]a I/q and a numerical sequence {Ai} such that 
f = cjAjbj and Cj ]ijjlp < C /If ]IHc’ (cf. [8]). The proof will be finished if we 
show that L” is surjective. This follows from Lemma (3.15) in the same way 
as in [2]. 
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