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1. Introduction

Isometries between Banach spaces are those morphisms which preserve the metric
structure of the spaces. In 1932 Banach[3] showed that ifK andL are compact metric
spaces andT is an isometric isomorphism fromC(K), the space of continuous real
valued functions onK, to C(L), the space of real valued functions onL, then there is
a homeomorphism� from L into K and a continuous functionh on L with |h(y)| = 1
such that

(Tf )(y) = h(y)f ◦ �(y)

for all f in C(K) and all y in L. Later, Stone[46] extended the result to the case
whereK andL are compact Hausdorff sets, a result which is now referred to as the
Banach–Stone Theorem. In the seventy years, since Banach’s and Stone’s results, it
has emerged that isometries between a wide range of Banach function spaces have
the above form with the condition onh relaxed to be an element of the range rather
than satisfy|h(y)| = 1. Examples of this phenomenon are the isometries ofH∞(�)
and H1(�) characterized by deLeeuw et al. [18], the isometries of the Hardy spaces
Hp, 1 < p < ∞, p �= 2, by Forelli [25], the isometries of the Bergman spaces,L

p
� ,

0 < p < ∞, and weighted Bergman spaces given by Kolaski [34,35], the isometries
of the Bloch spaces,Bo and B, due to Cima and Wogen [15], and the isometries of
weighted spaces of holomorphic functions,Hvo(U) andHv(U), on bounded subsetsU
of Cn, [6]. In this paper, we will prove results of this type for spaces of homogeneous
polynomials on Banach spacesE and F . Our � will turn out to be the transpose of
an isometric isomorphism fromE′ into F ′.

Before proceeding we introduce some definitions and notation. Throughout the paper
E and F are Banach spaces andSE is the unit sphere ofE. A function P :E → K
(K = R,C) is said to be a (continuous)n-homogeneous polynomial if there is a
(continuous)n-linear mapLP :E × E × · · · × E︸ ︷︷ ︸

n-times

→ K such thatP(x) = LP (x, . . . , x)

for all x ∈ E. Continuousn-homogeneous polynomials are bounded on the unit ball and
we denote byP(nE) the Banach space of all continuousn-homogeneous polynomials
on E endowed with the norm:P → ‖P ‖ := sup‖x‖�1 |P(x)|.

An n-homogeneous polynomialP ∈ P(nE) is said to be of finite type if there is
{�j }kj=1 in E′ such thatP(x) = ∑k

j=1 ±�j (x)
n for all x in E. The closure of the finite

type n-homogeneous polynomials inP(nE) are called the approximable polynomials.
We usePf (

nE) to denote the space of finite typen-homogeneous polynomials and
PA(

nE) to denote the space of alln-homogeneous approximable polynomials.
We say that ann-homogeneous polynomialP on a Banach spaceE is nuclear if

there is bounded sequence
(
�j

)∞
j=1

⊂ E′ and a sequence
(
�j
)∞
j=1 in �1 such that

P(x) =
∞∑
j=1

�j�j (x)
n
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for everyx in E. The space of all nuclearn-homogeneous polynomials onE is denoted
by PN(

nE) and becomes a Banach space when the norm ofP is given as the infimum
of
∑∞

j=1

∣∣�j ∣∣ ‖�j‖n taken over all representations ofP of the form described above.
This norm is called the nuclear norm ofP and is denoted by‖P ‖N. WhenE′ has the
approximation property(PN(

nE), ‖ ·‖N) is isometrically isomorphic tô
⊗

n,s,�E
′ under

the map induced by�n → � ⊗ � ⊗ · · · ⊗ �.
A polynomial P on E is said to be integral if there is a regular Borel measure�

on
(
BE′ ,�(E′, E)

)
such that

P(x) =
∫
BE′

�(x)n d�(�) (1)

for every x in E. We write PI(
nE) for the space of alln-homogeneous integral poly-

nomials onE. We define the integral norm of an integral polynomialP , ‖P ‖I , as the
infimum of ‖�‖ taken over all regular Borel measures which satisfy(1).

It is shown in[20] (see also [21, Section 2.2]) thatPI(
nE′) is isometrically isomor-

phic to PA(
nE)′ via the Borel transformB given by B�(�) = �(�n) for � ∈ E′,

� ∈ PA(
nE)′. We use this identification without further reference.

A class of n-homogeneous polynomials onE is a pair consisting of a subspace,
PC(nE), of P(nE) and a norm,‖ · ‖C , under which(PC(nE), ‖ · ‖C) is a Banach
space.

The spaces ofn-homogeneous approximable, nuclear and integral polynomials are
all examples of classes of polynomials.

Let us review what is known about isometries and more generally isomorphisms of
spaces of homogeneous polynomials.

In [17] Díaz and Dineen posed the following question:If E andF are Banach spaces
andE′ is isomorphic toF ′ does this imply thatP(nE) is isomorphic toP(nF )? They
obtained a positive solution in the case whereE′ has both the Schur property and the
approximation property. In [9] a positive solution is also obtained in the case where
E andF are stable Banach spaces while both Cabello Sánchez et al. [9] and Lassalle
and Zalduendo [36] show that Arens regularity ofE alone gives us an affirmative
answer. (The fact that stability gives a positive solution is actually implicit in [17,
Proposition 3].) A positive solution is also obtained in [36] under the assumption that
both E andF are symmetrically Arens regular. In addition it is shown that this result
is also true for the classes of nuclear, approximable,K-bounded, integral, extendiblen-
homogeneous polynomials along with the space ofn-homogeneous polynomials which
are weakly continuous on bounded sets irrespective of further conditions onE or F .
In [13] these results are extended to spaces of vector-valued homogeneous polynomials
although the techniques required are different. In [36] we are provided with a method
of constructing an isometry of spaces of homogeneous polynomials onE andF from
an isometry ofE′ into F ′ as follows: Given a Banach spaceE we useJE to denote the
canonical embedding ofE into its bidualE

′′
. There is no Hahn–Banach Theorem for

homogeneous polynomials of degree 2 or greater. However, Aron and Berner [1] and
Davie and Gamelin [16] show that for everyP ∈ P(nE) there is a norm-preserving
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extension ofP to P ∈ P(nE ′′
) such thatP ◦JE(x) = P(x) for all x ∈ E. This extension

is the key that allows us to lift any morphisms from E′ to F ′ to a morphisms from
PC(nE) to PC(nF ), defined by

s(P ) = P ◦ s′ ◦ JF .

In the case wheres is an (isometric) isomorphism̄s is also an (isometric) isomorphism.
This paper is organized as follows. In Section 2, we characterize ‘canonical’ iso-

morphisms between spaces of approximable polynomials in terms of both the algebraic
and geometric structures. In the third section we examine the converse of the question
of Díaz and Dineen[17] for the case of approximable polynomials. Specifically we
show that ifE andF are real Banach spaces,n is a positive integer andT : PA(

nE) →
PA(

nF ) is an isometric isomorphism then there is an isometric isomorphisms:E′ → F ′
such thatT (P ) = ±P ◦ s′ ◦ JF for all P ∈ PA(

nE). In Section 4, we show that this
result extends to complex Banach spaces when we have additional information on the
extreme points of the unit ball ofPI(

nF ′). Isometries between the classes of integral
and of all n-homogeneous polynomials are discussed in Section 5.

For further reading on polynomials on Banach spaces we refer the reader to [21]
and to [23] for further information on isometries of Banach spaces.

2. Canonical and power-preserving mappings

Let E be a real or complex Banach space andn be a fixed positive integer. We
define an equivalence relation≡ on E′ by � ≡ � if

�n = �n.

We let E′/ ≡ denote the set of all≡ equivalence classes. Given� in E′ we use[�]
to denote the equivalence class of� in E′/ ≡.

Let E and F be real or complex Banach spaces,n be a positive integer and
T : PA(

nE) → PA(
nF ) be an isomorphism. We defineST

E′ by

STE′ = {� ∈ E′ : ‖T (�n)‖ = 1}.

We useST
E′/ ≡ to denote the set{[�] : � ∈ ST

E′ } and SE′/ ≡ to denote the set
{[�] : � ∈ E′, ‖�‖ = 1}.

We need some technical lemmata and definitions.

Lemma 1. Let E be a real or complex Banach space of dimension at least3. Then,
ST
E′ is simply connected.

Proof. Consider� and −� in ST
E′ and the punctured distorted spheresU = ST

E′ \ {�}
and V = ST

E′ \ {−�}. We show that{U,V } satisfies the hypothesis of Van Kampen’s
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Theorem (see, for instance,[39]). It is clear thatU , V are open sets and coverST
E′

so we have to show thatU,V are simply connected andU ∩ V is path connected.
Moreover, we prove thatU,V are contractible. Consider, for instance,V and define

F : [0,1]×V → V by F(t,�) = (1 − t)� + t�
‖T (((1 − t)� + t�)n)‖1/n , which is continuous since

T is an isomorphism and(1 − t)� + t� = 0 if and only if � = −�. In addition,
F(0,�) = � and F(1,�) = �, therefore,F is a contraction. In an analogous way
it can be shown thatU is contractible. To show thatU ∩ V is path connected, take
�0 ∈ U ∩ V . If � ∈ U ∩ V such that{�,�0,�} is a linear independent set then,

��,�0
(t) = (1 − t)� + t�0

‖T (((1 − t)� + t�0)
n)‖1/n defines a path inU ∩ V connecting� and �0.

If � belongs to the span of{�,�0}, consider	 ∈ U ∩V such that{�,�0, 	} is a linear
independent set. Now, definẽ��,�0

(t) by

�̃�,�0
(t) =

{
��,	(2t) for t ∈ [0, 1

2],
�	,�0

(2t − 1) if t ∈ [1
2,1].

Then �̃�,�0
is the mapping required, and this completes the proof.�

Definition 2. We say thatT : PC(nE) → PC(nF ) is power-preserving orT is a power-
preserver if for all� ∈ E′ with �n ∈ PC(nE) we have thatT (�n) = ±�n for some�
in F ′.

Definition 3. Given a power-preserving isomorphismT : PA(
nE) → PA(

nF ) we call
the functiont : ST

E′/ ≡→ SF ′/ ≡ the mapping induced byT to be the unique mapping
which satisfies the propertyt ([�]) = [�] whereT (�n) = ±�n for all � ∈ ST

E′ .

Lemma 4. Let E and F be real or complex Banach spaces of dimension at least
3, n be a fixed positive integer andT : PA(

nE) → PA(
nF ) be a power-preserving

isomorphism. Then, the continuous functiont : ST
E′/ ≡→ SF ′/ ≡ induced byT can be

lifted to a continuous functioñt : ST
E′ → SF ′ . Further, if �o is such thatt ([�o]) = [�o]

then, there exists a unique isomorphisms:E′ → F ′ so that s(�o) = �o and [s(�)] =
t ([�]) for all � ∈ ST

E′ .

Proof. We shall suppose without loss of generality thatT (�n) = �n for all � in E′.
Fix �0 on ST

E′ . Considert ◦ [ · ]: ST
E′ → SF ′/ ≡. This function is continuous. AsST

E′
is simply connected we have that the fundamental group at the point�o, �(ST

E′ ,�o),
is trivial. Choose�o in SF ′ so that t ([�o]) = [�o]. Then by [37, Theorem 5.1] there
is a unique continuous mapping̃t : ST

E′ → SF ′ so that t̃ (�o) = �o and [t̃ (�)] = t ([�])
for all � ∈ ST

E′ . Set s(�) = ‖T (�n)‖1/nt̃
(
�/‖T (�n)‖1/n

)
when � �= 0 and s(0) = 0

to get a unique continuous homogeneous functions:E′ → F ′ so that s(�o) = �o
and s(�) = t̃ (�) for all � ∈ ST

E′ . Let X be a finite dimensional subspace ofE. Then

X′ is a subspace ofE′. ConsiderT |⊗̂
n,s,
X

′ :
⊗̂

n,s,
X
′ → ⊗̂

n,s,
F
′. The proof of [45,

Exercise 4.5.5] (see also [45, Theorem 4.5.5]) gives us a linear operatortX′ :X′ → F ′
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so thatT (�n) = (tX′(�))n for all � ∈ X′. Then (tX′(�o))
n = T (�n

o) = �n
o and so

tX′(�o) ≡ �o. By uniqueness of lifting we get thats|X′ = �tX′ for some � with
|�| = 1. Since this holds for all finite dimensional subspaces ofE′, s is linear.

Clearly, ass is linear it must be injective. We claim that it is also surjective. Sup-
pose that this is not the case. LetY ⊂ F ′ denote the range ofs. It follows by
[44, Lemma 1.2] thatY is a closed subspace ofF ′. As T (�n) = (s(�))n for all � ∈
E′ and {�n : � ∈ E′} spansPf (

nE) = ⊗
n,sE

′ we have thatT (Pf (
nE)) = ⊗

n,s Y .

SinceT is both continuous and open it follows thatT (PA(
nE)) = ⊗̂

n,s,
Y which is
strictly contained inPA(

nF ). Thus, s is a bijection. �

Definition 5. An isomorphismT : PC(nE) → PC(nF ) is said to becanonicalif T (P ) =
±P ◦ s′ ◦ JF for all P ∈ PC(nE) and some isomorphisms:E′ → F ′.

Theorem 6. Let E and F be real or complex Banach spaces of dimension at least
3, n be a positive integer andT : PA(

nE) → PA(
nF ) be an isomorphism. Then the

following are equivalent:

(a) T is canonical,
(b) T is power preserving,
(c) there is an isomorphismS: PA(

2nE) → PA(
2nF ) such thatS(PQ) = T (P )T (Q)

for all P,Q ∈ PA(
nE),

(d) If P1, Q1, P2, Q2 ∈ PA(
nE) satisfy

P1Q1 = P2Q2

then,

T (P1)T (Q1) = T (P2)T (Q2).

Proof. Clearly we have that (a) implies (b). Now suppose that (b) holds. Then,
Lemma 4 gives us an isomorphisms:E′ → F ′ so that

T (�n)(y) = ±(s(�))n(y) = ±�n ◦ s′ ◦ JF (y)

for all � ∈ E′ and y ∈ F . By linearity we get that

T (P )(y) = ±P ◦ s′ ◦ JF (y)

for all finite type polynomialsP on E. Continuity extends the result toPA(
nE) which

shows thatT is canonical.
Suppose that (a) holds and thatT (P ) = P ◦s′◦JF for some isomorphisms:E′ → F ′.

Then defineS: PA(
2nE) → PA(

2nF ) by S(R) = R ◦ s′ ◦ JF for R ∈ PA(
2nE). As the

Aron–Berner extension is multiplicative (see[16]) we have thatS(PQ) = T (P )T (Q)

for all P,Q ∈ P(nE). Statement (d) follows from (c).
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Finally, let us show that (d) implies (b). Fix� ∈ E′ and choose� ∈ E′ which
is linearly independent of�. For k = 0,1, . . . , n let Qk ∈ PA(

nF ) be defined by
Qk = T (�k�n−k). As (d) holds we have thatQ2

k = Qk+1Qk−1 for k = 1, . . . , n − 1.
We can rewrite this as

Q0(y)/Q1(y) = Q1(y)/Q2(y) = · · · = Qn−1(y)/Qn(y)

for all y in F . An old result of Mazur and Orlicz[38] allows us to show that we
have unique factorization of polynomials on infinite dimensional spaces. Let us write
the rational function

Q0/Q1 = Q1/Q2 = · · · = Qn−1/Qn

in its lowest possible form asR/S. We have that degR = degS = p. As � is not a
linear multiple of� we have thatp > 0. However,

Qo(y)/Qn(y) = (Q0/Q1) (y) (Q1/Q2) (y) · · · (Qn−1/Qn) (y) = (R(y)/S(y))n

for all y ∈ F and therefore we have thatp�1 and so bothR and S are linear. In
particular, we have that

T (�n)(y) = Qo(y) = � (R(y))n

for some constant� and thereforeT is a power-preserver.�

The above result illustrates that there is a connection between the isometric proper-
ties of spaces of homogeneous polynomials and their ‘algebraic’ structure. This phe-
nomenon can be observed in other function spaces and algebras, see for example,
[4,5,10,12,18,26,30–32,40,41].

3. Isometries between spaces of approximable polynomials on real Banach spaces

The isometric properties of Banach spaces are those properties which are intrinsically
connected with the shape of the unit ball. To understand these properties we are nat-
urally lead to examine certain subsets of points in the unit sphere which are invariant
under isometries. These include extreme points, exposed points and denting points.

An extreme point of the (closed) unit ball ofE, BE is a pointx with the property
that wheneverx = �y + (1 − �)z for y, z in BE and 0< � < 1, then,x = y = z.

As we will also use the notation given below in Section 4 we state it for both the
real and complex cases.

Let X be a Banach space andn be a positive integer. It is shown in
[7, Proposition 1] that the set of (real) extreme points of the unit ball ofPI(

nX)
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is contained in{±�n : � ∈ X′, ‖�‖ = 1}. Hence, given a Banach spaceX and a
positive integern we useEn(X′) to denote the set

{� ∈ X′ : �n is an extreme point ofBPI (nX)}.

Theorem 7. Let E and F be real Banach spaces andT : PA(
nE) → PA(

nF ) be an
isometric isomorphism. Then, there is a isometric isomorphisms:E′ → F ′ such that
T (P ) = ±P ◦ s′ ◦ JF for all P ∈ PA(

nE).

Proof. Since T is an isometry we have thatT ′ maps extreme points ofBPI (nF ′) to
extreme points ofBPI (nE′). Therefore, by[7, Propositions 1], for eachy ∈ En(F ′′

)

we can findx ∈ En(E ′′
) so thatT ′(yn) = ±xn. Let us see that this equality extends

to give us thatT ′ is a power-preserver. Giveny ∈ F
′′
, ‖y‖ = 1, by [7, Proposition

5] and the Bishops–Phelps Theorem we can find a sequence{yk} ⊂ En(F ′′
) so that

yk → y in norm. By choosing a subsequence, if necessary, we may suppose that either
T ′(ynk ) = xnk or T ′(ynk ) = −xnk for all k. By [44, Lemma 1.2 (a)] we have that{xn :
x ∈ E

′′
, ‖x‖ = 1} is closed inPI(

nE′). Thus, there isx ∈ E
′′

so thatT ′(yn) = ±xn.
Since it is bijective,T ′ maps{±yn : y ∈ F

′′
, ‖y‖ = 1} onto {±xn : x ∈ E

′′
, ‖x‖ = 1}.

By homogeneity it follows thatT ′ is a power-preserver.
We claim that eitherT ′(yn) = xn or T ′(yn) = −xn for all y ∈ S

F
′′ and hence for

all y in F
′′
. Suppose this not the case and assume thatn is even. (The odd case is

immediate.) Consider the disjoint setsA = {y ∈ S
F

′′ : T ′(y) = xn} andB = {y ∈ S
F

′′ :
T ′(y) = −xn} which have union equal to the sphere ofF

′′
. Let us prove thatA is

open. Suppose thatu ∈ A is the limit of a sequence(uk)k in B. Then T ′(unk) = −vnk
converges toT ′(un). Choose� ∈ F ′ so thatT ′(un)(�) = � > 0. Then we have that
−vk(�)n converges to the positive number�, which is impossible. Similarly,B is open
and asS

F
′′ is connectedA or B must be empty.

Without loss of generality we assume thatT ′(yn) = xn for all y ∈ F
′′
. Let i:F

′′ →
PI(

nF ′) denote then-homogeneous polynomiali(y) = yn. Given � and � in E′ and
0�k�n the Borel Transform gives us that�k�n−k may be regarded as a continuous
linear functional onPI(

nE′) with �k�n−k(xn) = �k(x)�n−k(x) for all x ∈ E
′′
. Hence,

for any �, � in E′ the function�k�n−k ◦ T ′ ◦ i belongs toPA(
nF ′). Fix � in E′ and

consider� ∈ E′ which is not a linear multiple of�. Let us useQk to denote then-
homogeneous approximable polynomial given byQk = T (�n−k�k) = �n−k�k ◦ T ′ ◦ i.
For y ∈ F

′′
, 0�k�n− 1 we have that

Qk(y)/Qk+1(y) = �(x)/�(x),

wherexn = T ′(yn). Therefore we have that

Q0(y)/Q1(y) = Q1(y)/Q2(y) = · · · = Qn−1(y)/Qn(y)

for all y in F
′′
.
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Repeating the argument of Theorem6 we obtain a continuous linear functionalR
on F

′′
such thatQo(y) = ± (R(y))n.

Whence, we have

T (�n)(y) = Qo(y) = ±R(y)n

for all y ∈ F
′′
. Restricting toF , we see thatT (�n) = ±(R|F )n proving thatT is

a power-preserver. Theorem6 now gives us that there is an isomorphisms:E′ → F ′
such thatT (P ) = ±P ◦ s′ ◦ JF for all P ∈ PA(

nE). SinceT is an isometry it follows
that s must also be an isometry.�

The following Theorem may be regarded as a converse to the observation in [36,
Section 3] which states thatPA(

nE) and PA(
nF ) are isomorphically isomorphic when

E′ andF ′ are isometrically isomorphic.

Theorem 8. Let E and F be real Banach spaces such thatPA(
nE) and PA(

nF )

are isometrically isomorphic for some integern. Then, E′ and F ′ are isometrically
isomorphic.

Under the additional assumption thatE′ and F ′ have the approximation property
from [2] we obtain:

Corollary 9. Let E and F be real Banach spaces with duals which have the ap-
proximation property. LetT : Pw(

nE) → Pw(
nF ) be an isometric isomorphism. Then,

there is an isometric isomorphisms:E′ → F ′ such thatT (P ) = ±P ◦ s′ ◦ JF for all
P ∈ Pw(

nE).

4. Isometries of spaces of approximable polynomials on complex Banach spaces

Let us now turn to the complex case.

Theorem 10. Let E and F be complex Banach spaces andn be a positive integer

with En(F ′′
)
w∗

= E2n(F
′′
)
w∗

. Let T : PA(
nE) → PA(

nF ) be an isometric isomorphism.
Then, there is an isometric isomorphisms:E′ → F ′ such thatT (P ) = P ◦ s′ ◦ JF for
all P ∈ PA(

nE).

Proof. Fix � in E′ and consider� ∈ E′ which is not a linear multiple of�. As in
Theorem6 let Qk = T (�n−k�k) = �n−k�k ◦ T ′ ◦ i. For y ∈ En(F ′′

) we get that

Q0(y)/Q1(y) = Q1(y)/Q2(y) = · · · = Qn−1(y)/Qn(y) = �(x)/�(x),

wherexn = T ′(yn). As eachQk is weak∗-continuous we get that

Qk(y)Qk+2(y) = Qk+1(y)
2
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for all y ∈ En(F ′′
)
w∗

= E2n(F
′′
)
w∗

, k = 0, . . . , n−2. As the extreme points ofPI(
2nF ′)

separatePA(
2nF ), [29, p. 75], we have that

Qk(y)Qk+2(y) = Qk+1(y)
2

for all y ∈ F
′′
. Hence, we get that

Q0(y)/Q1(y) = Q1(y)/Q2(y) = · · · = Qn−1(y)/Qn(y)

for all y ∈ F
′′
.

Proceeding as in Theorem6 we obtain a continuous linear functionalR on F
′′

such that

T (�n)(y) = R(y)n

for all y ∈ F
′′
. Therefore,T is a power-preserver and it follows from Theorem6 that

T is canonical. Moreover, it is of the formT (P ) = P ◦ s′ ◦ JF for all P ∈ PA(
nE)

with s an isometric isomorphism fromE′ into F ′. �

To obtain examples of complex Banach spaces where the equalityEn(F ′′
)
w∗

=
E2n(F

′′
)
w∗

holds we need the concepts of complex extreme points and weak∗-exposed
points.

A point x is said to be a complex extreme point of the (closed) unit ball ofE if
‖x+�y‖�1 for all � ∈ C with |�| = 1 impliesy = 0. Every real extreme point ofBE

is a complex extreme point. To distinguish between real and complex extreme points
we use ExtR(E) and ExtC(E).

We recall that a unit vectorx in a Banach spaceE is exposed if there is a unit
vector � ∈ E′ so that�(x) = 1 and�(y) < 1 for y ∈ BE \ {x}. If E = X′ is a dual
space and the vector� which exposesx is in X we say thatx is weak∗-exposed.

Corollary 11. Let E and F be complex separable Banach spaces with�1 �↪→ F ′. Sup-
pose thatExtR(F

′′
) = ExtC(F

′′
). Let T : PA(

nE) → PA(
nF ) be an isometric isomor-

phism. Then, there is an isometric isomorphisms:E′ → F ′ such thatT (P ) = P ◦s′ ◦JF
for all P ∈ PA(

nE).

Proof. Using [28, Theorem 3.3] we observe that the unit ball ofF
′′

is the weak∗-closed
convex hull of its extreme points. This in turn is equal to the weak∗-closed convex
hull of Expw∗(F

′′
), the set of weak∗-exposed points of the unit ball ofF

′′
, (see [24,

p. 640]). Applying [29, Theorem II.13.B] we see that ExtR(F
′′
) ⊆ Expw∗(F ′′

)
w∗

. It
follows from [22, Propositions 3 and 5] that Expw∗(F

′′
) ⊆ En(F ′′

) ⊆ ExtC(F
′′
) for all

n. Therefore, we have thatEn(F ′′
)
w∗

= E2n(F
′′
)
w∗

and an application of Theorem 10
completes the proof. �
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We also get

Corollary 12. Let E and F be complex reflexive Banach spaces withExtR(F ) =
ExtC(F ). Let T : PA(

nE) → PA(
nF ) be an isometric isomorphism. Then, there is an

isometric isomorphisms:E′ → F ′ such thatT (P ) = P ◦ s′ ◦ JF for all P ∈ PA(
nE).

�

Proof. The proof is similar to that of Corollary11 but we use [24, Proposition 4.18]
instead of the result on [24, p. 640].�

In particular we get

Corollary 13. Let E be a reflexive JB∗-triple and n be a positive integer. Suppose that
T : PA(

nE) → PA(
nF ) is an isometric isomorphism. Then there is a continuous linear

isometrys:F → E such thatT (P ) = P ◦ s for all P ∈ PA(
nE).

Proof. It follows from [33] (see also [8]) that ExtR(E) = ExtC(E). Now apply
Corollary 11. �

The reflexiveJB∗-triples are listed in [14].
From the proofs of Theorems 7 and 10 we obtain the following proposition.

Proposition 14. Let E and F be real or complex Banach spaces andT : PA(
nE) →

PA(
nF ) be an isomorphism such thatT ′ is a power-preserver then, T is also a power-

preserver.

We know of no complex Banach spaceE or positive integern where we do not

have En(E ′′
)
w∗

= E2n(E
′′
)
w∗

. It follows from [22] that En(E) = E2n(E) whenever
the real and complex extreme points of the unit ball of a finite dimensional Banach
spaceE coincide or whenever each point of the unit ball ofE

′′
is a weak∗-exposed

point. By Corollary 11 we have that each isometry of the space ofn-homogeneous
approximable polynomials on the complex Banach spacesLp(�) and �p, 1�p < ∞
is canonical. From [22, Example 4] it also follows that every isometry ofP(ncmo ) is
canonical.

5. Isometries between other spaces of homogeneous polynomials

Let us begin by considering spaces of integral polynomials.

Theorem 15. Let E andF be real Banach spaces andn be a positive integer. Suppose
that �1 �↪→ ⊗̂

n,s,
E and thatT : PI(
nE) → PI(

nF ) is an isometric isomorphism. Then,

there is an isometric isomorphisms:E′ → F ′ such thatT (P ) = ±P ◦ s′ ◦ JF for all
P ∈ PI(

nE).
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Proof. SinceT is an isometryT maps the extreme points of the unit ball ofPI(
nE)

onto the extreme points of the unit ball ofPI(
nF ). Arguing as in Theorem7 we get

that T maps{�n : � ∈ E′} bijectively onto {�n : � ∈ F ′} or {−�n : � ∈ F ′}. As in
the proof of Theorem 7 we obtain an isometrys:E′ → F ′ so thatT (�n) = s(�)n or
−s(�)n for all � ∈ E′. Without loss of generality we assume thatT (�n) = s(�)n for
all � ∈ E′. Since�1 �↪→ ⊗̂

n,s,
E [7, Theorem 2] also [11, Theorem 1.5] tells us that
PI(

nE) is isometrically isomorphic toPN(
nE). Therefore, we have that

T (P )= T

( ∞∑
k=1

�k�
n
k

)

=
∞∑
k=1

�kT (�
n
k)

=
∞∑
k=1

�ks(�k)
n

= P ◦ s′ ◦ JF . �
Corollary 16. LetE andF be real Banach spaces andn be a positive integer. Suppose
that E′ has the Radon–Nikodým property(RNP) and thatT : PI(

nE) → PI(
nF ) is an

isometric isomorphism. Then, there is an isometric isomorphisms:E′ → F ′ such that
T (P ) = ±P ◦ s′ ◦ JF for all P ∈ PI(

nE).

Theorem15 does not cover the case of real Banach spaceE = F = �1. In this case
we have the following result.

Theorem 17. Let T : PI(
n�1) → PI(

n�1) be an isometric isomorphism. Then, there is
an isometric isomorphisms: �1 → �1 such thatT (P ) = ±P ◦ s, for all P ∈ PI(

n�1).

Proof. Let us first observe that then-fold injective tensor product of�1,
⊗̂

n,
�1, has
the Radon–Nikodým property. To see this we use induction onn. Suppose that we
have proved that̂

⊗
k,
�1 has RNP. We note that̂

⊗
k+1,
�1 may be regarded as the

space of unconditionally convergent series in̂
⊗

k,
�1. It follows from [19, p. 219] that⊗̂
k+1,
�1 has RNP and our claim is proved.

We therefore have that̂
⊗

n,s,
�1 has RNP. Applying [27, (4), p. 103] we conclude
that T is the transpose of an isometryS: P(nco) → P(nco). The result now follows
from Theorem 7. �

Let us now turn our attention to isometries between spaces of homogeneous poly-
nomials.

Theorem 18. Let E andF be real Banach spaces andn be a positive integer. Suppose
that E is Asplund andE′ has the approximation property. LetT : P(nE′) → P(nF ′)
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be an isometric isomorphism. Then, there is an isometric isomorphisms:F ′ → E′ such
that T (P ) = ±P ◦ s, for all P ∈ P(nE′).

Proof. Since E is Asplund it follows from [7, Theorem 3] or [11, Theorem 1.4]
that PI(

nE) is isometrically isomorphic toPN(
nE) while [43, Theorem 1.9] gives

us that PN(
nE) has RNP. SinceE′ has the approximation property we have that

PN(
nE)′ = P(nE′). By [27, Theorem 10] we have thatPN(

nE) is isometrically iso-
morphic to PN(

nF ), while [27, (4), p. 103] implies thatT is the transpose of an
isometryS: PN(

nF ) → PN(
nE). The result now follows from Corollary 16.�

Corollary 19. LetE andF be reflexive Banach spaces with the approximation property
and T : P(nE) → P(nE) be an isometric isomorphism. Then, there is an isometric
isomorphisms:F → E such thatT (P ) = P ◦ s for all P ∈ P(nE).

Theorem 20. Let E andF be real Banach spaces andn be a positive integer. Suppose
that E′ has the approximation property and that�1 �↪→ P(nE′). Let T : P(nE′) →
P(nF ′) be an isometric isomorphism. Then, there is an isometric isomorphisms:F ′ →
E′ such thatT (P ) = ±P ◦ s, for all P ∈ P(nE′).

Proof. Since �1 �↪→ P(nE′) we have that�1 �↪→ PA(
nE′) i.e. �1 �↪→ ⊗̂

n,s,
E
′′
. Since

symmetric tensor products respect subspaces we have�1 �↪→ ⊗̂
n,s,
E. Applying [7,

Theorem 1] we have thatPI(
nE) is isometrically isomorphic toPN(

nE) which is in
turn isometrically isomorphic tô

⊗
n,s,�E

′, asE′ has the approximation property.
From [27, Theorem 10] we can conclude thatPN(

nE) is isometrically isomorphic to
PN(

nF ). This time [27, Corollary 13] implies thatT is the transpose of an isometry
S: PN(

nF ) → PN(
nE). The result follows from Theorem 15.�

The above results for real Banach spaces extend to complex Banach spaces under

the additional assumption thatEn(F ′)w
∗ = E2n(F ′)w

∗
.

Acknowledgments

The authors would like to thank Teresa Krick for helpful discussions and also the ref-
eree for his/her comments and for providing us with additional references on isometries
of Banach spaces.

References

[1] R.M. Aron, P. Berner, A Hahn–Banach extension theorem for analytic mappings, Bull. Math. Soc.
France 106 (1978) 3–24.

[2] R.M. Aron, J.B. Prolla, Polynomial approximation of differentiable functions on Banach spaces, J.
Reine Angew. Math. 313 (1980) 195–216.

[3] S. Banach, Theorie des Operations Lineares, Chelsea, Warsaw, 1932.
[4] E. Behrends, M-structure and the Banach–Stone Theorem, Lecture Notes in Mathematics, vol. 736,

Springer, Berlin, 1979.



294 C. Boyd, S. Lassalle / Journal of Functional Analysis 224 (2005) 281–295

[5] E. Behrends, M. Cambern, An isomorphic Banach–Stone theorem, Stud. Math. 90 (1) (1988) 15–
26.

[6] C. Boyd, P. Rueda, Isometric theory of weighted spaces of holomorphic functions, preprint.
[7] C. Boyd, R.A. Ryan, Geometric theory of integral polynomials and symmetric tensor products, J.

Funct. Anal. 179 (2001) 18–42.
[8] R. Braun, W. Kaup, H. Upmeier, A holomorphic characterization of Jordan C∗-algebras, Math. Zeit.

161 (1978) 277–290.
[9] F. Cabello Sánchez, J.M.F. Castillo, R. García, Polynomials on dual isomorphic spaces, Ark. Mat.

38 37–41.
[10] M. Cambern, Isomorphisms of spaces of continuous functions, Pacific J. Math. 116 (2) (1985) 243

–254.
[11] D. Carando, V. Dimant, Duality of spaces of nuclear and integral polynomials, J. Math. Anal. Appl.

241 (2000) 107–121.
[12] D. Carando, D. García, M. Maestre, Homomorphisms and composition operators on algebras of

analytic functions of bounded type, Adv. Math., to appear.
[13] D. Carando, S. Lassalle,E′ and its relation with vector-valued functions onE′, Ark. Mat. 42

(2004) 283–300.
[14] C.-H. Chu, B. Iochum, Weakly compact operators on Jordan triples, Math. Ann. 281 (1988) 451–

458.
[15] J.A. Cima, W.R. Wogen, On isometries of the Bloch space, Illinois J. Math. 24 (2) (1980) 313–

316.
[16] A.M. Davie, T.W. Gamelin, A theorem on polynomial-star approximation, Proc. Amer. Math. Soc.

106 (1989) 351–356.
[17] J.C. Díaz, S. Dineen, Polynomials on stable spaces, Ark. Mat. 36 (1998) 87–96.
[18] K. DeLeeuw, W. Rudin, J. Wermer, The isometries of some function spaces, Proc. Amer. Math.

Soc. 11 (1960) 485–694.
[19] J. Diestel, J.J. Uhl, Vector Measures, Mathematical Surveys and Monographs, vol. 15, American

Mathematics Society, Providence, RI, 1977.
[20] S. Dineen, Holomorphic types on Banach space, Stud. Math. 39 (1971) 241–288.
[21] S. Dineen, Complex analysis on infinite dimensional spaces, Monographs in Mathematics, Springer,

Berlin, 1999.
[22] S. Dineen, Extreme integral polynomials on a complex Banach space, Math. Scand. 92 (2003) 129

–140.
[23] R.J. Fleming, J.E. Jamison, Isometries on Banach spaces: function spaces, Monographs and Surveys

in Pure and Applied Mathematics, vol. 129, Chapman & Hall/CRC, London, Boca Raton, FL, 2002.
[24] V.P. Fonf, J. Lindenstrauss, R.R. Phelps, Infinite dimensional convexity, in: W.B. Johnson, J.

Lindenstrauss (Eds.), Handbook of the Geometry of Banach spaces, Elsevier Science B.V.,
Amsterdam, 2001, pp. 599–670.

[25] F. Forelli, The isometries ofHp , Canad. J. Math. 16 (1964) 721–728.
[26] M.I. Garrido, J.A. Jarramillo, Á. Prieto, Banach–Stone theorems for Banach manifolds, Rev. R.

Acad. Cienc. Exact. Fis. Nat. (Esp (2000) 525–528.
[27] G. Godefroy, Espaces de Banach: existence et unicité de certains préduax, Ann. Inst. Fourier

Grenoble 28 (1978) 87–105.
[28] R. Haydon, Some more characterizations of Banach spaces containing�1, Math. Proc. Cambridge

Philos. Soc. 80 (1976) 269–276.
[29] R.B. Holmes, Geometric Functional Analysis and its Applications, Graduate Texts in Mathematics,

vol. 24, Springer, Berlin, 1975.
[30] K. Jarosz, Perturbations of Banach algebras, Lecture Notes in Mathematices, vol. 1120, Springer,

Berlin, 1985.
[31] K. Jarosz, V.D. Pathak, Isometries between function spaces, Trans. Amer. Math. Soc. 303 (1988)

193–206.
[32] K. Jarosz, V.D. Pathak, Isometries and small bound isomorphisms of function spaces. Function

spaces (Edwardsville, IL, 1990), Lecture Notes in Pure and Applied Mathematics, vol. 136, Dekker,
New York, 1992, pp. 241–271.



C. Boyd, S. Lassalle / Journal of Functional Analysis 224 (2005) 281–295 295

[33] W. Kaup, H. Upmeier, Jordan algebras and symmetric Siegel domains in Banach spaces, Math.
Zeit. 157 (1977) 179–200.

[34] C.J. Kolaski, Isometries of Bergman spaces over bounded Runge domains, Canad. J. Math. 33
(1981) 1157–1164.

[35] C.J. Kolaski, Isometries of weighted Bergman spaces, Canad. J. Math. 34 (1982) 693–710.
[36] S. Lassalle, I. Zalduendo, To what extent does the dual of a Banach space determine the polynomials

over E?, Ark. Mat. 38 (2000) 343–354.
[37] W.S. Massey, Algebraic Topology: An Introduction, Springer Graduate Texts in Mathematics, vol.

56, 1977.
[38] S. Mazur, W. Orlicz, Sur la divisibilité des polynômes abstraits, C.R. Acad. Sci. Paris 202 (1936)

621–623.
[39] J. Munkres, Topology: A First Course, Prentice-Hall, Englewoods Cliffs, NJ, 1995.
[40] M. Nagasawa, Isomorphisms between commutative Banach algebras with applications to rings of

analytic functions, Kodai. Math. Sem. Rep. 11 (1959) 182–188.
[41] A. Paterson, A. Sinclair, Characterizations of isometries between C∗-algebras, J. London Math. Soc.

2 (2) (1972) 755–761.
[43] W.M. Ruess, C.P. Stegall, Extreme points in the duals of operator spaces, Math. Ann. 261 (1982)

535–546.
[44] W.M. Ruess, C.P. Stegall, Exposed and denting points in the duals of operator spaces, Israel J.

Math. 53 (1986) 163–190.
[45] R. Shaw, Linear Algebra and Group Representation, vol. II, Academic Press, New York, 1983.
[46] M. Stone, Application of the theory of Boolean rings in topology, Trans. Amer. Math. Soc. 41

(1937) 375–481.


	Isometries between spaces of homogeneous polynomials62626262
	Introduction
	Canonical and power-preserving mappings
	Isometries between spaces of approximable polynomials on real Banach spaces
	Isometries of spaces of approximable polynomials on complex Banach spaces
	Isometries between other spaces of homogeneous polynomials
	Acknowledgements
	References


