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1. Introduction

Isometries between Banach spaces are those morphisms which preserve the metric
structure of the spaces. In 1932 Bang8hshowed that ifK and L are compact metric
spaces and’ is an isometric isomorphism frond'(K), the space of continuous real
valued functions ork, to C(L), the space of real valued functions én then there is
a homeomorphisn® from L into K and a continuous functioh on L with |h(y)| =1
such that

(THG) =h(y)foB()

for all f in C(K) and all y in L. Later, Stone[46] extended the result to the case
where K and L are compact Hausdorff sets, a result which is now referred to as the
Banach—Stone Theorem. In the seventy years, since Banach’s and Stone’s results, it
has emerged that isometries between a wide range of Banach function spaces have
the above form with the condition oh relaxed to be an element of the range rather
than satisfy|h(y)| = 1. Examples of this phenomenon are the isometrie${&f(A)
and H1(A) characterized by deLeeuw et al. [18], the isometries of the Hardy spaces
HP, 1< p < oo, p # 2, by Forelli [25], the isometries of the Bergman space$,
0 < p < oo, and weighted Bergman spaces given by Kolaski [34,35], the isometries
of the Bloch spacesi3, and 5, due to Cima and Wogen [15], and the isometries of
weighted spaces of holomorphic functiori$,, (U) and #y(U), on bounded subset$
of C", [6]. In this paper, we will prove results of this type for spaces of homogeneous
polynomials on Banach spacés and F. Our ® will turn out to be the transpose of
an isometric isomorphism fronk’” into F’.

Before proceeding we introduce some definitions and notation. Throughout the paper
E and F are Banach spaces af} is the unit sphere of. A function P: E — K
(K = R,C) is said to be a (continuous)-homogeneous polynomial if there is a
(continuous)n-linear mapLp: E x E x --- x E — K such thatP(x) = Lp(x, ..., x)
forallx € E. Continuoum—homogeplélgsss polynomials are bounded on the unit ball and
we denote byP("E) the Banach space of all continuoushomogeneous polynomials
on E endowed with the normP — | P|| := sup, <1 |P ()]

An n-homogeneous polynomia® € P("E) is said to be of finite type if there is
{qu}’;.:l in E’ such thatP (x) = Z];:l iqu(x)” for all x in E. The closure of the finite
type n-homogeneous polynomials iR("E) are called the approximable polynomials.
We usePy("E) to denote the space of finite typehomogeneous polynomials and
Pa("E) to denote the space of althomogeneous approximable polynomials.

We say that am-homogeneous polynomiaP on a Banach spacé& is nuclear if

e¢]

there is bounded sequen(:«géj)j:l C E'and a sequenc@uj)jo:l in £1 such that

Px)=) 2jd;x)"
j=1
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for everyx in E. The space of all nuclear-homogeneous polynomials anis denoted
by Pn("E) and becomes a Banach space when the nord & given as the infimum
of Z‘,?"Zl |/1j| ll$;1I" taken over all representations &f of the form described above.
This norm is called the nuclear norm & and is denoted by PlIn. When E’ has the
approximation propertyPn("E), | - [In) is isometrically isomorphic t@), , .E’ under
the map induced by - ¢ R PR --- ® ¢. B

A polynomial P on E is said to be integral if there is a regular Borel measure
on (Bg/, a(E', E)) such that

P(x) = d)" du() D

B/

for every x in E. We write P|("E) for the space of alh-homogeneous integral poly-
nomials onE. We define the integral norm of an integral polynom#l || P|,, as the
infimum of ||u|| taken over all regular Borel measures which satigfy.

It is shown in[20] (see also [21, Section 2.2]) th@ (*E’) is isometrically isomor-
phic to Pa(*E)’ via the Borel transformB given by B¥(¢) = Y(¢") for ¢ € E/,
¥ € Pa("E)'. We use this identification without further reference.

A class of n-homogeneous polynomials oA is a pair consisting of a subspace,
Pc("E), of P("E) and a norm,|| - ||¢c, under which(P:("E), | - |ll¢c) is a Banach
space.

The spaces ofi-homogeneous approximable, nuclear and integral polynomials are
all examples of classes of polynomials.

Let us review what is known about isometries and more generally isomorphisms of
spaces of homogeneous polynomials.

In [17] Diaz and Dineen posed the following questitihnE and F are Banach spaces
and E’ is isomorphic toF’ does this imply thaP (" E) is isomorphic toP(" F)? They
obtained a positive solution in the case whétehas both the Schur property and the
approximation property. In [9] a positive solution is also obtained in the case where
E and F are stable Banach spaces while both Cabello Sanchez et al. [9] and Lassalle
and Zalduendo [36] show that Arens regularity Bf alone gives us an affirmative
answer. (The fact that stability gives a positive solution is actually implicit in [17,
Proposition 3].) A positive solution is also obtained in [36] under the assumption that
both E and F are symmetrically Arens regular. In addition it is shown that this result
is also true for the classes of nuclear, approximakilehounded, integral, extendible
homogeneous polynomials along with the space-tiomogeneous polynomials which
are weakly continuous on bounded sets irrespective of further conditions on F.

In [13] these results are extended to spaces of vector-valued homogeneous polynomials
although the techniques required are different. In [36] we are provided with a method
of constructing an isometry of spaces of homogeneous polynomials and F' from

an isometry ofE’ into F’ as follows: Given a Banach spaé&we useJ/g to denote the
canonical embedding of into its bidual E*. There is no Hahn—Banach Theorem for
homogeneous polynomials of degree 2 or greater. However, Aron and Berner [1] and
Davie and Gamelin [16] show that for eve® € P("E) there is a norm-preserving
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extension ofP to P € P("E") such thatPoJg(x) = P(x) for all x € E. This extension
is the key that allows us to lift any morphismfrom E’ to F’ to a morphisms from
Pc("E) to Pe("F), defined by

S(P)=Pos olJp.

In the case where is an (isometric) isomorphistis also an (isometric) isomorphism.

This paper is organized as follows. In Section 2, we characterize ‘canonical’ iso-
morphisms between spaces of approximable polynomials in terms of both the algebraic
and geometric structures. In the third section we examine the converse of the question
of Diaz and Dineer{17] for the case of approximable polynomials. Specifically we
show that if E and F' are real Banach spaces,s a positive integer an@’: Pa("E) —
Pa (" F) is an isometric isomorphism then there is an isometric isomorpkidgth— F’
such that7 (P) = +P o s’ o Jr for all P € Pa("E). In Section 4, we show that this
result extends to complex Banach spaces when we have additional information on the
extreme points of the unit ball gP (" F’). Isometries between the classes of integral
and of alln-homogeneous polynomials are discussed in Section 5.

For further reading on polynomials on Banach spaces we refer the reader to [21]
and to [23] for further information on isometries of Banach spaces.

2. Canonical and power-preserving mappings

Let E be a real or complex Banach space ande a fixed positive integer. We
define an equivalence relatiea on E’ by ¢ = if

¢n — lpn.

We let E’/ = denote the set of akk= equivalence classes. Givehin E’ we use[¢]
to denote the equivalence class pfin £’/ =.

Let E and F be real or complex Banach spaces,be a positive integer and
T:Pa("E) — Pa("F) be an isomorphism. We defingl, by

Sg=1{p € ' |IT(@"] =1}

We use ST,/ = to denote the sef(¢] : ¢ € SL} and Sp// = to denote the set

{Yl:y e E' Iyl =1).
We need some technical lemmata and definitions.

Lemma 1. Let E be a real or complex Banach space of dimension at 18asthen
ST, is simply connected

Proof. Considerys and —y in ST, and the punctured distorted sphetés= ST, \ {y/}
andV = Sg/ \ {—y}. We show that{U, V} satisfies the hypothesis of Van Kampen'’s
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Theorem (see, for instancg39]). It is clear thatU, V are open sets and covélg/
so we have to show thal/, V are simply connected and NV is path connected.
Moreover, we prove that, V are contractible. Consider, for instancé, and define
1—1¢ t
F:[0,1]xV — V by F(¢t, ¢) = ( )+ 1y

) ] ] IT(L =1+ ¥/ N
T is an isomorphism andl — r)¢p + 1y = 0 if and only if ¢ = —. In addition,

F(0, ¢) = ¢ and F(1, ¢) = y, therefore,F is a contraction. In an analogous way
it can be shown that/ is contractible. To show that/ NV is path connected, take
Ppo e UNV. If ¢ € UNYV such that{¢, ¢g, ¥} is a linear independent set then,

(1—0)¢+tpg
I R O RIEE
If ¢ belongs to the span di}, ¢y}, consideryp € UNV such that{¢, ¢q, 11} is a linear
independent set. Now, defirﬁ:b,%(t) by

which is continuous since

PNOES defines a path iU NV connecting¢ and ¢y.

. _Jopn@) for 1 € [0, 31,
Op.apo (1) = { oppo(2t — 1) if 1 €[3,1].

Thengy 4. is the mapping required, and this completes the proaf.

Definition 2. We say thatl: Pc("E) — Pc("F) is power-preserving of" is a power-
preserver if for allp € E’ with ¢" € Pe("E) we have thatl (¢") = +y" for someys
in F'.

Definition 3. Given a power-preserving isomorphisit Pa("E) — Pa("F) we call
the functionz: Sg,/ =— Sp// = the mapping induced by to be the unique mapping
which satisfies the property([¢]) = [/] where T (¢") = +y" for all ¢ € SL,.

Lemma 4. Let E and F be real or complex Banach spaces of dimension at least
3, n be a fixed positive integer and: Pa("E) — Pa("F) be a power-preserving
isomorphism. Therthe continuous function: S,/ =— Sp// = induced byT can be
lifted to a continuous function: Sg, — Spr. Further, if  is such thatt ([¢,]) = [Vl
then there exists a unique isomorphismE’ — F’ so thats(¢,) = W, and [s(¢)] =
t([¢]) for all ¢ e SL,.

Proof. We shall suppose without loss of generality thatp”) = y" for all ¢ in E'.
Fix ¢ on SI,. Considert o [-]:SL, — Sp// =. This function is continuous. AST,
is simply connected we have that the fundamental group at the mint(sg,, Do)
is trivial. Chooseyr, in Sg so thats([¢o]) = [Y,]. Then by[37, Theorem 5.1] there
is a unigue continuous mappirfgsg, — S s0 thati(¢,) = Y, and [1(¢p)] = t([¢])
for all ¢ € ST,. Sets(¢) = IT (@Y7 (¢/I1T(@")1Y") when ¢ # 0 ands(0) =0
to get a unique continuous homogeneous functioR’ — F’ so thats(¢,) = V¥,
and s(¢) =1(¢) for all ¢ e Sg,. Let X be a finite dimensional subspace Bf Then
X' is a subspace of’. ConsiderT|g - @n,s,gx/ — @n’s’sF’. The proof of [45,

Exercise 4.5.5] (see also [45, Theorem 4.5.5]) gives us a linear opegatéf’ — F’
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so thatT (¢") = (tx/(¢))" for all ¢ € X'. Then (tx/(py))" = T(dy) = Y and so
tx' (o) = Yo By uniqueness of lifting we get that|x: = Arys for some 4 with
|Al = 1. Since this holds for all finite dimensional subspaces£fs is linear.

Clearly, ass is linear it must be injective. We claim that it is also surjective. Sup-
pose that this is not the case. L& c F’ denote the range of. It follows by
[44, Lemma 1.2] thatr is a closed subspace @f'. As T(¢") = (s(¢))" for all ¢ €
E" and {¢" : ¢ € E'} spansP;("E) = @, (E' we have thatl (P;("E)) = &, ;Y.
Since T is both continuous and open it follows th&(Pa("E)) = @n’s’sY which is
strictly contained inPa (" F). Thus,s is a bijection. [

De_finition 5. AnisomorphismT: P¢c("E) — Pc("F) is said to becanonicalif T(P) =
+Pos' oJp forall P € Po("E) and some isomorphisnt E' — F’.

Theorem 6. Let E and F be real or complex Banach spaces of dimension at least
3, n be a positive integer and™: Pa("E) — Pa("F) be an isomorphism. Then the
following are equivalent

(&) T is canonical

(b) T is power preserving

(c) there is an isomorphisns: Pa(?’E) — Pa(¥'F) such thatS(PQ) = T(P)T(Q)
forall P, QO € Pa("E),

(d) If P1, Q1, P2, Q2 € Pa("E) satisfy

P101 = P20>
then
T(PDT(Q1) =T (P)T(Q2).

Proof. Clearly we have that (a) implies (b). Now suppose that (b) holds. Then,
Lemma4 gives us an isomorphisat E' — F’ so that

T(@") () =£(s()"(y) =£¢" 05" 0 Jr(y)
for all ¢ € E’ andy € F. By linearity we get that
T(P)(y) =+P os o Jp(y)

for all finite type polynomialsP on E. Continuity extends the result tBa (" E) which
shows thatT" is canonical.

Suppose that (a) holds and tH&tP) = Pos’oJr for some isomorphism: E' — F’.
Then defineS: Pa(?’E) — Pa(¥*F) by S(R) = Ros’ o Jr for R € Pa(?E). As the
Aron—Berner extension is multiplicative (s¢&6]) we have thatS(PQ) = T(P)T (Q)
for all P, Q € P("E). Statement (d) follows from (c).



C. Boyd, S. Lassalle/Journal of Functional Analysis 224 (2005) 281-295 287

Finally, let us show that (d) implies (b). Fi¥ € E’ and choose) € E’ which
is linearly independent ofp. For k = 0,1,...,n let Qx € Pa("F) be defined by
O = T(¢"y" ™). As (d) holds we have thaD? = Qx110k—1 for k=1,...,n — 1.
We can rewrite this as

Q0(»)/01(y) = Q1(»)/Q2(y) =+ = 0n-1(3)/0n(y)

for all y in F. An old result of Mazur and Orlic438] allows us to show that we
have unique factorization of polynomials on infinite dimensional spaces. Let us write
the rational function

Q0/01=01/02="--=0n-1/0n

in its lowest possible form a&/S. We have that de® = degS = p. As { is not a
linear multiple of ¢ we have thatp > 0. However,

Qo(»)/Qn(y) = (Qo/Q1) (¥) (Q1/Q2) (y) - -+ (Qn-1/Qn) (¥) = (R()/S())"

for all y € F and therefore we have that<1 and so bothR and S are linear. In
particular, we have that

T(9")(y) = Qo(y) = AL (R()"
for some constant and thereforel’ is a power-preserver.[]

The above result illustrates that there is a connection between the isometric proper-
ties of spaces of homogeneous polynomials and their ‘algebraic’ structure. This phe-
nomenon can be observed in other function spaces and algebras, see for example,
[4,5,10,12,18,26,30-32,40,41].

3. Isometries between spaces of approximable polynomials on real Banach spaces

The isometric properties of Banach spaces are those properties which are intrinsically
connected with the shape of the unit ball. To understand these properties we are nat-
urally lead to examine certain subsets of points in the unit sphere which are invariant
under isometries. These include extreme points, exposed points and denting points.

An extreme point of the (closed) unit ball &, Bg is a pointx with the property
that whenever = 1y + (1 — )z for y, z in B and O< A < 1, then,x = y = z.

As we will also use the notation given below in Section 4 we state it for both the
real and complex cases.

Let X be a Banach space and be a positive integer. It is shown in
[7, Proposition 1] that the set of (real) extreme points of the unit ballPof’ X)
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is contained in{+¢" : ¢ € X', ||l¢| = 1}. Hence, given a Banach spaée and a
positive integem we use&,(X’) to denote the set

n

{p € X' : ¢" is an extreme point 0Bp,nx)}.

Theorem 7. Let E and F be real Banach spaces anf: Pao("E) — Pa("F) be an
isometric isomorphism. Thethere is a isometric isomorphism E” — F’ such that
T(P)==xPos oJr forall PecPa("E).

Proof. Since T is an isometry we have that’ maps extreme points oBp,«f:) to
extreme points ofBp, k). Therefore, by[7, Propositions 1], for eacly e E(F
we can findx € &,(E") so thatT’(y") = £x". Let us see that this equality extends
to give us that7’ is a power-preserver. Givep € F' Iyl = 1, by [7, Proposition
5] and the Bishops—Phelps Theorem we can find a sequengec &,(F') so that
yr — y in norm. By choosing a subsequence, if necessary, we may suppose that either
T'(yp) = x; or T'(y}) = —x} for all k. By [44, Lemma 1.2 (a)] we have th&t” :
x € E',|Ix|| = 1} is closed inP,("E’). Thus, there isx € E” so thatT’(y") = £x".
Since it is bijective,7’ maps{£y" :y € F ,|ly| =1} onto {+x" : x € E , ||x|| = 1}.
By homogeneity it follows thaf’ is a power-preserver.

We claim that eitherT’(y") = x" or T'(y") = —x" for all y € S,» and hence for

all y in F'. Suppose this not the case and assume ithist even. (The odd case is
immediate.) Consider the disjoint sets= {y € S;» : T'(y) = x"} and B = {y € S :
T'(y) = —x"} which have union equal to the sphere Bf. Let us prove thatA is
open. Suppose that € A is the limit of a sequencéu;), in B. ThenT’(u}) = —vy
converges tol’(u"). Choose¢ € F’ so thatT’(u")(¢) = 6 > 0. Then we have that
—vi(¢)" converges to the positive numb&rwhich is impossible. SimilarlyB is open
and asS,~ is connectedA or B must be empty.

Without loss of generality we assume tH&t(y") = x" for all y € F'. Leti: F' —
Pi("F’) denote then-homogeneous polynomialy) = y". Given ¢ andy in E’ and
0<k<n the Borel Transform gives us thdiklp"‘k may be regarded as a continuous
linear functional onP,("E’) with ¢*y" *(x™) = ¢* )" *(x) for all x € E”. Hence,
for any ¢,  in E’ the function¢y"* o T’ o i belongs toPa("F’). Fix ¢ in E’ and
consideryy € E’ which is not a linear multiple ofp. Let us useQ; to denote the-
homogeneous approximable polynomial given @y = T (¢" *y*) = ¢" Yk o T’ 0.
Forye F', 0<k<n — 1 we have that

0k (y)/ Qk+1(y) = ¢ (x) /Y (x),

wherex™ = T’(y™"). Therefore we have that

Qo(»)/Q1(y) = Q1(y)/Q2(y) = --- = Qn-1(»)/ Qn(y)

for all y in F".
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Repeating the argument of TheoreBinwe obtain a continuous linear functionA&l
on F such thatQo(y) = & (R(y))".
Whence, we have

T (") () = Qo(y) = =R()"

for all y € F'. Restricting toF, we see thatl'(¢") = £(R|r)" proving that7 is

a power-preserver. Theorefnow gives us that there is an isomorphisoE’ — F’

such thatT' (P) = +P os’ o Jr for all P € Pao("E). SinceT is an isometry it follows
that s must also be an isometry.]

The following Theorem may be regarded as a converse to the observation in [36,
Section 3] which states th&a ("E) and Pa (" F) are isomorphically isomorphic when
E’ and F’ are isometrically isomorphic.

Theorem 8. Let E and F be real Banach spaces such th@x("E) and Pa("F)
are isometrically isomorphic for some integer Then E’ and F’ are isometrically
isomorphic

Under the additional assumption th&t and F’ have the approximation property
from [2] we obtain:

Corollary 9. Let E and F be real Banach spaces with duals which have the ap-
proximation property. Letl: P, ("E) — P, (*F) be an isometric isomorphism. Then
there is an isometric isomorphism E/ — F’ such thatT (P) = +P o s’ o Jr for all

P ePy,("E).

4. Isometries of spaces of approximable polynomials on complex Banach spaces

Let us now turn to the complex case.

Theorem 10. Let E and F be complex Banach spaces andbe a positive integer

with En(F”)w = Eg,i(F”)u} . Let T:Pa("E) — Pa("F) be an isometric isomorphism.
Then there is an isometric isomorphism E’ — F’ such thatT(P) = P os’ o Jr for
all P e PA("E).

Proof. Fix ¢ in E’ and consideny € E’ which is not a linear multiple ofp. As in
Theorem6 let Oy = T(¢" *y*) = ¢" Y o T’ 0i. For y € &,(F") we get that

Qo(»)/Q1(y) = Q1(0)/Q2(y) = -+ = Qu-1(3)/Qn(y) = $(x) /Y (x),

wherex” = T'(y"). As eachQ; is weak-continuous we get that

0k(Y) Ok12(y) = Qrr1(»)?
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forall y e 5,1(F”)”) = SZn(F”)w ,k=0,...,n—2. As the extreme points & (%' F’)
separatePa (¥ F), [29, p. 75], we have that

0k(») Qit2(y) = Qrr1(»)?

for all y € F'. Hence, we get that

Qo(y)/01(y) = Q1(»)/02(y) = -+ = Qu—1(3)/ On(y)

forall ye F.
Proceeding as in Theore® we obtain a continuous linear function® on F
such that

T(@") () =R

for all y € F'. Therefore,T is a power-preserver and it follows from Theordhthat
T is canonical. Moreover, it is of the forff(P) = P os’ o Jr for all P € Pa("E)
with s an isometric isomorphism front’ into F’. [

To obtain examples of complex Banach spaces where the eqt&;;liw”)w =

Egn(F”)w holds we need the concepts of complex extreme points and*wegiosed
points.

A point x is said to be a complex extreme point of the (closed) unit balEoff
x4+ Ay|| <1 for all 4 € C with |1] = 1 impliesy = 0. Every real extreme point d8¢
is a complex extreme point. To distinguish between real and complex extreme points
we use Exk(E) and Ext(E).

We recall that a unit vectox in a Banach spacé& is exposed if there is a unit
vector ¢ € E’ so that¢(x) =1 and¢(y) <1 for y € Bg \ {x}. If E = X' is a dual
space and the vectab which exposes: is in X we say thatr is weak-exposed.

Corollary 11. Let E and F be complex separable Banach spaces Withly> F’. Sup-
pose thatExtr(F') = Extc(F"). Let T: Pa("E) — Pa("F) be an isometric isomor-
phism. Thenthere is an isometric isomorphismE’ — F’ such thatT (P) = Pos’oJp
for all P € Pa("E).

Proof. Using[28, Theorem 3.3] we observe that the unit ballf is the weak-closed
convex hull of its extreme points. This in turn is equal to the wWeelksed convex
hull of Exp,«(F"), the set of weakexposed points of the unit ball of", (see [24,

p. 640]). Applying [29, Theorem 11.13.B] we see that RKF') C Exp,.(F") . It
follows from [22, Propositions 3 and 5] that ExgF") € &,(F') € Extc(F") for all

n. Therefore, we have tha‘Tn(F”)u} = Ezn(F”)UJ and an application of Theorem 10
completes the proof. O
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We also get

Corollary 12. Let E and F be complex reflexive Banach spaces wWikir(F) =
Extc(F). Let T: Pa("E) — Pa(*F) be an isometric isomorphism. Thethere is an
isometric isomorphism: E' — F’ such thatT (P) = P os’ o Jr for all P € PA("E).

O

Proof. The proof is similar to that of Corollard1l but we use [24, Proposition 4.18]
instead of the result on [24, p. 640]]

In particular we get

Corollary 13. Let E be a reflexive JBtriple andn be a positive integer. Suppose that
T:Pa("E) — Pa("F) is an isometric isomorphism. Then there is a continuous linear
isometrys: F — E such thatT (P) = Pos for all P € Pa("E).

Proof. It follows from [33] (see also [8]) that EXt(E) = Extc(E). Now apply
Corollary 11. O

The reflexiveJB*-triples are listed in [14].
From the proofs of Theorems 7 and 10 we obtain the following proposition.

Proposition 14. Let E and F be real or complex Banach spaces afdPa("E) —
Pa(*F) be an isomorphism such th@t is a power-preserver thelf" is also a power-
preserver

We know of no complex Banach spade or positive integem where we do not

have E,I(E”)w = Szn(E”)w . It follows from [22] that £,(E) = &£2,(E) whenever

the real and complex extreme points of the unit ball of a finite dimensional Banach
spaceE coincide or whenever each point of the unit ball Bf is a weak-exposed
point. By Corollary 11 we have that each isometry of the space-bhbmogeneous
approximable polynomials on the complex Banach spdceg) and £,, 1<p < oo

is canonical. From [22, Example 4] it also follows that every isometryPdfcy') is
canonical.

5. Isometries between other spaces of homogeneous polynomials
Let us begin by considering spaces of integral polynomials.

Theorem 15. Let E and F be real Banach spaces amdbe a positive integer. Suppose
that £, > &, , .E and thatT: P ("E) — P|("F) is an isometric isomorphism. Then
there is an isometric isomorphism E/ — F’ such thatT (P) = +P o s’ o J for all

P € P("E).
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Proof. SinceT is an isometryT’ maps the extreme points of the unit ball Bf("E)
onto the extreme points of the unit ball & (" F). Arguing as in TheorenY we get
that T maps{¢" : ¢ € E'} bijectively onto {y/" : € F'} or {—y" : € F'}. As in
the proof of Theorem 7 we obtain an isometryE’ — F’ so thatT (¢") = s(¢)" or
—s(¢p)" for all ¢ € E’. Without loss of generality we assume thag¢") = s(¢)" for

all ¢ € E'. Sincels % ,,,.E [7, Theorem 2] also [11, Theorem 1.5] tells us that
P ("E) is isometrically isomorphic t&Py("E). Therefore, we have that

T(P)=T (Z ikcb}i)
k=1
=Y AT (PP
k=1

=Y Js(dy)"
k=1

=Pos olJp. O

Corollary 16. Let E and F be real Banach spaces amdbe a positive integer. Suppose
that E’ has the Radon—Nikodym properiNP) and that7: P, ("E) — P,(*F) is an
isometric isomorphism. Thetthere is an isometric isomorphism E’ — F’ such that
T(P)=+Pos'oJp forall PeP/("E).

Theorem15 does not cover the case of real Banach spgaee F = ¢;. In this case
we have the following result.

Theorem 17. Let T:P,("¢1) — P("¢1) be an isometric isomorphism. Thethere is
an isometric isomorphism: £; — ¢; such that7 (P) = P os, for all P € P("¢1).

Proof. Let us first observe that the-fold injective tensor product of1, @?,le, has
the Radon-Nikodym property. To see this we use inductionmorBuppose that we
have proved that®), .¢1 has RNP. We note tha®), ., ./1 may be regarded as the
space of unconditionally convergent series@®y .¢1. It follows from [19, p. 219] that
&Xi11..£1 has RNP and our claim is proved.

We therefore have tha®), ; .1 has RNP. Applying [27, (4), p. 103] we conclude
that T is the transpose of an isomet§ P("co) — P("co). The result now follows
from Theorem 7. O

Let us now turn our attention to isometries between spaces of homogeneous poly-
nomials.

Theorem 18. Let E and F' be real Banach spaces amdbe a positive integer. Suppose
that E is Asplund andE’ has the approximation property. Lef: P("E’) — P("F’)
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be an isometric isomorphism. Thethere is an isometric isomorphism F’ — E’ such
that 7(P) = +Pos, for all P € P("E’).

Proof. Since E is Asplund it follows from[7, Theorem 3] or [11, Theorem 1.4]
that P ("E) is isometrically isomorphic tdPy("E) while [43, Theorem 1.9] gives
us that Py("E) has RNP. SinceE’ has the approximation property we have that
PnC*E)Y = P("E’). By [27, Theorem 10] we have tha&y("E) is isometrically iso-
morphic to Pn("F), while [27, (4), p. 103] implies thaf is the transpose of an
isometry S: PN("F) — Pn("E). The result now follows from Corollary 16.]

Corollary 19. Let E and F be reflexive Banach spaces with the approximation property
and T:P("E) — P("E) be an isometric isomorphism. Thethere is an isometric
isomorphisms: F — E such thatT(P) = P os for all P € P("E).

Theorem 20. Let E and F be real Banach spaces amdbe a positive integer. Suppose
that E/ has the approximation property and thé&§ < P("E’). Let T:P("E') —
P("F’) be an isometric isomorphism. Thehere is an isometric isomorphism F’ —

E’ such thatT(P) =+Pos, foral P e P"E").

Proof. Since?¢; & P("E’) we have thatl1 & Pa("E’) i.e. {1 & ® E". Since

n,s,&
symmetric tensor products respect subspaces we havwe ),  .E. Applying [7,
Theorem 1] we have thaP (" E) _is isometrically isomorphic tdPn(" E) which is in
turn isometrically isomorphic t@), ; ,E’, asE’ has the approximation property.
From [27, Theorem 10] we can conclude tiia§(" E) is isometrically isomorphic to
Pn(*F). This time [27, Corollary 13] implies thal' is the transpose of an isometry
S:Pn"F) — Pn(PE). The result follows from Theorem 15.[]

The above results for real Banach spaces extend to complex Banach spaces under
the additional assumption thaIL(F’) = EZn(F’)
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