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We discuss in this paper the differential equation 

zP’(t) = Au(t) 

(u(“)(t) = (d/dt)“u), A a linear operator in the linear topological space E. 
The Cauchy problem for (1) is assumed to be well posed, i.e., solutions of (1) 
are assumed to exist, to be unique and to depend continuously on their 
initial data for each t. The above conditions are natural enough when n = 1, 
and the problem has been studied essentially in this formulation by various 
authors (see [VJ2, chapter III, Section 2 for a survey of results). When n >- I 
(say, n = 2) the equation (1) rarely arises in applications with the degree of 
generality considered here. Usually additional information on A is available 
that allows one to reduce the problem to a first order one by the usual device 
of introducing derivatives as new unknowns. For instance if E is a Hilbert 
space, A a nonpositive self-adjoint operator the Cauchy problem for (1) can 
be reduced to a first order problem in the product space D((-A);) x Ii 
[D((-A)+) endowed with the graph norm], namely u’ = ui , u; == Au. 
In the general case, however, nothing like (-A)+ or its graph norm is 
available a priori, and thus it is natural to study the Cauchy problem directly. 
WC obtain later as a result (Theorem (6.9) that if mild additional restrictions 
are satisfied then a reduction to a first order problem quite similar to the one 
outlined for selfadjoint nonpositive A can be carried out in the general case. 
For n 3 3 the situation is even simpler (see Remark 3.6). 

Section 1 of this paper is of an introductory nature and deals with some 
facts on linear topological spaces to be used later. We give in 2 the precise 

1 Present address: University of California at Los Angeles, Department of Mathemat- 

ics, Los Angeles, California. 
2 All references are referred by letters. 
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definition of a well posed (uniformly well posed) Cauchy problem, deduce 
some relations between certain operator-valued solutions of (1) the propa- 
gators (Lemma 2.1, 2.2) and give a criterion for uniform well posedness 
of the Cauchy problem for (1) (Th eorem 2.4) for FrCchet spaces. We apply 
these results in 3 to show for a class of spaces E that if n > 3 the Cauchy 
problem for (1) is uniformly well posed if and only if d is continuous and 
satisfies an additional condition (Theorem 3.1). Next we consider the case 
when the solutions of (1) increase at infinity less than a given exponential 
and characterize the operators zq for which this happens (Theorem 3.3). 
Paragraph 4 is devoted to the case n = I ; here and in following paragraphs 
we only consider the case in which the solutions of (1) have exponential 
growth at infinity. The (more or less well known) result in thus case is that 
the Cauchy problem for (I), )z = 1 is uniformly well posed if and only if A 
is the infinitesimal generator if a strongly continuous semigroup (Theorem 4.1). 
We consider in 5 families of continuous operators in E satisfying S(0) =: I, 
S(t + s) + S(t - s) = 2S(t)S(s) (the “cosine functional equation”), prove 
several results for them in the spirit of semigroup theory (Lemma 5.3 and 
following results) and apply them to the Cauchy problem for (1) (Theorem 5.9) 
to obtain a result similar to the one in 4. We construct in 6 square roots of 
certain translates of A; under an additional condition (Assumption 6.4) these 
square roots generate strongly continuous groups and the Cauchy problem 
for (I), n = 2 can be reduced to a first-order Cauchv problem in the product 
space E x E (Theorem 6.9). 

In case E is a Banach space, we are able to improve somewhat our results 
or to obtain new ones; see for instance Remark 3.4, Theorem 4.2, Lemmas 5.2, 
5.3 and 5.5. 

Results in this paper have been announced in Fr . 

1. LINEAR TOPOLOGICAL SPACES 

Throughout this paper E = {u, n,...> will be a (Hausdorff) complete, 
barreled locally convex linear topological space (LTS) over the field C of 
complex numbers ([B,], II, Section 2, III, Section 1 and Section 2). We shall 
denote by d a set {I * I,...} of semi-norms determining the topology of E, 
i.e. such that a generalized sequence {Us,} converges to zero if and only if 
lim, / U, 1 = 0 for all j . 1 E 8. If G can be chosen countable, then E is said 
to be a FrCchet space. A Frechet (in particular a Banach) space is always 
barreled. For these spaces we also have 

1.1 THEOREM (Closed graph theorem). Let E, F be Frtkhet spaces, and A 
a closed, everywhere defined linear map from E to F. Then A is continuous. 
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For a proof see [B,], I, Section 3 (local convexity is not necessary here). 
Let E,F be two complete, barreled locally convex LTS. We shall denote 
L(E, P) the space of all continuous linear maps from E to F endowed with 
the topology of uniform convergence on bounded sets of E; L(E, F) is a 
quasi-complete ([B,], III, Section 3) locally convex LTS. The topology of 
L(E, F) is determined by the family 9 of semi-norms 

where K ranges over all bounded sets of E, ~ . / over a familysof semi-norms 
determining the topology of F. We shall only consider the cases F =: E, 
F = C and write L(E, E) =: L(E) == {A, B ,... },L(E, C) = {u*, v* ,... } = E* 
(the dual space of E). If E is Banach so is L(E) (resp. E*) under the norm 
: A / =sup{lAu l,ueE, 1~1 5; l}(resp. lu+ / =sup{~u*(u)l,u~E, lul :C I)), 
1 . / the norm in E. We shall write 

u*(U) =: (u”, u) = ‘\U, u*), 24"E.F , UEE. 

Frequent use will be made of 

1.2 ‘J~EORE~I. Let .P/ = {A,...] be a set in L(E) such that {Au; A E&‘j 
is bounded in E for each u E E. Then .& is equicontinuous 

and of its corollar) 

1.3 THEOREM (Banach-Steinhaus theorem). Let {A,} be a generalized 
sequence in L(E) such that {A+) converges and is bounded in E for each u E E. 
Then A =-: (pointwise) lim, A, is a continuous operator. 

For a proof see [B,], III, Section 3. Note that the boundedness assumption 
in Theorem 1.3 is automatically satisfied if (A,} is a sequence. 

Let D be a domain in the complex plane, f ( . ) an E-valued function. 
f is said to be analytic in D if lim,~., kl(,f(z + h) --,f(z)) -= f '(z) exists 
for all z E D. 

1.4 THEOREM. (a) Let T( . ) be un L(E)-valued function de$ned in D such 
that the scalar-valued function u*, T( . )u) is analytic in D for all u E E, 
u* E E*. Then T( . ) is analytic. (b) Let ,f ( * ) be an E-valued function defined 
in D such that u*, f ( . )> is analytic for all u* E E*. Then f ( * ) is analytic. 

For a proof in the Banach space case see [H,], 3.10.1. Since it is based in 
‘I’heorem 1.1 and quasi-completeness of L(E), it extends to our case without 
major changes. 

Most properties of scalar-valued analytic functions extend to the E-valued 
case (See [H, , III). If f is analytic in j .z - z0 1 < n then it has derivatives 
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of all orders there that can be developed in power series in the customary way. 
The radius of convergence of the power series 

is given by I/Y, r = sup{lim supn+Q a, ~i’~~; . 1 E 81, i.e. (1.1) converges 
absolutely and uniformly on compacts of ~ z - z0 / < l/l-, diverges for 
1 z - X” 1 > l/r. The same properties hold for L(E)-valued functions. 

Finally, a word about integration in E. If f(s) is continuous in 
--CO < a .< s < b < co the integral Jlf(~) ds can be defined and seen to 
exist by means of Riemann sums in the same way as for ordinary functions. 
Improper integrals like 

i=.f (4 ds 
- n 

(1.2) 

and similar ones will be defined as the limit when b --f co of the integral 
over (a, b). A simple criterion for existence of such integrals is given by 

1.5 THEOREM. (a) Let the E-valuedfunction f ( . ) be defined and continuous 
in (a, co); assume that the real-waked function 1 f ( . )I is integrable in (a, ox) 
for all 1 . 1 E b. Then (1.2) exists. (b) Let the L(E)-valued function A( . ) be 
defked in (a, CO) and strongly continuous there; assume j A( * )u / is integrable 
in (a, CO) for a22 u E E, 1 * / E &. Then (1.2) exists for A( - )u, u E E and defines 
a linear continuous operator in E. 

The proof of (a) is immediate; the proof of (b) is a simple application of 
Theorem 1.3. For Banach spaces we shall make use (in Corollary 5.3) of 
Bochner’s integration theory; see [H,], 3.5. 

2. THE CAUCHY PROBLEM 

We shall write through this and following paragraphs R = (--CD, co), 
R, = (0, cc), i?+ = (0, co); C(“)(E) (resp. C:“‘(E), e:‘(E)) shall denote the 
space of all E-valued functions u( * ) defined and n times (strongly) contin- 
uously differentiable in R(resp. R, , l?,). A will be a linear operator with 
domain D(A) dense in E and range in E; we shall assume that p(A), the 
resolvent set of A is non-void, i.e. that there exists h such that R(h; A) =I 
(h1 - A)-] exists and is continuous. This implies that A is closed. The 
subindex k (unless otherwise stated) will always take the values 0, I,..., n - 1. 

The E-valued function u( . ) will be called a solution of 

z@‘(t) = Au(t) (2.1) 
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in R(resp. R, , &) if U( . ) E C()L)(E) (resp. C’:)(E), C‘(.‘“‘(E)), u(t) t D(A) for 
all t E R(resp. R + , R,) and (2.1) is satisfied evervwhere. 

The (‘auchy problem for (2. I ) \vill he zcell pok (\~.p.) in R : if 

(a) l’here exists a dense subspace D of B such that if u,, ,.... u,,._~ ED 
then there exists a solution U( ) of (2.1) in Km_ such that 

(b) Let (uo( . )j be a generalized sequence of solutions of (2.1) in R i 
such that uF’(O+--) - 0 (WC assume uF’(O+) to exist). Then u,( . ) -+ 0 
pointwise in R, . 

The Cauchy problem for (2.1) will be unifom7ly well posed (u.w.p.) in R, 
if (b) is strenghtened to 

(b’) Let (z+,( . )) satisfy the assumptions in (b). Then (u,J . )) converges 
to zero uniformly on compacts of R, . 

Similar definitions for R, li, 
Assume the Cauchy problem for (2.1) is well posed, let 0 :> j . n 1 

and let U( . ) be a solution of (2. I) with u (“‘)(O+) = ajku, S,, the Kronecker delta. 
The linear operators 

Sj(t)u = u(t) 

are, by virtue of (a) and (b) densely defined and continuous. ‘12’e can then 
extend S,(t) to all of B by continuity; we shall denote the extensions with 
the same symbols. The operators Sj(t) will be called the propagators or 
solution operutors associated with (2.1). If U( . ) is any solution of (2.1) such 
that u(‘)(Oj-) exist, we have 

li -1 
u(t) .- c s,(t)u(‘yO-‘-) (2.2) 

I<=” 

This is clear if the initiai values u(~)(O+) of U( . ) belong to D; if not we may 
approximate them by elements of D and use the continuity of the S, . 

If the Cauchy problem for (2.1) is u.w.p., then for any u E E, S,)( . )u ,..., 
S71-1(t)~ are continuous functions of t. In fact, S,( . ) is the limit, uniform 
on compacts of {S,( . )u,,}, (uo> any generalized sequence in D with u, ---f U. 

Assume the Cauchy problem for (2. I) is w.p. ‘I’hen we have 
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Proof. \l’e shall carry it out for R~+ ; the proofs for R, R-m are similar. 

Let u E D, 

u(t) = it S~,(S)UdS t>o (2.4) 
‘0 

Plainly U( . ) E Cy+l’(E), U(~)(S) = S&i)(s)~, which implies 

uyo+) = sjsu, j == 0, 1 )...) n - 1 (23) 

Since S,-,(s)u E D(A) for s > 0 and AS,-,(s)u = +$!~(s)u is continuous for 

s > 0, J” Sk-,(s)u ds E D(A) for r > 0, A J: Sk-,(s)u ds 1 J; AS,&)u ds = 

J” SE\(S~U ds = S&“(t)u - Sr-;‘)(Y)u. Thus u(t) E D(A) and Au(t) = 

,!$+;‘)(t)u - S&“(O+)u = S;c;‘)(t)u = u(“)(t), which shows that u( . ) 
is a solution of (2.1). In view of (2.5) zl(t) = S,(t)u; differentiating we 
get (2.3). Applying repeatedly (2.3) to S+r(t)~ we get Sc;“(.t)u = S,,(t)u; 
differentiating once more, 5’6(t)u = St!i(t)u = AS,-,(t)u. 

2.2 LEMMA. The operators A, S,(t,),..., S,-,(t,-,) all commute for any 
t, )..., t,-l . 

Proof. As in Lemma 2.1 we only give the proof for R, . Let X E p(A) and 
let u(t) = R(X; A)S,(t)u, u E D. It is easy to see that u( . ) is a solution of (2.1); 
since u(“)(O+) = &,R(X; A)u we have 

R(X; A)S,(t)u = S,(t)R(X; A)u (2.6) 

Since u is dense in E, (2.6) holds for any u E E. Applying (2.6) to u = (/\I - A)v, 
71 E D(A) and applying hl - A to both sides we see that -4 commutes 
with S,(t). The rest of the proof is similar. 

2.3 LEMMA. (a) Let 0 < k < n - 2. Then 

s,(s + t) = i &(s)&(t) + A ‘s &(s)S,-,+,(t) 
j=O j=k+l 

@I 
n-1 

(2.7) 

sel(S + t) = 2 Sj(+Ll-i(t) (2.8) 
i=O 

Proof. Let u E D. The function U(S) = sk(t f S)U (t fixed) is a solution 
of (2.1). Then we have, by (2.2) 

n-1 
S,(s + t)u = c Sj(s)S~‘(t)u 

+0 
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Applying now Lemma 2.1 to compute Sf’(t)u we get (2.7), (2.8) for u E D. 
Since D is dense in E, Lemma 2.3 follows. 

2.4 Remark. If E is a FrCchet space we can drop the continuous depen- 
dence hypothesis (6’) at the cost of assuming existence and uniqueness of 
solutions for certain choices of initial data. In fact. we have 

2.5 THEOREM. Let E be a I;r&het space. Assume that .for each u E D(A) 
there exists a unique solution of (2.1) in R, with @(OS_) = a,,,~. Then the 
Cauchy problem for (2.1) is uniformly well posed in R, . Same conclusions 
for R, , R. 

Proof. Let & be a (countable) set of semi-norms determining the topology 
of E and let h E p(A). It is easy to see that D(A) becomes a FrCchet space if 
topologized by the family of semi-norms 

Let now M be the subspace of C:“‘(E) consisting of those functions u( * ) 
for which u(“‘(O+) exist. M becomes a Frechet space if topologized by the 
family of semi-norms 

t sup / zP(t)/, 1. /E&, m = 1, 2,... 
l/m.ct-:m 

(here we have written U(~)(O) = zP(O+)). Consider the linear operator 
from D(A) to M 

u --+ Ku := Ku( * ) (2.9) 

Ku( . ) the solution of (2.1) with initial data @(Of) = S,,u . It is easy to 
see that K is closed; by the closed graph theorem it is as well continuous. 

Let u0 ,..., u,-r E D(A). The function 

s 

t 

o (t ~~- s)j-lKu,(s) ds (2.10) 

is easily seen to be a solution of (2.1) with zP(O+) = uk ; thus by uniqueness 
it represents any solution of (2.1) with &)(O+) E D(A). Let {u,( . )} be a 
sequence of solutions of (2.1) such that uE’(O+) + 0. Since v,,( . ) -= 
R(h; A)#,( * ) is a solution of (2.1) with ~%‘(0+) = R(h; A)ug’(O+) E D(A) 
we get from (2.10) and th e continuity of K that {urn( . )} tends to zero in the 
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topology of M; in particular, hR(h; A)u,,( * ) - R(h; A)ug’( . ) -= u,,( . ) -+ 0 
uniformly on compacts of R, . Existence of solutions of (2.1) with IP)(O+) = uk 
for any u0 ,..., ~,+r E D(A) is shown by (2.10). 

2.6 Remark. The idea of the proof of Theorem 2.5 is essentially the 
same used in HI to prove Theorem 23.8.3. 

3. THE CASE n :‘I 3 

3. I THEOREM. Assume the Cauchy problem for the equation 

lqt) = Au(t), 7223 (3.1) 

is U.W.P. in R, , Then D(A) = E, A is continuous and the series 

f tjAj/(nj)! (3.2) 
+I) 

converges in L(E) for all t > 0. Conversely, assume D(A) = E, A continuous 
and (3.2) convergent for all t > 0. Then the Cauchy problem ,for (3.1) is 
u.w.p. in R. The propagators S, can be extended to L(E)-valued entire functions 
with McLaurin series 

s,(z) = f ~~+~Aj/(rz~’ + k)! 
i=O 

(3.3) 

Proof. We shall carry it out by first extending S,-, to the complex plane 
and then obtaining A by differentiation. Let w = exp(2rri/n). Divide the 
complex plane in sectors 

W, = {z; 2ak/n < arg .a ,( 2n(k + 1)/n} 

Extend Sj to the rays swk, s > 0 by setting Si(swk) = wkjSj(t) and then 
extend S,-, to the interior of each sector on the basis of equality (2.8) 
extended to the complex plane, i.e. 

n-1 
S,-,(z) = S,_,(sw" + tw”‘~l) = c sj(SWk)Sn-l-,~(twk+‘) 

j=O 

rr-1 

= w-(k+l) C w-jsj(s)sn-l-j(t) 

j=O 
(3.4) 
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It is easy to see that if u E D, Sn-ru has first partial derivatives in the interior 
W,O of each W, given by 

n-1 
= Fl w-‘s;&,(s)s,-,-, (t)u f- As,&)s,~,(t)u 

I! -* 
= C (w-j ~~ I )S+,( S)S,-*-,j(t)U i- LS,-,(s + t)” (3.5) 

,-~l 

(in the last step we have made use of equality (2.7) for the case k = n - 2). 
Since S,(t)u is continuous in R, for each u E E (see 2) it follows from 
Theorem 1.3 that S,( * ) is equicontinuous on compacts of R, ; this, and 
the fact that Sr(t)u is continuous in R+ for each u E D show S,_,u and its 
first partials to be continuous in the whole plane-except perhaps at the origin. 
Next, observe that the relation (3.5) between the partials of S,_,u are the 
Cauchy-Riemann equations with respect to the directions given by wk, wkml l. 
Then we obtain 

(i) If u E D S,-,(.z)u is holomorphic in the whole plane, except perhaps 
at the origin. 

Let now u E E, {ua} a generalized sequence in D such that u, -+ u. It follows 
again from equicontinuity of S,_, on compacts of R+ that S+r(z)u, + S,-,(z)u 
uniformly on compacts of each W, . ” Then S,-,( . ) is holomorphic in 
each WJco; by Theorem 1.4, 

(ii) S+r( . ) is h olomorphic (as an L(E)-valued function) in each W,:). 

Let u E D, If(s, z)u = Cy$ S,(s)S~~t(z)u, s E R, . Using Lemmas 2.1 and 
2.3 we see that H(s, z)u = S,_,(s j- x)u for z E R, ; by analytic continuation 
this holds as well for any complex z f 0. Another analytic continuation 
argument and (ii) show that 

(iii) 2;:; S~~,j_l,(z)S~v-;‘-“(LJu = S,-,(x + <)u for z E W” = W,O U ..f U WEpI 
(Sag, is bounded there), < f 0. For z, 5 E W” all operators in (iii) are 
continuous, thus (iii) holds as well for any u E E. But this plainly implies 
that S,-,( . ) is holomorphic in Woo + ... + Wzt-, which is the entire 
complex plane, i.e. S,-, is an L(E)-valued entire function. By Lemma 2.1, 
so are So ,..., &-,--they can be obtained from S,-, by differentiation. 
If u ED, by Lemma 2.1 Se;‘)(t)u = So(t)u, t E R, ; then SA?c’)(t)u = 
Sl;“‘(t)u =: AS,(t)u. Letting t - 0 we get Sk?;i’(O)u = AS,(O)u = Au; 
since ,4 is closed D(A) = E and A = Si_“,-i’(0) EL(E). It follows easily 
from the definitions of the S, that their McLaurin series are given by (3.3). 
Since (3.2) equals So(tl’n) its convergence follows from that of (3.3) for the 
case k = 0. 
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Assume now iz is continuous and the series (3.2) converges for any t > 0. 
It is easy to see that this implies that all the series (3.3) converge uniformly 
on compacts of the plane and define entire functions S, ,..., S,_, , which are 
the required solutions of (3.1). As for uniqueness, let u( . ) be a solution 
of (3.1) with u(0) = u’(O) = ... -=: ~(+ij(O) = 0. Integrating (3.1) repeatedly 
we get (Hi, p. 625) 

u(t) = (ni J l)! Ji (t - s)nj-1L4ju(s) ds, j = 1, 2 ,... (3.6) 

It follows from (3.2), from the definition of the topology of L(E) and from 
the fact that U(S), 0 < s < t is bounded in E that limj,,,((n. - l)!))l 
(t - s)nj-lAju(s) -+ 0 uniformly with respect to s, 0 < s < t and then (3.6) 
implies u(t) = 0 for all t, which ends the proof of Theorem 3.1. 

3.2 Remark. Convergence of the series (3.2) is equivalent to convergence 
of 1 tjAju/(fq)! in E for all u E E; this, in turn is equivalent to the relation 
lim?,, ((nj)!))I/ Aju Ii/j = 0 for all semi-norms / . 1 in 6. In fact, if the series 
C tjAiu/(nj)! converges for each u E E then the limit lim,,, xy=, zJA%/(nj)! 
exists for each complex z and each u E E; by Theorem I .3 it defines a 
continuous operator F(z). But F( * ) u is entire for each u E E, then F( . ) is 
entire as an L(E)-valued function (Theorem 1.5) which implies convergence 
of (3.2) in L(E). 

3.3 THEOREM. Assume E is a Banach space, and let the Cauchy problem 
for (3.1) be w.p. in R, . Then A is bounded. 

Proof. Consider the real-valued finite function m(t) = max{I S,(t)l, 
k = 0, l,..., n - I} defined in R, . Since {t; 1 S,(t)1 :> 6) = UueE 
{t; / Sk(t)u 1 > bl u I}, each of the sets on the union being open, m( * ) is 
lower semicontinuous. Let a > 0,j = 1, 2,... and define 

e?,, = {t; 0 < t -< a, m(t) < j> 

Since each e3 a is closed and e,., u e4,a u ..* = [0, a] we get from the 
Baire category theorem that some ej,a contains an interval (a(a), /3(a)), 

a(a) < P(a) < a. 
Apply now R(h; A) to both sides of (2.7). We get from this and from (2.8) 

~ R(k A)S,(s + t)l < cm(s)m(t), O<k,(n-2 

I S,-,(s + t)l < cm(s)m(t) 

s, tER+, c a constant independent of s, t. This and the preceding considera- 
tions show that R(h; A)S,(t) is bounded in some interval around any point 
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in R,, thus is bounded on compacts of R,. . Extend R(X; A)2S,-, to the 
complex plane by means of the formula 

R(h; A)2S,+l(~zd + tzu”+l) 

n-1 

.= ~-(~~l) z. dR(h; A)S,(s)R(h; A)S,+,(t). (3.7) 

Proceeding as in Theorem 3.1 ((iii) is now replaced by 

we can show that R(h; A)4S,-, can be extended to an L(E)-valued entire 
function. 

Now let u E R(h; A)3D. It is easy to see that AmS,( * )u E CT)(E), 
0 f m < 3 and that 

s;y)(t)u == A”sn:,-l(t)u, l<m<4, tER+ (3.8) 

Consider the L(E)-valued function 

T( . ) = 2 ( ; ) A”-“( -R(h; A)45’,-,( + ))(‘)ln) 
nr=n 

For u E R(X; A)3D, t E R, 

T(t)u = R(X; A)4 i ( ; j h4-“( --S;y)(t)u) 
m-0 

= R(h; i2)4(M -~ A)“&-,(t)u = S,_,(t)u (3.10) 

Since R(h; A)3D is dense in E, (3.10) shows that S,-,( . ) can be extended 
to an entire function and the proof ends now like that of Theorem 3.1. 

AnL(E)-valued function S( . ) defined in R will be said to be of type ,<w in R 
(w a real number) if 

{e-wltiS(t)u, j t 1 > l} 

is a bounded set in E for each u E E. Similar definitions for R, , i?, . The 
Cauchy problem for (3.1) (for 1z > 1) will be of type +J if the propagators 
s o ,..., A’,-, are of type <w. For the case n 3 3 we have 

3.3 THEOREM. The Cauchy problem for (3.1) is u.w.p. and of type <:w 
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in R, for some w < co if and only if R(h; A) exists for j h ( large enough and 

is analytic at co. 

Proof. Assume R(h; A) exists for I h 1 > a and is analytic at co. Let 
R(h; A) = x& X-jAj for 1 h 1 > a. Then if p > a, 

WR(X; A) dh 
IAl=o 

Since AR(/\; A) = --I + hR(h; A) is an L(E)-valued analytic function, 
iZAj can be computed by introducing A under the integral defining Aj ; 
we obtain in this way 

AA,, = --I + A, , .4Aj = Aj+l, j = 1, 2,.... (3.12) 

Since A, = lim,,,,, R(h; A), taking u E D(A), writing X-lR(h; A)Au = 
-A-% + R(h; A)” and letting 1 A 1 + co we see that A,u = 0 for u E D(A) 
and thus A, = 0. This and (3.12) show that A is continuous (= A,) and 
that -4, = Aj-l,j = 1, 2,.... Consequently we can write 

R(h; A) = f j+‘j+‘)Aj, PI >a 
j=o 

Then (see 1) if 1 . 1 is a semi-norm in 9 

lim supi+= 1 Aj [l/j < a 

thus if w > a there exists a constant K such that 

1 Aj I :G Kwj 

This implies that the series (3.2) converges; moreover, the series (3.3) can 
be estimated as follows: 

< K f CJ ! z ij/j! = Kewlzl 
j=O 

This shows that the Cauchy problem for (3.1) is of type <w. Conversely, 
assume the Cauchy problem for (3.1) is u.w.p. and of type S&J. Then it 
follows from Theorem 1.5 that the Laplace transform 

R(X)u = jr e-“tS,-,( t)u dt (3.13) 
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exists for Re A >, w and defines a continuous linear operator in E. It is eas) 
to see that it is permissible to integrate by parts ?z times the right-hand side 
of (3.13) when u E D; in doing this and applying Lemma 2.1 we get 

R(X) - A-“(1 4 AR(A)) 

in D and thus in all of E. This implies that H(h) = R(Xn; 11). Since 
(h”; Re X > zu> is a neighborhood of co if n 2: 3, we see that R(h; A) is 
holomorphic in a deleted neighborhood of GO. But (3.13) implies that R(X) 
remains bounded-in fact, tends to zero- when Re X - a, then Z?(h; A) 
is analytic at co. 

3.4 Remark. If E is a Banach space, the hypothesis of Theorem 3.3 is 
always satisfied. Then the Cauchy problem for (3.1), if w.p. is always of 
type <W for some w < co. Th eorem 3.3 is closely related to Theorem 23.9.6 
in [Hi]; there A is assumed to have the form V” (V a closed operator with 
p(V) f i~r) and a more stringent definition of solution is used. However, 
solutions are assumed to exist only for certain particular choices of initial 
data and no continuous dependence on them is required. 

3.6 Remark. If the Cauchy problem for (3.1) in u.w.p., then it always 
can be reduced to an u.w.p. first-order problem in the product space 
En = E i< E x ... x E (En endowed with pointwise operations and the 
product topology). In fact, we only have to set am - G)(t); the equation 
in the product space is uk(t) == zlil+r(t), 0 .< k < n - 1, I& = Au,(t). 
See Theorem 6.9 and Remark 6.10 for a similar problem in the case n = 2. 

4. THE CASE n = I 

Equality (2.8) reduces to 

i.e. the propagator S, = S is a semigroup of continuous operators in E 
(a group in the case of R). We shall only consider the case in which the 
Cauchy problem for 

u’(t) = Au(t) (4.1) 

is of type S&u for some w < co (for a study of semigroups not necessarily 
satisfying this condition see [%I,]). Al so, we shall confine ourselves to the 

cases R, R, ; the case R, is treated (for Banach spaces) in [Fa], also in [Pi] 
with additional conditions. 
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4.1 THEOREM. The Cauchy problem for (4.1) is u.w.p. and of type <cu 
in R, (in R) if and only if A is the infkitesimalgenerator of a strongly continuous 
semigroup (group) T of type < w. If S, is the propagator associated with (4.1), 
S, = T; for each u E D(A) there exists a solution of (4.1) with u as initial value. 

4.2 THEOREM. Let E be a Banach space. Assume the Cauchy problem 
for (4.1) is w.p. in R. Then it is u.w.p. (This result isfalse if we replace R by R, ). 

Proof of Theorem 4.1. Assume A is the infinitesimal generator of a strongly 
continuous semigroup T( . ) of type <w. Then u( * ) = T( * )U is a solution 
of (4.1) for any u E D(A). It is the only such solution. For, let u( . ) be a 
solution of (4.1) with u(O) = 0. For t > 0 set 

h(s) = T(t - s)u(s), O<s<t 

It is easy to see that h is continuous in [0, t], continuously differentiable in 
(0, t) and that h’(s) = T(t - s)izu(s) - AT(t - s)u(s) = 0. But then 
0 = u(O) L h(0) = h(t) = u(t), which shows that u( . ) = 0. Continuous 
dependence of the solutions on the initial data is evident. Conversely, assume 
the Cauchy problem for (4.1) is u.w.p. and of type <w in R+ , and let 
S = S, be the propagator associated with (4.1). Plainly S is a strongly 
continuous semigroup of type <W in R, . Let B be its infinitesimal generator, 
u E D(B), {uO} a generalized sequence in D such that u, + u, t :> 0. We have 

t 

i (1 t 5’ s u, ds --f 
s 

S(s)u ds 
. n 0 

z4 t 
.r 

S(S)U,~ ds = 
n 

j” -4S(s)u, ds = j’ S’(s)u, ds 
n 0 

_ S(t)u, --- 24, = S(t)u - u 

thus ut = Jf S(s)u ds E D(A) and Au, = S(t)u - u. But, since t-k, + u, 

A(ttIu,) --t Bu, u E D(A) and Au = Bu, i.e. B C A. Let us show in fact that 
B = A. Assume this is false; let us u E D(A), u $ D(B), h Ed. Since 
(AI - B)D(B) = E, there exists v E D(B) such that (h1- i2)v = (XI ~ B)v = 
(X1 - A)u, thus, if w = u - z, w f 0 and 

-4w = hw 

But then w(t) = ehtw is a solution of (4.1) with w(0) = zu E D(B), which is 
absurd. The proof is similar for the case of a group. 

Proof of Theorem 4.2. It is clear that it will follow from 

4.4 LEMMA. Let S( . ) be agroup in the Banach space E such that t --t S(t)u 
is strongly measurable for any u E E. Then S( . ) is strongly continuous. 
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For a proof of Lemma 4.4 see [DJ or [Hi]. 
Operators A which are infinitesimal generators of strongly continuous 

semigroups in Banach space are caracterized by the Ilille-Yosida-Feller- 
Phillips theorem (see [DJ, VII1.1.13]. Th’ is characterization has hcen 
extended by Miyadera [M,] for semigroups of type ::Io, -..: co in Frechet space. 
The essential feature of this proofs being the equicontinuity criterion 
furnished by Theorem 1.2, they extend without changes to the case of a 
barreled, complete locally convex I,TS. We have ([Ma], Theorems 5. I and 5.2). 

4.5 THEOREM. The operator d is the injinitesimal generator of a strongly 
continuous semigroup (group) S( ’ ) of type .<w in R+(R) if and onJv if (a) .for 
each A, h > w(I h / > w), X E p(A), (b) for each u E E the set 

((1 h / - w)nR(h; A)%; X > w(I X j > w), n = 1, 2,...) 

is bounded in E. 

The resolvent R(h; A) can be obtained from S( . ) by means of the formula 

R(X; A)u = !‘r e-AtS(t)u dt (4.2) 

valid for Re A > W. We shall make use later of 

4.6 LEMMA. Let S( - ) be a strongly continuous family qf continuous 
operators of type <w in R,. , let A be an operator in E such that X E p(A) /or 
h > w and (4.2) holds. Assume S(0) = I. Th en S( . ) is a semigroup and A z’s 

its infinitesimal generator. 

The proof is similar to the one for the Banach space case (see ED,], VIII). 

4.7 Remark. In the Banach space case every semigroup is of type ‘-;w 
for some w < a; thus any w.p. Cauchy problem is of type <w for some CU. 

5. THE CASE n = 2 

Assume the Cauchy problem for 

u”(t) = Au(t) 

is w.p. Equalities (2.7) and (2.8) take for n =: 2 the form 

S,(s + t) -: S,(s)S,(t) + AS,(s)S,(t) 

S,(s + t) ~~~ S,(s)S,(t) + S,(s)S,,(t) 

(5.1) 

(5.2) 

(5.3) 
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5.1 LEMMA. Let the Cauchy problem for (5.1) be w.p. in R, (u.w.p. in R,). 
Then it is w.p. in R (u.w.p. in R). 

Proof. Let the Cauchy problem for (5.1) be w.p. in f7,. If u+( * ) is 
a solution of (5.1) in ii+ with u;(O) = 0 it is easy to see that u(t) = u+(/ t I) 
is a solution of (5.1) in R. On the other hand, if n+( . ) is a solution of (5.1) 
with v+(O) = 0 can be extended to a solution in R by setting u(t) =: sgn ta+( / t I). 
Thus any solution u(t) = S,(t)u(O) + S,(t)u’(O) can be extended to R and is 
clear that uniqueness and continuous dependence on initial data hold as 
well in R. 

Assume now the Cauchy problem for (5.1) is u.w.p. in R, . Let s, t > 0, 
s + t ‘> 0, 

H(r; s, t) = 2S,(s + r)S,(t + r) - S,(s + t + 2r) (5.4) 

On account of the fact that S,( . ) is equicontinuous on compacts of R, , 
S,( * ) is continuous in R,. for u E D one easily sees that H( * ; s, t)u, u E D 
is continuous for r > 0, continuously differentiable for Y > 0. We have 

(d/dr)H(r; s, t)u = 2&s& + Y)So(t + r)u 

+ 2AS,(s + r)S,(t + T)U - 2AS,(s + t + 2r)u = 0 

(we have made use of (5.3) in the last step). This, the fact that H is symmetric 
with respect to s and t and the equality 

H(Y; s + h, t + h) = H(Y + h; s, t) 

imply the existence of a L(E)-valued function K(r), r > 0 such that 
E-I = K(i s - t I). Setting t := 0 we see that K(I s I) = S,,(s); extending S, 
to the entire real axis by means of So(t) =- S,(l t I), we obtain 

S,(s + t) + S&s - t) = 2&(s)&(t), s, tER (5.5) 

(Strictly speaking, we obtain (5.5) only for s, t 3 0, s + t > 0; however, it 
can be readily extended for all values of s, t making use of the symmetry of S, 
and of the fact that S,,(O) = 1.) 

It is easy to show in the same way that if we extend S, to R by setting 

WI = w WI t I), 

Sl(S + t) -t Sl(S - t) = 2S,(s)S,(t), s, tER (5.6) 

Let now u E D. The functions S,( . )u, S,( . )u are solutions of (5.1) if t f 0; 
however, (5.5) and (5.6) allow us to express S,,(t)u, S,(t)u for t in the vicinity 
of 0 by means of their values away from the origin, and thus they are solutions 
in R. This takes care of existence of solutions in R, uniqueness being clear. 
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As for continuous dependence on initial data, let {u&t)) : {,S’,(t)uo(0) j 
S,(t)ui(O)j be a generalized sequence of solutions of (5. I) with u,(O), U:(O) -+ 0. 
S,( * )uJO), S,( . )ub(O) converge to zero uniformly on compacts of 
(-co, 0) u (0, oz); making use again of (5.5), (5.6) WC set that this is also 
true for compacts of R. 

We shall study in the sequel I.(E)-valued functions S( . ) satisfying (5.5) 
in the style of semigroup theory. Here we use som< results and methods in 
[K,], [Ka] where such functions are considered although with somewhat 
different continuity and measurability assumptions. 

Through the rest of this paragraph S’(t), f E R will be an L(E)-valued 
function satisfying (5.5) and such that S(0) mm_ 1. 

5.2 LEMMA. Let E be n Banach space. Assume t - S(t)u is a strongly 

measurable function qf t for each u E E. Then (a) S( . ) is bounded on compacts 
of R. (b) t + S(t)u is continuous fey each u E E. (c) t --, 1 S(t)i is measurable. 

Proof. Assume S( * ) is not bounded in some compact of R. I’roceeding 
like in ([DJ, VIII.I.3) . we can construct a null set e,, and a separable subspaceF 
of E such that 

(i) S(t)F C F for t 6 e,, . 

(ii) There exists a bounded sequence t, , t, ,... of real numbers and a 
sequence ui , ui ,... in I;, 1 u,, -z 1 such that / S(t,)u,, 1 J> n, IZ = I, 2 ,.... 

Define now m(t) = sup{1 S(t)u 1, u E F, / u / < 1). 
Since F is separable, the sup can be taken over a countable subset of the 

unit sphere of F, and then m( . ) is measurable. It is easy to see that if s or 

t # e, 

m(s + t) :< 2m(s)m(t) + m(s ~~ t) (5.7) 

Thus (a) will follow from the auxiliary result. 

(iii) Let m( . ), 0 5:: m(t) < c~j be a measurable function in R such that 
m(-t) =: m(t) and (5.7) h o Id s when s or t do not belong to a fixed null set P,, . 
Then m is bounded on compacts of R. 

The proof of (iii) is an immediate generalization of 2 in Kr (there e, = ;:). 
Let t, , t, Y E R. After some manipulations with (5.5) we get 

qt, -c Y) - S(to) = 2S(t)(S(t, + Y -- t) ~- S(t, -- t)) 

- (S(to + Y - 2t) ~ S(t, - 22)) (5.8) 

Let novv OL < p. Applying both sides of (5.8) to an element ZI E E, integrating 
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between CY. and /3 and using the fact that S( . ) si bounded on compacts we 
obtain, after simple changes of variable 

! 
.t”--a 

< const. l(S(t + 7) - S(t))u 1 dt 
L h-8 

+ (l/2) j+ ,(S(t + Y) - S(t))u 1 dt 
to-w 

The right-hand side of (5.9) tends to zero with Y, thus proving (b). As for (c), 
observe that 

{t; I S(t)1 > a> = (J {f; 1 S(t)u / > al u I} 
USE 

5.3 COROLLARY. Let E be a Banach space. Assume the Cauchy problem 
for (5.1) is w.p. in RR,. Then it is u.w.p. in R. 

Proof. In view of Lemma 5.2, Corollary 5.3 will follow if we can show 
that the propagator S, satisfies (5.5) (‘t 1 is easy to see that S, is strongly 
measurable). Proceeding like in the proof of Theorem 3.3, we see that 
1 R(X; A)S,( . )I is bounded on compacts of R, . Using now R(X; A)2H(r) 
instead of H(r) in the proof of Lemma 5.1 we obtain (5.5) multiplied by 
R(h; A)2. Since R(h; A)2 is one-to-one, (5.5) holds. 

Return now to the case of a general E. Assume S( . ) to be strongly 
continuous. The injinitesimalgeneratov of S( . ) is the linear operator defined 
as follows: 

D(A) = {u E E; S( . )u E Ct2)(E)}, Au = Y(O)u 

5.4 LEMMA. (a) D(A) is dense in E and A is closed. (b) If u E D(iz), 
S(t)u E D(A) and S”(t)u = AS(t)u = S(t)Au. 

Proof. Let u E E, b > 0, ZI* = Ji S(s)u ds. It is easy to see using (5.5) that 
S( . )v~ E C(I)(E); in fact S’(t)u, = &(S(t + b) - S(t - b))u. Consequently, 
if ug = f” S(s)v, ds, ub E D(A). Since bF%, 

We o&ain easily from (5.5) that 
-+ u as b + 0, D(A) is dense in E. 

& (s(t + h) - 2S(t) + S(t - h))u 

= S(t) & (S(h) - I)u = ; (S(h) - I)S(t)u 
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Letting h -+ 0 we get (b). Let {Us} b e a g eneralized sequence in D(A) such 
that u, + u, &gu, + T; E E. We have 

s”(t)U(, = S(t)~hL,,, S’( t)u,, := 
i 
” S(s)Au, ds 
0 

thus {S( . )zqJ converges uniformly on compacts of R together with its first 
two derivatives. This clearly shows that S( . )u =m limS( . )ua E C@)(E), 
Au = S”(O)u == lim S(O)Au, ==- 1’. 

As in the case 71 _ 1, S( . ) need not be of type E w for any w < W. 
However, 

5.5 LEMMA. Let E be a Ranach space. Then S( - ) is of type <UJ for 
some w K’ co. 

Proof. choose k-, w such that 

s(t)1 5. KeuJI’i (5.10) 

0 < t s; 1, and 

21 S(l)je-w + e+rJ < I (5.11) 

Assume now (5.10) holds for t < n. Then, making use of (5.11) 

1 S(t + l)l < 21 S(l)llS(t)l + 1 S(t - l)i < Kew(t~tl) 

thus (5.10) holds as well for t li: n 4 1. By induction, it holds for all t > 0; 
since S(t) = S(-it), for all t E R. 

5.6 LEMMA. Assume S( . ) has type LW, let A be its infinitesimal generator 
and let Re h > w. Then A2 E p(A) and 

XR(h2; .4)u (*= e-AtS(t)u dt, 
. ” 

(5.12) 

R(h2; A) is analytic in Re h ;. W. 

Proof. C’all R(h) the right-hand side of (5.12). It is easy to see that if 
u E D, we can integrate it by parts twice; after so doing we get 

(h” A)R(h)u = hu. (5.13) 

Since A is closed, this implies that for any u E E,‘, R(h)u E D(A) and (5.13) 
holds. A commutes with S( ), thus also commutes with R(X). The fact that 
R(h2; A) is analytic in Re h ‘> w can be seen by applying functionals to both 
sides of (5.12) and making use of Theorem 1.4. 
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5.7 Remark. Lemma 5.6 shows that ~(-4) i- {P; Re X .< W} = {h; Re h <; 
wa -. (Im X)2/4~2}, the region to the left of a parabola passing through the 
points w2, +2iw2. In particular, if w =z 0, o(A) is contained in the negative 
real axis. 

5.8 LEMMA. Let A be a linear operutov zcith domain D(A) such that 

AE&q?yh > co, S( . ) a L(E)-z,alued strongly continuous function sf type -<w, 
S(0) = I. Assume (5.12) hoZds,for A > w. Then S( . ) satisfies (5.5) and ,4 is 
its in$nitesimal generator. 

Proof. Let u E E, X, p > W. Integrating the expression 

eccAs+pt)(S(s $- t) t S(s -- t) - 2S(s)S(t))u, (5.14) 

with respect to s and t in s, t 3 0 we get, after some changes of variable and 
making use of (5.12), 

- (A - p)-l(hR(X’; A) - pR(p2; A))u 

+ (A + p)-l(hR(h2; A) + pR(y2; A)u - 2&&(X2; A)R(P; A)u. (5.15) 

It is not difficult to see with the help of the resolvent equation that (5.15) 
vanishes identically. Then, by uniqueness of double Laplac:e transforms 
so does (5.14) if s, t > 0, a fortiori for all s, t E R, i.e. S( . ) satisfies (5.5). 
If B is the infinitesimal generator of S( . ) and )I > w, R(X2; A) = R(h2; B), 
thus A = B. 

5.9. THEOREM. The Cauchyproblem for (5.1) is u.w.p. in R and of type <W 
if and only ifA is the infinitesimalgenerator of an L(E)-valued strorzfly continuous 
function S( * ) of type <w satisfying (5.5), S(0) = I. If SO , S, are the propa- 
gators associated with (5.1), S”(t) = S(t), S,(t) = T(t), where 

T(t)u = (*’ .S(s)u ds, (5.16) 
- I, 

(if w = 0 we have to require T( * ) itself to be of type :<:w). 

Proof. Assume A generates a L(E)-valued, strongly continuous function, 
S(0) =I, satisfying (5.5). Then(Lemma5.4) if u, LED, u(t) = S(t)u + T(t)v 
is a solution of (5.1) in R with u(O) = u, u’(0) = ‘L’. 

This takes care of existence. As for uniqueness, let U( * ) be a solution of 
(5.1) with u(O) = u’(0) = 0. Let t > 0, /t Ed and consider the E-valued 
function h(s) = R(X; A)S(t - s)u’(s) + R(h; A)AT(t - s)u(s), 0 < s -< t. 
It is easy to see that h( . ) has zero derivative in (0, t), is strongly continuous 
in [0, f]. Then 

0 = h(0) = h(t) :=z u’(t) = 0 
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‘This shows that u is constant; since u(0) m= 0 it vanishes identically. Same 
reasoning for t < 0. 

Assume now the Cauchy problem for (5.1) is 1r.cv.p. and to type w. 
Then S( . ) ~~ S,,( ’ ) is of type 01, satisfies (5.5) and S(0) I. Let 

D,, = {U E E; S( . )u is a solution of (5.1)), 

B the infinitesimal generator of S( . ), u t D(B), {tin; a generalized sequence 
in D such that u, -+ u, t xI 0. iVe have 

Thus ut = T(t)% E D(A) and Au, ~= !j(S(2t) -- 2S(t) + 1)u t- (s(t) - Z)u. 
But t-G, ---f u, A(t-‘h,) ---f Bu, which shows that u E D(A), Au =- Bu, i.e. 
B CA, D, = D(B). 

Assume now D,, f D(,4); let u t D(4), II $ IP, , X E p(B). Since 
(h - B)D(B) = (A - B)D,, m: E, there exists ‘L’ ED, such that (h - B)v mm 
(X ~ 4)~ = (X -- A)u, i.e. there exists zc(-m u ~ V) such that (h - ‘4)~ 0, 
w $ D,, Let w(t) 7-m cosh(h~t)w. Plainly w( . ) is a solution of (5.1) with 
u’(0) = 0 whose initial v-alue does not belong I),, , absurd. 

5.10 Remark. We obtain as a by product of the proof of Theorem 5.9 
that D, = D(A); similarly, if we define D, =-= {U E E; 7’( )u is a solution 
of (5.1)}, D, 2 D(4). We give later more precise information about I), 

5.11 Remark. Assume the C’auchy problem for (5.1) is u.w.p. and of 
type <w < co. Then the Cauchy problem for u’(t) _ .4u(t) is as well u.w.p. 

in R+ and of type .-<w2; more precisely, 4 _ is the infinitesimal generator of 
a strongly continuous semigroup c’(t), t > 0 of type ‘2 that can he 
analytically extended to the right half-plant. In fact, define 

for u E E, t 12 0. On the basis of Theorem 1.5 it is easy to see that (5.17) 
defines a continuous operator in 1~’ for each f > 0. If u E B, 1 . 1 E G then there 
exists a constant K such that 1 S(s)u 1 ,-C: KcuJs; using this estimate in (5.17) 
we get, after some manipulations 
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which shows that U( * ) is of type <w2 in R, . It is plain ,that C’( . ) is 
strongly continuous for t > 0; as for the origin, write 

qqu -- u = (d-t I” e-sys(S) - I)u ds 
J 0 

Divide now the right-hand side of (5.12) in two parts, I1 the integral from 
0 to q,1, from 7 to 03. If ~ . ,, K are as before, then 

as for I1 it can be made small by taking 7 small enough and exploiting the 
continuity of S( . ) at the origin. Thus we see that (strong) lim,,o+U(t) = 1. 

Let now X > W, u E E. Making use of (5.17) and interchanging orders of 
integration we obtain 

cc 1 O” 
ecAzt U(t)u dt = x 

i 
ecASS(s)u ds = R(X2; L4) 

0 ” I) 

(in the last step we have made use of Lemma 5.6). Applying now Lemma 4.6 
we see that U( . ) is a semigroup, A its infinitesimal generator. The fact 
that U( . ) can be analytically extended to the right half-plane follows from 
the fact that the integral in the right-hand side of (5.17) converges for t 
in the right half-plane and differentiation under the integral sign is possible. 

6. THE CASE n = 2 (CONTINUATION) 

Through this paragraph, as in 5, S( . ) (sometimes with a subindex) 
shall be aL(E)-valued, strongly continuous function satisfying (5.5), S(0) = I 
of type .<w for some w < CO, T( . ) (with the same subindex) will be defined 
from S by means of (5.16). 

6.1 LEMMA. Let A be the injkitesimal generator of S. Then 

A, = A - b21 

(b any complex number) is the injkitesimal generator of a strongly continuous 
L(E)-valued function S,( . ) satisfving (5.5), S,(O) = I. If S has type <w, 
Sh has type <w + 1 b 1. 

Proof. Define, inductively 

S,(t) = s(t), &(t)u = 1’ T(t - s)S,-,(s)u ds (6.1) 
“0 
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II = 1, 2 ,.... Plainly, S, , S, ,... are strongly continuous functions of t. 
Let IVn) be the set of all n-tuples (e 1 , e2 ,..., en), ek = +I; IVn) has 2” 
elements. It is easy to see by induction, starting from (5.5) that if t, , s1 1’.., 
s,, E R 

_ 7& 1 S( t,, + elsL $- -.. -1 ens,) 

(el , e2 ;.., en) E Wfm). Let 0 < to < tl & .*- .< tn-l < 1, = t > 0, 
0 < sp < t, - i!,+, . Since S( . ) is of type <CA we have 

/ S(t)24 I + KPlil, tER 

for any u E E and any semi-norm 1 . / in 8’. Since / t, + elSl + ..* + e,s, / & t 
we can estimate (6.2) as follows: 

I S(s,)S(s,-,) ... S(s,)S(sl)S(t,)u ! ::: KeoJt (6.3) 

Integrating now (6.2) with respect to sr ,..., s, in the n-dimensional parallelo- 
piped 0 < s,; < t, - t,-, , k mm I ,..., II (t, == t) and making use of (6.3) 
we get 

/ T(t - tn-l)T(t,-l - tn-J *.* T(t, - QS(t& I 

<._ K(t, - tnml)(tnml -- t,_,) *-. (tl - t,)ewt 

Now, since 

S,(t)24 = 1 qt -~ t,-J . . . qt, - t,)s(t,)u Lit, . . . dt,-, 

the integral taken on the region 0 z< t, C< t, ... < tnel < t, it follows that 

Consequently, the series 

syt)u --( 1 ( -b’)“S,(t)u 
11-U 

converges uniformly on compacts of R for each u E E. This plainly implies 
that S,( * ) is anL(E)-valued function, strongly continuous, and that S,(O) = 1. 
If/.JEG, 

which shows that S, is of type +J + j 6 I. 
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It is easy to see by induction, using (5.12) that 

1 

a, 

e-ntSn( t)u dt = hR(P; A)n+lu, n = 1,2,... 
‘0 

and thus, finally 

i 
* e-“tS,(t)u dt = h i ( -b2)nR(X2; A)“+% 

- 0 ?Z=O 
(6.4) 

The L(E)-valued function R( . ; A) is analytic in Be Xi > w (Lemma 5.6). 
Expanding it as a power series (the derivatives of R( * ; A) are easily computed 
by means of the resolvent equation) we see that the right-hand side of (6.4) 
equals XR(h2 + b2; A) = hZ?(A2; /lb). Applying now Lemma 5.8 we get the 
desired result. 

Let A be the infinitesimal generator of a S( . ) of type <CU. If / * 1 is any 
semi-norm in 8’ we easily obtain, taking into account (5.12) and the fact that 
1 S(t)u j < Kemt for some constant K 

1 R(X2; A,)u / = 1 R(h2 + b2; A)u 1 

K K’ 
d A((;\2 + b2)1/2 - w) G xc (6.5) 

for b > w, which in the Banach space case is condition (Ho) in [Ba], p. 420 
for A, . Following [B,] we define, for u E D(A) = D(A,), 0 < 01 < 1 

Jamu - sir ,y h”-lR(h; Ab)( -A,)u n’/\ (6.6) 

It is plain that (6.6) converges at co; for h near zero we use the fact that 
R(h; A,)A,u = hR(h; A,)u - u. The following facts about the operators Xe 
are proved just like in the Banach space case (see [Bs]) replacing the norm 
of the space by the family d of semi-norms. 

(i) Jba is an analytic function of 01 for u E D(A). 

(ii) Let u E D(A2), 0 < 01, p < 1. Then Jbuu E D(A) and Jba Jbe = Jba+a u. 

(iii) lim,,,- Jbdu = -A,u for u E D(A). 

(iv) Each /be is closable. 

6.2 LEMMA. Let Af = closure of iJt. Then (Aj)2 = A,; if X2 EP(A~), 
h E p(Ab) and R(A; A;) = (XI + A#?(A2; Ab). 
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Proof. Let zl E D(A2). Then, in view of (ii) and (iii) Jt Jju = lim,,,_ 
JON J$u = lim,,3- Ji’-” u = - rl,u. Let A2 E ~(~4,). The operator 

R(h) = (AI + iJ@(P; AJ = (XI - A$)R(P; AJ 

is easily seen to be continuous. (JjR(h2; Ah) can be seen to be continuous by 
introducing R(X*; Ab) under the integral defining Jj). This and the fact that 
(A$)% = A,u for u E D(A”) show that (hl -- Aj)R(h)u : u = R(h)(hl - Aj)u 
for u E D(P). Using now the fact that At is closed we see that the left-hand 
side of the preceding equality holds for all u E E, the right hand side for all 
u E D(A). Thus R(h) = R(h; Ad). The fact that AiD C @Ai) and that 
AjAju = A,u for all u E D(A,) follow from the easily verifiable identities 

AjR(h”; /lb) : R(h; A;) -- h&V; Ah), 

-4&4;R(X2; Ah) = ( I + h2R(h2; Ab)) =: A,R(h2; Ab) 

6.3 LEMMA. Let 6, b’ > ZL, 0 < 01 < 1. Call Jbl = closure of Jb*. Then 
D(jbb) = D(fi,) and jbn - A,, is a continuous operator in E. 

Proof. We can suppose that b’ > w so that R(X; A,) is continuous 
at h == 0. Let u E D(iz). Divide the integral (6.6) defining Jba in two parts, 
Ibti taken from 0 to 1, Kba taken from 1 to a. Same notation for & . Write 

Jbau -~ J;, u ~1 (Iha - I; )u $ K,,% -- K; u 

It follows from (6.5) and from Theorem 1.5 that Kbil, Kg, define continuous 
operators. As for Iba - 1:’ it can be expressed (save for a constant factor) 
as an integral in (0, 1) with integrand 

F(R(h; Ah) - R(X; Ab,))(-Ab) 

= Xa-l(R(h $- b’; A) - R(h $ b’2; A))(-A,) 

= ,W1(bf2 - b2)R(X; A,,)(1 - XR(/\; Ab)) 

thus it also defines a bounded operator. 
We shall henceforth assume that S( . ), A satisfy 

6.4 Assumption. Let b 2 w. ‘Then T(t)Ec D(A$) and AtT(t)u is 

a strongly continuous function of t. 
We begin by showing that the operator A in Assumption 6.4 can be 

conveniently translated. In fact, 

6.5 LEMMA. Let S,( * ), Tb( . ) be as in Lemma 6.1. Then T,(t)E C D(At) 
and A$T,(t)u is a strongly continuous function of t. 
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Proof. Consider the series 

i. (--b2FTn( - )u 

T,(t) = T(t), T,(t)u = It T(t - s)T,&)u ds 
0 

P,(t) = A; T(t), P,(t)u = J“ T(t - s)P,Js)u ds 
0 

(6.7) 

(6.8) 

n = 1, 2,.... Proceeding much like in the proof of Lemma 6.1 we can show- 
that (6.7) and (6.8) converge in the topology of E uniformly with respect to t 
on compacts of R. Since T,(t)u = St S,(s)u ds, S, given by (6.1) it is plain 
that (6.7) equals Tb(t). S’ mce A$ cohnmutes with T( * ), P,(t) = AiT,( 
But A! is closed, thus T,(t)E_C D(Ab) and &Tb(t) equals (6.8) which 
is a continuous function of t. 

6.6 THEOREM. For each b > w, A,j generates a strongly continuous group 

q,(t) = s,(t) + A&(t), tER 

Zif S( * ) is of type <w, U,( * ) is of type <w + / b 1 + 7 for all 7 > 0. 

Proof. The fact that U, is a group follows easily from (5.2) and (5.3). 
We estimate now its type. It follows from (5.2) and (5.5) that AbTb(t)2 = 
A’,(24 - &,(t)z = $(&(2t) - I), thus 

(A;Tb(t))2” = ; i (-I)“-” (z) S@)k (6.9) 
k=O 

IJsing nom (6.2) for k - 1, to = s,) = .a. = s,-i = 2t, we get 

&(2t)k = &C S,(2t(l + e, + ... + Q-1)) (6.10) 

(e, ,..., ekpl) E W(k-l). Since / 1 + e, + -a* + ek--l 1 < R, if S, is of type <w’, 
UEE, I. ! E 6 we get easily from (6.10) and (6.9) 

(6.11) 
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This implies that there exists K’ such that 

l(A$-b(t))nU / < K’t?w’t (6.12) 

In fact, (6.12) reduces to (6.11) for n even; if n = 2m + 1 we only have to 
write (AgTb(t))znz+l = (AbT,(t))(A9T,(t))2”” and use the fact that ilgT,(t), 
being a continuous operator, maps bounded sets into bounded sets. 

Let us now estimate U, . We have, from its definition 

An application of (6.12), of the fact that S, is of type <:w’ and of Theorem 1.2 
shows the existence of a constant K” such that 

/ &,(t)k(/J$‘,(t))‘-ku / < K”ekw’te(n-k)a’t = K”@w’t, 

n = 1, 2,...; thus, in view of (6.13) 

/ U&zt)u j ,< K”(~P’~)~, n = 1, 2,... 

the constant K” depending on U, 1 * /, t. Let now 17 > 0. Choose to so large 
that 2 < eqtO. Write t = nt, + Y, 0 < r < to for any t 3 0. By Theorem 1.2 

{U(r); 0 < r < to} is an equicontinuous family in L(E); then there exists K”’ 
such that 1 Ub(t)u 1 = j Ub(r)Ub(stO)u j ,< K”‘e(w’+T’)to. Repeating the preceding 
argument for any u E E, j * / E d as well as for t < 0 we see that U, is of 
type +J’ + 7 for all 7 > 0. 

For all u E E, h > W’ 

i 
m e+U,(t)u dt = (Al + Ab)R(P; A,)u = R(h; A& 

‘0 

which shows (Lemma 4.6) that At generates U, . 

6.7 Remark. Lemma 6.3 shows that if Assumption 6.4 holds for some 
b > w, then it holds for all b 2 w. We do not know at present whether 
Assumption 6.4 is true in every case; this is the case, for instance when A 
is a self adjoint operator in Hilbert space. Also, if we replace & by ],,a, 
0 < 01 < + we obtain a true statement, independent of b by virtue of 
Lemma 6.3. 

Assumption 6.4 is equivalent to the following Assumption 6.8, which is 
cast in terms of the Cauchy problem for (5.1). 

6.8 ASSUMPTION. Let u( * ) be a solution of (5.1) with U’(O) E D(A$), 
b > w. Then u’(t) E D(&) for all t E R and A&‘(t) is continuous. 
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In fact, assume this is true. Take u(t) = S(t)zl, u E D(A). Since u’(t) = T(t)Au 
it [follows that T(t)Azl E D(A,,$ AtT(t)Au is continuous for all u E D(A). 
If now X E p(A) it is easy to see that the same happens replacing A by XI - A, 
and since (h1 - A)D(A) = E the result follows. On the other hand, let 
Assumption 6.4 hold, and let u(t) = S(t)u(O) + T(t)u’(O) be a solution of (5.1) 
with u(0) E D(A), u’(0) E D(@). Since u’(t) = T(t)Au(O) + S(t)u’(O) and 
S(t)D(At) C D(&) (s(t) commutes with At) it follows that u’(t) E D(At) 
and that A$‘(t) is continuous. 

When Assumption 6.4 holds we can reduce the Cauchy problem for (5.1) 
to a first-order Cauchy problem, u.w.p. in R in the product space E = E x E. 
Recall that Q!, endowed with pointwise operations and the product topology 
is a barreled, complete locally convex LTS. We shall use in Theorem 6.9 
a matrix notation for operators in @ (and a vector notation for elements of E) 
whose meaning is clear. 

6.9 THEOREM. Assume the Cauchy problem for (5.1) is u.w.p. and of 
type <<w and that Assumption 6.4 holds. Then the Cauchy problem (in 6) 

[::I’ [ 0 At + ibI 
= At-ibI 

u1 
0 I[ 1 uz (6.14) 

(b > W) is u.w.p. and of type <W + 21 b / + 7 for all q > 0. There is a 
1 - 1 correspondence between the solutions of (5.1) and those of (6.14) with 
u,(O) E D(A) given by 

I 
(6.15) 

Proof. Call 2fb the operator in the right-hand side of (6.14); write 
% = 2% + 43, 

It is easy to see that if h2 E f(Ab) 

Now let 
7 

ub(t) = [A$& h%(t) 1 Sb(t) ’ 
tER 

(6.16) 

A simple computation based in (5.2) and (5.3) shows that U,( . ) is a strongly 
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continuous group; as a consequence of Theorem 6.6 it has type 1-w ~. , b / i 0 
for all 77 > 0. Taking the Laplace transform of U,( . ) for X > w + j h ,, 
applying Lemma 5.6, Lemma 4.6 and the representation (6.16) for R(X; B,,), 
we see that U, is generated by Bjh . By Theorem 4.5, for any 7 Y 0 the set 

{(I A / --- w’)“R(X; Bb)nlr; 1 h >- w’, N ~1 1, 2 )... 1 (6.17) 

(w’ = w + 1 b / + 7) is bounded in E for each II t Q. Consider the series 

1 RCA; !&)(R(A; BJb~)h~ ... R(k %,)(R(k %)bYWl (6.18) 

k, , k, ,.*., k,, = 0, 1, 2 ,..., 1 X / :> w’. It is easy to see that 

R(h; !&)?$I = -!pR(-A; Oh) 

thus each term of (6.18) can be written 

(b$t)kR( -A; B$‘R(h; ?&,)n, (6.19) 

k = C kj , p + 9 = k + n (incidentally, p = C[(kj t 1)/2] where [r] =- integer 
part of r). Observe now that the three sets {p3”}, {(I X i - w’)g’R(-A; !&,)g}, 
{(I A 1 - w’)VR(A; ?B3b)g), k,p, q = 1, 2,..., 1 h ! > W’ are equicontinuous in 
L(E) (the last two by virtue of (6.17) and Theorem 1.2). Then so is the set 
{(I x 1 - zu’)~‘q3~R( 4; !B,)PR(X; !B#), all the parameters as before. This 
implies that if j . ( is a semi-norm in ($ the series (6.18) is dominated (with 
respect to 1 . 1) by a constant times the numerical series 

Thus (6.18) converges in CF for each II E 6. Now, it is easy to see by direct 
computation that (6.18) equals R(A; 23, + b’Q)u = R(h; ‘U,)u when n =~ I, 
thus equals R(X; ‘&)?I when n .‘-, I. Collecting our results we see that 

{(I h j - (w’ + b))%R(X; YI,)“u; 1 h 1 ’ w’ 1 b 1, n = I, 2,...) 

is bounded in Q! for each u E E which shows, via Theorem 4.5 that 91, 
generates a strongly continuous group of type W’ + ~ h ~ := w + 21 b / j 7, 
in particular that the Cauchy problem for (6.14) is u.w.p. in R. 

If U( . ) is a solution of (5. I), t i is clear that the image of U( . ) by the 
map (6.15) is a solution of (6.14). The correspondence (6.15) will be shown 
to be 1 -- 1 as soon as we demonstrate the existence of a solution of (5.1) 
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for every u(0) E D(A), u’(0) E D(A$); th’ IS in turn amounts to show that 
T( . )u is a solution of (5.1) f or every u E D(At). Clearly T(t) E D(A); 

in fact 

&T(t) = &A$(t)u = A,aT(t)A$L 

Let now u E D; by Lemma 2.1 we have 

A I’ T(s)v ds = It AT(s)u ds = S(t)n (6.20) 
0 0 

Using the facts that A is closed and D dense we easily see that (6.20) holds 
as well for u; then T( . )u E CY2)(E). (T’( * )U = S( * )u), (T(t)u)” = AT(t)u, 
which shows that T( . )U is a solution of (5.1). This ends the proof of 
Theorem 6.9. 

6.10 Remark. It should be noted that the Cauchy problem for (5.1) can 
always be reduced to a first-order problem in E by means of the procedure 
outlined in Remark 3.6. However, this first-order problem may not be 
well posed. 

6.11 Remark (See Remark 5.10). We have shown in the c:ourse of the 
proof of Theorem 6.9 that 

D, r> D(&), b 3 w 

6.12 Remark. Theorem 6.6 shows that if A generates a S( . ) satisfying 
(5.5) and Assumption 6.4 holds then 

A = B2 + b”I (6.21) 

(B = A,$), B the infinitesimal generator of a group U,( . ). Conversely, 
assume A admits the representation (6.21). If U( . ) is the semigroup 
generated by B, then s(t) = +(U(t) + U(-t)) satisfies (5.5), S(0) = I and 
it is easy to see (taking its Laplace transform) that B2 is its infinitesimal 
generator. Applying Lemma 6.1 we see that B2 + b21 generates a S( . ) 
satisfying (5.5). But it is not clear whether Assumption 6.4 holds for it. 

6.13 Remark. It is possible to cast Assumption 6.4 in a form that does 
not involve explicitly the operator A; . In fact, let 

r’(t) = I1 logs(T( s i t) - T(s - t)) ds 
L 0 

Then Assumption 6.4 is equivalent to 

6.14 ASSUMPTION. V(t)E E D(A) and A b-(t) is a strongly continuous 
function of t. 
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To prove the equivalence we shall express the operator Ai directly on 
terms of S( * ) for b > w. If we replace R(& A) in the definition (6.6) of Jj 
we get (after an easily justifiable interchange in the order of integration) that 

for u E D(A), where 

Jju = --A,F,u 

Fb = 
i 

mf(b; t)S(t) dt, 
0 

(6.22) 

(6.23) 

f(b; t) = b jm (h(h + b2))-* exp( -t(h + b2)*) dh = a K,(k) 
0 

([R,], p. 356). Here K, is the McDonald or modified Bessel function of 
order zero; see ([R,], p. 975) for its expression in terms of Bessel and elemcn- 
tary functions. We only need the following properties of K, ; there exist 
two entire functions g, , g, such that 

K,(t) = m 1% t + g*(t) (6.24) 

and K, and its derivatives of any order satisfy an estimate of the type 

/ K?)(t)1 = O(e+) as t+cO (6.25) 

This shows, via Theorem 1.5 that the operator Fb defined by (6.22) is 
continuous; since Ai = i]j , we also have 

‘4; = --iA,F, . 

Using now equation (5.6) we can write 

A,sT(t) = - $ A, fin K,(bt)(T(s + t) -- T(s - t)) ds, 
. 0 

and then, using the expression (6.24) for K. , 

; A,“?“(t) = g,(O)A,l-(t) 

+ -lb j1 h(s)(T(s -+ t) -- T(s - t)) ds 
0 

+ A, fin K,(bs)(T(s -I- t) -~~~ T(s - t)) ds 
. 1 

- 4LMNVt) + WI(t) + wf&)), (6.26) 

h(s) = (/h(s) ~ g,(O)) 1% s + L?,(s) 1% b + g,(s) 

Equality (6.26) makes clear that the equivalence between Assumptions 6.4 
and 6.14 will be established as soon as we have shown that Wi(t) E D(A) 
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and that AWi(t), i = 1, 2 are strongly continuous functions of t. In view of 
the representation (6.24) and the estimate (6.25) this is taken care of by 

6.15 LEMMA. Let q( * ) be a (scalar-vaZued) function deJ?zed in (01, p), 
0 < 01 < ,5 < 00. Assume 7 is continuously differentiable in (o[, /3) and that 

I rl(s)l@, I 77’Wle~s are summable there. Then ;f u E E, 

u(t) = j.@q(s)T(s + t)u ds (6.27) 
R 

u(t) E D(A) for all t and Au(t) is a continuous function of t. 

Proof. Let u E D(A). Then the operator A can be introduced under the 
integral sign in (6.27); integrating by parts we obtain 

Au(t) = @)S(~ + t) - q(~)S(~ + t) - ~‘$(s)S(s + t)u ds (6.28) 
a 

which makes the required property evident. If u E E, take (ua} C D(A) such 
that u, -+ u, and let us(t) be the function that (6.27) attaches to each u, . 
Since the right hand side of (6.28) depends continuously on u uniformly for 
t on compacts, Au,( . ) -+ some continuous function n( * ) uniformly on 
compacts. But A is closed, then Au(t) = u(t). This ends the proof. 

6.16 Remark. We have been able to prove that Assumption 6.4 holds 
whenever E is an LP space, 1 < p C. co. This will be the subject of a forth- 
coming paper. 

Note added in proof: The author has become aware of a paper by M. Sova (Cosine 
operator functions, Rozprawy Matematyczne XLIX, l-46 (1966)). llere operator- 
valued functions S( . ) satisfying S(0) = I and (5.5) are considered in Banach space. 
There is some overlapping of results with 5 and 6 of the present paper. See also G. 
Da Prato-E. Giusti, Una caratterizzazione dei generatori di funzioni coseno astratte, 
Bulk&o Unione Matematica Italiana 22, 357-362 (1967). 

A 1 . AGMON, S. AND NIRENBERG, L., Properties of solutions of ordinary differential 
equations in Banach space. Comm. Pure Appl. Math. 16 (1963), 121-239. 

* We have not considered in this paper relations between properties of individual 
solutions of (1) and properties of A, as well as existence or uniqueness of isolated 
solutions; see for instance [A,], [K,], [L,], [P,]. See also [Y,], where the Cauchy 
problem for a particular second-order equation is considered. Numerous sufficient 
conditions for the Cauchy problem for (1) or for more general time-dependent or 
nonlinear equations to be well-posed in various senses are known; see for instance 
[L,], [S,]. The Cauchy problem for certain equations in linear topological (distribution) 
spaces has also been considered in [S,]. 
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