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In this paper we study the problem of minimizing the Sobolev
trace Rayleigh quotient ‖u‖p

W 1,p (Ω)
/‖u‖p

Lq(∂Ω) among functions that

vanish in a set contained on the boundary ∂Ω of given boundary
measure.
We prove existence of extremals for this problem, and analyze
some particular cases where information about the location of the
optimal boundary set can be given. Moreover, we further study
the shape derivative of the Sobolev trace constant under regular
perturbations of the boundary set.
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1. Introduction

Sobolev inequalities have proved to be a fundamental tool in order to study differential equations.
Among Sobolev inequalities, one that has captured a great deal of attention in recent years is the
Sobolev trace inequality that states

S

( ∫
∂Ω

|u|q dHN−1
)p/q

�
∫
Ω

|∇u|p + |u|p dx,

for every u ∈ W 1,p(Ω) for some constant S > 0, 1 � q � p∗ , where p∗ is the critical exponent in the
Sobolev trace immersion, i.e. p∗ = p(N − 1)/(N − p) if 1 < p < N and p∗ = ∞ if p � N (the equality
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q = p∗ does not hold in the limit case p = N). Here Hs denotes, as usual, the s-dimensional Hausdorff
measure, Ω ⊂ R

N is a smooth bounded domain (Lipschitz will be enough for most of our arguments).
In these inequalities, a fundamental role is played by the optimal constants and their associated

extremals. That is, respectively, the largest possible constant S in the above inequality defined as

S = S p,q(Ω) := inf
u∈X

∫
Ω

|∇u|p + |u|p dx

(
∫
∂Ω

|u|q dHN−1)p/q

and extremals, which are functions w ∈ X where the above infimum is attained. Here X is the space
of admissible functions, X := W 1,p(Ω) \ W 1,p

0 (Ω).
It is a well-known fact that if 1 < p < N and 1 � q � p∗ or p � N and 1 � q < ∞ then the

constant S is positive. For the existence of extremals, the only case which is nontrivial is the critical
one, 1 < p < N and q = p∗ where the immersion W 1,p(Ω) ⊂ L p∗ (∂Ω) is no longer compact (see, for
instance [10,11]).

The critical case (i.e. 1 < p < N and q = p∗) was analyzed in [12] and [16]. In those papers the
authors show that, under very mild assumptions on the domain Ω (e.g. the existence of a boundary
point of positive mean curvature) there exist extremals for S .

Motivated by some problems in shape optimization for stored energies under prescribed loadings,
in [15] the authors study a variant of the trace inequality (see [15] for further discussion on the
problem): Given a set A ⊂ Ω , minimize the Rayleigh quotient over the class of functions that vanishes
on A, i.e.

S(A) := inf
u∈X A

∫
Ω

|∇u|p + |u|p dx

(
∫
∂Ω

|u|q dHN−1)p/q

where

X A := {u ∈ X : u = 0 a.e. on A}.

In the above mentioned paper [15], existence of extremals for S(A) is proved in the subcritical case
q < p∗ (see [16] for the critical case) and moreover the following shape optimization problem is
studied: Minimize S(A) among measurable sets A ⊂ Ω such that HN(A) = αHN(Ω) for some fixed
0 < α < 1. A set A∗ that minimizes S(A) is called an optimal set.

In [15] the existence of optimal sets is established and some geometric properties of optimal sets
are analyzed. Moreover, in the case p = 2 the interior regularity of optimal sets is studied in [14].
See [13], where some asymptotic behaviors of optimal sets are studied (see also, Section 4). Further,
in [8] and in [4] the so-called shape derivative for S(A) is computed with respect to regular deforma-
tions on the set A.

One observes that, in all the above mentioned works, the sets where the test functions are forced
to vanish are interior sets, i.e. A ⊂ Ω of positive Lebesgue measure. However, the important case of
boundary sets, i.e. Γ ⊂ ∂Ω was not treated previously. Hence, the main objective of this work is to
fill this gap.

So, in this paper we study the best Sobolev trace constant from W 1,p(Ω) into Lq(∂Ω) for functions
that vanish on a subset Γ of ∂Ω , i.e.

S(Γ ) := inf
u∈XΓ

∫
Ω

|∇u|p + |u|p dx

(
∫
∂Ω

|u|q dHN−1)p/q
(1.1)

where

XΓ := {
u ∈ X : u = 0 HN−1-a.e. Γ

}
.
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Here, we consider exponents 1 � q < p∗, so that the immersion W 1,p(Ω) ⊂ Lq(∂Ω) turns out to
be compact. Therefore, the existence of extremals for S(Γ ) follows by direct minimization.

The critical case could be treated by the same method employed in [16]. However, we will not do
it in this article.

Next, we study the following optimization problem: Given 0 < α < 1, we look for the value

S(α) := inf
{

S(Γ ): Γ ⊂ ∂Ω, HN−1(Γ ) = αHN−1(∂Ω)
}
. (1.2)

A set Γ ∗ ⊂ ∂Ω is called an optimal boundary hole, when it realizes the above infimum, i.e. S(Γ ∗) =
S(α) and HN−1(Γ ∗) = αHN−1(∂Ω).

One of the main issues of this paper is to show the existence and geometric properties of optimal
boundary holes.

Organization of the paper

The rest of the paper is organized as follows. After a short Section 2 where we collect some pre-
liminary remarks, in Section 3 we establish the existence of optimal boundary holes. In Section 4, we
analyze the simpler case where the domain Ω is a Euclidean ball given a complete characterization
of optimal boundary holes for this simpler geometry. In order to have a better understanding of more
complex geometries, in Section 5 we use a dimension reduction technique to deal with domains that
are stretched in some directions. Finally, in Section 6, we compute the so-called shape derivative of
S(Γ ) for regular deformations of a fixed boundary hole Γ .

2. Preliminary remarks

In this very short section, we give some preliminary observations that will be helpful in the re-
maining of the paper.

First, observe that if u is an extremal for S(Γ ) then u turns out to be a week solution to the
following Euler–Lagrange equation

⎧⎪⎪⎨
⎪⎪⎩

−�pu + |u|p−2u = 0 in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|q−2u on ∂Ω \ Γ,

u = 0 on Γ,

(2.1)

where �pu = div(|∇u|p−2∇u) is the usual p-Laplacian, ∂
∂ν is the outer unit normal derivative and λ

is a positive constant that depends on the normalization of u. This is u ∈ XΓ and

∫
Ω

|∇u|p−2∇u∇φ + |u|p−2uφ dx = λ

∫
∂Ω

|u|q−2uφ dHN−1,

for every φ ∈ XΓ . Observe that, if ‖u‖Lq(∂Ω) = 1, then λ = S(Γ ).

As a consequence of (2.1), we have the following remarks:

Remark 2.1. By the regularity results of [21], an extremal u of S(Γ ), verify that u ∈ C1,δ
loc (Ω) for some

0 < δ < 1.
Moreover, by [20], if ∂Ω \ Γ ∈ C1,η , then the regularity up to the boundary is u ∈ C1,γ

loc (Ω \ Γ ) for
some 0 < γ < 1.
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Remark 2.2. If u is an extremal of S(Γ ), then we have that |u| is also an extremal of S(Γ ). Thus,
using that |u| is a week solution of (2.1) and the maximum principle (see [24]), we have that u has
constant sign. Therefore, we can always assume that

u > 0 in Ω and u � 0 on ∂Ω.

Moreover, by Hopf’s Lemma (see [24]) and the boundary regularity we obtain that nonnegative solu-
tions u to (2.1) verify

u > 0 in Ω \ Γ .

Finally, we need the following lemma on pointwise convergence for Sobolev functions. We believe
that this result is well-known but we were unable to find it in the literature.

Lemma 2.3. Let { fn}n∈N ⊂ W 1,p(Ω) with 1 < p < N be such that fn → 0 as n → ∞ in W 1,p(Ω). Then,
there exist a subsequence { fn j } j∈N ⊂ { fn}n∈N and a set B ⊂ Ω such that capp(B) = 0 and

fn j (x) → 0, as j → ∞ for x ∈ Ω \ B.

Proof. The lemma is a consequence of Lemma 1 and Theorem 1 in Section 4.8 of [6]. In fact, by
Lemma 1 in Section 4.8 of [6], we have, for α > 0, the Tchebyshev-type inequality

capp(M f > α) � C

αp
‖ f ‖p

W 1,p(Ω)
,

where C is a positive constant that depends only on N , p and M f is the Hardy–Littlewood maximal
function. So, if fn → 0 in W 1,p(Ω), there exists a subsequence, { fn j } j∈N such that

capp(M fn j > 1/ j) <
C

2 j
.

Let us define A j := {M fn j > 1/ j} and let Bm := ⋃∞
j=m A j . Therefore,

capp(Bm) �
∞∑

j=m

capp(A j) < C
∞∑

j=m

1

2 j
.

Now, if x ∈ Ω \ Bm , M fn j (x) < 1/ j and by Theorem 1, Section 4.8 of [6], it follows that | fn j (x)| <

1/ j, so fn j → 0 as j → ∞ in Ω \ Bm for all m ∈ N.
Since capp(Bm) → 0 as m → ∞ the result follows. �

3. The existence of an optimal boundary hole

In this section, following ideas from [15], we first prove that S(Γ ) is lower semi-continuous with
respect to the hole (Theorem 3.1). Then, we prove the existence of an optimal boundary hole.

Theorem 3.1. Let {Γε}ε>0 be a family of positive HN−1-measurable subsets of ∂Ω and Γ0 ⊂ ∂Ω be a positive
HN−1-measurable set, such that

χΓε

∗
⇀ χΓ0 ∗-weakly in L∞(∂Ω),
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where χA is the characteristic function of the set A. Then,

S(Γ0) � lim inf
ε→0+ S(Γε).

Proof. Let {Γn}n∈N be a subsequence of {Γε}ε>0 such that

L = lim inf
ε→0

S(Γε) = lim
n→∞ S(Γn).

For each n ∈ N, we consider un ∈ XΓn to be an extremal of S(Γn), such that

un � 0 and ‖un‖Lq(∂Ω) = 1.

Therefore, the sequence {un}n∈N is bounded in W 1,p(Ω) and hence there exists a function u ∈
W 1,p(Ω), such that, for a subsequence still denoted by {un}n∈N ,

un ⇀ u weakly in W 1,p(Ω), (3.1)

un → u strongly in Lp(Ω), (3.2)

un → u strongly in Lq(∂Ω). (3.3)

In particular, we have that u � 0, ‖u‖Lq(∂Ω) = 1 and

‖u‖W 1,p(Ω) � lim inf
n→∞ ‖un‖W 1,p(Ω).

Moreover, for each n ∈ N, un = 0 HN−1-a.e. on Γn . Thus, as

χΓn

∗
⇀ χΓ0 ∗-weakly in L∞(∂Ω)

and by (3.3), we have

0 = lim
n→∞

∫
Γn

un dHN−1 =
∫
Γ0

u dHN−1.

Therefore, since u � 0, we have that u = 0 HN−1-a.e. on Γ0. Thus u is an admissible function in the
characterization of S(Γ0) and

S(Γ0) � ‖u‖p
W 1,p(Ω)

� lim inf
n→∞ ‖un‖p

W 1,p(Ω)
= L.

This finishes the proof. �
Remark 3.2. There isn’t any monotonicity assumption on the family {Γε}ε>0.

The continuity of S(Γ ) with respect to the topology of Theorem 3.1 does not hold, as is shown in
the following example:
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Example 3.3. We take 1 < p � N . The case for p > N is easier by the compact embedding of W 1,p(Ω)

into continuous functions.
Let Ω be a bounded domain in R

n that satisfies the interior ball condition for all x ∈ ∂Ω. Let x0 ∈
∂Ω and let E ⊂ ∂Ω be set of zero HN−1-measure such that capp(E) > 0 and there exists r > 0 such

that B(x0, r)∩ E = ∅. Then, we take Γ = B r
2
(x0)∩ ∂Ω and Γn = Γ ∪ En where En = ⋃

x∈E B(x, 1
n )∩ ∂Ω

for all n ∈ N. Observe that

χΓ 1
n

∗
⇀ χΓ ∗-weakly in L∞(∂Ω).

Let un be a positive normalized extremal for S(Γn). If we assume that S(Γn) → S(Γ ) as n → +∞, we
have that there exist u ∈ W 1,p(Ω) such that, for a subsequence still denote {un}n∈N, un → u strongly
in W 1,p(Ω) and un → u strongly in Lq(∂Ω). Therefore u is a positive normalized extremal for S(Γ ).

Moreover, by the Hopf’s Lemma, un > 0 on ∂Ω \ Γn and u > 0 on ∂Ω \ Γ.

On the other hand, by Lemma 2.3, there exist a subsequence {un j } j∈N of {un}n∈N and a set B ⊂ Ω

such that capp(B) = 0 and un j (x) → u as j → ∞ for x ∈ Ω \ B. Then, as un j (x) = 0 for all x ∈ E and
j ∈ N, and capp(E) > 0, we have that u(x) = 0 for all x ∈ E, contrary to u > 0 on ∂Ω \ Γ.

Next we prove the existence of an optimal boundary hole. For this, we first need to show the
following lemma:

Lemma 3.4. For each α ∈ (0,1), S(α) has also the following characterization:

S(α) := inf

{‖v‖p
W 1,p(Ω)

‖v‖p
Lq(∂Ω)

: v ∈ X , HN−1({v = 0}) � α HN−1(∂Ω)

}
.

Proof. Let α ∈ (0,1) and

S̃(α) := inf

{‖v‖p
W 1,p(Ω)

‖v‖p
Lq(∂Ω)

: v ∈ X , HN−1({v = 0}) � α HN−1(∂Ω)

}
.

We want to prove that S(α) = S̃(α). For this, we proceed in two steps.

Step 1. First, we show that S̃(α) � S(α).

Let Γ be a subset of ∂Ω such that HN−1(Γ ) = αHN−1(∂Ω). Let u ∈ XΓ be a nonnegative extremal
for S(Γ ).

Observe that, u is an admissible function in the characterization of S̃(α) and

S̃(α) �
‖u‖p

W 1,p(Ω)

‖u‖p
Lq(Ω)

= S(Γ ).

Consequently, we have that S̃(α) � S(α).

Step 2. Now, we show that S(α) � S̃(α).

Let {vn}n∈N be a minimizing sequence of S̃(α), i.e. vn ∈ X ,

S̃(α) = lim
n→∞

‖vn‖p
W 1,p(Ω)

‖v ‖ q
and HN−1({vn = 0}) � αHN−1(∂Ω) ∀n ∈ N.
n L (∂Ω)
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Thus, for each n � 1, we take

Γn ⊂ {vn = 0}
such that Γn is HN−1-measurable and HN−1(Γn) = α HN−1(∂Ω). Thus, we have

S(α) � S(Γn) �
‖vn‖p

W 1,p(Ω)

‖vn‖p
Lq(Ω)

∀n ∈ N.

Then, passing to the limit in the above inequality when n → ∞, we have

S(α) � lim
n→∞ S(Γn) = lim

n→∞
‖vn‖p

W 1,p(Ω)

‖vn‖p
Lq(Ω)

= S̃(α).

The proof is complete. �
Now, we establish the main results of this section.

Theorem 3.5. Let 0 < α < 1. Then, there exist:

(a) A set Γ0 ⊂ ∂Ω , such that HN−1(Γ0) = αHN−1(∂Ω) and S(α) = S(Γ0);
(b) A function u ∈ X with HN−1({u = 0}) � αHN−1(∂Ω), such that

S(α) =
‖u‖p

W 1,p(Ω)

‖u‖p
Lq(∂Ω)

.

Proof. We divide the proof into two steps.

Step 1. First, we prove (b).
Let {vn}n∈N be a nonnegative normalized minimizing sequence for S(α), i.e. for each n � 1,

0 � vn ∈ X , ‖vn‖Lq(∂Ω) = 1, HN−1({vn = 0}) � αHN−1(∂Ω),

and

lim
n→∞‖vn‖p

W 1,p(Ω)
= S(α).

Thus the sequence {vn}n∈N is bounded in W 1,p(Ω) and, therefore there exists a function u ∈ W 1,p(Ω)

and a subsequence still denote {vn}n∈N such that

vn ⇀ u weakly in W 1,p(Ω), (3.4)

vn → u strongly in Lp(Ω), (3.5)

vn → u strongly in Lq(∂Ω), (3.6)

vn → u HN−1-a.e. in (∂Ω). (3.7)

From (3.6) and (3.7), we have that ‖u‖Lq(∂Ω) = 1 and

HN−1({u = 0}) � lim sup HN−1({vn = 0}) � αHN−1(∂Ω).

n→∞
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Thus, u is an admissible function in the definition of S(α), and therefore

S(α) � ‖u‖p
W 1,p(Ω)

.

The reverse inequality is clear, since from (3.4)

‖u‖p
W 1,p(Ω)

� lim
n→∞‖vn‖p

W 1,p(Ω)
= S(α).

Step 2. We show that (b) implies (a).
By (b), there exists u ∈ X such that HN−1({u = 0}) � α HN−1(∂Ω) and

S(α) =
‖u‖p

W 1,p(Ω)

‖u‖p
Lq(∂Ω)

.

Thus, there exists a set Γ0 ⊂ {x ∈ ∂Ω: u(x) = 0} HN−1-measurable such that

HN−1(Γ0) = αHN−1(∂Ω).

Then we have that

S(Γ0) �
‖u‖p

W 1,p(Ω)

‖u‖p
Lq(∂Ω)

= S(α),

and HN−1(Γ0) = αHN−1(∂Ω). Therefore

S(α) = S(Γ0).

This finishes the proof. �
In the next theorem we make a refinement of Theorem 3.5 and prove, under further regularity

assumptions on ∂Ω , that for any extremal u ∈ X , it holds that HN−1({u = 0}) = αHN−1(∂Ω) (i.e.
Γ0 = {u = 0} with the notation of the above proof).

Theorem 3.6. Let u ∈ X be an extremal of S(α). Then, if Ω satisfies the interior ball condition, we have that

HN−1({u = 0}) = αHN−1(∂Ω).

Proof. Let u ∈ X be an extremal of S(α), i.e. HN−1({u = 0}) � αHN−1(∂Ω) and

S(α) =
‖u‖p

W 1,p(Ω)

‖u‖p
Lq(∂Ω)

.

By contradiction, suppose the thesis were false, then

HN−1({u = 0}) > αHN−1(∂Ω).

Since Hs is a Borel regular measure (0 � s < ∞), see [6], there exists a closed set Γ0 ⊂ {x ∈
∂Ω: u(x) = 0} such that

HN−1({u = 0}) > HN−1(Γ0) > αHN−1(∂Ω).
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Consequently, it follows that

S(α) � S(Γ0).

On the other hand, the function u is admissible in the characterization of S(Γ0), hence

S(Γ0) �
‖u‖p

W 1,p(Ω)

‖u‖p
Lq(∂Ω)

= S(α).

Therefore, S(α) = S(Γ0) and so u is also an extremal of S(Γ0). Thus u is a week solution of the
following problem

⎧⎪⎪⎨
⎪⎪⎩

−�pu + |u|p−2u = 0 in Ω,

|∇u|p−2 ∂u

∂ν
= λ |u|q−2u on ∂Ω \ Γ0,

u = 0 on Γ0,

(3.8)

where λ depends on the normalization of u. Moreover, by Remark 2.1, u ∈ C1,γ
loc (Ω ∪ (∂Ω \ Γ0)) for

some 0 < γ < 1 and we can assume that u > 0 in Ω.

Now, by our assumption on Ω we can apply Hopf’s Lemma (cf. Remark 2.2), to get

∂u

∂ν
> 0 on

{
x ∈ ∂Ω: u(x) = 0

} \ Γ0.

That is a contradiction. �
Corollary 3.7. The set function S is strictly increasing with respect to α.

Proof. It is clear that S(α) is nondecreasing. Now, if we suppose that there exists 0 < α < β < 1, such
that S(α) = S(β), then an extremal for S(β) is also an extremal for S(α). But, if u is an extremal for
S(β), then

HN−1({u = 0}) = βHN−1(∂Ω) > αHN−1(∂Ω),

which is a contradiction to Theorem 3.6. Thus, S is strictly increasing. �
4. Example: the unit ball

Now, we study symmetry properties of optimal holes in the special case where Ω is the unit ball,
Ω = B(0,1). First, we recall some of the definitions and results concerning spherical caps. We address
the reader to [19,23].

Spherical symmetrization

Given a measurable set A ⊂ R
N , the spherical symmetrization A∗ of A is constructed as follows:

for each positive r, take A ∩ ∂ B(0, r) and replace it by the spherical cap of the same HN−1-measure
and center reN . This can be done for almost all r. The union of these caps is A∗. Now, the spherical
symmetrization u∗ of a given measurable function u � 0 defined on Ω is constructed by symmetrizing
the super-level sets so that, for all t, {u∗ � t} = {u � t}∗. See [19,23].

The following theorem is proved in [23] (see also [19]).
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Theorem 4.1. (See [23].) Let u ∈ W 1,p(B(0,1)) and let u∗ be its spherical symmetrization. Then u∗ ∈
W 1,p(B(0,1)) and

∫
B(0,1)

∣∣∇u∗∣∣p
dx �

∫
B(0,1)

|∇u|p dx,

∫
B(0,1)

∣∣u∗∣∣p
dx =

∫
B(0,1)

|u|p dx,

∫
∂ B(0,1)

∣∣u∗∣∣q
dHN−1 =

∫
∂ B(0,1)

|u|q dHN−1. (4.1)

In this case we can prove the following

Theorem 4.2. Let Ω = B(0,1) and let 0 < α < 1. Then, there exists an optimal boundary hole which is a
spherical cap. Moreover, when p = 2, Γ is an optimal boundary hole if, and only if Γ is a spherical cap (up to
sets of zero HN−1-measure).

Proof. Fix α ∈ (0,1), by Theorem 3.5, there exists a function u ∈ X such that HN−1({u = 0}) =
αHN−1(∂ B(0,1)) and

S(α) =
‖u‖p

W 1,p(B(0,1))

‖u‖p
Lq(∂ B(0,1))

.

Let u∗ be the spherical symmetrization of u. Then u∗ is an admissible function in the definition of
S(α) and, by Theorem 4.1,

S(α) �
‖u∗‖p

W 1,p(B(0,1))

‖u∗‖p
Lq(∂ B(0,1))

�
‖u‖p

W 1,p(B(0,1))

‖u‖p
Lq(∂ B(0,1))

= S(α).

Therefore

S(α) =
‖u∗‖p

W 1,p(B(0,1))

‖u∗‖p
Lq(∂ B(0,1))

. (4.2)

Moreover, Γ := {x ∈ ∂ B(0,1): u∗(x) = 0} is a spherical cap and, since HN−1({u = 0}) =
αHN−1(∂ B(0,1)), we have that HN−1(Γ ) = αHN−1(∂ B(0,1)). Then, using (4.2), we get that

S(α) = S(Γ ).

Now consider p = 2. Let Γ be an optimal boundary hole and let u be an extremal of S(Γ ). In this
case, it is proved in [5] that if equality holds in (4.1) then for each 0 < r � 1 there exists a rotation
Rr such that

u|∂ B(0,r) = (
u∗ ◦ Rr

)∣∣
∂ B(0,r). (4.3)

We can assume that the axis of symmetry eN was taken so that R1 = Id. Therefore u and u∗ coincide
on ∂ B(0,1). Then the set {x ∈ ∂ B(0,1): u(x) = 0} is a spherical cap and, by Theorem 3.6, HN−1({u =
0}) = αHN−1(∂ B(0,1)). �
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5. Dimension reduction

In this section, we are interested in the characterization of optimal boundary holes, when we
shrink some of the dimensions of the set Ω . This procedure of dimension reduction is interesting for
such domains Ω , where one of the directions is smaller than other ones. We begin with a fundamen-
tal case when the set Ω is given by a Cartesian product, then we extend our results for more general
domains.

The ideas in this section follow closely the ones in [9] where the behavior of the best Sobolev trace
constant for shrinking domains was analyzed and [13] where the interior set problem was studied.

5.1. The product case

Let Ω1 and Ω2 be bounded domains respectively in R
n and R

k , which are connected and have
smooth boundaries. Set Ω = Ω1 × Ω2 and for some 0 < μ < 1, define

Ωμ = Ω1 × μΩ2 = {
(x,μy): (x, y) ∈ Ω

}
. (5.1)

It is easy to see that ∂Ωμ = Ω1 × μ∂Ω2 ∪ ∂Ω1 × μΩ2 and

HN−1(∂Ωμ) = μk−1 Hn(Ω1)Hk−1(∂Ω2) + μk Hn−1(∂Ω1)Hk(Ω2), (5.2)

where we recall that N = n + k. Moreover we see that, formally, Ω1 represents the boundary of Ωμ

in the limiting process. This fact will be made clear a posteriori.
Now let uμ be a function defined in Ωμ . We define, for each (x, y) ∈ Ω ,

vμ(x, y) = uμ(x,μy).

Then, vμ is defined in Ω and enjoys the same regularity than uμ . More precisely, we have the fol-
lowing

Lemma 5.1. If uμ ∈ W 1,p(Ωμ), then vμ ∈ W 1,p(Ω). Moreover,

HN−1({uμ = 0} ∩ ∂Ωμ

)
= μk−1 HN−1({vμ = 0} ∩ (Ω1 × ∂Ω2)

) + μk HN−1({vμ = 0} ∩ (∂Ω1 × Ω2)
)
.

Proof. The regularity of vμ is clear. On the other hand, since χB ≡ χA ◦ Tμ , where

A = {
(x, ζ ) ∈ Ωμ; uμ(x, ζ ) = 0

}
, B = {

(x, y) ∈ Ω; vμ(x, y) = 0
}
,

and Tμ :Ω → Ωμ Tμ(x, y) = (x,μy). We have that,

HN−1(A) =
∫

∂Ωμ

χA dHN−1

=
∫ ∫

Ω1×μ∂Ω2

χA dHk−1 dx +
∫ ∫

∂Ω1×μΩ2

χA dHn−1 dy

= μk−1
∫ ∫

Ω1×∂Ω2

χB dHk−1 dx + μk
∫ ∫

∂Ω1×Ω2

χB dHn−1 dy

= μk−1 HN−1(B ∩ (Ω1 × ∂Ω2)
) + μk HN−1(B ∩ (∂Ω1 × Ω2)

)
.

The proof is now complete. �
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In the remainder of this section, we consider subcritical exponents 1 � q < p∗, where p∗ is the
critical exponent for the Sobolev embedding W 1,p(Ω1) ↪→ Lq(Ω1), given by

p∗ = pn

n − p
if 1 � p < n or p∗ = ∞ if p � n.

Given α,μ ∈ (0,1), we define

Sμ(α) := inf
{

S(Γ ): Γ ⊂ ∂Ωμ, HN−1(Γ ) � αHN−1(∂Ωμ)
}

and

S(α) := inf

{‖v‖p
W 1,p(Ω1)

‖v‖p
Lq(Ω1)

: v ∈ W 1,p(Ω1), Hn({x ∈ Ω1: v(x) = 0
})

� αHn(Ω1)

}
.

Observe that S(α) is the best Sobolev constant of the embedding W 1,p(Ω1) ⊂ Lq(Ω1) for functions
that vanish on a subset of Ω1 of a given positive measure greater than or equal to αHn(Ω1).

Remark 5.2. Arguing as in Section 2 (cf. with [15] where the interior set case is studied), we can
prove that for every 0 < α < 1 there exists vα ∈ W 1,p(Ω1) such that

Hn({x ∈ Ω1: vα(x) = 0
}) = αHn(Ω1) and S(α) =

‖vα‖p
W 1,p(Ω1)

‖vα‖p
Lq(Ω1)

.

Moreover, S(α) is strictly increasing as a function of α.

Next, we give a characterization of the asymptotic, as μ → 0+ , behavior of Sμ(α). In fact, we see
that, properly rescaled, the limit behavior is given by S(α).

In order to do this, we need a couple of lemmas. The first one is easy and was proved in [8].

Lemma 5.3. (See [8, Lemma 3.1].) Let Ω1 ⊂ R
n be a domain and let f j, f :Ω1 → R be nonnegative mea-

surable functions ( j = 1,2, . . .) such that f j → f a.e. in Ω1. Set A j = {x ∈ Ω1: f j(x) = 0} and A = {x ∈
Ω1: f (x) = 0} and suppose that Hn(A j) → Hn(A) as j → +∞. Then

lim
j→+∞

HN−1(A j�A) = 0.

The second lemma gives the right continuity of S(α) with respect to α.

Lemma 5.4. Let 1 � p < n, 1 � q < p∗ and 0 < α0 < 1. Then,

lim
α→α+

0

S(α) = S(α0).

Moreover, if we denote by vα a nonnegative extremal for S(α) normalized such that ‖vα‖Lq(Ω1) = 1, then
there exists a sequence {α j} j∈N , α j > 0 for every j ∈ N, such that α j → α+

0 as j → +∞ and

lim
j→+∞

vα j = v strongly in W 1,p(Ω1), (5.3)

where v is a nonnegative extremal for S(α0).
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Lastly, if A j = {x ∈ Ω1: vα j (x) = 0} and A = {x ∈ Ω1: v(x) = 0}, we have that

lim
j→+∞

Hn(A j�A) = 0. (5.4)

Proof. For this, we proceed in three steps.

Step 1. First, we prove that S(α) → S(α0) as α ↘ α0.

We begin by observing that, since S(·) is increasing by Remark 5.2, there exist

L = lim
α→α+

0

S(α) and L � S(α0). (5.5)

On the other hand, by Remark 5.2, there exists vα0 ∈ W 1,p(Ω1) an extremal of S(α0) such that
‖vα0‖Lq(Ω1) = 1 and

Hn(Aα0) = α0 Hn(Ω1),

where Aα0 = {x ∈ Ω1: vα0 (x) = 0}.
Now we choose a smooth function η satisfying

⎧⎨
⎩

η = 0 in B(0,1),

η = 1 in R
n \ B(0,2),

0 � η � 1 and ‖∇η‖L∞(Rn) � 2.

Take x0 ∈ Ω1 \ Aα0 a point of density one (see definition in Chapter 1.7 of [6]) and for each ε > 0,

set ηε(x) = η(
x−x0

ε ) and wε = ηε vα0 ∈ W 1,p(Ω). Observe that

Hn({x ∈ Ω1: wε(x) = 0
})

> α0 Hn(Ω1), (5.6)

for ε sufficiently small and

lim
ε→0+ ‖wε‖Lq(Ω1) = ‖vα‖Lq(Ω1) ∀q ∈ [

1, p∗]. (5.7)

Moreover

‖∇wε‖L p(Ω1) � ‖∇ηε vα0 + ηε∇vα0‖L p(Ω1)

� ‖∇ηε vα0‖L p(Ω1) + ‖∇vα0‖L p(Ω1)

� C

ε
‖vα0‖L p(B(x0,2ε)\B(x0,ε)) + ‖∇vα0‖L p(Ω1)

and, by Hölder’s inequality, we get that

‖∇wε‖L p(Ω1) � C‖vα0‖L p∗
(B(x0,2ε)\B(x0,ε)) + ‖∇vα0‖L p(Ω1), (5.8)

where C is a constant independent of ε. Then, by (5.6), there exist δ > 0 such that

Hn({x ∈ Ω1: wε(x) = 0
})

> αHn(Ω1) ∀0 < α − α0 < δ.

Therefore, wε is an admissible function in the definition of S(α) and, using (5.8), we have that
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S(α) �
‖wε‖p

W 1,p(Ω1)

‖wε‖p
Lq(Ω1)

�
(C‖vα0‖L p∗

(B(x0,2ε)\B(x0,ε)) + ‖∇vα0‖L p(Ω1))
p + ‖wε‖p

L p(Ω1)

‖wε‖p
Lq(Ω1)

for all α > α0. Then, by (5.5),

L �
(C‖vα0‖L p∗

(B(x0,2ε)\B(x0,ε)) + ‖∇vα0‖L p(Ω1))
p + ‖wε‖p

L p(Ω1)

‖wε‖p
Lq(Ω1)

∀ε > 0.

Lastly, taking limit as ε → 0+ and using (5.7) and (5.5), we get that

L �
‖vα0‖p

W 1,p(Ω1)

‖vα0‖p
Lq(Ω1)

= S(α0) � L.

Then, we have that

lim
α→α+

0

S(α) = S(α0), (5.9)

as we wanted to show.

Step 2. Now, we prove that (5.3) holds.
Let vα be a nonnegative extremal for S(α) normalized such that ‖vα‖Lq(Ω1) = 1. Thus, by (5.9),

we have that

S(α0) = lim
α→α+

0

S(α) = lim
α→α+

0

‖vα‖p
W 1,p(Ω1)

, (5.10)

and therefore {vα} is bounded in W 1,p(Ω1). Then, there exists a sequence {α j} such that α j → α+
0

as j → +∞ and

vα j ⇀ v weakly in W 1,p(Ω1), (5.11)

vα j → v strongly in Lp(Ω1), (5.12)

vα j → v strongly in Lq(Ω1), (5.13)

vα j → v Hn-a.e. in (Ω1), (5.14)

where v ∈ W 1,p(Ω1). Since ‖vα j ‖Lq(Ω1) = 1 for all j ∈ N, using (5.13), we have that ‖v‖Lq(Ω1) = 1 and
by (5.14) v is nonnegative. By (5.10), (5.11) and (5.12), we get that

S(α0) = lim
j→+∞

‖vα j ‖p
W 1,p(Ω1)

� ‖v‖p
W 1,p(Ω1)

, (5.15)

and using (5.14), we have that

α0 Hn(Ω1) � lim inf
j→+∞

Hn(A j) � lim sup
j→+∞

Hn(A j) � Hn(A), (5.16)
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where A j = {x ∈ Ω1: vα j (x) = 0} and A = {x ∈ Ω1: v(x) = 0}. Then, v is an admissible function in the
definition of S(α0), and using (5.15), we get that

S(α0) � ‖v‖p
W 1,p(Ω1)

� S(α0).

Therefore v is an extremal for S(α0) and, by (5.10), we have

lim
j→+∞

‖vα j ‖W 1,p(Ω1) = ‖v‖W 1,p(Ω1). (5.17)

Moreover, using (5.11) and (5.17), we can conclude that

lim
j→+∞

vα j = v strongly in W 1,p(Ω1).

Step 3. Lastly, we prove that (5.4) holds.
First, we prove that Hn(A) = α0 Hn(Ω1). On the contrary, suppose that Hn(A) > α0 Hn(Ω1), then

there exists j0 such that Hn(A) > α j Hn(Ω1) for all j � j0 and therefore

S(α0) = ‖v‖p
W 1,p(Ω1)

> S(α j) > S(α0)

and we obtain a contradiction. Thus Hn(A) = α0 Hn(Ω1) and by (5.16)

lim
j→+∞

Hn(A j) = Hn(A).

Then, by (5.14) and Lemma 5.3, we have that

lim
j→+∞

Hn(A j�A) = 0.

This finishes the proof. �
We arrive now at the main result of this section.

Theorem 5.5. Let 0 < α,μ < 1, 1 � p < n, and 1 � q < p∗, then

lim
μ→0+

Sμ(α)

μ
k(q−p)+p

q

= Hk(Ω2)

Hk−1(∂Ω2)
p
q

S(α).

Proof. We begin by proving

lim sup
μ→0+

Sμ(α)

μ
k(q−p)+p

q

� Hk(Ω2)

Hk−1(∂Ω2)
p
q

S(α).

Let

αμ = α

(
1 + μ

Hn−1(∂Ω1)Hk(Ω2)

Hn(Ω1)Hk−1(∂Ω2)

)

and take v ∈ W 1,p(Ω1) such that

Hn(A) � αμHn(Ω1),



2342 L. Del Pezzo et al. / J. Differential Equations 251 (2011) 2327–2351
where

A = {
x ∈ Ω1: v(x) = 0

}
.

Then, if we take u(x, y) = v(x) for all (x, y) ∈ Ωμ, we have that

HN−1({w = 0} ∩ ∂Ωμ

)
� HN−1({w = 0} ∩ (Ω1 × μ∂Ω2)

)
� HN−1(A × μ∂Ω2)

= μk−1 Hn(A)Hk−1(∂Ω2)

� μk−1αμHn(Ω1)Hk−1(∂Ω2)

= αHN−1(∂Ωμ).

Therefore, u is an admissible function in the characterization of Sμ(α) (see Lemma 3.4), then

Sμ(α) �
∫∫

Ωμ
|∇w|p + |w|p dx dy

(
∫
∂Ωμ

|w|q dHN−1)
p
q

= μk Hk(Ω2)
∫
Ω1

|∇v|p + |v|p dx

(μk−1 Hk−1(∂Ω2)
∫
Ω1

|v|q dx + μk Hk(Ω2)
∫
∂Ω1

|v|q dHn−1)
p
q

� μ
k(q−p)+p

q
Hk(Ω2)

Hk−1(∂Ω2)
p
q

∫
Ω1

|∇v|p + |v|p dx

(
∫
Ω1

|v|q dx)
p
q

.

Thus, taking infimum over all v ∈ W 1,p(Ω1) such that

Hn({x ∈ Ω1: v(x) = 0
})

� αμHn(Ω1),

we get that

Sμ(α)

μ
k(q−p)+p

q

� Hk(Ω2)

Hk−1(∂Ω2)
p
q

S(αμ).

Therefore, using Lemma 5.4,

lim sup
μ→0+

Sμ(α)

μ
k(q−p)+p

q

� Hk(Ω2)

Hk−1(∂Ω2)
p
q

S(α). (5.18)

On the other hand, for each μ there exists an extremal uμ ∈ W 1,p(Ωμ) of Sμ(α) such that

∫ ∫
Ω1×∂Ω2

|vμ|q dx dHk−1 + μ

∫ ∫
∂Ω1×Ω2

|vμ|q dHn−1dy = 1, (5.19)

where vμ(x, y) = uμ(x,μy).
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Then,

Sμ(α) =
∫∫

Ωμ
|∇uμ|p + |uμ|p dx dy

(
∫
∂Ωμ

|uμ|q dHN−1)p/q

=
∫∫

Ω
(|(∇x vμ,μ−1∇y vμ)|p + |vμ|p)μk dx dy

(μk−1
∫∫

Ω1×∂Ω2
|vμ|q dx dHk−1 + μk

∫∫
∂Ω1×Ω2

|vμ|q dHn−1dy)
p
q

= μ
k(q−p)+p

q

( ∫ ∫
Ω

∣∣(∇x vμ,μ−1∇y vμ

)∣∣p + |vμ|p dx dy

)
.

Thus,

Sμ(α)

μ
k(q−p)+p

q

=
∫ ∫
Ω

∣∣(∇x vμ,μ−1∇y vμ

)∣∣p + |vμ|p dx dy ∀μ ∈ (0,1). (5.20)

Let {μ j} j∈N be a sequence such that μ j → 0+ as j → ∞ and

lim inf
μ→0+

Sμ(α)

μ
k(q−p)+p

q

= lim
j→+∞

Sμ j (α)

μ
k(q−p)+p

q

j

.

To simplify the notation, we write v j instead of vμ j for all j ∈ N.

Then, by (5.18), we have that {v j} j∈N is bounded in W 1,p(Ω). Therefore, there exist a function
v ∈ W 1,p(Ω) and a subsequence of {v j} j∈N (still denoted by {v j} j∈N) such that

v j ⇀ v weakly in W 1,p(Ω), (5.21)

v j → v strongly in Lp(Ω), (5.22)

v j → v strongly in Lq(∂Ω). (5.23)

Observe that, by (5.23), we have that

v j → v strongly in Lq(∂Ω1 × Ω2), (5.24)

v j → v strongly in Lq(Ω1 × ∂Ω2), (5.25)

and, using (5.19), (5.24) and (5.25), we get

∫ ∫
Ω1×∂Ω2

|v|q dx dHk−1 = 1,

from where we conclude that v �≡ 0.

Now, using again (5.18) and (5.20), we have that there exists a constant C such that

∫ ∫ ∣∣μ−1
j ∇y v j

∣∣p
dx dy � C ∀ j ∈ N,
Ω
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then {μ−1
j ∇y v j} j∈N is bounded in L p(Ω) and

∫ ∫
Ω

|∇y v j|p dx dy � Cμ
p
j → 0 as j → ∞.

Therefore v does not depend on y, i.e. v = v(x) and

1 =
∫ ∫

Ω1×∂Ω2

|v|q dx dHk−1 = Hk−1(∂Ω2)

∫
Ω1

|v|q dx. (5.26)

On the other hand, using that {μ−1
j ∇y v j} j∈N is bounded in L p(Ω), there exist w ∈ L p(Ω) such

that

μ−1
j ∇y v j ⇀ w weakly in Lp(Ω).

Then

lim inf
μ→0+

Sμ(α)

μ
k(q−p)+p

q

= lim
j→+∞

Sμ j (α)

μ
k(q−p)+p

q

j

= lim
j→+∞

∫ ∫
Ω

∣∣(∇x v j,μ
−1
j ∇y v j

)∣∣p + |v j|p dx dy

�
∫ ∫
Ω

∣∣(∇x v, w)
∣∣p + |v|p dx dy

� Hk(Ω2)‖v‖p
W 1,p(Ω1)

,

and, by (5.26), we get

lim inf
μ→0+

Sμ(α)

μ
k(q−p)+p

q

� Hk(Ω2)

Hk−1(∂Ω2)
p
q

‖v‖p
W 1,p(Ω1)

‖v‖
p
q

Lq(Ω1)

. (5.27)

Lastly, by (5.2), Lemma 5.1 and since uμ j is an extremal for Sμ j (α) for all j ∈ N, we have that

αHn(Ω1)Hk−1(∂Ω2) � HN−1({v j = 0} ∩ (Ω1 × ∂Ω2)
) + μ j HN−1({v j = 0} ∩ (∂Ω1 × Ω2)

)

for all j ∈ N. Then, using (5.25), we get that

αHn(Ω1)Hk−1(∂Ω2) � lim sup
j→+∞

HN−1({v j = 0} ∩ (Ω1 × ∂Ω2)
)

� HN−1({v = 0} ∩ (Ω1 × ∂Ω2)
)

= HN−1(({v = 0} ∩ Ω1
) × ∂Ω2

)
= Hn({v = 0} ∩ Ω1

)
Hk−1(∂Ω2).
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Thus,

αHn(Ω1) � Hn({v = 0} ∩ Ω1
)
,

and v is an admissible function in the characterization of S(α). Then, using (5.18) and (5.27), we have
that

Hk(Ω2)

Hk−1(∂Ω2)
p
q

S(α) � lim inf
μ→0+

Sμ(α)

μ
k(q−p)+p

q

� lim sup
μ→0+

Sμ(α)

μ
k(q−p)+p

q

� Hk(Ω2)

Hk−1(∂Ω2)
p
q

S(α).

The proof is now complete. �
5.2. The case n = 1

When the limit problem is one-dimensional we can give a more precise description of the situa-
tion. So in this subsection we consider the case Ω1 = (a,b) ⊂ R, an interval.

In [13] the following theorem regarding the limit problem for n = 1 is proved:

Theorem 5.6. (See [13, Theorem 1.2].) The optimal limit constant S(α) is attained only for a hole A∗ = (a,a +
α(b −a)) or A∗ = (b −α(b −a),b), that is the best hole is an interval concentrated on one side of the interval
(a,b). Moreover, the optimal limit constant is given by

S(α) = (2π)p(p − 1)

(2α(b − a)p sin (π
p ))p

+ 1.

As a consequence of this theorem, we have the following corollary on the approximate shape and
location of optimal boundary holes:

Corollary 5.7. For μ small enough the best boundary hole Γμ for the domain Ωμ = (a,b) × μΩ2 with mea-
sure HN−1(Γμ) = αHN−1(∂Ωμ) looks like Γμ � (a,a +α(b −a))× ∂μΩ2 or like Γμ � (b −α(b −a),b)×
∂μΩ2 .

5.3. General geometries

We finish this section by observing that, once the product case is studied, the extension of our
results to more general domains Ω in R

N than a product is done by a standard procedure. Cf. with
[9,13].

So, in this case we let Ωμ = {(x,μy): (x, y) ∈ Ω}.
We have the following

Theorem 5.8. Let Ω be a bounded and Lipschitz domain in R
N . Let Ωx be the x-section of Ω and P (Ω) be the

projection of Ω onto the x variable, i.e.

Ωx := {
y ∈ R

k: (x, y) ∈ Ω
}

and P (Ω) := {
x ∈ R

n: Ωx �= ∅}
.

Then, if we call ρ(x) = Hk(Ωx) and β(x) = Hk−1(∂Ωx) we have that

lim
μ→0+

Sμ(α)

μ
k(q−p)+p

q

= S(α,ρ,β),
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where

S(α,ρ,β) = inf

{∫
P (Ω)

(|∇v|p + |v|p)ρ(x)dx

(
∫

P (Ω)
|v|qβ(x)dx)

p
q

: v ∈ A(α)

}

with

A(α) = {
v ∈ W 1,p(

P (Ω),ρ
)
: Hn({x ∈ P (Ω): v(x) = 0

})
� αHn(P (Ω)

)}
.

Here W 1,p(P (Ω),ρ) is the weighted Sobolev space,

W 1,p(
P (Ω),ρ

) =
{

v : P (Ω) → R:
∫

P (Ω)

(|∇v|p + |v|p)
ρ(x)dx < +∞

}
.

Proof. Once the product case is studied, the extension to general geometries is analog to Theorem 1.1
in [9]. See also Theorem 1.3 in [13]. We omit the details. �
6. Shape derivative

In this section, we are interested in the computation of the derivative of the set function S(·)
with respect to regular deformations of the set. The formula obtained in this way could be used in
the (numerical) computation of optimal boundary holes. This approach has been used with relevant
success in similar problems. See [3,8,17,22] and references therein.

Since the domains of S(·) are sets contained at the boundary ∂Ω which is a manifold of codimen-
sion one, we must take deformations of sets, which stay in ∂Ω .

We begin describing the kind of variations we are going to consider. Let V : R
N → R

N be a Lips-
chitz field such that, V · ν = 0 on ∂Ω , where ν is the outer unit normal vector to ∂Ω , and

spt(V ) ⊂ Ωδ := {
x ∈ R

N : dist(x, ∂Ω) < δ
}

for some δ > 0 small, where spt(V ) is the support of V .
Now, we consider the flow associated to the field V . Let Φ : [0,∞) × R

N → R
N , satisfying

d

dt
Φt(x) = V

(
Φt(x)

)
, Φ0(x) = x,

where Φt(·) ≡ Φ(t, ·).
It is not difficult to see that, for each t fixed, Φt is a diffeomorphism. Indeed, by construction of

the flow, Φt is invertible with inverse given by Φ−t . In [17], the following asymptotic formulas were
proved

Φt(x) = x + tV (x) + o(t),

DΦt(x) = Id + t D V (x) + o(t),

DΦt(x)−1 = Id − t D V (x) + o(t),

JΦt(x) = 1 + t div V (x) + o(t),

Jτ Φt(x) = 1 + t divτ V (x) + o(t),

for all x ∈ R
N , where JΦt is the Jacobian of the flow and divτ denotes the tangential component of

the divergence operator.
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So, given Γ ⊂ ∂Ω, we are allowed to define

Γt := Φt(Γ ) ⊂ ∂Ω, (6.1)

and

s(t) := S(Γt). (6.2)

Observe that s(0) = S(Γ ).

Remark 6.1. By construction, the flow preserves the topology of the initial domain. Therefore, if Γ is
a connected set, then Γt will be also connected. In fact, this is one of the characteristics of the shape
derivative, opposite, for instance, to the topological derivative, see [1,2,7,18], etc.

Our first result of this section shows that, s(t) is continuous with respect to t at t = 0.

Theorem 6.2. With the previous notation,

lim
t→0+ s(t) = S(Γ ).

Proof. Let u ∈ XΓ and we consider v = u ◦ Φ−1
t ∈ XΓt . By the change of variables formula, we have

∫
Ω

|v|p dx =
∫
Ω

|u|p dx + t

∫
Ω

|u|p dx + o(t),

and

∫
Ω

|∇v|p dx =
∫
Ω

|∇u|p dx + t

∫
Ω

(|∇u|p div V − p|∇u|p−2〈∇u, D V T ∇uT 〉)
dx + o(t).

Then,

∫
Ω

|∇v|p + |v|p dx =
∫
Ω

|∇u|p + |u|p dx + t R(u) + o(t),

where

R(u) =
∫
Ω

(|u|p + |∇u|p)
div V dx − p

∫
Ω

|∇u|p−2〈∇u, D V T ∇uT 〉
dx.

On the other hand, by the change of variables formula on manifolds, see [17], we obtain

∫
|v|q dHN−1 =

∫
|u|q dHN−1 + t

∫
|u|q divτ V dHN−1 + o(t).
∂Ω ∂Ω ∂Ω
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Then,

s(t) �
∫
Ω

|∇v|p + |v|p dx

(
∫
∂Ω

|v|q dHN−1)
p
q

=
∫
Ω

|∇u|p + |u|p dx + t R(u) + o(t)

(
∫
∂Ω

|u|q dHN−1 + t
∫
∂Ω

|u|q divτ V dHN−1 + o(t))
p
q

, (6.3)

and therefore

lim sup
t→0+

s(t) �
∫
Ω

|∇u|p + |u|p dx

(
∫
∂Ω

|u|q dHN−1)
p
q

∀u ∈ XΓ .

Then

lim sup
t→0+

s(t) � S(Γ ). (6.4)

Now, let {tn}n∈N such that tn → 0+ as n → ∞ and

lim inf
t→0+ s(t) = lim

n→∞ s(tn). (6.5)

For each n ∈ N, let vn be a positive normalized extremal of s(tn), i.e. vn ∈ XΓtn
, vn > 0 in Ω,

‖vn‖Lq(∂Ω) = 1 and

s(tn) =
∫
Ω

|∇vn|p + |vn|p dx. (6.6)

Using (6.4) and (6.5), we have that {vn}n∈N is bounded in W 1,p(Ω) and therefore there exist u ∈
W 1,p(Ω) and some subsequence of {vn}n∈N (still denote {vn}n∈N) such that

vn ⇀ u weakly in W 1,p(Ω), (6.7)

vn → u strongly in Lp(Ω), (6.8)

vn → u strongly in Lq(∂Ω). (6.9)

Then, u � 0 and ‖u‖Lq(∂Ω) = 1 and

lim inf
t→0+ s(t) �

∫
Ω

|∇u|p + |u|p dx.

On the other hand, since Φ−t → Id in the C1 topology when t → 0 and using (6.9), we have

∫
uχΓ dHN−1 = 0
∂Ω
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and therefore u ∈ XΓ . Then, using (6.4)

S(Γ ) �
∫
Ω

|∇u|p + |u|p dx � lim inf
t→0+ s(t) � lim sup

t→0+
s(t) � S(Γ ).

Thus,

lim
t→0+ s(t) = S(Γ ).

The proof is now completed. �
Remark 6.3. Observe that, in the above prove, we really have that vn → u strongly in W 1,p(Ω) when
n → ∞ because ‖vn‖W 1,p(Ω) → ‖u‖W 1,p(Ω) when n → ∞ and by (6.7).

Now we arrive at the main result of this section.

Theorem 6.4. If Γ ⊂ ∂Ω is a positive HN−1-measurable subset, we have that s(t) is differentiable at t = 0
and

ds

dt
(0) = − p

q
S(Γ )

∫
∂Ω

|u|q divτ V dHN−1 + R(u), (6.10)

where

R(u) =
∫
Ω

(|u|p + |∇u|p)
div V dx − p

∫
Ω

|∇u|p−2〈∇u, D V T ∇uT 〉
dx

and u is an extremal of S(Γ ).

Proof. Let u be a positive normalized extremal of S(Γ ). Then, using (6.3), we have that

s(t) � S(Γ ) + t R(u) + o(t)

(1 + t
∫
∂Ω

|u|q divτ V dHN−1 + o(t))
p
q

.

Thus, for all t > 0

s(t) − S(Γ )

t
� S(Γ )

t

1 − (1 + t
∫
∂Ω

|u|q divτ V dHN−1 + o(t))
p
q

(1 + t
∫
∂Ω

|u|q divτ V dHN−1 + o(t))
p
q

+ R(u) + o(1)

(1 + t
∫
∂Ω

|u|q divτ V dHN−1 + o(t))
p
q

.

Therefore

lim sup
t→0+

s(t) − S(Γ )

t
� − p

q
S(Γ )

∫
|u|q divτ V dHN−1 + R(u). (6.11)
∂Ω
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On other hand, let {tn}n∈N be a positive sequence such that tn → 0+ when n → ∞, and

lim inf
t→0+

s(t) − S(Γ )

t
= lim

n→∞
s(tn) − S(Γ )

tn
.

Observe that, by Lemma 6.2, we have that s(tn) → S(Γ ). We can now proceed analogously to the
proof of Lemma 6.2, and we find a subsequence of {tn}n∈N (still denote {tn}n∈N) such that

vn → u strongly in W 1,p(Ω),

where vn is a positive normalized extremal of s(tn) for all n ∈ N and u is a positive normalized
extremal of S(Γ ), see also Remark 6.3.

Thus, taking un = vn ◦ Φtn ∈ W 1,p
Γ (Ω), we get

S(Γ ) � s(tn) − tn R(vn) + o(tn)

(1 − tn
∫
∂Ω

|vn|q divτ V dHN−1 + o(tn))
p
q

.

Then

s(tn) − S(Γ )

tn
� s(tn)

tn

(1 − tn
∫
∂Ω

|cn|q divτ V dHN−1 + o(tn))
p
q − 1

(1 − tn
∫
∂Ω

|vn|q divτ V dHN−1 + o(t))
p
q

+ R(vn) + o(1)

(1 − tn
∫
∂Ω

|vn|q divτ V dHN−1 + o(tn))
p
q

.

Therefore

lim inf
t→0+

s(t) − S(Γ )

t
= lim

n→∞
s(tn) − S(Γ )

tn

� − p

q
S(Γ )

∫
∂Ω

|u|q divτ V dHN−1 + R(u). (6.12)

Thus, by (6.11) and (6.12), we have that s(t) is differentiable at t = 0 and (6.10) holds. �
Remark 6.5. One observes that, we do not need in our approach the derivative of the eigenfunctions.

Remark 6.6. It would be desirable to obtain a simplification of formula (6.10). In many problems (cf.
[8,17,22], etc.) this can be done by using, in an appropriate way, the equation satisfied by u. In our
case, the obstruction we have encountered in order to do that, is the lack of regularity of u at the
boundary. A similar problem was found in [3] where the authors attempt to overcome this difficulty
by working on a subset Ωδ ⊂ Ω and then passing to the limit (however, the results are not completely
satisfactory). In our case, since we cannot control the normal derivative of u in Ωδ , this approach does
not seem to be feasible.
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