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Abstract

In this paper we introduce the generalized eigenvalues of a quasilinear elliptic system of resonant type.
We prove the existence of infinitely many continuous eigencurves, which are obtained by variational meth-
ods. For the one-dimensional problem, we obtain an hyperbolic type function defining a region which
contains all the generalized eigenvalues (variational or not), and the proof is based on a suitable general-
ization of Lyapunov’s inequality for systems of ordinary differential equations. We also obtain a family of
curves bounding by above the kth variational eigencurve.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this work we are interested in the problem of find lower and upper bounds for the
eigenvalues of nonlinear elliptic systems. There are various bounds for eigenvalues of a sin-
gle elliptic equation, not necessarily linear, based on different techniques, see for example
[2,15,17,20,21,23,24,30] and the references therein. However, the situation is different for el-
liptic systems, and there are few results in this case. We could cite the work of Protter [25],
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who introduced the notion of generalized spectrum, the λ = (λ1, . . . , λm) ∈ Cm such that the
following system

m∑
i=1

Liju + λj

m∑
i=1

ri,j ui = 0, 1 � j � m, (1.1)

has a nontrivial solution u = (u1, . . . , um) subject to a set of homogeneous boundary conditions,
where Lij are linear elliptic operators. Then, the generalized spectrum was extended in [6,7] to
more general elliptic systems. With the same approach of Boggio and Barta, generalizing his
own work [24], Protter obtained the following results:

(i) there exists a positive value rΩ ∈ R such that rΩ <
∑

i λ
2
i for every λ in the generalized

spectrum, and
(ii) for every λ ∈ Cm, if Ω is contained in a ball of sufficiently small radius, its size depending

only on the coefficients, then there are no nontrivial solutions of the system.

Also, Cosner [8] considered the nonlinear eigenvalue problem,

m∑
i=1

Lij + λf (x,u) = 0, 1 � j � m, (1.2)

where f (x,u) is a nonlinearity satisfying certain growth conditions. He obtained relationships
between the norm of a solution and λ, by using the Faber–Krahn and Sobolev inequalities
(see [19]).

For a single p-Laplacian equation, some lower bounds were obtained by using an appropriate
generalization of the Boggio inequality in [16]. Moreover, symmetrization techniques were ap-
plied to obtain bounds of eigenvalues in [3,9], see also the references therein. However, we are
not aware of similar works for p-Laplacian systems.

We consider here a quasilinear elliptic system of resonant type:

{−�pu = λαr(x)|u|α−2u|v|β,

−�qv = μβr(x)|u|α|v|β−2v,
x ∈ Ω, (1.3)

where the functions u and v satisfy a Dirichlet boundary condition

u(x) = v(x) = 0, x ∈ ∂Ω.

Here, Ω ∈ R
n is a domain with smooth boundary ∂Ω , �su = div(|∇u|s−2∇u), the exponents

satisfy 1 < p,q < +∞, and the positive parameters α,β satisfy

α

p
+ β

q
= 1. (1.4)

For brevity, we restrict ourselves to only two equations, but the results follows with minor
changes for m equations.
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The eigenvalues of quasilinear elliptic system has deserved a great deal of attention in the last
years, we may cite the works of Boccardo and de Figueiredo [4], Manasevich and Mawhin [18],
Stavrakakis and Zographopoulos [28,31], and the references therein.

We define the generalized spectrum S of a nonlinear elliptic system as the set of pairs (λ,μ) ∈
R × R such that the eigenvalue problem (1.3) admits a nontrivial solution.

The diagonal λ = μ of the generalized spectrum coincides with the eigenvalues of the el-
liptic system considered in [14]. For λ = μ, the eigenvalue problem (1.3) has infinitely many
eigenfunctions given by:

λk = inf
C∈Ck

sup
(u,v)∈C

1
p

∫
Ω

|∇u|p + 1
q

∫
Ω

|∇v|q∫
Ω

r(x)|u|α|v|β , (1.5)

where Ck is the class of compact symmetric (C = −C) subsets of the space W
1,p

0 (Ω)×W
1,q

0 (Ω)

of genus greater or equal than k. We recall that for C ∈ C the Krasnoselskii genus gen(C) is
defined as the minimum integer n such that there exists an odd continuous mapping ϕ :C →
(Rn − {0}) (see for example [1]). However, it is not known if this set of eigenvalues exhaust the
spectrum.

First, we will prove the existence of a sequence of continuous curves emanating from the
eigenvalues {λk}:

Theorem 1.1. There exist a sequence of continuous curves (λk(t),μk(t)) emanating from
(λk, λk), where λk is the kth variational eigenvalue given by (1.5).

The existence follows by adapting the arguments of Cantrell and Cosner in [7], which are
similar to the techniques used for the Fucik spectrum by Cuesta, de Figueiredo and Gossez [10].
By fixing a line μ = tλ, we find a set of variational eigenvalues {λk(t),μk(t)}k in the generalized
spectrum, and the continuity is proved varying the parameter t .

Also, we give an upper bound of the first variational eigenvalue (λ1(t),μ1(t)):

Theorem 1.2. Let p > q , r(x) � m > 0. Then, the first variational eigenvalue of problem (1.3)
in the line μ = tλ satisfies

λ1 � Λ1

p
+ m−1+q/p

qt

(
p

q

)q

Λ
q/p

1 ,

where Λ1 is the first variational eigenvalue of the Dirichlet problem

−�pu = λr(x)|u|p−2u

on the same domain Ω .

Moreover, we extend Theorem 1.2 obtaining upper bounds for all the variational eigenvalues
in S in the one-dimensional case:{−(|u′(x)|p−2u′(x))′ = λαr(x)|u|α−2u|v|β,

′ q−2 ′ ′ α β−2
(1.6)
−(|v (x)| v (x)) = μβr(x)|u| |v| v
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on the interval (a, b), with Dirichlet boundary conditions.
This generalization is possible due to the nodal domain structure of the kth eigenvalue of a

single equation. We conjecture that the same result must valid in R
n. We have the following

theorem:

Theorem 1.3. Let p > q , r(x) � m > 0. Then, the kth variational eigenvalue of problem (1.6) in
the line μ = tλ satisfies

λk(t) � Λk

p
+ m−1+q/p

qt

(
p

q

)q

Λ
q/p
k ,

where Λk is the kth variational eigenvalue of the Dirichlet problem

−(∣∣u′(x)
∣∣p−2

u′(x)
)′ = λr(x)|u|p−2u (1.7)

on the same interval (a, b).

Since the eigenvalues of (1.7) when r(x) = 1 have been computed explicitly by Drabek and
Manasevich [13],

Λk =
(

kπp

b − a

)p

,

we obtain an explicit upper bound for the one-dimensional system whenever r(x) � m > 0.
Finally, we extend the results of Protter to the one-dimensional system (1.6), and we improve

the lower bounds on the eigenvalues. Instead of a ball, we find an hyperbola type curve enclosing
the region which contains the eigenvalues. Our main result is the following theorem:

Theorem 1.4. There exist a function h(λ) such that μ � h(λ) for every generalized eigenvalue
(λ,μ) of problem (1.6), where h(λ) is given by:

h(λ) = 1

β

(
C

λα/p
∫ b

a
r(x) dx

)q/β

,

and the constant C is given by

C = 2α+β

αα/p(b − a)α/p′+β/q ′ .

The proof is based on the following extension of the Lyapunov inequality for systems:

Theorem 1.5. Let us assume that there exists a positive solution of the system

{−(|u′(x)|p−2u′(x))′ = f (x)|u|α−2u|v|β,

′ q−2 ′ ′ α β−2
−(|v (x)| v (x)) = g(x)|u| |v| v
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on the interval (a, b), with Dirichlet boundary conditions. Then, we have that:

2α+β � (b − a)α/p′+β/q ′
( b∫

a

f (x) dx

)α/p( b∫
a

g(x) dx

)β/q

. (1.8)

To our knowledge, there are no previous work on Lyapunov inequalities for elliptic systems.
Lyapunov inequalities for linear problems can be found in [26], see the references therein for
different proofs.

By using this inequality, we prove a lower bound for the first eigenvalue in each line λ = μt .
This enable us to define the curve bounding the region which contains the generalized spectrum.
Hence, combining this result with Theorem 1.2, we have obtained a region containing the first
curve in the generalized spectrum, which cannot be too close to the origin, nor too far.

The paper is organized as follows: In Section 2 we review some well-known results that we
shall need in the sequel, we introduce the generalized spectrum, and we prove Theorem 1.1. In
Section 3 we prove Theorems 1.2 and 1.3. Section 4 is devoted to the Lyapunov inequality, and
we prove Theorems 1.4 and 1.5.

2. Existence of generalized eigenvalues

In this section we prove Theorem 1.1. In order to obtain the existence of eigenvalues in each
line μ = tλ, we shall apply the following abstract theorem due to H. Amann [1], and the conti-
nuity of the eigenvalue curve follows from Lemma 2.3.

Theorem 2.1. Suppose that the following hypotheses are satisfied:

• X is a real Banach space of infinite dimension, that is uniformly convex.
• A :X → X∗ is an odd potential operator (i.e. A is the Gateaux derivative of A :X → R)

which is uniformly continuous on bounded sets, and satisfies the condition (S)1: If uj ⇀ u

(weakly in X) and A(uj ) → v, then uj → u (strongly in X).
• For a given constant α > 0 the level set

Mm = {
u ∈ X: A(u) = m

}
is bounded and each ray through the origin intersects Mm. Moreover, for every u �= 0,
〈A(u),u〉 > 0 and there exists a constant ρm > 0 such that 〈A(u),u〉 � ρm on Mm.

• The mapping B :X → X∗ is a strongly sequentially continuous odd potential operator (with
potential B), such that B(u) �= 0 implies that B(u) �= 0.

Let

βk = sup
C∈Ck,C⊂Mm

inf
u∈C

B(u),

where Ck is the class of compact symmetric (C = −C) subsets of the space W
1,p

0 (Ω)×W
1,q

0 (Ω)

of genus greater or equal than k.
Then if βk > 0, there exists an eigenfunction uk ∈ Mm with B(u) = βk .
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If

γ
({

u ∈ Mm: B(u) �= 0
}) = ∞, (2.1)

where the genus over compact sets γ (S) is defined by:

γ (S) = sup
{
gen(C): C ⊂ S, C ∈ C, C compact

}
,

then there exist infinitely many eigenfunctions.

In our problem, we shall work in the Banach space:

W = W
1,p

0 (Ω) × W
1,q

0 (Ω)

equipped with the norm

∥∥(u, v)
∥∥

W
=

√
‖u‖2

p + ‖v‖2
q .

As each factor is uniformly convex, we can conclude that W is uniformly convex (see [11]).
Given (u∗, v∗) ∈ W−1,p′

(Ω) ⊕ W−1,q ′
(Ω) we may think it as an element of W ∗:

〈
(u∗, v∗), (u, v)

〉 = 〈u∗, u〉 + 〈v∗, v〉.

Then we have W ∗ ∼= W−1,p′
(Ω) ⊕ W−1,q ′

(Ω) (isometric isomorphism), where the norm in W ∗
is given by:

∥∥(u∗, v∗)
∥∥

W ∗ =
√

‖u∗‖2 + ‖v∗‖2.

With the notations of Theorem 2.1, we define:

At (u, v) = 1

p

∫
Ω

|∇u|p + 1

tq

∫
Ω

|∇v|q,

At (u, v) =
(

−�pu,
−1

t
�qv

)
,

B(u, v) =
∫
Ω

r(x)|y|α|v|β,

B(u, v) = (
r(x)α|u|α−2u|v|β, |u|αβ|v|β−2v

)
. (2.2)

It is easy to check that these functionals satisfy all the conditions of Theorem 2.1 by adapting
the arguments in [13]. Hence, for each t , we obtain a sequence βk(t) given by:

βk(t) = sup inf
(u,v)∈C

B(u, v),

C∈Ck,C∈Mm(t)
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where

Mm(t) = {
(u, v) ∈ W : At (u, v) = α

}
,

and the kth eigenvalue is given by

λk(t) = 1/βk(t).

However, we introduce a different characterization of the eigenvalues, by fibering the space
W with the level sets of the functional B instead of the functional At . Hence, we may define a
sequence of eigenvalues λ̂k(t) by the Rayleigh quotient,

λ̂k(t) = inf
C∈Ck

sup
(u,v)∈C

1
p

∫
Ω

|∇u|p + 1
qt

∫
Ω

|∇v|q∫
Ω

r(x)|u|α|v|β .

This approach is due to Browder [5], and following Riddell [27], it is easy to see that

λk(t) = λ̂k(t).

In fact, it is clear that

βk(t) � sup
C∈Ck,C⊂W−{0}

inf
(u,v)∈C

B(u, v)

At (u, v)
.

On the other hand, if C ⊂ W − {0}, we construct a set C̃ in Mm by taking the image of C by
the retraction

(u, v) �→
(

u

A1/p
t (u, v)

,
v

A1/q
t (u, v)

)
,

where the different powers is due to the (p, q) homogeneity of B(u, v). Then gen(C) = gen(C̃)

and

inf
u∈C

B(u, v)

At (u, v)
= inf

(u,v)∈C̃

B(u, v).

Hence,

βk(t) = sup
C∈Ck,C⊂W−{0}

inf
(u,v)∈C

B(u, v)

At (u, v)
.

It follows that

1

βk(t)
= inf

C∈Ck,C⊂W−{0}
sup

(u,v)∈C

At (u, v)

B(u, v)
.

We conclude that λk(t) = λ̂k(t).
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Remark 2.2. By the regularity theory of Tolksdorf and Dibenedetto [12,29], the generalized
eigenfunctions are of class C1,a(Ω) for some 0 < a < 1. This fact will be used in Section 3 in
the proof of Theorem 1.5.

In order to conclude the proof of Theorem 1.1, let us prove now the continuity of the eigen-
value curve with respect to t .

Lemma 2.3. The curve (λk(t),μk(t)) is continuous. Moreover, λk(t) (respectively μk(t)) is non-
increasing (respectively nondecreasing) in t .

Proof. Clearly, since

λk(t) = inf
C∈Ck

sup
(u,v)∈C

1
p

∫
Ω

|∇u|p + 1
qt

∫
Ω

|∇v|q∫
Ω

r(x)|u|α|v|β ,

and 1/qt is decreasing, λk(t) is nonincreasing.
Let us prove now the continuity of λk(t). We fix t0, and for every ε > 0, there exist a compact

symmetric set Cε such that:

sup
(u,v)∈Cε

At0(u, v)

B(u, v)
� λk(t0) + ε. (2.3)

We consider now t1, and we have:

λk(t1) � sup
(u,v)∈Cε

At1(u, v)

B(u, v)
� sup

(u,v)∈Cε

∣∣∣∣At1(u, v)

B(u, v)
− At0(u, v)

B(u, v)

∣∣∣∣ + λk(t0) + ε.

Since Cε is compact, there exist (uε, vε) where the supremum

sup
(u,v)∈Cε

∣∣∣∣At1(u, v)

B(u, v)
− At0(u, v)

B(u, v)

∣∣∣∣ = sup
(u,v)∈Cε

|t1 − t0|
t0t1

∫
Ω

|∇v|q
B(u, v)

is attained.
Therefore,

λk(t1) � |t1 − t0|
t0t1q

∫
Ω

|∇vε|q
B(uε, vε)

+ λk(t0) + ε.

Let us note that, from Eq. (2.3), the term

1

t0q

∫
Ω

|∇vε|q
B(uε, vε)

is bounded by λk(t0) + ε, and

λk(t1) � λk(t0) + ε + (
λk(t0) + ε

) |t1 − t0|
. (2.4)
t1
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Hence, interchanging the roles of t0 and t1, we get

∣∣λk(t0) − λk(t1)
∣∣ � ε +

{
(λk(t0) + ε)

|t1−t0|
t1

,

(λk(t1) + ε)
|t1−t0|

t0
.

By using inequality (2.4), we have:

∣∣λk(t0) − λk(t1)
∣∣ � ε +

{
(λk(t0) + ε)

|t1−t0|
t1

,([λk(t0) + ε][1 + |t1−t0|
t1

] + ε
) |t1−t0|

t0
.

Clearly, when t1 → t0, both terms goes to zero, and since the ε is arbitrary, the lemma fol-
lows. �
Remark 2.4. Let us observe that the beautiful proof of [7, Theorem 3.3] cannot be adapted to our
problem since it is no clear that there exists a compact symmetric set of genus greater or equal
than k where the kth variational eigenvalue is attained.

3. Upper bounds for generalized eigenvalues

As usual, it is easier to find upper bounds for eigenvalues than lower bounds. In fact, the
results in this section follows by using elementary inequalities.

Proof of Theorem 1.2. We will find an upper bound for the first eigenvalue of the system (1.3)
in a fixed line μ = tλ. We call it λ1(t), and the generalized eigenvalue is (λ1(t), tλ1(t)).

We note that

λ1(t) �
1
p

∫
Ω

|∇u|p + 1
qt

∫
Ω

|∇v|q∫
Ω

r(x)|u|α|v|β .

We choose u = ϕ1 and v = ϕ
p/q

1 , where ϕ1 denotes the first Dirichlet eigenfunction of the
single equation:

−�pw = Λr(x)|w|p−2w

in Ω with the normalization ∫
Ω

r(x)|ϕ1|p = 1.

Hence, Λ1 is the first eigenvalue of the single equation, which is given by

Λ1 =
∫

|∇ϕ1|p.
Ω
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Now,

∇v = p

q
ϕ

p/q−1
1 ∇ϕ1

and we get: ∫
Ω

r(x)|u|α|v|β =
∫
Ω

r(x)|ϕ1|p = 1.

On the other hand, by Hölder inequality:

∫
Ω

|∇v|q =
∫
Ω

∣∣∣∣pq ϕ
p/q−1
1 ∇ϕ1

∣∣∣∣
q

=
∫
Ω

(
p

q

)q

|ϕ1|p−q |∇ϕ1|q

�
(

p

q

)q(∫
Ω

|∇ϕ1|p
)1/s(∫

Ω

|ϕ1|s′(p−q)

)1/s′

with s = p/q . Hence,

s′(p − q) = p

and we get

λ1 � Λ1

p
+ m−1+q/p

qt

(
p

q

)q

Λ
q/p

1 . �
We close the section with the proof of Theorem 1.3. Let us note that the proof could be easily

adapted to the problem in R
n whenever the kth eigenvalue of a single equation has exactly k

nodal domains. This fact is well known for the second eigenvalue (see [8]); it is also possible
to find a domain where the first k eigenvalues satisfy this property, but is not valid for every
eigenvalue even in the linear case p = 2, see [22].

Proof of Theorem 1.3. We will find an upper bound for the kth variational eigenvalue
(λk(t), tλk(t)) in the fixed line μ = tλ as in Theorem 1.2.

Let Λk be the kth variational eigenvalue of

−(∣∣u′(x)
∣∣p−2

u′(x)
)′ = λr(x)|u|p−2u,

and let ϕk be the corresponding eigenfunction. Then, by the Sturm–Liouville theory for the
p-Laplacian (see [30]), the eigenfunction ϕk has k + 1 zeros at {xj }kj=0, a = x0 < x1 < · · · <

xk = b.
Let wi(x) = ϕk(x) if x ∈ (xi−1, xi), and wi(x) = 0 elsewhere. Let Sm be the sphere in

W 1,p(Ω) of radius m. Then, the set

Ck = (
span{w1, . . . ,wk} ∩ Sm

) × {∣∣ϕk(x)
∣∣p/q−1

ϕk(x)
} ⊂ W

1,p

0 (Ω) × W
1,q

0 (Ω)

has genus k, and is admissible in the variational characterization of (λk(t), tλk(t)).
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Now,

λk(t) = inf
C∈Ck

sup
(u,v)∈C

1
p

∫ b

a
|u′|p + 1

qt

∫ b

a
|v′|q∫ b

a
r(x)|u|α|v|β

� sup
(u,v)∈Ck

1
p

∫ b

a
|u′|p + 1

qt

∫ b

a
|v′|q∫ b

a
r(x)|u|α|v|β

, (3.1)

and replacing u,v we obtain

λk(t) � Λk

p
+ m−1+q/p

qt

(
p

q

)q

Λ
q/p
k ,

and the proof is finished. �
4. The Lyapunov inequality and lower bounds

In this section we obtain lower bounds for the first eigencurve in the generalized spectra,
using similar techniques to the ones in [25]. We prove first a version of the classical Lyapunov
inequality for elliptic systems of resonant type.

Proof of Theorem 1.5. Let us consider the system

{−(|u′|p−2u′)′ = f (x)|u|α−2|v|βu,

−(|v′|q−2v′)′ = g(x)|u|α|v|β−2v,

with Dirichlet boundary conditions:

u(a) = u(b) = v(a) = v(b) = 0,

and

α

p
+ β

q
= 1. (4.1)

For any c ∈ [a, b], we have:

2
∣∣u(c)

∣∣ =
∣∣∣∣∣

c∫
a

u(x) dx

∣∣∣∣∣ +
∣∣∣∣∣

b∫
c

u(x) dx

∣∣∣∣∣ �
b∫

a

∣∣u′(x)
∣∣dx.

By using the Hölder inequality,

2
∣∣u(c)

∣∣ � (b − a)1/p′
( b∫

a

∣∣u′(x)
∣∣p dx

)1/p

= (b − a)1/p′
( b∫

a

f (x)
∣∣u(x)

∣∣α∣∣v(x)
∣∣β dx

)1/p

,

where 1/p + 1/p′ = 1. Now choosing c as the point where |u(x)| is maximum, and d as the
point where |v(x)| is maximum, we have that:
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2
∣∣u(c)

∣∣ � (b − a)1/p′ ∣∣u(c)
∣∣α/p∣∣v(d)

∣∣β/p

( b∫
a

f (x) dx

)1/p

, (4.2)

2
∣∣v(d)

∣∣ � (b − a)1/q ′ ∣∣u(c)
∣∣α/q ∣∣v(d)

∣∣β/q

( b∫
a

g(x) dx

)1/q

. (4.3)

Raising Eq. (4.2) to a power e1, Eq. (4.3) to a power e2 and multiplying the resulting equations,
we obtain:

2e1+e2 � (b − a)e1/p
′+e2/q

′ ∣∣u(c)
∣∣(α/p−1)e1+(α/q)e2

∣∣v(d)
∣∣(β/p)e1+(β/q−1)e2

×
( b∫

a

f (x) dx

)e1/p
( b∫

a

g(x) dx

)e2/q

.

Now we choose e1and e2 such that |u(c)| and |u(d)| cancels out, i.e. e1, e2 solves the homo-
geneous linear system:

{(
α
p

− 1
)
e1 + α

q
e2 = 0,

β
p
e1 + (β

q
− 1

)
e2 = 0.

We observe that by condition (4.1) this system admits a nontrivial solution, indeed both equa-
tions are equivalent to

e1β = e2α.

Hence, we may take e1 = α, e2 = β and we get:

2α+β � (b − a)α/p′+β/q ′
( b∫

a

f (x) dx

)α/p( b∫
a

g(x) dx

)β/q

,

which proves Theorem 1.5. �
Remark 4.1. Let us observe that for β = 0 and α = p (or α = 0, β = q) we get the result for the
case of a single equation.

Let us prove now Theorem 1.4:

Proof of Theorem 1.4. Let (λ,μ) be a generalized eigenpair, and u,v the corresponding non-
trivial solutions. We have:

{−(|u′(r)|p−2u′(r))′ = λαr(x)|u|α−2|v|βu,

′ q−2 ′ ′ α β−2
−(|v (r)| v (r)) = μβs(x)|u| |v| v.
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Now, let us call

M = 2α+β

(b − a)α/p′+β/q ′ .

Hence, by replacing in the Lyapunov inequality (1.8) the functions

f (x) = λαr(x), g(x) = μβr(x),

we have:

M �
( b∫

a

λαr(x) dx

)α/p( b∫
a

μβr(x) dx

)β/q

.

Rearranging the terms, and by using condition (1.4), we obtain

M � (λα)α/p(μβ)β/q

b∫
a

r(x) dx

which gives

(
M

(λα)α/p
∫ b

a
r(x) dx

)q/β

� μβ.

Hence, we have

μ � 1

β

(
C

λα/p
∫ b

a
r(x) dx

)q/β

,

where C = M/αα/p , and the proof is finished. �
Remark 4.2. Since h is a continuous function, and h(λ) → +∞ as λ → 0+, it is clear that there
exists a ball centered in the origin such that the generalized spectrum is contained in its exterior.

Also, by using that

μβ/qλα/p � 1

β

(
C∫ b

a
r(x) dx

)
,

and the right-hand side goes to infinity when the interval collapses, we obtain the desired gener-
alizations of Protter results for one-dimensional nonlinear elliptic systems.
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