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The Kustaanheimo-Stiefe1 transformation together with the well-known expansion of the kernel of an 
isotropic harmonic oscillator is used to generate the atomic orbitals of the nonrelativistic hydrogen atom in a 
four-dimensional Riemann space through the path integral formalism. Group theoretical implications of the 
present problem are briefly discussed. 

I. INTRODUCTION 

Feynman's path integrals l
-4 are known to play an im

portant role in the solution of standard nontrivial 
quantum-mechanical problems. This procedure was 
used in the study of the bound states of an electron mov
ing in a spherically symmetric potential, thus making 
it possible to obtain the phase jumps of 1T/2 which occur 
every time neighboring classical trajectories cross one 
another. 5 More recently, a straightforward analytical 
calculation of the s-like wave functions of the hydrogen 
atom was performed entirely within this formalism, in 
which the integral transform 

(1 ) 

is calculated by means of an exact summation of a 
"modified" perturbation expansion. 6 K(rb , ra) is the den
sity matrix of the hydrogen atom, written as a path in
tegral (Ii = 1 is used throughout this paper) i. e., 

K(rb, ra) ==j:o[r]exP{ij[m?12 - V(r)]dt} , (2) 

where :orr] is the usual notation for Feynman's path in
tegral. 3, 7 To obtain an expansion for K(r

b
, ra) the expo

nential function exp[ - n: V(r) dt] has been developed as 
a power series in the argument. 8 Introducing the Fou
rier transform of the potential, each term of the series 
development in Eq. (2) gives a Gaussian path integral, 
which can be calculated using well-known techniques.i , 7 

Approximate analytic expressions for single electron 
wave functions of bound states in atoms or simple mole
cules are provided by the phase-integral apprOXimation, 
sometimes called the WKB method. In particular, this 
approximation was applied to the Coulomb potential in 
momentum space, in which the location of the poles on 
the negative axis gives the Bohr formula for the bound
state energies, and the residues of the approximate 
Green's function were shown to yield all the exact wave 
functions for the bound states of the hydrogen atom. 5 

a)MCIC CONICET Rep6.blica Argentina. 

On the other hand, it is well known that only Gaussian 
path integrals can easily be computed. The hydrogen 
atom does not belong to this kind of problem and the cal
culation of the density matrix involving the Coulomb po
tential is a formidable task. Nevertheless, this has 
been carried out with success within Feynman's path in
tegral formalism, in which the eigenvalues of the hydro
gen atom are calculated in a closed form by transform
ing the Coulomb three-dimensional problem into one in 
four dimensions. 9,10 This procedure is justified as the 
degeneracy of bound states of the nonrelativistic hydro
gen atom is known to be linked with its rotational in
variance in four-dimensional Euclidean space. It was 
recognized that the momentum representation is most 
convenient for realizing this connection, an approach 
which has been used to obtain an explicit construction 
for the Green's function of this problem. 11 More re
cently, a semiclassical method of evaluating the path 
integral for the hydrogen atom was proposed, 12 in which 
the calculation is performed in configuration space with 
the Langer modification of the angular momentum. i3 

In the present paper, some analytical transformations 
introduced by Kleinert et al. 9,10 are used in order to 
transform the nonrelativistic hydrogen atom into a four
dimensional isotropic harmonic oscillator. 

We begin, in Sec. n, by conSidering the details of 
such transformations, leading to a kernel, residues of 
which are the product of four one-dimensional harmonic 
oscillator wave functions. A brief discussion of the 
unified view of symmetry which emerges in such a treat
ment is also presented. In Sec. m, the well known ex
pansion of the kernel of an isotropic harmonic oscillator 
is used to generate the hydrogenic wave functions "IJI 121m 

as various combinations of the product of one-dimen
sional oscillator wave functions. 

II. THEORY 

Among the various procedures leading to an appro
priate kernel for the hydrogen atom, that of Kleinert 
et al., 9,10 in combination with the Kustaanheimo-Stiefel 
(KS) transformation, 14 seems to be the most useful one, 
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since the algebraic manipulations involved in such a 
treatment lead to a Feynman's propagator in terms of 
only oscillator wave functions. We outline in some de
tail the various steps involved in such transformation. 

Feynman's formulat ,3,1 for the Green's function, in
volving the Coulomb potential, reads 

(~b,tb 
K(xo' tb; xa. ta) = }_ !{)3(x ]!{)3[p 1I(21T)3 

Sa,ea 

Xexp[i {to dt(px _p2/2m +e2/r)] , (3) 

and is not readily integrable, due to the llr potential. 
Kleinert et al. S parametrize the paths in terms of a new 

auxiliary "time" 

(4) 

With this integral transformation, Eq. (3) can be written 
as (' =dlds) 

K(xb, tb; x"' tal =/ !()3[X J!I)3[p l/(21T)3 

xexpfi i sCtb
) ds[P(s)' x'es) -r(s)p2(s)/2m + e2J } • l' s (ta ) 

(5) 
If the connection (4) is enforced via a () function, the 

propagator K(xb, to; Xa, tal can be cast in the form 

K(xb, tb; Xa. tal = f" dS b () rtb - ta - f Sb 
ds res)] exp[ie2(sb - sa) h f!l)3 [X J!I)3[p]/(21T)3 exp~ [SO ds (px' - rp2/2m)1, (6) 

8 a r S(1 L Sa J 
= !dEI21Texp[ - iE(tb - ta)]K(xb, Xa; E) , (7) 

where the energy propagator is given by 

K(x1>' Xa; E) = f" dS b exp[ie2(sb - sa)hf!l)3[x ):rjI[p ]/(21T)3 exp~ ISb ds(px' - rp2/2m + Er)l 
~ ~] 

(8) 

and use has been made of the Fourier decomposition of the () function. 

Expression (7) may be multiplied, without changing it, by a dummy path integral involving a new, completely 
arbitrary pair of canonical coordinates x"P .. : 

f~ d(XC)b!l) [xc]!I)[PeJ!(21T) exp f! £:b ds (Pc x~ - r(s)p~/2m)] 

== f dPc/ (21T) f~ d(XC)b exp{i[(XC)b - (xc)alPc}exp [- iPV2m £:b ds res)] = 1 , (9) 

where the last part of the equation arises, of course, 
from the integral properties of the () function. This 
identity holds for any function res), in particular for 
res) == [x(s)21112. This choice brings the path integral in 
Eq. (8) to the four-dimensional form 

f~ d(X')b f !l)4[X ]!I)c(p ]!(21T)C 

x exp ~ 1.:1> ds (px' - rp2/2m + Er)] (10) 

On introducing a fourth coordinate and momentum 
components, it is possible to get six generators of the 
angular momentum L'J (i,j = 1,2,3,4). These six gen
erators L jJ obey the same commutation relations as 
(L", L", Lit), and therefore constitute the generalization 
of the three generators L from three to four dimen
sions. The group that they generate can be shown to be 
the proper rotation group in four dimensions 0(4).15 
This evidently does not represent a geometrical sym
metry16 of the hydrogen atom, since the fourth compo
nents x, and Pc are fictitious and cannot be identified 
with dynamical variables. t7,t8 It turns out that the con
stants of the motion of the hydrogen atom in this space 
(a particular subspace of the Hilbert space) are the an
gular momentum Land M, where 

(11) 

is the Runge - Lenz - Pauli vector. 19 r stands for r I I r I ; 
jJ.' is the reduced mass, and k denotes the strength of 
the potential. These operators satisfy the commutation 
relations of the Lie algebra that correspond to a sym
metry transformation of the 0(4) group. 

We now turn to the energy propagator, introducing a 
canonical change of variables through the K -S transfor
mation14 from (x, p) to (u, p,..), such that 

r==u2=[x2(s)]"2 , (12) 

and construct a map from R4 into phYSical space R3. 
Let Uh ••• , u" E R" be Cartesian coordinates. Then, one 
can generate an nXn linear orthonormal matrix A with 
the norm of each row II . II = uf + ... + u! for n == 1, 2, 4, 
8. 20 Particularly, in R' 

(

Us 

-U2 

A{u) = 
-Ut 

u4 

:: ::) 
Us -u4 

U2 -ul 

(13) 

The space RC is mapped onto R 33 (X17 x2, X3) by A with 
the annihilation condition 
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dX4 = 2(U4 du1 - u3 dU2 + ~ dus - Ul dU4) = 0 , (14) 

thus showing explicitly that x4 is a cyclic coordinate of 
the system. 

The matrix transformation x -A(u) u=O becomes 

J!I)4[X]!I)4[p]!(2lT)4 exp[i ~:o ds (px' -rp2/2m + Er)] 

, 

Us (Pu)l + U, (P .. )2 + ul (Puh + ~ (P.), ) 

- ~ (Pu)l - ul (Pu)2 + u, (p .. h + Us (P .. ), 

::: (21 r 1 tl _ Ul (Pu)l + ~ (Pu)2 + Us (Puh - u, (PII)' • 

o 
(16) 

That is, p, is a constant of the motion. From Eqs. (12) 
and (16), the Laplacian operator in this particular four
dimensional Riemann subspace becomes 

(17) 

an equation which will be useful to express the energy 
propagator K~0,X4 jE) in the (u,Pu) space. To this end, 
we first apply the definition of Feynman integral to the 
four-dimensional form of the path integral (10) : 

4 "n+1 { "+1 . 

= umJ ••• fII [IId%{ IIdp{I(2lT),1 exp iL[pl~ -Xl_l) - (rpl!2m + (Er]} , 
::'0 J-l 1-1 1-1 J 1-1 

(18) 

where 

(19) 

Introducing the K-S transformation (Eqs. (12), (15), and (16)J, the "measure"Zl of the Feynman integral in the 
(u,Pu) space becomes 

Ii [ITdx{ll dPU(27T)41 =IT [IT du{ d(Pu)U(2lT)4J~/u)J(p/p) 1/1~ , (20) 
J-1 1-1 1-1 J j-l 1-1 J 

where J~/u) and J(p/pu) are the Jacobians in coordinate and momentum space, respectively, of the linear trans
formations (15) and (16) , 

J(x/u) == lS?, in r space, 

J(p/pu) == (16y2r1 , in P space. 

(21) 

(22) 

In Eq. (20), the occurrence of the multiplicative factor 1/16~ is due to the fact that there exists one more momen
tum integration (i. e., dP~+l)' i. e., the measure is not invariant under the point canonical transformations. 

USing these results, together with Eqs. (12) and (17), the path integral (10) is transformed in 

[ f "O'("410 [ fao .~ 
1/1Sro d~4)b/rO !I)4[uJ!I)4[Pul/(2lT)4 exp i ds (Put! - p~/2j.L -1/2 j.Lw2u2) , 

-0 xa .(s4)a Sa 
(23) 

where j.L = 4m and w2 == - E/2m and is recognized, apart from the integral over d(x4)O/rO, to be the Green's function 
of an isotropic harmonic oscillator in four dimensions. 

We nOw express the K-S transformation [Eq. (12)] in polar coordinates through an auxiliary angle a in the form 

(

sin 1/2 () cos 1/2 (a + (()) 
sin 1/2 () sin 1/2 (a + (() 

u- r tl2 
- cos 1/2 () cos 1/2 (a - (() , 

cos 1/2 () sin 1/2 (a - (() ) 

where (l is the cyclic variable in polar coordinates. 

(24) 

The first integral in the expression (23) is an average over ro with respect to the continuous variable X4' On per
forming the transformation (24), we discretize integrating over a cycle (0-47T), and increase the upper limit of the 
integration path in :l: 4nlT. Since the end pOints are homotopic ally equivalent, the integral can be decomposed into a 
sum over periodically shifted end pOint values of the angle ao and an integral over one period. That is 
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1-4. I-a. 1-4J• 14
• 18• j4Jr 

= dab + dab + . " + dab + ... + dab + dab + ... + dab + ... 
o 0 0 0 0 0 

(25) 

Each of the integrals (25) indicate the different paths contributing to the propagator from a fixed point in R4. The 
sum is part of the Green's function of the harmonic oscillator (as always if cyclic variables are used). 22 Thus, Eq. 
(23) can be written as 

1!16rb £4. dab[).lw!(21Ti sin wT)]2 exp{ -1T[ j./W!(21Ti sin wT)][ (u; + u:) cos wT - 2uaubJ} , (26) 
o 

where Sb - sa = T, and 

[j./w! (21Ti sin wT) J112 exp{i j./w! (2 sin wT)[ (u~ + u~) cos wT - 2UaUbJ} 

is the kernel of an isotropic harmonic oscillator in R4. 

(27) 

In order to relate the propagator K(Xb' xa; E) [Eq. (8)J with the harmonic oscillator wave functions, we perform 
the spectral decomposition of the integrand of Eq. (26) and symmetrize it in Ub (since ab - ab + 21T corresponds to 
Ub - - Ub) and expand, for E < 0, as 

[j./w! (21Ti sin wT)J2 exp{ -1T[ j./w! (21Ti sin wT)J[ (u~ + u~) cos wT - 2Z(,ubJ} = t exp [- iW(t nj + 2\ Tl <l>n1 n2"3n4 (Ub)<l>!ln2n3n4(ua) , 
nl'O 1.1 '} J 

where 
4 

<l>nl n2"3"4 (U) = II <Pnj (Uj) (29) 
101 

being the <P"I (ud (i = 1,2,3,4), the one-dimensional har
monic oscillator wave functions, i. e., they constitute 
the basis functions in a four-dimensional Riemann space. 
The 1'1j are subjected to the constraint 

4 

Lnl=2(n-l)=0,2,4,... . (30) 
1.1 

Finally, inserting Eq. (28) in the propagator (8), after 
a straightforward algebra, we are led to 

K(Xb,Xa; E) = - m!pfti(1- v!n)-1j2. dab 
... 0 0 

x [(po!8n)1/2<l>n1"2n3n4 (Ub)][ (po!8n)1/2<l>~1n2n3"4(Ua)] , (31) 

where the variables v and Po stand short for v = e2/2w 
= (- mi/2E)1/2 and Po = (- 2mE)112. The sum in Eq. (31) 
displays explicitly the bound states poles at 

(32) 

with the residues being the wave functions in unconven
tional quantum numbers. In this connection, it should 
be pointed out that it is rather remarkable that almost 
all quantum numbers can be interpreted as invariants 
of certain groups. In fact, the K-S transformation is 
closely connected to the SU(2) ® SU(2) symmetry of the 
Kepler motion which exhibits the dynamical symmetry 
SO(4). Clearly, there is a nice isomorphism between 
the two groups. 23 

In the three-dimensional space, the Schr6dinger equa
tion for the hydrogen atom is separable in spherical 
polar and parabolic coordinates. While its separability 
in the former is related to the spherical symmetry of 
the central Coulomb potential, its separability in the 
latter is attributed to the "hidden" symmetry which is 

(28) 

responsible for the degeneracy peculiar to the potential. 
In what follows, we show that the expansion of the ker
nel (27) makes it possible to express the hydrogen atom 
wave functions in the above mentioned four-dimensional 
Riemann space. 

III. ATOMIC ORBITALS OF THE HYDROGENIC 
OSCILLATOR 

We will use the four-dimensional results of Sec. II 
to evaluate the atomic orbitals of the nonrelativistic 
hydrogen atom. This will be performed through the 
residues of the first order poles of the propagator (31). 
To this end, use of the K-8 transformation will be made. 
In particular, this transformation with U given by Eq. 
(24) makes it possible to reduce the dynamical symmetry 
of the hydrogen atom described by the 0(4) generators 
to the geometrical symmetry of 0(3).18,20,24-26 In order 
to proceed, the kernel describing the motion of an iso
tropic harmonic oscillator is expanded in exponential 
functions of time multiplied by products of energy eigen
functions; 3 

[f.LW/(27Ti sin wT)]1/2 exp{if.Lw/(2 sin wT)[(u; + u;) cos wT 

~ 

- 2uaub ]}= L exp( - iEJT) <PJ(Ub ) <P; (Ua ) • (33) 
J=O 

On expanding the left-hand side of this equation in 
successive powers of exp(iwT), the different one-dimen
sional oscillators eigenfunctions can be obtained. Since 
the reSidues of Eq. (31) contain the basic functions in 
a four-dimensional Riemann space, we cite some of 
them. On gOing as far as j = 2, the follOwing is obtained 
(see the Appendix): 

<po(ul)=(f.Lw/rr)1/4exp[-(f.Lw/2)u~], (34.1) 

<P1 (UI) = (2j.J.w )1/2uI <PO(UI) , 

<P2(UI) =2-1/2(1-2f.LwuD<Po(ul) 

(34.2) 

(34.3) 
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Taking into account Eq. (30), it can easily be seen 
that when n = 1, the only combination of the n, is n, = O. 
Taking the residue of the propagator (31), the wave func
tion of the lowest energy level of the hydrogen atom is 

wloo=(2lT)I12(Po/8)1/2<1>ooOO' (35.1) 

When n = 2, there exist different combinations of the nj 
obeying constraint (30), so that the hydrogenic wave 
functions wn1m can be expressed as various combinations 
of the functions <I>'1'2'3'/U) given in Eq. (29). The first 
few cases are given below: 

W200 = (2lT)II2(Po/16)1/2(<I>2000 + <1>0200 + <1>0020 + <1>0002), (35.2) 

w211 = (2lT)1/2(poI16)1/2(<I>1010 + <1>0101) , (35.3) 

(35.4) 

W21-1 = (2lT)1/2(Po/16)1/2(<I>2000 + <1>0200 - <1>0020 - <1>0002)' (35.5) 

Similar results have been obtained by Chen24 in the study 
of the Stark effect of the hydrogen atom. On using Eqs. 
(34) together with the K -S transformation as given by 
Eq. (24), the different hydrogenic atomic orbitals are 
easily generated. 

It should be pointed out that on using the SO(2, 1) 
algebra generators and through the study of the N
dimensional Schrodinger equation, the equivalence be
tween the hydrogen atom and the isotropic harmonic os
cillator was established. 27 Finally, it was recently re
ported that the realization of a stereographic projection 
of the coordinates of an isotropic four-dimensional har
monic oscillator on two orthogonal unit hyperboloids in 
a six-dimensional space is a new form of geometrizing 
the Coulomb field, that is, the homomorphism between 
SO(4,2) and SU(4, 2) was explicitly demonstrated. 28 

IV. CONCLUSIONS 

The K-S transformation [Eqs. (12), (15), and (16)], 
together with the expansion of the kernel of an isotropic 
harmonic oscillator, has been used to get the atomic 
orbitals of the nonrelativistic hydrogen atom in a four
dimensional Riemann space through the path integral 
formalism. From an analytical expression for the 
propagator of the hydrogen atom, not only the energy 
spectrum was recovered, but, also, the hydrogenic wave 
functions as a linear combination of the isotropic har
monic oscillator wave functions were obtained. The 

transformation (12) has also been used to solve the hy
drogen atom confined into a sphere, 29 and in fact, this 
seems to be particularly suitable to algebraically gen
eralize the equivalence between this system and the iso
tropic harmonic oscillator to any N. 27,30,31 The present 
approach, clearly connected with the calculation of non
Gaussian path integrals, seems to be mathematically 
more elegant and shows the necessary ductility to under
take the study of simple (but not trivial) confined stan
dard quantum systems. 26 ,32-35 It could probably provide 
more insight in connection with astrophysics and hot 
plasmas. 
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APPENDIX 

In this Appendix, we show that an appropriate expan
sion of the kernel (27) leads to the different harmonic 
oscillator eigenfunctions. 

Using the relations 

i sin wT = ~ exp(iwT)[l- exp(- 2iwT)] , 

cos wT =~ exp(iwT)[1+ exp(- 2iwT)] , 
(A1) 

we can write the left-hand side of Eq. (33) as 

(lJ.w/lT)1/2 exp(- iwT /2)[1- exp(- 2iwT)]"1/2 exp{- /.Lw/2 

x ~ 2 + 2)(1 + exp( - 2iWT») _ 4uqub exp( - iWT)J} 
~u. ub l-exp(-2iwT) l-exp(-2iwT) • 

(A2) 
Following Feynman, 3 we can obtain a series having 

the form of the right-hand side of Eq. (33) if we expand 
Eq. (A2) in successive powers of exp(-iwT). We shall 
illustrate the method by going only as far as j = 2 in Eq. 
(33). Expanding the left-hand side of Eq. (33) to this 
order, we have 

(/.Lw/1T)1/2 exp(-iwT/2)(1 +~exp(-2iwT) + ... ) exp(-lJ.w/2{(u! +u~)[1+2 exp(-2iwT) + .• ·]-4u.u
b
exp(-iwT) + ••• }), 

which, upon rearrangement, leads to 

(j.J.w/lT)tl2 exp[ - jJ.w/2(u; + um exp(- iwT /2)[1 +texp(- 2iwT) + ... ] 

x exp{-j.J.w/2[2(u; + u~) exp(- 2iwT) - 4u.u
b 
exp(-iwT) + ... ]} , 

or 

(j.J.w/1T)1/2 exp[ -j.J.w/2(u; + ~)] exp(-iwT /2)[1+~ exp(- 2iwT)] 

x [1 + 2j.J.w u,ub exp(- iwT) + 2j.J. 2W2 u!u~ exp(- 2iwT) -j.J.w(U; +~) exp(- 2iwT) + ..• ] . 
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From this, we can pick out the coefficient of the lowest 
term. It is 

(p.w/1T)1/2 exp[ -p.w/2(u; + u~)] exp( - iwT /2) 

= exp( - iEoT) </>o(u.) </>t (ub ) 

That is, Eo=w/2 and 

</>o(u/) = (p.w/1T)1/4 exp( -p.w u~/2) 

The next-order term in the expansion is 

(A6) 

(A7) 

(p.w/1T)1/2 exp(- iwT /2) exp(- iwT) exp[ -p.w/2(u; + ~)] 

X2p.wu.ub =exp(-iE1T)</>1(ub )</>T(u.) , (AB) 

which implies that El =3/2 w, and 

</>1 (u/) = (2p. w)1/2u/ </>o(u/) • (A9) 

The next term corresponds to E2 = 5/2 w. The part 
of the term depending on u. and ub is 

(P.W/1T)1/2 exp[ -p.w/2(u; +~)] 

X[t+2p.2W2U;U:-p.W(U;+U:)]. (AID) 

This must be the same as </>2(Ub)</>:(u.). Since the ex
pression in the brackets can be written as 

t(2p.wu; -1)(2p.wu! -1) , (All) 

we find 

(A12) 

All of the wave functions may be obtained in this man
ner. However, it is a difficult algebraic problem to 
get the general form for </>n directly from this expansion. 
Further details can be found in Feynman's book. 3 
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