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The potential energy for the diffusion of positive and negative defects in ice is calculated by a SCF-MO­
LCAO procedure. The resulting height of the potential energy barrier for positive defects is much lower 
than for negative ones, thus explaining qualitatively the greater mobility of the HaO+ ions. It is also found 
that the potential-energy heights are very sensitive to the distance between the oxygens, the diffusion being 
greater when the oxygens are nearer. The results obtained suggest therefore that the diffusion of positive 
defects is correlated to the vibrations of the lattice. 

1. INTRODUCTION 

THE existence of ionic and valence defects in ice 
was postulated by Bjerrum1 to explain the electrical 

conductivity of the crystal. The ionic defects are 
responsible for the direct-current conductivity of ice,2 
and to explain their mobility it is important to know 
the potential-energy curve for the motion of the proton. 
When the proton moves along a 0 1-02 line (see Fig. 1), 

( c) (d ). 

FIG. 1. Diffusion of positive and negative defects. The numbers 
on the bonds indicate the occupation of the corresponding hybrids. 

the ionic defect is transfered to a neighbor water 
molecule. 

We consider positively and negatively charged defects 
as the units H30+ and HO-, respectively, preserving 
the tetrahedral symmetry of ice. While the protons 
move as shown in Figs. 1 (a) and 1 (b), the defects 
diffuse as shown in Figs. 1 (c) and 1 (d), respectively. 
The notation is the same as in the previous paper,3 
and similar assumptions are made: a system of four 
electrons in a closed-shell configuration is considered, 
with the same set of basic orbitals. The assumptions 

* Now at Department of Chemistry, University of Pennsyl­
vania, Philadelphia, Pennsylvania. 

1 N. Bjerrum, Kg!. Danske Videnskab. Selskab Mat. Fys. 
Medd. 27, 56 (1951). 

2 H. Granicher, Physik Kondensierten Materie 1, 1 (1963); c. 
Jaccard, Helv. Phys. Acta 32,89 (1959). 

3 M. Weissmann and N. V. Cohan, J. Chern. Phys. 43, 119 
(1965). 

regarding the "core" potential are also the same as in 
the previous paper, and the numbers in Figs. 1 (a) and 
1 (b) indicate the occupation number of the corre­
sponding hybrid. 

Therefore, the potential due to the electrons not 
involved in the bond is given by Formulas (3) of the 
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FIG. 2. Total energy E for positive defects as a function of d, 
for four values of D. The intervals on"the energy scale are of 0.2 
a.u.=5.44 eV, and each curve is shifted vertically from the pre­
ceding one by exactly that amount. 

preceeding paper with Ql = Q2= 4 for the H30+ defect 
and with Ql = Q2= 5 for the HO- defect. The total 
energy E, calculated with the aid of Eqs. (1) and (2) 
of the preceding paper, represents the potential energy 
for the motion of the proton. It is symmetric in both 
cases, positive and negative defects. The same programs 
and integrals of the preceding paper were used. 

2. RESULTS AND DISCUSSION 

The results for the energies E are given in Table I 
and Fig. 2 for positive defects and in Table II and Fig. 3 
for negative defects. The curve for D= 00 for the 
negative defects coincides with that for the normal 

124 



IONIC DEFECTS IN ICE 125 

TABLE I. Energies E for positive defects (in atomic units) for different values of D and d (in atomic units). The last line corresponds 
to the minimum value of E, fitted numerically. (1 a.u. of energy = 27.2 eVj 1 a.U. of length=0.529 A). 

D=4.7 D=5.2154 

d E d E 

1.0029 -4.282 1.0029 -4.247 
1.4116 -4.811 1.4116 -4.774 
1.8103 -4.887 1.8103 -4.838 
2.2090 -4.883 2.2090 -4.816 
2.3500 -4.882 2.6077 -4.802 
1.9278 -4.889 1.8347 -4.838 

hydrogen bond for D= 00 , given in the preceding paper 
[see Fig. 1 (b)]. 

For each value of D, the optimum value of d is 
larger than in the neutral case and we also find that 
the optimum value of d increases as D decreases, the 
effect being more pronounced than in the neutral case. 

We have not attempted to calculate the optimum 
value of D in the case of the ionic defects because it is 
much more complicated than in the case of a normal 
hydrogen bond. In fact, any departure from the normal 
distance in ice implies deformation of the surrounding 
hydrogen bonds which should properly be taken into 
account in the calculations. On the other hand, the 
experimental value of D for the ionic defects is not 
known exactly as some deformation of the lattice near 
the defect is likely to occur. We assume that this 
distortion is zero, thus considering the experimental 
value of D for the ionic defects the same as in a normal 
hydrogen bond, that is, 2.76 A. As in our previous 
paper and for similar reasons all the following results 
are given for the experimental value of D. 

The proton affinity of the water molecule in ice is 
calculated as the difference in energy for a positive 
defect between the values for the optimum value of 
d(HaO+) and d= 00 (H20+H+), both for D= 00. The 
result obtained of 10.9 eV agrees well with Rosenfeld's' 
calculated value of 11.4 eV and with the experimental 
one of 8.0±0.7. 

D=5.7 D=oo 

d E d E 

1.4116 -4.752 1.0029 -4.190 
1.8103 -4.808 1.4116 -4.716 
2.2090 -4.771 1.8103 -4.761 
2.6077 -4.737 2.6077 -4.623 
2.8500 -4.731 00 -4.374 
1.7827 -4.808 1.6570 -4.775 

Table III gives the height of the potential barriers 
for the motion of the protons, as a function of D, and 
this increases almost linearly with D, the effect being 
more pronounced for positive defects. 

If we try to make up the potential-energy curves 
for the diffusion of the proton just by superposing 
symmetrically at D= 2.76 A (5.2154 a.u.) two identical 
curves for D= 00 as suggested by Baker5 we obtain a 
barrier of 4.1 eV (0.151 a.u.) for a positive defect 
(see Fig. 4) and of 7.4 eV for a negative one. Configu­
ration interaction with the next energetically closed­
shell configuration was done for the case D= 00. It 
lowered the height of the barrier for the negative defect 
by 0.9 eV and for the positive defect by only 0.1 eV. 
This result is to be expected as configuration interac­
tion changes the dissociation products in the case of a 
neutral molecule from HO-+ H+ to the energetically 
lower HO+ H, but for the positive ion both calculations 
yield H20+ H+. Comparison of the height of these 
barriers with those given in Table III shows that the 
effect of the neighbor molecule (hydrogen bonding) 
in the case of the ionic defects is important, as in the 
case of neutral molecules. 

3. MOBILITY OF IONIC DEFECTS 

Our results indicate a much lower barrier for the 
diffusion of positive defects than for the diffusion of 

TABLE II. Energies E for negative defects (in atomic units) for different values of D and d (in atomic units). The last line 
corresponds to the minimum value of E, fitted numerically. (1 a.u. of energy = 27.2 eVj 1 a.u. of length = 0.529 A). 

D=4.7 D=5.2154 D=5.7 D=oo 

d E d E d E d E 

1.0029 -2.114 1.0029 -2.076 1.4116 -2.486 1.0029 -2.006 
1.4116 -2.558 1.4116 -2.513 1.8103 -2.491 1.4116 -2.435 
1.8103 -2.593 1.8103 -2.530 2.2090 -2.427 1.8103 -2.419 
2.2090 -2.574 2.2090 -2.486 2.6077 -2.382 2.6077 -2.189 
2.3500 -2.571 2.6077 -2.466 2.8500 -2.374 00 -1.299 
1. 7578 -2.594 1.6674 -2.536 1.6156 -2.503 1.5676 -2.461 

4 J. L. J. Rosenfeld, J. Chern. Phys. 40, 384 (1964). 
6 A. N. Baker, J. Chern Phys. 22, 1625 (1954) j 25, 381 (1956). 
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FIG. 3. Total energy E for negative defects as a function of d, 
for three values of D. The intervals on the energy scale are of 0.2 
a.u.=5.44 eV, and each curve is shifted vertically from the pre­
ceding one by exactly that amount. 

negative ones. This result seems intuitively correct 
as in this case the proton, when in the middle of its 
motion, is between two approximately neutral groups, 
while in the negative case it is between two nega­
tively charged groups, which produce a great at­
traction and a deeper well. The results also agree 
with the experimentally known fact of the greater 
mobility of the positive ion. In fact, Eigen and de 
Maeyer6 consider the ratio of both mobilities between 
10 and 100. 

Recently, Gosar7 developed a theory for the mobility 
of the positive defects. In this theory the mobility is 
proportional to the square of the separation between 
the first two proton levels in the symmetric potential­
energy curve. This separation changes almost expo­
nentially with the height of the barriers thus making 
the mobility very sensitive to it. Finally, it should be 
remembered that the height of the barrier depends 
almost linearly with D. 

To obtain the experimental value of 0.075 cm2jV· sec,6 

a separation of 1.24X 10-3 eV is needed. 

• 
E~~.O~ ______ r-_____ 2r-__ ~2~A 
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-49 

FIG. 4. Potential-en­
ergy barriers for positive 
ions. 

6 M. Eigen and L. de Maeyer, Proc. Roy Soc. (London) A247, 
505 (1958). 

7 P. Gosar, Nuovo Cimento 30, 931 (1963); P. Gosar and M. 
Pintar, Phys. Status Solidi 4, 675 (1964). 

TABLE III. Height of the potential barrier for the motion of 
positive and negative defects (in electron volts). 

D(A) 

2.49 
2.76 
3.02 

0.19 
0.98 
2.20 

0.62 
1.90 
3.50 

We find that this separation corresponds approxi­
mately to a barrier of 0.44 eV, almost independent of 
the shape of the potential barriers. This follows from 
the calculations due to Hornig and Somorjai8 and to 
Gerson.9 From our results of Table III, this potential­
energy height would correspond to a value of D= 2.58 A. 
It seems reasonable that such a value can be obtained 
by the vibrations of the lattice, from its equilibrium 
position with D= Do= 2.76 A. In fact, a simple calcula­
tion supports this view. The mean quadratic displace­
ment from the equilibrium distance Do is given by 

For low temperatures 

F(D) = (fJ/Tr)! exp[ -(3(D-Do) 2] 

and fJ= 2.69X 1017cm -2 according to Haas and Hornig.1° 
Then, 

This value agrees fairly well with the above results. 
It should also be noted that when D decreases, the 

optimum value of d increases thus contributing also to 
the lowering of the height of the barrier. 

For positive ions Gosar found that the motion of 
the protons is correlated and that the mean free path 
of the H30+ ion is approximately 3D. Our method of 
calculation neglects this correlation altogether, and it 
is by no means simple to include it. 

We finally conclude that the potential energy for 
the diffusion of positive defects is definitely lower than 
for negative defects, and that both are extremely sensi­
tive to the 0 1-02 distance. Therefore, it is highly 
probable that the diffusion of the charged defects is 
correlated with the vibrations of the lattice. 

8 R. L. Somorjai and D. F. Hornig, J. Chern. Phys. 36, 1980 
(1962) . 

9 F. Gerson, Helv. Chim. Acta 44,471 (1961). 
10 C. Haas and D. F. Hornig, J. Chern. Phys. 32, 1763 (1960). 


