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Free-volume integrals for hole theories of liquids were calculated for some special cases by Monte Carlo 
numerical integration. The dependence of the free volume on the number of nearest neighbors is thus ob­
tained. Only molecules interacting with a Lennard-Jones potential and a temperature near the critical 
one have been considered. The results differ considerably from those of earlier theories, where spherical sym­
metry was assumed. However, the introduction of vacant cells (holes) does not improve the thermodynamic 
functions obtained with the cell theory of Lennard-Jones and Devonshire. 

INTRODUCTION 

SEVERAL approximations to hole theory of liquids 
have been reviewed by Rowlinson and Curtiss. I 

All of them, and also later works,2-4 calculate the 
free-volume integrals by means of a sphericalization 
process. They assume that the potential energy of a 
molecule in its cell depends only on the number of 
neighbors but not on their location, and that it is 
spherically symmetric. 

In this paper we evaluate the integrals without such 
an approximation by using a Monte Carlo numerical 
integration. Our main object is a critical discussion 
of this approximation. 

In order to overcome the effects of sphericalization, 
a linear dependence of the free volume on the number 
of nearest neighbors was proposed.6,6 The computed 
values will also indicate if such dependence is adequate. 

Particles interacting with a Lennard-Jones (6-12) 
potential were located in cells in a face-centered cubic 
lattice. Only one temperature and 14 of the 144 differ­
ent arrangements of neighbors were considered. The 
number of cells, a parameter in the theory, was ob­
tained by minimization of the free energy. 

THEORY 

The classical partition function for N molecules is 

[
-U(rl" .rN )] 

Xexp kT ' (1) 

where"}..2 =h2/27rmkT and the integrations are performed 
over the entire volume V of the vessel. U(rl" ·rN) is 
the potential energy of the system of N particles. 

The volume V is divided into L cells (L"?N) j the 

1 J. S. Rowlinson and C. F. Curtiss, J. Chern. Phys. 19, 1519 
(1951) . 

• J. Grindlay, Proc. Phys. Soc. (London) 77, 1001 (1961). 
3 G. E. Blomgren, J. Chern. Phys. 34, 1307 (1961). 
4 S. Ono, Nuovo Cimento, Suppl. 9, 166 (1958). 
6 D. Henderson, J. Chern. Phys. 37, 631 (1962). 
• G. E. Blomgren, J. Chern. Phys. 38,1714 (1963). 

cell size being q = VI L and the volume per molecule 
v= V IN. The fraction of vacant nearest-neighbor sites 
of the ith molecule is Wi, and 

N 

Q=LWi. 
i=1 

If each particle is located at a lattice point (center 
of a cell), the potential energy of the system is 

Uo=zI2(N -Q)cp(a), 

where z is the number of nearest neighbors in the lat­
tice (for a face-centered cubic lattice z= 12). cp(a) is 
the potential energy of interaction of a pair of nearest 
neighbor molecules at a distance a. 

N .(l-Wi) 

U(rl· .. rN)=Uo+L L [cp(rij)-cp(a)]. (2) 
i=l j-:l 

Each term of the sum in this equation considers 
Particle i as a wanderer in its cell and all neighbors j 
as fixed to their lattice points. This procedure was 
shown by Kirkwood7 to be an approximation of the 
general case. The effect of nonnearest neighbors, being 
a small correction, was neglected in the calculations. 
It was only included in Uo as a correction factor. 

Substituting Eq. (2) into (1) we obtain 

[
-Nzcp(a)] [Qzcp(a)] N 

ZN="}..-3N exp 2kT L exp 2kT Uj(Wi), 

(3) 
in which 

j(Wi) = ~dri exp[;; '(~i) {cp(rij) -cp(a)} 1 (4) 

The sum in Eq. (3) corresponds to all arrangements 
of the N molecules in L cells, which differ by more 
than a permutation of the molecules. Only one mole­
cule per cell is considered, and therefore it is implied 
that cells are small enough to prevent double occu­
pancy. 

The function j (w) is a generalized free volume, as 

7 J. G. Kirkwood, J. Chern. Phys. 18, 380 (1950). 

175 



176 MARIANA WEISSMANN 

TABLE I. Computed values of jew) for q*= 1.185 and different 
curve fittings given by Eqs. (8), (9), and (10) in the text. When 
two calculated values are given for the same w, they correspond 
to different (extreme) configurations. 

Spheri-
w Calculated calized Linear Log a+bm w 

0 0.019±0.005 0.0195 0.018 0.018 0.018 

1/12 0.021±0.005 0.0208 0.115 0.025 0.020 r· 031 ±0.005 2/12 0.0232 0.213 0.036 0.024 
0.022±0.005 r· 039 ±0.005 3/12 0.0253 0.310 0.051 0.028 
0.025±0.OO5 r073 ±0.008 

6/12 0.0366 0.602 0.146 0.077 
0.040±0.007 r216±0.013 

9/12 0.0640 0.893 0.415 0.286 
0.415±0.014 r278±0.015 

10/12 0.0860 0.991 0.590 0.456 
0.538±0.018 

11/12 0.730±0.017 0.1360 1.088 0.835 0.732 

1.185 1.185 1.185 1.185 1.185 

it differs from the usual free volume of cell theory 
in the number of neighbors considered. However, the 
sphericalization process must lead to a worse approxi­
mation in this case, because it prevents the free vol­
ume from expanding in the direction of vacant neigh­
boring cells. 

The summation in (3) has to be evaluated with the 
methods used in order-disorder problems. A very sim­
ple one is the Bragg-Williams approximation, that 
gives all terms in the sum equal probability 

D 
ZN(B- W) =}..-3N . [j(w) IN 

N!(L-N) ! 

[ 
(N-fl)Zc/J(a)] 

Xexp - 2kT ; 

fl=Nw, w=1-N/L=1-q/v. (5) 

A more refined approximation is given by the quasi­
chemical method, as used in Ref. 2. 

CALCULATIONS 

The Monte Carlo method of independent samples 
was described by Kahn8 and used for free-volume cal-

8 H. Kahn, in Symposium on Monte Carlo Methods, edited by 
H. A. Meyer (John Wiley & Sons, Inc., New York, 1956); H. 
Kahn in Mathematical Methods for Digital Computers, edited by 
A. Ralston and H. S. Wilf (John Wiley & Sons, Inc., New York, 
1960), p. 249. 

culations in a previous paper.9 The basic formulas are: 

1 
1 n 

g= f(r)g(r)dr'""- Lg(rk) , 
v n k-1 

(6) 

where f(r) is a probability distribution function and 
therefore satisfies both conditions 

f(r) ~O in V; !/(r)dr=1. 

The points labeled rk are picked at random in volume 
V according to the probability density f(r). 

Our particular choice of f(r) was a constant and 
the points rk are then obtained by means of the pseudo­
random numbers generated by a computer. This work 
was performed on the Mercury Ferranti digital com­
puter at the Instituto del CaJculo of the University of 
Buenos Aires. 

The particles were supposed to interact with a 
Lennard-Jones (6-12) potential 

c/J(r) =4e[(ro/r)1L (ro/r)6J, (7) 

and the notation r*=r/ro, v*=v/r03, T*=kT/e was 
used. 

Only one temperature T* = 1.25, near the critical 
one, was used. The computed cell sizes were q* = 1.185, 
q*=1.56, q*=2.00, and q*=2.52. In each case 13 dif-

TABLE II. Computed values of jew) for q*= 1.56 and different 
curve fittings given by Eqs. (8), (9), and (10) in the text. When 
two calculated values are given for the same w, they correspond 
to different (extreme) configurations. 

Spheri-
w Calculated calized Linear Log a+bmw 

o 0.129±0.020 0.128 0.124 0.124 0.124 

1/12 0.145±0.022 0.133 0.243 0.153 0.137 

{

0.176±0.020 
2/12 

0.148±0.022 

{

0.185±0.022 
3/12 

0.159±0.022 

{

0.339±0.037 
6/12 

0.264±0.031 

{

0.605±0.037 
9/12 

0.941±0.028 

{

0.692±0.039 
10/12 

1.073±0.033 

11/12 1.185±0.030 

1.56 

0.140 

0.146 

0.178 

0.246 

0.296 

0.395 

l. 56 

0.363 

0.482 

0.841 

1.199 

1.319 

1.438 

1.56 

0.189 

0.234 

0.440 

0.827 

1.040 

1.260 

1.56 

0.156 

0.180 

0.320 

0.670 

0.880 

1.165 

1.56 

9 M. Weissmann and R. M. Mazo, J. Chern. Phys. 37, 2930 
(1962). 
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ferent integrals were obtained on the same run of the 
computer. They correspond to jew) for 1, 2, 3, 6, 9, 
10, 11, 12 nearest neighbors. In the cases where several 
orientations of the neighbors had to be considered, we 
computed only extreme situations, such as two vacant 
sites being in consecutive or in opposite places. No 
such local configuration may be repeated throughout 
the lattice due to geometric incompatibility, and some 
type of average must be made. 

TABLE III. Computed values of jew) for q*=2 and different 
curve fittings given by Eqs. (8), (9), and (10) in the text. When 
two calculated values are given for the same w, they correspond 
to different (extreme) configurations. 

w Calculated 

0 0.60±0.04 

1/12 0.64±0.04 r69 ±0.04 
2/12 

0.63±0.04 r68 ±0.04 
3/12 

0.66±0.04 

(1.12±0.07 
6/12 

l1.00±0.05 

{1.42±0.06 
9/12 

1.66±0.03 r44±0.05 
10/12 

1. 78±0.03 

11/12 1. 79±0.03 

2.00 

Spheri-
calized 

0.540 

0.538 

0.538 

0.540 

0.565 

0.650 

0.722 

0.870 

2.00 

Linear 

0.600 

0.716 

0.833 

0.850 

1.300 

1.350 

1. 766 

1.883 

2.00 

Log 

0.600 

0.662 

0.732 

0.810 

1.120 

1.480 

1.632 

1.805 

2.00 

a+bm w 

0.600 

0.666 

0.738 

0.816 

1.104 

1.486 

1.644 

1.814 

2.00 

The procedure used was very similar to that ex­
plained in Ref. 9. The results are shown in Column 2 
of Tables I-IV and in Fig. 1. All quoted errors refer 
to the 95% confidence limits, defined as ±1.96o/nt, 
where 0' is the standard deviation 

n n 

0'2 = n-I[n-I Lg2 (rk) - n-2 ( Lg (rk) 12]. 
k=I k=I 

Column 3 of those tables gives the sphericalized values 
for the integrals.Io They are obviously a poor approxi­
mation and give consistently lower values of j (w) . 
Column 4 gives the linear dependence of jew) ,6,6 

jew) = (l-w)j(O) +wj(I). (8) 

It is also a very poor approximation, especially for 
small q*. Column 5 gives the linear dependence of 
logj(w) , 

logj(w) = (l-w) logj(O)+w logj(I), (9) 

10 R. H. Wenthorf, R. J. Buehler, J. O. Hirschfelder, and C. F. 
Curtiss, J. Chern. Phys. 18, 1484 (1950). 

TABLE IV. Computed values of jew) for q*=2.52 and different 
curve fittings given by Eqs. (8), (9), and (10) in the text. When 
two calculated values are given for the same w they correspond 
to different (extreme) configurations. ' 

w 

o 
1/12 

2/12 

3/12 

6/12 

9/12 

10/12 

11/12 

Calculated 

2.01±0.13 

2.04±0.13 

j1.92±0.10 

l1.96±0.12 

r- 87±0.11 

1.99±0.12 

r- 71 ±0.19 

2.42±0.13 

f73±0.14 

l2.49±0.04 

{2.59±0.11 

2.61±0.05 

2.54±0.OS 

2.S2 

Spheri-
calized 

1.57 

1.57 

1.45 

1.41 

1.34 

1.39 

1.45 

1.68 

2.52 

Linear Log a+bm w 

1.95 1.95 1.95 

2.00 1.99 2.05 

2.05 2.04 2.13 

2.09 2.08 2.20 

2.23 2.22 2.36 

2.37 2.36 2.46 

2.42 2.42 2.48 

2.47 2.47 2.S0 

2.52 2.52 2.52 

corresponding to the choice of parameters of Ono.l,4 
Column 6 gives another simple functional dependence 
which seems to be in better agreement with the calcu­
lated results for small q*: 

jew) =a+bmw, 

logm=12.66-5.76q*. (10) 

The coefficients a and b are functions ofj(O) andj(I). 
Butj(l) =q* andj(O) is a known function of q*. In a 
previous paper,9 a curve was fitted to the data of j(O), 
and it is used again here. The sphericalized values of 
j(O) differ from the calculated ones for q*> 2. 

Equation (10) is a poor approximation for large q* 
and possibly (8) or (9) may be used. However, one 
of the postulates of the theory is that q* must be small. 

FIG. 1. jew) vs w. ~ 
Vertical lines are esti- ~ 
mated errors. The·..., 
curves are fitted by Eq. 
(10) in the text. 

3~------------------~ 

2 

w 
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1.0 ro-----------, 
O,B 

~ 0,6 

') 
II. 0,4 

0,2 

hol.~ 

..... _--_ .... __ .... _--
exp""--

O~I---~Z---~J---~4 

FIG. 2. pvolkT vs vivo. T*= 1.25. "holes," calculated using 
Eq. (10); "cells," unsphericalized cell theory9; "sph. cells," 
sphericalized cell theorylO; "exp," experimental results." 

From the Bragg-Williams partition function, the fol­
lowing equation of state is obtained: 

pv =q*[o 10gj(W)] +~(1.011_ 2.409) 
kT v* ow q* 2T*v* q*4 q*2 

v* ( q*) --log 1-- . 
q* v* 

(11) 

For each set (v*, T*), the best value of q* is obtained 
minimizing the free energy. It must satisfy the equa­
tion 

[
0 10gj(W)] _~[o 10gj(W)] __ Z_(2.409 _ 3.033) 

oq* 1D v* ow q* 2 T*v* q*2 q*4 

v* ( q*) +-log 1-- =0. 
q* v* 

( 12) 

Combining (11) and (12), 

pv =q*[o 10gj(W)] + 2zq* (1.011 _ 1.2045). (13) 
kT oq* w T*v* q*4 q*2 

Equation (13) coincides with the equation of state 
given by the cell theory of Lennard-Jones and Devon­
shire if q*=v*. 

The derivatives of jew) were obtained from the 
approximating functions mentioned above, because 
graphical or numerical differentiation would be almost 
impossible with our data. This is easily seen in Fig. 1, 
where the estimated errors for each integral are shown 
as solid vertical lines. Two different extreme orienta­
tions of the nearest neighbors give different results 
for the integral (which are connected in the figure by 
dashed vertical lines), and there is no simple criterion 
to make the average between them. The absence of 
such criterion would make the computation of all 144 
different configurations useless, but the conclusions of 
this paper would certainly not change if more calcula­
tions were made. 

If the fitting is done with (10), the values of qmin * . 
given by Eq. (12) follow approximately a linear rela­
tion in the studied range of v*, 1.3~v*~3.5: 

w=1-q*/v*=-0.104+0.087v*. (14) 

Therefore, w is always small in the liquid densities, 
and qmin * increases with v*. Experimental results, based 

on x-ray scattering measurements, indicate that w 
should be 0.5 at the critical point (T*::::::1.3, v *"-'3) . 
Equation (14) only gives 0.16 for w in such conditions. 

The results obtained for pv/kT are shown in Fig. 2.H 
The representation pvo/kT(vo=ro3) was chosen for 
easier comparison with other theories. Values from 
Eqs. (11) or (13) are compared with those of cell 
theory and of sphericalized cell theory. No values are 
given for the entropy or other thermodynamic func­
tions that require differentiation with respect to tem­
perature, as only one temperature was used in com­
putations. 

The solution of Eq. (12) will evidently change with 
the functional dependence chosen for j (w). We have 
used (10) as it fits our data particularly well. How­
ever, (9) also fits the data reasonably well and may 
be considered. This was done by On04 with the spheri­
calized values for j(O). He obtained a small qrnin * 
always, and the values of w were higher than those 
given by (14). But if nonsphericalized j(O) are used, 
a discontinuity appears in the values of qmin * as soon 
as the sphericalization is no longer a good approxima­
tion for j(O) : 

v*=2.3, 

v*=2.5, 

qmin *= 1.3, 

qmin *=2.2, 

w=0.43, 

w=0.12. 

For v*> 2.5 the number of holes increases slowly, the 
same as for Eq. (14), and therefore the same conclu­
sion will be valid. Since the difference between spheri­
calized and nonsphericalized j(O) grows continuously 
for increasing q*, it can not be the only cause for a 
discontinuity. The other fact must be that Eq. (9) is 
a better approximation for large q* than it is for 
small q*. 

The quasichemical method would require the solu­
tion of another equation, in order to obtain w. It was 
used in some cases, but it showed no new features, as 
the errors in the curve-fitting approximations for j (w) 
are much larger than those of the different order dis­
order methods. 

CONCLUSIONS 

These calculations, though restricted to very special 
cases, show that the introduction of holes does not 
significantly improve the equation of state predicted 
by cell theory, for T* = 1.25. The successful results 
obtained with a linear dependence of j (w) ,6,6 appear 
to be fortuituous, as the computed values of jew) are 
certainly not linear for the small cell sizes required by 
the theory. 

ACKNOWLEDGMENTS 

I wish to thank Dr. Robert M. Mazo of the Univer­
sity of Oregon and Dr. J. M. H. Sengers-Levelt of 
the University of Amsterdam for their helpful and 
encouraging correspondence regarding the present 
work. 

11 J. M. H. Levelt, Physica 26, 361 (1960). 


