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In the present work, we study the effect of translational–rotational hydrodynamic coupling on the
stationary electric linear dichroism of DNA fragments. The theoretical resolution of the problem has,
so far, been dealt with analytic methods valid only in the limit of low electric fields. In this work,
we apply numerical methods that allow us to study the problem and also consider electric fields of
arbitrary strength. We use the bent rod molecules model to describe DNA fragments with physical
properties characterized by their electric charge, electric polarizability tensor, rotational diffusion
tensor, and translation–rotation coupling diffusion tensor. The necessary orientational distribution
function to calculate electric dichroism is obtained by solving the Fokker–Planck equation through
the finite difference method. We analyze the different contributions due to electric polarizability and
translational–rotational coupling to the electric dichroism. © 2011 American Institute of Physics.
[doi:10.1063/1.3568270]

I. INTRODUCTION

Physical properties of macromolecules in solution can
be studied through electro-optical techniques. In these pro-
cedures, an external electric field is applied on the solution to
orient the molecules and induce on it an optical anisotropy.
In this way, electric dichroism is induced on the solution,
which also manifests itself birefringent. For macromolecules
that can be described by simple geometrical shapes, such as
cylinders and ellipsoids, the study of the orientation process
is relatively simple. In these cases, the molecules orientate
themselves due to the interaction between their electric
properties (permanent and/or induced electric dipolar mo-
ment) with the applied electric field. Once the stationary
state is achieved, the orientations can be described with
Boltzmann distribution function. However, for asymmetrical
shaped particles the analysis is more complex due to the
hydrodynamic coupling between their translational and rota-
tional movements. Such coupling for rigid arbitrary shaped
particles immersed in a fluid at low Reynolds number has
been described by Brenner1 some years ago. Nevertheless,
the inclusion of hydrodynamic coupling in electro-optical
theories is relatively recent. As the torque generated by
hydrodynamic coupling is dissipative, the orientational
distributional function is not Boltzmannian and must be
calculated through the Fokker–Planck equation.

Some advances toward the study of electro-optical effects
(electric birefringence and dichroism) of arbitrarily shaped
rigid particles have been made. In this sense, Wegener et al.2

developed a general formalism for electro-optical effects de-
cay without considering the translation–rotation coupling of
molecules. Later, Wegener3, 4 studied the transient electric

a)Electronic mail: pumazano@exactas.unlpam.edu.ar.

birefringence, rise and decay of this, including the torque due
to the hydrodynamic coupling and derived explicit birefrin-
gence expressions for the Kerr limit of static and time de-
pendent weak electric fields. Recently, Kalmykov5 developed
an alternative approach to the one made by Wegener using a
matrix method. Although this method could be, in principle,
generalized to incorporate the translation–rotation coupling,
this generalization has not been included in his work.

Stationary electric birefringence and dichroism for bent
rod DNA fragments have been theoretically studied by
Bertolotto and co-workers6–10 in the limit of low electric field
strengths. They have found that translational–rotational hy-
drodynamic coupling produces a positive contribution in the
electro-optical effects. The requirement for low electric field
strengths is originated in the use of approximate analytic
methods to solve the Fokker–Planck equation. The effect of
the hydrodynamic coupling on electro-optical transients of
bent rod DNA fragments was studied through Brownian dy-
namic simulation by Porschke and co-workers.11–13 The exis-
tence of a positive contribution on the electro-optical effects
due to hydrodynamic coupling is confirmed by its computa-
tional simulations. The inclusion of hydrodynamic coupling is
decisive to explain why the electric birefringence and dichro-
ism of DNA fragments of relatively long length change its
habitual negative sign at low electric field.

In this work, we study the coupling influence between
translational and rotational diffusion on the stationary elec-
tric dichroism of bent rod DNA fragments orientated by ex-
ternal electric field with arbitrary strength. The bent rods
are considered charged and polarizable particles. The ori-
entational distribution function needed to calculate electric
dichroism is obtained numerically solving the Fokker–Planck
equation through the finite difference method. The individual
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contributions to the reduced electric dichroism of different
orientation mechanisms are calculated. Besides, to estimate
the error of the numerical calculations, particular cases are
analyzed, for which the orientational distribution function is
exactly known.

II. THEORY

A. Molecular model

DNA fragments are modeled as rigid bent rod molecules
(BRM) geometrically characterized by their arc length S0,
curvature radius R, and bending angle 2γ0. The BRM is put
on the plane X′Z′ of the body coordinate system O′X′Y′Z′

whose origin O′ coincides with the BRM center of mass. The
molecule electric properties are its electric charge q and its
electric polarizability tensor [αE ] which principal elements
are

αE
x ′x ′ = 2K R2

[
1 − cos

(
S0

R

)2
]2

+1

2
K a R

[
sin

(
S0

R

)
+ S0

R

]
, (1)

αE
y′ y′ = K S0a, (2)

αE
z′z′ = 4K R2 sin2

(
S0

2R

)
+ 1

2
K a R

[
S0

R
− sin

(
S0

R

)]
,

(3)
where K is an electric polarizability constant and a is the
length through which the bounded counterions can be dis-
placed in radial direction in any point of the BRM. This
model for electric polarizability of BRM was developed by
Bertolotto et al.10 The hydrodynamic properties of BRM are
given by its rotational diffusion tensor [R] with principal ele-
ments Rx ′x ′ , Ry′ y′ , and Rz′z′ , and the translation–rotation cou-
pling diffusion tensor [P] with nonzero elements Py′z′ and
Pz′ y′ . The optical properties are represented by the transition
moment of each BRM chromophore group.

B. Orientational distribution function

The position and orientation of BRM with respect to the
laboratory coordinate system O XY Z are given by the coor-
dinates x, y, z of the O′ origin of the body coordinate sys-
tem and the three Euler angles φ, θ , and ψ . We need to ob-
tain the orientational distribution function of particles f (�, t)
when the electric field is applied on the solution, where �

= 〈x, y, z, φ, θ, ψ〉. The Z axis direction is arbitrarily chosen
matching the direction of the applied electric field. The distri-
bution function f (�, t) is determined by the Fokker–Planck
equation of the system

∂ f (�, t)

∂t
= − 1√

g
�∇�[

√
gJ(�, t)], (4)

where �∇� = 〈∂/∂x, ∂/∂y, ∂/∂z, ∂/∂φ, ∂/∂θ, ∂/∂ψ〉, g
= sin2 θ is the determinant of the metric tensor, and J(�, t)
is the probability current which depends on the derive
and diffusion moments M1 and [M2], respectively, in the

following way:

J(�, t) = M1 f (�, t) − 1

2
�∇� ([M2] f (�, t)) . (5)

In the following lines, we will make some assumptions
to simplify the number of variables in our problem. We
suppose that, in the time in which the rotational equilibrium
is reached, the electroforetic migration does not modify
the molecules spatial concentration. Thus, the orientational
distribution function is independent from the position coor-
dinates. Besides, as the electric field introduces a cylindrical
symmetry in the system, f also results independent from φ

angle. Under these simplifications, Eq. (4) can be developed
introducing a local coordinate system and then transforming
it into a laboratory coordinate system. Details about this
calculation were described by Bertolotto9 and will be omitted
in this work. Through the above-mentioned procedure the
Fokker–Planck equation in the stationary state results(

Qθθ

∂2

∂θ2
+ Qψψ

∂2

∂ψ2
+ Qψθ

∂2

∂ψ∂θ
+ Qθ

∂

∂θ
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+ Q00

)
f (θ, ψ) = 0, (6)

where
Qθθ = (Rx ′x ′ cos2 ψ + Ry′ y′ sin2 ψ),

Qψψ = (Rx ′x ′ sin2 ψ cot2 θ + Ry′ y′ cos2 ψ cot2 θ + Rz′z′),

Qψθ = 2(Ry′ y′ − Rx ′x ′ ) sin ψ cos ψ cot θ,
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− E2
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)
Rx ′x ′ cos2 ψ ,
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] + q E
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,
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In order to solve Eq. (6), the function f will be expressed
in the following way:

f (θ, ψ) = f 0 + f E (θ, ψ) , (7)

where f 0 is the orientational distribution function in absence
of applied electric field and f E (θ, ψ) represents the modifi-
cations due to the presence of electric field. Replacing Eq. (7)
in Eq. (6), we obtain(

Qθθ

∂2

∂θ2
+ Qψψ

∂2

∂ψ2
+ Qψθ

∂2

∂ψ∂θ
+ Qθ

∂

∂θ

+Qψ

∂

∂ψ
+ Q00

)
f E = −Q00 f 0. (8)

Here f 0 is simply a constant because when the electric field
is not present all orientations are equally probable. Therefore,
the orientational distribution function is determined by solv-
ing the differential equation given by Eq. (8) for f E (θ, ψ).
To do this, we use the finite difference method (FDM).14

First, we make a grid of discrete points θl , ψm on the do-
main 0 ≤ θ ≤ π and 0 ≤ ψ ≤ 2π . The number of points in
the θ and ψ directions are denominated by nθ and nψ , respec-
tively. Each interior grid point is generated by the following
relations:

θl = θl−1 + 	θ, l = 1, 2, ..., nθ − 2

ψm = ψm−1 + 	ψ, m = 1, 2, ...nψ − 2

with θ0 = 0, ψ0 = 0, θnθ −1 = π , and ψnψ−1 = 2π . The mesh
size in the θ and ψ directions are 	θ = π/ (nθ − 1) and
	ψ = 2π/(nψ − 1), respectively. Second, using central dif-
ferences, we obtain the following approximations for the val-
ues that are assumed by f E in the grid point

∂ f E

∂θ

∣∣∣∣
l,m

≈ f E
l+1,m − fl−1,m

2	θ
,

∂ f E

∂ψ

∣∣∣∣
l,m

≈ f E
l,m+1 − f E

l,m−1

2	ψ
,

∂2 f E

∂θ2

∣∣∣∣
l,m

≈ f E
l+1,m − 2 f E

l,m + f E
l−1,m

	θ2
,

∂2 f E

∂ψ2

∣∣∣∣
l,m

≈ f E
l,m+1 − 2 f E

l,m + f E
l,m−1

	ψ2
,

∂2 f E

∂ψ∂θ

∣∣∣∣
l,m

≈ 1

2	θ	ψ

(
f E
l+1,m+1 + f E

l−1,m−1 + 2 f E
l,m

− f E
l+1,m − f E

l−1,m − f E
l,m+1 − f E

l,m−1

)
,

where subscripts i, j , with i = l, l ± 1 and j = m, m ± 1,
that accompany f E mean that the function must be evaluated
at the point θi , ψ j . We will keep this nomenclature for the rest
of the work.

Using these approximations for the derivates, Eq. (8) re-
sults in the following relation:

H1 f E
l+1,m + H2 f E

l,m + H3 f E
l−1,m + H4 f E

l,m+1

+ H5 f E
l,m−1 + H6 f E

l+1,m+1 + H7 f E
l−1,m−1 = H8 f 0,

(9)

where the coefficients Hi are given by

H1 = Qθθ

	θ2
− Qψθ

2	θ	ψ
+ Qθ

2	θ
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,
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,
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2	θ	ψ
− Qθ

2	θ

∣∣∣∣
l,m

,
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2	ψ
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l,m

,

H5 = Qψψ

	ψ2
− Qψθ
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2	ψ
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,

H6 = Qψθ

2	θ	ψ
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,

H7 = H6,

H8 = − Q00|l,m .

When we vary subscript l from one to nθ − 2 and m form one
to nψ − 2, Eq. (9) generates a system of (nθ − 2) × (nψ − 2)
linear equations for the nθ × nψ values that adopt function f E

in the grid points. The remaining equations necessary to have
a system with the same amount of equations and unknowns
are given by the boundary conditions. Such conditions are
established in terms of the probability current vector whose
components in the θ and ψ directions are given by

Jθ (θ, ψ) = E

kB T
sin θ cos θ f

{(
αE

y′ y′ − αE
z′z′

)
E Rx ′x ′ cos2 ψ sin θ + sin ψ

[−Py′z′q + (
αE

x ′x ′ − αE
z′z′

)
E Ry′ y′ sin θ sin ψ

]}

+ sin θ

[(
Rx ′x ′ − Ry′ y′

)
cos ψ cot θ sin ψ

∂ f

∂ψ
− (

Rx ′x ′ cos2 ψ + Ry′ y′ sin2 ψ
) ∂ f

∂θ

]
,

Jψ (θ, ψ) = E

kB T
sin θ cos ψ f

{−Py′z′q cos θ cot θ − E
[(

αE
y′ y′ − αE

z′z′
)

Rx ′x ′ + (
αE

z′z′ − αE
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)
Ry′ y′

]
cos2 θ sin ψ + sin θ

[
Pz′ y′q + (

αE
x ′x ′ − αE

y′ y′
)

E Rz′z′ sin θ sin ψ
]} − sin θ

(
Rz′z′ + Ry′ y′ cos2 ψ cot2 θ + Rx ′x ′ cot2 θ sin2 ψ

) ∂ f

∂ψ
+ (

Rx ′x ′ − Ry′ y′
)

cos θ cos ψ sin ψ
∂ f

∂θ
.
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The boundary conditions for θ are Jθ (θ = 0, ψ) = 0 and
Jθ (θ = π,ψ) = 0. By using Eq. (7) and applying the central
difference approximation these conditions are given by

f E
0,m+1 − f E

0,m−1 = 0, m = 0, 1, 2, ..., nψ − 1, (10)

f E
nθ −1,m+1 − f E

nθ −1,m−1 = 0, m = 0, 1, 2, ..., nψ − 1.

(11)

Let us note that in the last two equations we vary m from
0 to nψ − 1. This means that we have introduced dummy grid
points, in the sense that they do not belong to the domain
of the problem. The dummy points correspond to grid ex-
pansions toward points with coordinates ψ = ψ0 − 	ψ and
ψ = ψnψ−1 + 	ψ , where the function has values f E

l,−1 and
f E
l,nψ

. These dummy values of f E add 2nψ unknowns to our
problem that will be eliminated after we solve the equation
system because they lack physical meaning.

For the ψ variable, we use periodic boundary condi-
tions because the moments M1 and [M2] are periodic func-
tions in ψ with period 2π .15 This implies that f (θ, ψ = 0)
= f (θ, ψ = 2π ) and Jψ (θ, ψ = 0) = Jψ (θ, ψ = 2π ). Ap-
plying the central difference approximation and using
Eq. (7) the mentioned conditions take us to the following two
relations:

f E
l,0 − f E

l,nψ−1 = 0 , l = 0, 1, 2, ..., nθ − 1, (12)

1

4	ψ
[Ry′ y′ + Rz′z′ + (Ry′ y′ − Rz′z′ ) cos (2θ )]

×(
f E
l,−1 − f E

l,1 − fl,nψ−2 + f E
l,nψ

)
+ q E

kB T
[Pz′ y′ sin2 θ − Py′z′ cos2 θ ] sin θ

×(
f E
l,0 − f E

l,nψ−1

) = 0 l = 0, 1, . . . , nθ − 1. (13)

Let us note that when we expand the grid and add
the dummy points, Eq. (9) generates now (nθ − 2) × nψ

equations that are generated doing l = 1, 2, ..., nθ − 2 and
m = 0, 1, 2, ..., nψ − 1. Our problem is reduced, then, to
solve the system of nθ × (

nψ + 2
)

equations generated by
Eqs. (9)–(13) to know the nθ × (

nψ + 2
)

values of f E
l,m that

the function adopts in the grid points, included the dummy
ones.

Finally, to have a probability being equal to 1 for find-
ing a particle with any orientation inside a solid angle 8π2,
the orientational distribution function that we obtain must be
normalized in the following way:

f (θ, ψ) = f 0 + f E (θ, ψ)

2π
∫ 2π

0

∫ π

0 ( f 0 + f E ) sin θ dθ dψ
. (14)

As f 0 is an arbitrary constant, we choose f 0 = 1 to make
the calculations.

C. Reduced electric linear dichroism

The electric reduced dichroism (RELD) is defined as

	A

A
= A// − A⊥

A
, (15)

where A// and A⊥ are the solution absorbances for linearly
polarized incident light according to the parallel and perpen-
dicular directions of the applied electric field, and A is the
absorbance of the solution for randomly oriented molecules.
The subscripts // and ⊥ will be kept for the rest of the work
with the same meaning used above.

In the present work, we will deduce an expression for
RELD of bent rod DNA fragments carrying out a similar treat-
ment to the one applied by Bertolotto et al.10 The procedure
is based on a work by Schellman.16 The author used quantum
theory of absorption to determine that the extinction coeffi-
cient and, therefore, the absorbance of a system of monomer
units with fixed orientation is proportional to |p · E|2, where
p is the monomer unit transition moment and E is the electric
field of the incident light. This result can be applied to system
of polymers without fixed orientation. Supposing that the in-
teraction among the different chromophore groups (monomer
units) in the polymer is weak enough as to omit the interaction
between them, the reduced electric dichroism results

	A

A
= 〈w//〉 − 〈w⊥〉

〈w〉 , (16)

where

w// =
N∑

i=1

|pi · E//|2, (17)

w⊥ =
N∑

i=1

|pi · E⊥|2, (18)

w =
N∑

i=1

|pi · E|2. (19)

The summatories in the above equations are over all the
chromophore groups in the BRM. The brackets in Eq. (16)
mean statistical average on all the orientations. w// and w⊥
must be averaged having into account that there is an applied
electric field while w must be averaged for random orienta-
tion. In the last case, it is the same to consider linearly polar-
ized light according to the parallel or perpendicular directions
to the applied electric field, therefore no subscript // or ⊥ has
been included in Eq. (19).

Being X ′′Y ′′ Z ′′ a system of coordinates with its Z ′′ axis
tangent at the arc in the point at which the chromophore group
i is located (Fig. 1). Transition moment pi , in this system, is
given by

pi = (p cos β, p sin β, 0 ), (20)

where β is the angle that projects pi on the axes X ′′ and Y ′′,
respectively. The component of pi according to Z ′′ is 0 be-
cause the electronic transitions are produced in the DNA basis
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FIG. 1. Bent rod molecule in the body coordinate system.

plane. In the body coordinate system, the transition moment
of the chromophore group i is

pi = (p cos β sin γi , p sin β, −p cos β sin γi ). (21)

We transform Eq. (21) to the laboratory coordinate
system with the Euler transformation matrix and develop
Eqs. (17)–(19) already mentioned in the coordinate sys-
tem. To do this, the angle γi is expressed as γi = −γ0 + (i
− 1/2)b/R, where b is the distance between two consecutive
chromophore groups in the BRM. The result is averaged in
the angle β with probability density 1/2π to consider that the
transition moments are randomly oriented in the basis plane.
Then, we applied the approximation cot (b/R) ∼= R/b in the
obtained expressions for w//, w⊥, and w , and replaced them
in Eq. (16). Thus, the RELD results

	A

A
= 3π

16γo

2π∫
0

π∫
0

[(−γo − 3Ao)(1 + 3 cos 2θ )

−6(−γo + Ao) cos 2ψ sin2 θ ] f (θ, ψ) sin θ dθ dψ,

(22)

where Ao = cos γo sin γo.
In Eq. (22) the statistical average in the angle φ has been

evaluated. This can be done because the orientational distri-
bution function is independent from this angle.

III. RESULTS AND DISCUSSION

First, we calculated the RELD of DNA fragments of
179 pb using the BRM model with a bending angle of
116o, an arc length of 608.6 Å and a diameter of 24 Å. The
hydrodynamic parameters used to characterize the fragments
were obtained applying the Hydro++ program by Garcia de
la Torre.17 To know the orientational distribution function we

TABLE I. Principal elements of [αE ] tensor.

2γ0 (deg) αE
x ′x ′ × 1017 (cm3) αE

y′ y′ × 1017 (cm3) αE
z′z′ × 1016 (cm3)

120 8.523 6.086 2.712
116 8.387 6.086 2.769
100 7.863 6.086 2.987
80 7.269 6.086 3.229
60 6.772 6.086 3.430

solved the Fokker–Planck equation through the FDM as was
described in Sec. II B using a grid with nθ = nψ = 75. The
electric polarizability constant used is K = 1 × 10−5 cm and
the value assigned to the electric charge is q = 0.16Q, where
Q is the DNA fragment charge when all the phosphate groups
are ionized. The electric polarizability values corresponding
to that assigned to K are shown in Table I for the different
bending angles that are used in the present work.

Figure 2 shows stationary RELD values as function of
the applied electric field for BRM with the above mentioned
parameters. Figure 2 also shows the individual contributions
to RELD for orientations only due to the induced electric
dipolar moment–electric field interaction and only to the
translation–rotation hydrodynamic coupling. In the first case,
the molecules tend to orientate in parallel direction to the elec-
tric field which gives us a negative dichroism component. In
the second case, the molecules tend to orientate in perpendic-
ular direction to the electric field and thus, the dichroism is
positive due to hydrodynamic coupling. This positive compo-
nent causes the inversion of the habitual negative sign in the
electric dichroism at low electric field. When the electric field
strength rises, the electric dichroism reaches negative values
associated to an intense component due to electric polariz-
ability. However, we observe that the contribution due to hy-
drodynamic coupling remains in all the electric field strength
range that is shown in Fig. 2. The results clearly show that
the contributions to RELD originated in the orientation due
to electric polarizability and hydrodynamic coupling are not
additive.

FIG. 2. Stationary RELD as function of the electric field strength of BRM
solution. (-�-) Orientation due to electric polarizability, (-◦-) orientation due
to hydrodynamic coupling, and (-	-) orientation due to electric polarizability
and hydrodynamic coupling combined.
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FIG. 3. Stationary RELD as a function of the electric field strength of BRM
with different bending angles. (-�-) 120o, (-◦-) 100o, (-	-) 80o, (-∇-) 60o.

In Fig. 3 we observe the effect of changing the BRM
bending angle on the electric dichroism. When the bending
angle rises, the positive component of the electric dichroism
associated to hydrodynamic coupling becomes more impor-
tant. Consistently, we observe that for higher bending angles
(100o and 120o) the electric dichroism at low electric field
is positive while for lower bending angles (60o and 80o) the
electric dichroism is negative in all the range of electric field
analyzed. The latter does not mean that it does not exist a
contribution due to translation–rotation coupling for bending
angles equal to 60o and 80o but that the mentioned contribu-
tion is not intense enough as to achieve the sign inversion in
the electro-optical signal.

In Fig. 4 we show the results obtained for RELD as
a function of the electric field for BRM with the same
orientational parameters, i.e., the same conformation, electric
charge, and electric polarizability, used by Antosiewicz and
Porschke12 together with the results obtained by them through
Brownian dynamic simulation. Figure 4 shows that the results

FIG. 4. Stationary RELD as function of the electric field strength of BRM
solution whit the same orientational parameters used by Porschke and
Antosiewicz.12 (-�-) Values obtained by Porschke and Antosiewicz12 with
Brownian dynamic simulation, (-◦-) values obtained by solving Fokker–
Planck equation with MDF.

FIG. 5. Stationary RELD as function of the electric field strength of BRM
solution whit the same orientational and optical parameters used by Porschke
and Antosiewicz12. (-�-) Values obtained by Porschke and Antosiewicz12

with Brownian dynamic simulation, (-◦-) values obtained solving Fokker–
Planck equation with MDF.

from both calculations qualitatively agree. However, there is
an apparently quantitative disagreement that will be explained
in the following lines. Although the orientation process is
the same in both calculations, the optical characterization
of BRM is not exactly equal. Antosiewicz and Porschke12

used an extinction coefficient tensor which elements in the
body coordinate system are εx ′ = 0.35507, εy′ = 0.4665,
and εz′ = 0.17842 (normalized to trace = 1). These authors
estimated these values based on a previous work.18 In the
present work, we characterized the optical properties of BRM
using the transition moment p of each chromophore group
[Eq. (20)]. Equivalently, we can describe the BRM with its
extinction coefficient, which is proportional to the sum of
pt p over all the chromophore groups, where the superscript t
means transpose. For our model, developed considering that
the BRM is a discrete chain of chromophore units, each of
which is described with a transition moment that is randomly
oriented in the corresponding basis plane, the elements of
extinction coefficient tensor are εx ′ = 0.36098, εy′ = 0.5,
and εz′ = 0.13901 (normalized to trace = 1). These values
are slightly different than those used by Antosiewicz and
Porschke.12 If we, besides using the same orientational
parameters than Antosiewicz and Porschke,12 use the same
extinction coefficient tensor, the results of both calculation
procedures really agree (Fig. 5). In this way, the study of the
orientation process here developed coincides with those of
Antosiewicz and Porschke,12 being the differences of RELD
values attributed to use of different optical parameters to
describe the BRM. Nowadays, the question about which
optical model is more adequate to describe DNA fragments
is difficult to answer. To conclude about this point, it would
be necessary to have experimental data of saturation electric
dichroism of short DNA fragments in aqueous solution.

The two curves shown in Fig. 5 represent the result to
the same problem studied by different methods: theory and
computational simulation. Besides differing in the method of
study both works differ in the reference system used to de-
scribe the physical problem. In the present work, the body
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FIG. 6. Stationary RELD as function of the electric field strength of BRM
solution with the following parameters: q = 0 and K = 1 × 10−5 cm. (-�-)
Values obtained by using the Boltzmann distribution function, (-◦-) values
obtained solving Fokker–Planck equation for the distribution function.

coordinate system is chosen with its origin in the center of
mass while Antosiewicz and Porschke12 use the origin in the
center of diffusion. It is convenient to make some considera-
tions in respect to the election of the origin of the body coor-
dinate system. For DNA fragments it is habitual to consider
that the centers of positive and negative charges agree with
the center of mass. This means that the molecules are consid-
ered nonpolar and that they lack permanent electric dipolar
moment. However, as the system is not neutral, there exists
a permanent electric moment, or permanent electric dipolar
quasimoment, non-null if we calculate it with respect to a sys-
tem with a different origin to the center of charge.19 In the
present work, the origin of the body coordinates system coin-
cides with the center of charge of the BRM and, therefore,
no electric moment has been considered. On the contrary,
Antosiewicz and Porschke12 use the body coordinate system
with origin in the center of diffusion and that is why they in-
clude this quasipermanent moment. The equivalence between
both descriptions was proved by Bertolotto.9 He found that
the contribution to RELD of translation–rotation coupling of
molecules with the origin of the body coordinate system in
their center of charge results, when the origin of the body co-
ordinate system coincides with the center of diffusion, in an
electric moment contribution that is balanced by the changing
of the translation–rotation coupling tensor due to the change
of the origin. The concordance between the results shown in
Fig. 5 corroborates the equivalence of both elections for the
origin of the body coordinate system.

The numerical calculation procedure for RELD imple-
mented in this work is a practical alternative to determine
molecular parameters fitting experimental curves of RELD
as a function of electric field strength. For this purpose, the
numerical calculation procedure here developed is more con-
venient that computational simulation because the first one is
less time consuming.

To estimate the error in the numeric calculation when we
solve the Fokker–Planck equation through FDM, we studied
the particular case in which q = 0. Under this circumstance,
the system is conservative and the distribution function in

FIG. 7. Absolute value of percent relative error between the results of RELD
shown in Fig. 5.

the stationary state is the Boltzmann distribution function.
Figure 6 shows that RELD curves calculated employing the
Boltzmann distribution function and the numerical solution
of the Fokker–Planck equation agree well enough in the
electric field strength range studied. The percent relative
error is shown in Fig. 7. This is maximum for the lower
electric field strength (1 kV/cm) and rapidly decreases when
the applied electric field rises. In this way, the error in the
numerical calculation is comparable to the experimental
errors.

The numeric calculation of RELD was also proved to re-
produce the values obtained through the analytic calculations
reported by Bertolotto et al.10 for q = 0 in the limit of low
electric fields (up to 2 kV/cm).

IV. CONCLUSIONS

In the present work, we corroborate that the translation–
rotation hydrodynamic coupling generate a relatively intense
positive component in the stationary electric dichroism of
bent rod DNA fragments. Although this positive component
is very important for low electric field because it explains
dichroism sign, its contribution is meaningful for a wide range
of electric field strengths. Results show that the hydrody-
namic coupling effect on the electric dichroism is higher when
the fragments’ symmetry diminishes. Some of the results ob-
tained here agree with those reported in the bibliography.
However, there is a difference between the present work and
the already existing ones. The latter can be classified in two
groups that differ in the study techniques. On the one hand,
there are the ones that apply Brownian dynamic simulation
and on the other hand there are the ones that apply theoretical
methods whose results are applicable in the limit of low elec-
tric field. With respect to the first group, the difference lies in
the use of completely different study techniques, theory, and
computational simulation, while with respect to the second
group, it agrees with the use of theoretical methods but it is
applicable to higher electric fields.

The calculation procedure for RELD proposed here re-
quires a little computational time. Thus, in the cases of DNA
fragments short enough to be considered as rigid particles, the
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mentioned procedure is a useful tool to determine molecular
parameters fitting experimental data of RELD as a function of
electric field strength.
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