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This paper describes a matrix formulation for the correlated hole theory within the framework of the
domain-averaged model in many electron systemssatoms, molecules, condensed matter, etc.d.
General relationships between this quantity and one-particle reduced density matrices for any
independent particle or correlated state functions are presented. This formulation turns out to be
suitable for computational purposes due to the straightforward introduction of cumulants of
two-particle reduced density matrices within the quantum field structure. Numerical calculations in
selected simple molecular systems have been performed in order to determine preliminary
correlated values for such a quantity. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1851976g

I. INTRODUCTION

The theory and features of Fermi holes were introduced
long time ago in solid state physics1,2 with the aim of de-
scribing the conduction model in a free electron gas. This
concept has been exported to atomic and molecular physics
in the development of theXa approach3 and the local density
functional theories.4 In Luken’s works5 the Fermi holes are
derived from the conditional probability of finding one elec-
tron of a pair provided the position of the second one in a
point of the space; a proper discussion of this procedure can
be found in those references. A generalization of this tool has
been reported taking into account topological atomic regions.
This approach helps to extend the concept of Fermi hole
depending on the position of an electron to domain-averaged
Fermi hole, in which the reference electron is not fixed in
any point but is allowed to move within a determined topo-
logical domainV.6–8 The use of Fermi holes has enabled to
carry out an appropriate description of electron pairing and
chemical bonds at the Hartree–Fock level of theory,9 as well
as subsequent applications in molecular structure.10 In these
studies, the practical determination of Fermi holes has only
required the use of the one-particle density; a brief and gen-
eral review of these methods can be found in Ref. 11.

The main aim of this work is to go beyond the Hartree–
Fock level of theory. For this purpose, a matrix formulation
of the correlated hole theory is described. Within this ap-
proach the relationships between correlated holes, one-
particle reduced density matricess1-RDMd sRef. 12d andcu-
mulantmatrices of two-particle reduced density matricess2-
RDMd sRefs. 13–16d are directly derived. This treatment
allows us to incorporate correlation effects in a natural way,

as well as to analyze the influence of many-body effects over
this quantity and over its applications.

The organization of this paper is as follows. Section II
reports the main features of domain-averaged Fermi holes for
Bader atomic regions and presents the matrix formulation of
this concept. The obtained algorithms allow us to derive an
explicit theoretical formulation for this quantity and to de-
scribe general relationships that provide accurate links be-
tween correlated holes, one-particle reduced density matri-
ces, and cumulant matrices at any level of approximation in
the state function. Section III is devoted to the numerical
calculations performed to check the consequences of intro-
ducing many body effects in studies of electronic distribu-
tion. A discussion of the obtained results is also carried out.
Finally, some remarks and conclusions are presented in the
Sec. IV.

II. THEORY

The physical idea of correlatedholes is based on the
concept of conditional probability, which expresses the frac-
tion of density excluded from a region of space because of
the presence of other electron in that region.5,6,11 We will
distinguish two types ofcorrelation: the exchange correla-
tion and theCoulomb correlation.17–20The formersso called
Fermi correlationd arises from the Pauli exclusion principle
and it is always present in the description of anN-electron
system even at the Hartree–Fock level. The Coulomb corre-
lation only is taken into account when correlated state func-
tions are used. Thus, in our terminology, the correlated holes
include both effects.

The conditional probability of finding one electron pro-
vided the position of a second one, reference electron, is
fixed in a pointrW2, irrespective of the spin of the particle, is
given by5,11
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PrW2
srW1d =

2 2GsrW1rW2urW1rW2d
1GsrW2urW2d

, s1d

where1GsrW2u rW2d is the probability of finding the second elec-
tron atrW2.

2GsrW1rW2u rW1rW2d stands for the joint probability or pair
probability density for first electron atrW1 and second electron
at rW2. However, for practical reasons it turns out to be more
convenient to normalize the conditional probabilityPrW2

srW1d to
sN−1d electrons so that we define

f rW2
srW1d = sN − 1dPrW2

srW1d s2d

or

f rW2
srW1d =

2 2DsrW1rW2urW1rW2d
1DsrW2urW2d

, s3d

whereNsN−1d 2GsrW1rW2u rW1rW2d=2DsrW1rW2u rW1rW2d stands for the di-
agonal element of the pair density or two-particle reduced
density matrixs2-RDMd with trs2Dd= s N

2
d, where s N

2
d is the

binomial coefficient and tr the mathematical operation trace.
N 1GsrW2u rW2d=1DsrW2u rW2d is the diagonal element of the one-
particle density matrixs1-RDMd which represents the par-
ticle density of the system. Hence, the normalization condi-
tion for this conditional probability is

E f rW2
srW1ddrW1 = N − 1. s4d

When the “source” electron is located in an atomic regionV
instead of in a single pointrW2, Eq. s3d can be written as9

fVsrW1d =

2E
V

2DsrW1rW2urW1rW2ddrW2

E
V

1DsrW2urW2ddrW2

, s5d

which also fulfills normalization conditions4d. This scenario
is useful to define the concept ofhole as the difference be-
tween the actual density minus the fraction which has been
considered as the conditional density, thus in the coordinate
formulation this quantity reads

hrW2
srW1d = 1DsrW1urW1d − f rW2

srW1d s6d

or, in the more useful topological approach,9

hVsrW1d = 1DsrW1urW1d − fVsrW1d. s7d

This expression is valid for any form of the regionV and,
consequently, domains of chemical interest as individual
atomic regions as well as regions corresponding to atom sets
si.e., functional groupsd, can be included within this formu-
lation. The integration ofhVsrW1d over the whole space leads
to

E hVsrW1ddrW1 = 1.

One can now consider the number of electrons in the region
V, NV, where

NV =E
V

1DsrW1urW1ddrW1, s8d

which leads to the definition ofdomain-averaged Fermi
hole9

gVsrW1d = NVhVsrW1d s9d

and consequently

E gVsrW1ddrW1 = NV.

Let us now to introduce the matrix notation in order to
derive relations between these quantities and the correspond-
ing reduced density matrices. Moreover, this matrix formu-
lation will clarify the physical meaning of these concepts.
Regarding the position variablesrW1 and rW2 as continuous in-
dices in the coordinate representation, it follows that the ma-
trix elements of the conditional density arefcf. Eq. s3dg

Fjl
ik =

2 2Djl
ik

1Dl
k , s10d

where we have generalized the elements of the density ma-
trices beyond the diagonal ones representing the densities
selectron and pair populationsd as well as off-diagonal com-
ponentsselectron and pair coherencesd. However, a physical
singularity arises from the cases in which1Dl

k=0skÞ ld in
Eq. s10d that stands for an incoherent relation between elec-
tron in thekth orbital and that oflth. Thus, in order to avoid
such a singularity we will only consider that the “probe”
electron is in thekth orbital and there is not interference
termssk ld. Hence, Eq.s10d reads

Fjk
ik =

2 2Djk
ik

1Dk
k . s11d

The “field” electron is expressed by the whole distribution
sdiagonal and off-diagonal termsd and the probe electron is
described from its diagonal terms and thus the hole can be
written by the matrix elements

Hjk
ik = 1Dj

i − Fjk
ik . s12d

The spin-free matrix elements of 2-RDM can be ex-
pressed, for any arbitrary type of state function, as13–16,20–22

2Djl
ik = 1

2
1Dj

i 1Dl
k − 1

4
1Dl

i 1Dj
k + 1

2L jl
ik, s13d

where L jl
ik stands for the matrix elements of the 2-RDM

cumulant.13–16,20–22As is well known, all the elements of this
cumulant matrix are zero in the particular case of a closed
shell Hartree–Fock state function. Consequently, in a general
case

Hjk
ik =

1Dk
i 1Dj

k

2 1Dk
k −

L jk
ik

1Dk
k , s14d

which allows us to define the matrix elements of the domain-
averaged correlated holes
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Q j
i ; o

k

Hjk
ik 1Dk

k s15d

or, alternatively,

Q j
i =

1

2o
k

1Dk
i 1Dj

k − o
k

L jk
ik = 1Dj

i s16d

and

Q j
i = o

k,l
S1

2
1Dl

i 1Dj
k − L jl

ikDdkl.

In this last equation, we will express the Kronecker delta
asdkl=SVkku llV, wherekku llV is the element of the overlap
matrix between the molecular orbitalsk andl over the Bader
regionV,7 which leads to the topological partitioning

Q j
i = o

V

Q j
i sVd, s17d

where

Q j
i sVd = o

k,l
S1

2
1Dl

i 1Dj
k − L jl

ikDkkullV, s18d

in which the trace of the weighted hole density is normalized
to N, sRefs. 9 and 10d

trsQd = N. s19d

According to Eq.s16d, this is equivalent to symmetric
topological partitioning of 1-RDM matrix elements

1Dj
i = o

V

Q j
i sVd. s20d

Following the structure of Eq.s18d the Q matrix for
correlated holes can be split into the two components21

Q j
i sVd = Qsexchd

j
i sVd + Qscumuld

j
i sVd, s21d

in which

Qsexchd
j
i sVd =

1

2o
kl

1Dl
i 1Dj

kkkullV

and

Qscumuld
j
i sVd = − o

kl

L jl
ikkkullV.

As has been above mentioned, the exchange contribution
Qsexchd

j
i sVd is always present for any state function while the

many-body effects, which are represented through the cumu-
lant term, only appear in the case of correlated state func-
tions. We can rigorously interpret the first term of Eq.s21d as
the exchange correlation while the last one describes the
Coulomb correlation and both together constitute the corre-
lated hole.

Let us make some comments on these results. On one
hand, Eq.s18d represents the most general expression for
correlated hole density matrix; it turns out to be valid for any
kind of state function, i.e., particle independent or correlated
models, and it also admits a general topological partitioning.
On the other hand, the matrix structure ofQ is an appropriate
tool for computational purposes since it is easy to express

this matrix into bonding termsspairing or exchanged and
many-body effect termssnonpairing or unpairedd through the
2-RDM cumulant density. It is also worthwhile to note that
according to Eqs.s16d–s20d theQsVd matrix is the1D matrix
defined in the regionV, that is,1DsVd and consequently the
eigenvectors ofQsVd matrix may be interpreted as natural
orbitals associated with the corresponding region. This con-
stitutes a central point in this work since it reveals the nature
of the correlated holes expressed by theQsVd or 1DsVd ma-
trix.

III. COMPUTATIONAL DETAILS, RESULTS,
AND DISCUSSION

Numerical determinations have been carried out in order
to test the above methodology evaluating several quantities
of chemical and structural interest from correlated holes. For
such a goal the series of hydrides of the second-row ele-
ments, in singlet ground states, has been chosen. Two types
of calculations have been performed: at closed shell Hartree–
Fock level and at correlated one so that the influence of the
correlation can be analyzed. Configuration interactionsCId
state functions in their single and double expansion approxi-
mation sSDCId have been used for all systems. The calcula-
tions were performed using aGAMESS98code23 from which
first- and second-order reduced density matrices were gener-
ated whilePROAIM code24 was used to compute overlap ma-
trices over atomic basinski u jlV. In all cases, we have em-
ployed the 6-31G** basis sets and all molecular geometries
were optimized for these basis sets within SDCI used
scheme. The Hartree–Fock calculations shared identical mo-
lecular geometries than those obtained from CI optimiza-
tions.

The diagonalization of theQ j
i sVd matrix, written in Eq.

s18d, for a given Bader topological regionV, leads to the
determination of its eigenvalues and eigenvectors as well as
their degeneracy. A wide and useful chemical information
can be extracted from these quantities. Although the number
of obtained eigenvalues is identical to the number of basis
functions used, in practise, most of them turn out to be zero
and consequently we can express theQsVd matrix as

QsVd = o
I

nonzero

nIsVduIlkI u, s22d

in which nIsVd and uIl are the nonzero eigenvalues and their
corresponding eigenvectors, respectively. Hence, we can de-
termine the number of electronsNV in the regionV approxi-
mately as

NV < o
I

nonzero

nIsVd. s23d

A further isopycnic localization transformation is performed
for the eigenvectorssorbitalsd and the eigenvaluesspopula-
tionsd of QsVd matrix to properly analyze the character and
the symmetries of these orbitals.25 Results ofNV for different
Bader regions and the approximate values of the nonzero
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eigenvaluesnI selectronic populationsd as well as their de-
generacy have been collected in Tables I and II. The degen-
eracy of each eigenvector also provides structural informa-
tion since it allows us to know the number of identical
bonding features within the regionV and consequently it
enables to assign electrons to different bondingssor to iden-
tify them as core electronsd.

The physical meaning of theQsVd matrix reported in
Sec. II allows us to interpret its eigenvectors as natural or-
bitals of 1DsVd. Therefore, in chemical language the eigen-
vectors are identified as inner shells, lone pairs, inner bonds
inside the regionV, andbroken bonds, that is, those describ-

ing the bondings of theV region with the remaining regions
of the system. Similarly, the corresponding eigenvalues are
the electron population of such orbitals. In the present dis-
cussion we will focus the attention on the influence of many-
body or correlation effects on such quantities describing the
electron distribution, in comparison with results arising from
Hartree–Fock state functions.

Another quantity that is described in these tables is the
valenceVV associated with theV region of an atomsatomic
valenced or with the V region of an atom groupsgroup va-
lenced, which according to our previous studies21 has been
determined as

TABLE I. Calculated eigenvaluesselectronic populationsd and eigenvectorssstatesd of domain-averaged corre-
lated holes for molecular systems in the SDCI treatment.

System DomainsVd NV Eigenvalue Degeneracy Assignment VV

BeH2 Be 2.275 1.998 1 1sBe 0.548
0.143 2 sBeH

H 1.862 1.349 1 sBeH 0.470
BeH 4.138 1.993 1 1sBe 0.497

1.491 1 sBeH sinner Hd
0.618 1 sBeH souter Hd

BH3 B 2.937 1.995 1 1sB 1.587
0.310 3 sBH

H 1.688 1.224 1 sBH 0.878
BH 4.625 1.996 1 1sB 1.453

1.520 1 sBH sinner Hd
0.568 2 sBH souter Hd

CH4 C 5.858 2.000 1 1sC 3.987
0.950 4 sCH

H 1.032 0.747 1 sCH 1.126
CH 6.889 2.000 1 1sC 3.224

1.673 1 sCH sinner Hd
1.000 3 sCH souter Hd

NH3 N 8.007 2.000 1 1sN 2.855
1.814 1 Lone pair
1.360 3 sNH

H 0.668 0.506 1 sNH 0.959
NH 8.675 2.000 1 1sN 2.082

1.867 1 Lone pair
1.838 1 sNH sinner Hd
1.431 2 sNH souter Hd

H2O O 9.147 2.000 1 1sO 1.590
1.947 1 s-lone pair
1.883 1 p-lone pair
1.605 2 sOH

H 0.427 0.284 1 sOH 0.699
OH 9.573 2.000 1 1sO 0.997

1.961 1 s-lone pair
1.933 1 p-lone pair
1.883 1 sOH sinner Hd
1.693 1 sOH souter Hd

HF F 9.727 2.000 1 1sF 0.733
1.974 2 p-lone pair
1.945 1 s-lone pair
1.758 1 sFH

H 0.273 0.222 1 sFH 0.479
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VV = o
V8ÞV

o
i jkl

1Dj
i 1Dl

kki ullVkku jlV8

+ o
i j

s2 1Dj
i − o

k

1Dk
i 1Dj

kdki u jlV, s24d

in which the first term refers to the bondings which presents
a determined regionV with other regionsV8 sthe bonding
valenced and the last one means the remaining bonding ca-
pacity sor free valenced of the regionV, which is described
in terms of the elements of the effectively unpaired electron
density matrix, that is, 21Dj

i −Sk
1Dk

i 1Dj
k.26

According to the results reported in Tables I and II, the
correlated and Hartree–Fock approaches lead to similar de-
scriptions of the electron distributions in the studied systems.

However, it is possible to detect several correlation effects
that deserve to be commented. A survey of theNV values
reported in Table Iscalculated within correlated hole ap-
proachd and Table II sobtained at the Hartree–Fock leveld
shows that both treatments predict the ionic character of
some compounds of the series according to the electronega-
tivity of the central atom. In the BeH2 and BH3 hydrides the
hydrogen atoms have a negative character while in the NH3,
H2O, and HF molecules this character is positivesthe CH4

case is an intermediate situationd. In relation withQsVd ma-
trix eigenvalues, it is interesting to point out that the
Hartree–Fock procedure provides higher values for the ei-
genvalues corresponding to bondings than the correlated one
in all the molecular fragments describedsthe s inner values

TABLE II. Calculated eigenvaluesselectronic populationsd and eigenvectorssstatesd of domain-averaged Fermi
holes for molecular systems in the HF treatment.

System DomainsVd NV Eigenvalue Degeneracy Assignment VV

BeH2 Be 2.252 1.990 1 1sBe 0.507
0.131 2 sBeH

H 1.873 1.844 1 sBeH 0.344
BeH 4.125 1.995 1 1sBe 0.344

1.975 1 sBeH sinner Hd
0.155 1 sBeH souter Hd

BH3 B 2.840 1.996 1 1sB 1.447
0.282 3 sBH

H 1.720 1.626 1 sBH 0.791
BH 4.560 1.997 1 1sB 1.274

1.908 1 sBH sinner Hd
0.328 2 sBH souter Hd

CH4 C 5.758 2.000 1 1sC 3.920
0.939 4 sCH

H 1.060 1.001 1 sCH 1.116
CH 6.818 2.000 1 1sC 3.076

1.943 1 sCH sinner Hd
0.958 3 sCH souter Hd

NH3 N 8.093 2.000 1 1sN 2.627
1.957 1 Lone pair
1.379 3 sNH

H 0.636 0.601 1 sNH 0.910
NH 8.729 2.000 1 1sN 1.785

1.980 1 sNH sinner Hd
1.971 1 Lone pair
1.389 2 sNH souter Hd

H2O O 9.225 2.000 1 1sO 1.265
1.992 1 s-lone pair
1.981 1 p-lone pair
1.626 2 sOH

H 0.388 0.369 1 sOH 0.639
OH 9.612 2.000 1 1sO 0.639

1.996 2 s-lone pair,sOH sinner Hd
1.991 1 p-lone pair
1.631 1 sOH souter Hd

HF F 9.751 2.000 1 1sF 0.440
1.998 3 p-lone pair,s-lone pair
1.762 1 sFH

H 0.249 0.239 1 sFH 0.440
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for BeH, BH, CH, NH, and OHd. Our interpretation of these
results is that the Hartree–Fock approach describes a bond-
ing as an even sharing of a pair of electrons by two centers
and consequently the eigenvalues corresponding to bondings
are closer to 2.0. However, lower bonding eigenvalues
should be interpreted as an uneven sharing of the electron
pair, pointing out the different electronegativities of the cen-
ters involved in bondings. In this sense, it must also be men-
tioned that, as the electronegativity of theX atom sX
=Be, . . . ,Od increases, the eigenvalue associated with outer
or brokensXH bonding becomes closer to the corresponding
innersXH one, i.e., less electron density involved in bonding
is transferred to regions which does not contain the atomX.
This effect is more evident is the SDCI treatment than in the
Hartrre–Fock one. Another interesting feature is that, in the
systems H2O and HF, the use of correlated state functions
splits the degeneracy which appears in the Hartree–Fock re-
sults. As can be observed, within these molecules, the topo-
logical regions corresponding to fragments OH and F present
degenerate eigenvalues fors-lone pair andsOH and for
p-lone pair ands-lone pair, respectively, at the Hartree–
Fock level. These degeneracies are removed in the correlated
hole treatment, providing a more realistic representation of
those systems.

The total valence valuesVV collected in the tables pro-
vide some addictional information about the influence of cor-
relation on the molecular description. At correlated level the
values ofVV turn out to be higher than the corresponding
Hartree–Fock ones, particularly in the H2O and HF mol-
ecules where the values 0.639 and 0.440 reported for the OH
and F fragmentssTable IId are too low. Our interpretation of
this systematic behavior is that the Hartree–Fock model can-
not properly describe the free valence of a determined re-
gion, due to the idempotency of the 1-RDM. This property
causes that all the unpaired electron matrix elements 21Dj

i

−Sk
1Dk

i 1Dj
k, which appear in Eq.s24d, are zero for closed

shell systems in the Hartree–Fock treatment so that their free
valence is null. Consequently, the total valenceVV is not
appropriately evaluated within that procedure, which only
takes into account the contribution related with bondings
with other atoms or atomic groups, that is the so called bond-
ing valences. However, in the correlated treatment the con-
tribution to free valences arising from the partial split of
electron pairs, that appear even in closed shell systems, is
properly represented by that unpaired electron matrix.26

IV. FINAL REMARKS AND CONCLUSIONS

This report has performed the extension of the Fermi
hole concept at correlated level using a matrix formulation
based on lower-order reduced density matrices and cumu-
lants. This treatment allows us to evaluate the influence of
the correlation on the description of selected topological re-
gions within a determined molecule. One of the achieve-
ments of this paper is the formulation of the partitioning of
the 1-RDM intoQsVd matrices according to Bader topologi-
cal regions. Moreover, results at correlated level within this

scheme have been presented for the first time. The prelimi-
nary results found for closed shell systems show the defi-
ciencies of the Hartree–Fock model since it predicts an ex-
cess of degenerate situations. Furthermore, the correlated
results provide a higher resolution picture of the molecular
structure showing that the Hartree–Fock numerical determi-
nations leads to representations of bondings and valences
which turn out to be too simple in some cases, while the
description is improved in the correlated treatment. At this
moment we are applying the correlated approach to systems
with nonconventional bonding patterns. We are also studying
the basis dependence over the results derived from the cor-
related hole approach. These aspects will be subject of forth-
coming papers.
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