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This work describes simple decompositions of the energy of molecular systems according to
schemes that partition the three-dimensional space. The components of those decompositions
depend on one and two atomic domains thus providing a meaningful chemical information about the
nature of different bondings among the atoms which compose the system. Our algorithms can be
applied at any level of theoryscorrelated or uncorrelated wave functionsd. The results reported here,
obtained at the Hartree–Fock level in selected molecules, show a good agreement with the chemical
picture of molecules and require a low computational cost in comparison with other previously
reported decompositions. ©2005 American Institute of Physics. fDOI: 10.1063/1.1850906g

I. INTRODUCTION

The techniques of population analysis have proven to be
powerful devices for the insight of molecular structures and
chemical bondings. The use of these treatments has allowed
one to carry out evaluations of classical chemical quantities
as atomic charges, bond indices, valences, free valence indi-
ces, etc., in a satisfactory way, which turns out to be ex-
tremely useful for chemists. As is well known, the studies of
population analysis are based on the partitioning of a certain
molecular property, usually described by means of reduced
density matrices, into contributions associated with each
atom or group of atoms in the molecule. Hence, these pro-
cedures constitute an appropriate connection between the
quantum mechanics and the intuitive chemical concepts. The
most popular techniques in population analysis are those of
Mulliken type,1 in which the partitioning is carried out in the
Hilbert space spanned by the basis function set, and those of
topological type,2 in which the ordinary physical space is
decomposed into atomic domains.

The study of bond orders provides an important chemi-
cal information and consequently the numerical determina-
tion of these quantities from different population analysis
methods has aroused the interest of many authors.3–11Similar
to the evaluation of bond orders, the study of the decompo-
sition of the total molecular energy into one- and two-center
contributions has also been tackled. This kind of partitioning
presents yet a greater interest since an appropriate partition-
ing scheme may enable one to identify the intramolecular
bondings and to perform calculations of the bonding
strengths, provided that the two-center components are re-
lated to the interactions between two atoms. Recently, sev-
eral works related with energy partitionings have been re-
ported as within the Mulliken scheme12,13 as within methods

that partition the three-dimensional space.14–17Although the
last procedures have been regarded as more realistic to de-
scribe chemical features, the approaches proposed so far
have been extremely CPU demanding.15,16 The main aim of
this paper is to describe simpler partitioning schemes, which
exactly decompose the molecular energy into one- and two-
domain terms. As the former partitionings,16 our treatments
allow us to draw results in the chemical scale but require a
lower computational expense. Although the framework of
our formulas can be developed at any level of theoryscorre-
lated and uncorrelated wave functionsd, we have limited our
calculations, performed in several molecules, to the Hartree–
Fock fself-consistent fieldsSCFdg case to establish an appro-
priate comparison with the results derived from previously
reported methods.

The paper is organized as follows. Section II describes
the derivation of an algorithm which exactly decomposes the
energy of a molecule, according to a partitioning of the real
space. Two different ways have been selected to develop this
algorithm: in the first procedure the real space is decomposed
into disjunct atomic domains according to Bader’s atoms in
moleculessAIM d theory; in the second procedure a fuzzy
atom approach16,18–20is used, in which the space is decom-
posed into overlapping atomic domains. Section III reports
the computational details and the results found in selected
molecules as well as the discussion of these results. Finally,
we have dedicated Sec. IV to point out the remarks and
conclusions of this work.

II. THE ENERGY PARTITIONING

We will refer to anN-electron molecule with clamped
nuclei; the nonrelativistic electronic energy corresponding to
a determined state of this system is
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in which i , j ,k, l , . . . areorbital functions of an orthonormal
basis set—e.g., SCF molecular orbitals, natural orbitals,
etc.,—A,B, . . . are thenuclei of the molecule,RAB the dis-
tance between those nulcei andZA,ZB, . . . are thecorrespond-
ing nuclear charges.Tj

i mean the matrix elements of the ki-
netic energy operators−1

2¹2d. AVj
i are the matrix elements

corresponding to thes−ZA/ rAd operator andBjl
ik=kik u jl l are

the standard two-electron integrals in thes12u12d convention.
1Dj

i and 2Djl
ik denote the matrix elements of the spin-free

first-order and second-order reduced density matrices, re-
spectively.

In order to decompose the energy expressed in Eq.s1d,
let us rewrite this equation as
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The Kronecker deltas in Eq.s2d can be formulated in
different manner according to the selected partitioning of the
real space. These formulations lead to treatments which are
developed in the next two sections.

A. AIM treatment

As is well known, Bader’s AIM theory divides the whole
physical space into disjunct atomic domainsVA, which are
defined by surfaces having zero flux in the gradient vector
field of the electron density.2 In this treatment each domain
VA is generally associated with a determined nucleusA.

Following the procedure used in population analysis
studies to determine bond orders,10,21 let us express the Kro-
necker deltas as

di j = ki u jl = o
VA

ki u jlVA
, s3d

in which ki u jl are the standard overlap integralsswhere the
integration is performed over the total spaced andki u jlVA

are
the overlap integrals over Bader atomic domainsVA swhere
the integration is limited to this kind of domainsd.

The substitution of the Kronecker deltas in Eq.s2d ac-
cording to formulas3d leads to a topological partitioning of
the electronic energyE into terms of monoatomic and di-
atomic character, as a function of nucleiA,B, . . . andtheir
corresponding atomic domainsVA,VB, . . ., sothat

E = o
VA

EVA
+ o
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EVAVB
, s4d

in which
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The partitioning of the electronic energy expressed in
Eq. s4d is exact and valid at any level of theory. Its use only
needs the standard one-electron and two-electron integrals,
that is, the matrix elementsTj

i , AVj
i , Bjl

ik, the overlap integrals
ki u jlVA

, as well as the elements of the second-order reduced
density matrix2Djl

ik. According to previous interpretations,17

the overlap integrals over the atomic regionVA in Eq. s5d act
as weight factors over the one- and two-electron terms thus
providing the one-center energy corresponding to that region.
Similarly, two-center contributions in Eq.s6d are obtained
through the corresponding terms weighted by overlap inte-
grals over one or two different atomic regionsVA and VB.
The total molecular energy also contains the internuclear re-
pulsions which are, obviously, of diatomic nature and conse-
quently the corresponding term is also included in Eq.s6d.

B. Fuzzy atom treatment

The second procedure to partition the energyE in Eq. s2d
is based on the so-called fuzzy atom approach.16,18–20Ac-
cording to this method, a non-negative continuous weight
function wAsr d is introduced for each atomA. These weight
functions measure the degree in which a given point of space
r is considered to belong to atomA, fulfilling the conditions

wAsr d ù 0 s7d

and

o
A

wAsr d ; 1. s8d

Consequently, in this approach there are not any sharp
boundaries between the atomic domains but a continuous
transition from one to another.

Using these tools, the Kronecker deltas can be expressed
as

di j = ki u jl = o
A

ki uwAsr du jl s9d

which requires to carry out numerical integrations for evalu-
ating theki uwAsr du jl integrals. The introduction of these del-
tas in Eq.s2d leads to

E = o
A

EA + o
A,B

EAB, s10d

in which
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where the overlap integrals act in similar way to the parti-
tioning reported in preceding section.

As is well known, the AIM treatment could be regarded
as a limit case of the fuzzy atom formalism in which the
weight functionswAsr d are zero or one. However, we have
developed both formulations in an independent way, in order
to be able to compare numerical results arising from both
versions. The closed shell SCF formulas of these treatments
can straightforwardly be derived expressing the second-order
reduced density matrix elements in Eqs.s4d and s10d by the
well-known relationship

2Djl
ik = 1

2
1Dj

i 1Dl
k − 1

4
1Dl

i 1Dj
k.

According to the above equations, in our proposals the
one- and two-electron integrals have to be evaluated in the
usual waysover all spaced and only the overlap integrals
ki u jlVA

or ki uwAu jl have to be calculated over the Bader do-
mains or through the weight functions, respectively. Other
partitionings related to the AIM decomposition of the physi-
cal space previously reported15,17 use the one-electron inte-
gralsTj

i andAVj
i and two-electron onesBjl

ik calculated over the
atomic domainsVA instead of the whole space. Although the
computational effort of two-electron integrals over arbitrary
regions of the space may be reduced using some reported
methods,22,23it still requires to perform large-scale numerical
integrations. Similarly, a recently reported treatment in terms
of the fuzzy atom scheme16 is based on the use of weight
functionswA to calculate all type of integralssthe one- and
two-electron onesd which obviously may be only carried out
in a numerical way, increasing also the computational cost.

The formulation of Kronecker deltas and their decompo-
sitions in terms of the matrix elements of the atomic overlap
integrals play a fundamental role within the framework of
our proposals. As mentioned in Secs. II A and II B, these
matrix elements act as proportionality factors in the assign-
ment of energy to the different nuclei and nucleus pairs, thus
providing natural partitionings of the total energy in terms of
energy components of different physical nature, that is, one-
or two-center character terms. Similar treatments have suc-
cessfully been used both in population analysis studies10,21

and AIM energy decompositions.17 Another property which
deserves to be commented is the invariance of our expres-
sions under a unitary transformation. In fact, each term
within our partitionings is a trace, in mathematical sense, of
product of matrices that transform according to the general
rule. Hence, each of these terms turn out to be invariant
under this kind of transformations. This property has been

checked computationally proving the theoretical predictions
in our both topological and fuzzy atom procedures.

In the following section we report results derived from
the two above described treatments as well as a discussion on
their agreement with the chemical features of the studied
molecular systems. In that section we also point out that each
of these simple treatments provides similar or even better
results than the corresponding previously reported energy
partitioning developed within the same decomposition of the
physical spacesAIM type15 or fuzzy atom type16d requiring
significant lower computational cost.

III. COMPUTATIONAL DETAILS, RESULTS, AND
DISCUSSION

As mentioned in the Introduction, our energy decompo-
sitions can be applied at any level of theory although the
numerical determinations performed in this paper have been
limited to the SCF case in order to be able to compare our
results with the previous reported ones. Hence, our calcula-
tions have been carried out in the SCF molecular orbital
basis sets. The computational implementation of our parti-
tionings requires the calculation of the one-electron integrals
Tj

i andAVj
i and the two-electron integralsBjl

ik. These integrals,
as well as the SCF molecular orbitals, have been computed
using a modified version ofGAMESS program,24 while the
overlap integrals calculated over the Bader regionski u jlVA
have been obtained from a modifiedGAUSSIAN94code.25 The
values of weight functionswA and the numerical integration
of the expressionski uwAu jl have been determined with the
code cited in Ref. 26 which follows a Becke integration
scheme27 based on the weight functions originally proposed
by this author. These weight functions, which satisfy Eqs.s7d
and s8d, depend on the empirical Slater–Bragg atomic radii
of the atoms composing the molecule under study. According
to the Ref. 16 we have increased the radius of hydrogen to
the value 0.35 Å but for fluorine atom we have used its co-
valent radius instead of the average of covalent and ionic
radii suggested by those authors. The reported results have
been obtained with the basis sets 6-31G and 6-31Gsd,pd. For
all systems, the geometries were optimized for the corre-
sponding basis set within SCF wave functions.

Table I gathers the results obtained within the SCF ap-
proximation, with the basis set 6-31G, for simple systems
sH2d, hydrocarbons with different bond orderssCH4, C2H6,
C6H6, C2H4, and C2H2d and some second-row hydrides
sNH3, H2O, and HFd. The results reported in the third and
fourth columns correspond to one- and two-center energy
components derived from the partitionings described by Eqs.
s4d sAIM schemed and s10d sfuzzy atom schemed, respec-
tively. All these two-center components refer to classical
bondings and are negative; other two-center values are low
and have not been included. Although it is not obvious to
establish a simple correspondence between the dissociation
energies and the results derived from the energy partitionings
proposed in this work or in other reported treatments,15–17we
have included in the fifth column the experimental values28

in order to take into account a reference. Similarly, as we are
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dealing with procedures that partition the three-dimensional
space the concept of “atom” is not well defined and conse-
quently the comparisons between monoatomic energies and
energies of isolated atoms are not direct. For the sake of
comparison, the last column reports results calculated ac-
cording to the alternative energy partitioning within the
fuzzy atom approach reported in Ref. 16, in which the one-
and two-electron integrals are evaluated by numerical inte-
grations through the use of the weight functionswA. These
results have been calculated with the code picked up in Ref.
29, where the kinetic energy has been dealt providing only
one-center energy components. Another treatment assigning
diatomic components from the kinetic energy pointed out in
Ref. 16 has not been considered in this work.

The values described in columns three and four of
Table I show that the energies corresponding to theA–H
bondingssA=H, C, N, O, Fd are closer to the experimental
ones in our fuzzy atom treatmentsEb valuesd, except in the

simpler systemssH2, CH4, and C2H6d in which our AIM
proceduresEa valuesd presents a better approximation. It
means that probably the fuzzy atom method is more appro-
priate to describe the polarity of theA–H bondings. In rela-
tion with the energies of the C–C bondings, both approaches
fulfill the tendency of the series C2H6, C6H6, C2H4, and
C2H2, according to the bond orderssmultiplicityd but the
values obtained within the AIM treatment are closer to the
reference ones in column five. A comparison between the
values obtained from our fuzzy atom treatmentsEb energiesd
and those obtained from the fuzzy atom approach in previous
report, using the “simple” energy decomposition scheme,sEd

energiesd shows that our values are considerably closer to the
experimental ones. Obviously, the computational cost of our
fuzzy atom treatment is much lower, since fewer number of
numerical integrations are required. Moreover, the error of
the overall integrationsthe difference between the sum of all

TABLE I. Calculated one- and two-center energysa.u.d components for selected molecules in the 6-31G basis
set at SCF level.

System Domain/domain pair Ea Eb Eexpt.
c Ed

H2 H −0.4770 −0.4632 −0.4509
H–H −0.1728 −0.2004 −0.1661 −0.2251

CH4 C −37.5048 −37.3723 −37.3868
H −0.5296 −0.5209 −0.4248

C–H −0.1464 −0.1911 −0.1657 −0.2680

C2H6 sD3dd C −37.5345 −37.3408 −37.3339
H −0.5392 −0.5246 −0.4180

C–C −0.1100 −0.3543 −0.1402 −0.3779
C–H −0.1476 −0.1839 −0.1562 −0.2613

C6H6 C −37.6294 −37.3621 −37.2812
H −0.5252 −0.5002 −0.4165

C–C −0.1559 −0.4068 −0.4654
C–H −0.1363 −0.1711 −0.1756 −0.2572

C2H4 C −37.5677 −37.3653 −37.3237
H −0.5260 −0.5099 −0.4204

C–C −0.2281 −0.5308 −0.2741 −0.5845
C–H −0.1407 −0.1806 −0.1721 −0.2625

C2H2 C −37.5907 −37.3902 −37.3240
H −0.5079 −0.4892 −0.4232

C–C −0.3261 −0.6519 −0.3665 −0.7624
C–H −0.1264 −0.1733 −0.1992 −0.2608

NH3 N −53.9806 −53.9581 −53.9456
H −0.5779 −0.5600 −0.4264

N–H −0.2117 −0.1855 −0.1753 −0.3095

H2O O −74.5461 −74.4846 −74.4522
H −0.5401 −0.6017 −0.4236

O–H −0.2406 −0.1552 −0.1896 −0.3392

HF F −99.3549 −99.1622 −99.3447
H −0.4398 −0.6197 −0.3679

F–H −0.1887 −0.2016 −0.2166 −0.2728

aAIM approachfEq. s4dg.
bFuzzy atom approachfEq. s10dg.
cExperimental energy.
dCalculated with a modified version of the code available in Ref. 29.
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one- and two-center computed contributions and the exact
SCF energyd is negligible in our treatment while is of the
order of 1–5 Kcal/mol in the resultsEd.

Table II collects results obtained with identical treat-
ments to those mentioned in Table I but using the wider basis
set 6-31Gsd,pd. No significant changes have been found in
the behavior of our two methods in relation with theA–H
and C–C bondings from what has been commented above.
The comparison between values of energiesEb and Ed ssee
Table I of Ref. 16d arising from both fuzzy atom procedures
also deserves similar comments to those reported in Table I.
However, the description of acetylene molecule in the AIM
approach presents a non-nuclear attractorsidentified as a
dummy atom with zero nuclear charge within this approach
and denoted asX in Table IId, which is in agreement with
previously reported results.15 These authors have used a
treatment within the AIM framework which requires the
evaluation of integrals which are extremely costly from a
computational point of view. However, the two-center energy
values derived from Eq.s6d are closer to the experimental
ones than those described in Ref. 15 and the results related
with the non-nuclear attractor are similar in both treatments.
A survey to Tables I and II shows that the influence of the
basis set in the treatments proposed in this work do not
change the qualitative description of chemical features in the

studied compounds and the quantitative differences between
the energies of the fragments derived from both basis sets are
similar to those obtained in previous studies.

IV. CONCLUDING REMARKS

In conclusion, in this work we have proposed a scheme
to perform decompositions of the electronic molecular en-
ergy at any level of theoryscorrelated or uncorrelated oned
according to partitionings of the three-dimensional space.
This scheme can be adapted to any decomposition of the
physical space through an appropriate formulation of the
overlap integrals. Two methods have been developed provid-
ing suitable mathematical algorithms in which the usual one-
electron and two-electron integrals are calculated over the
whole space. The first one belongs to the AIM approach and
carries out the calculation of overlap integrals according to
that technique. In the second method the overlap integrals
are calculated through a fuzzy atom procedure. The results
arising from both methods provide an adequate description
of the chemical features of the studied molecules and are
comparable with those obtained in previous reported studies
that require a much higher computational effort.

TABLE II. Calculated one- and two-center energysa.u.d components for selected molecules in the
6-31Gsd,pd basis set at SCF level.

System Domain/domain pair Ea Eb Eexpt.
c Ed

H2 H −0.5046 −0.4810 −0.4477
H–H −0.1222 −0.1694 −0.1661 −0.2360

CH4 C −37.5734 −37.4273 −37.3747
H −0.5319 −0.5023 −0.4222

C–H −0.1306 −0.2000 −0.1657 −0.2784

C2H6 sD3dd C −37.5611 −37.3929 −37.3201
H −0.5332 −0.4999 −0.4161

C–C −0.1517 −0.3381 −0.1402 −0.3912
C–H −0.1352 −0.1939 −0.1562 −0.2722

C6H6 C −37.6309 −37.4138 −37.2563
H −0.5314 −0.4811 −0.4128

C–C −0.1695 −0.3589 −0.4803
C–H −0.1157 −0.1805 −0.1756 −0.2677

C2H4 C −37.6160 −37.4291 −37.3108
H −0.5259 −0.4892 −0.4172

C–C −0.2176 −0.4721 −0.2741 −0.6102
C–H −0.1225 −0.1884 −0.1721 −0.2736

C2H2 C −37.3601 −37.4476 −37.3109
H −0.4681 −0.4526 −0.4175
X 1.9010

C–C 0.7505 −0.6005 −0.3665 −0.8078
C–H −0.1061 −0.2009 −0.1992 −0.2707
C–X −1.7562
X–H −0.0839

aAIM approachfEq. s4dg.
bFuzzy atom approachfEq. s10dg.
cExperimental energy.
dReported in Table I of Ref. 16.
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