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Relativistic effects on the nuclear magnetic shielding tensor
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A new approach for calculating relativistic corrections to the nuclear magnetic shieldings is
presented. Starting from a full relativistic second order perturbation theory expression a
two-component formalism is constructed by transforming matrix elements using the elimination of
small component scheme and separating out the contributions from the no-virtual pair and the
virtual pair part of the second order corrections to the energy. In this way we avoid a strong
simplification used previously in the literature. We arrive at final expressions for the relativistic
corrections which are equivalent to those of Fu&tal.[J. Chem Phys105 3175(1996] and at

some other additional terms correcting both the paramagnetic and the diamagnetic part of the
nuclear magnetic shielding. Results for some relativistic corrections to the shieldings of the heavy
and light nuclei in HX and CEX (X=Br,I) at both random phase and second order polarization
propagator approach levels are given. 2003 American Institute of Physics.

[DOI: 10.1063/1.1525808

I. INTRODUCTION energy p?) operators. Nakatsugt al.” had previously de-

Relativistic effects on molecular properties were shownfived explicit expressions for nuclear magnetic shieldings
to be relevant from the earliest time of molecular quantumithin a finite perturbation theor§=PT) approach, where the
mechanics. In particular for properties which dependMC term did not appear. This last scheme is not gauge-
strongly on the electronic density in regions close to theinvariant.
nuclei, like nuclear magnetic resonan@®MR) parameters. In a four-component context all relativistic corrections
In the last few years an ever increasing number of new forare included per se. A few years ago a full-relativistic scheme
malisms and calculations for the evaluation of relativisticdeveloped to calculate magnetic molecular properties within
effects on molecular properties from four-, two-, or one-response theory was presented by Aucar and Oddershede.
component response schemes or perturbation theory afheir relativistic polarization propagator approa@RPPA
proaches have been publishied: It was shown that the in- was shown to be a natural extension of its nonrelativistic
clusion of such effects in the calculation of some molecularcounterpart. The nonrelativistic limit of a given molecular
properties is mandatory when one wants to reproduce expefroperty is reached by considering the corresponding limit of
mental trend$:™ the property matrix elements and the principal propagator

Relativistic spin—orbitSO) effects on magnetic molecu- separately. They explicitly applied this procedure to the mag-

lar properties were thought to be the most important onegetic field interaction operator. The four-component calcula-
until recent calculations of Visschet al.” Numerical results  1ions of Visscheet al34 make use of this formalism within a

for nuclear magnetic shieldings obtained by four-component;, 4 gauge origin approach.
calculations and their counterpart from Rayleigh—
Schralinger perturbation theoryRSPT only match each

other for the shielding of heavy atoms X in HX compounds
when a new term different from SO is included. The so

called mass-correctiofMC) term was proposed for the first (5) in Ref. 6. However, the authors apply a justified simpli-

time by Fukuiet al® It was obtained within a formalism in fication and neglect other operators arising from G, be-
which the external magnetic field is explicitly included in the . 9 P 9 4

) . L2 . .__ing the mass—velocity operator the most remarkable one.
Breit—Pauli Hamiltonian in order to get a gauge—lnvarlant_l_he.rN electron wave function is built up as a Slater deter
scheme up to ordec 4. The MC term is a second order ' ¢ t- ; vlv \; uncti t'? tu(; :_J'p tS EGCHE i
expression containing the Fermi contd€e€) and the kinetic minant of ohe-electron unrestricte artree—Fd o )

spin—orbitals obtained from that two-component positive en-

o _ — . ergy Hamiltonian. In such a case one important point to clear

b,‘agmeffg‘f’wég'r?;:'(Tj‘e%’:‘l:‘\’/zrsst:d:godre Buenos Ares. up is related to the above mentioned simplification in the
gacor ' theory of Fukuiet al® Given that the MC term is by far the

9Author to whom correspondence should de addressed. e ) e
dWwith a fellowship from CONICET. largest one for relativistic corrections of shieldings on the

The gauge-invariant two-component theory of Fukui
et al® starts from a positive energy Hamiltonian which in-
cludes the magnetic interaction potential. The new MC con-
tribution to the nuclear magnetic shielding comes from Eq.

0021-9606/2003/118(2)/471/16/$20.00 471 © 2003 American Institute of Physics
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heavy atom in compounds like HX, there could be someaction operators in Dirac—Fock space. Introducing a com-
other terms that were neglected though they could have inplete set of eigenstates &f® and subtracting the vacuum
portant contributions. polarization term*1®the second order correction to the en-
The use of perturbative approaches allowing the calcuergy, E(®), can be expressed as
lation of relativistic effects employing the Scliinger mo-
: : 55 (0[V[n)(n|V|0)
lecular spectrum is attractive because such approaches can be (2 — E I N

implemented within any standard quantum chemistry com- n#0 Eo—En

putational program. In the present work we are presenting a — —

two-component theory for shielding calculations starting -> <vadV|n><n|V|vac>. )
from a four-component RSPT formalism. A set of operators n#vac Evac—En

entering the RSPT expressions in terms of the Stihger |, Eq. (2), states{|n)} stand for all states in Dirac—Fock

molecular spectrum are derived by gxpzir%ding such fourgyace that can be connected@(|vac in the second teri
component expression as a power series in. All formal 1 yhe magnetic interaction operatdt In the relativistic

expressions are retained, without neglecting any terms in thﬁamework, the spectrum of statg®),|n)} must have fixed
intermediate steps of our derivation. In doing so one of OUlhargeQ=—eN for an N electron system in the nonrelativ-

main goqls has been to obtain formal expressions for opergsyic |imit, But they do not have fixed number of particles, as
tors previously neglected by other authors, regardless of thg i, v/ and HB operators in principle contain pair creation

aqtual difficulties which FOUId arise in t_he|r numencal_ eyalu- and destruction operatorszac) stands for the vacuum state
ation. At the end we arrive to expressions that are similar tqn the QED picturé

P 6
those of Fukukt al. though there are some other new terms. In what follows, the nonrelativistic limit and the lowest
There are also some differences between closely relate

. T . Shder corrections in powers af * to E@ are given. To this
terms like the MC one which in our case has different con- P 9

: ! . N end, the sum in Eq_2) is splitted up according to the behav-
stant factor; and it also has anisotropic c.ontrlbutlons. Howi f of (Eq—E,)~ L in the nonrelativistic limit,
ever, the existence of a sum rule connecting the present M8

like operator and that one of Ref. 6 has been proven as part E?=E,+E,. (3
of the present work.

This paper is organized as follows: In Sec. Il A the rela-
tivistic RSPT expression of magnetic properties in Dirac—
Fock space is expanded as a power series in terms oin
order to obtain expressions which are correct up to orde
¢~ “. Consistently to this order, all quantities involved can be
calculated in terms of solutions of the molecular Breit—Pauli
Hamiltonian, which is briefly summarized in Sec. IIB. Ex-
plicit expressions for the relativistic corrections to the mag-

E, collects those terms such th&J{—E,,) ! does not van-

ish in that limit. Hereafter, the intermediate statesipwill

be referred to ag|n,)}. In the nonrelativistic limit, these
states correspond to the Sctiimger molecular spectrunk,,
Lollects terms where state§n,)} are such that K,
—E,) ! does vanish in the nonrelativistic limit, i.e., they
contain at least one virtual electron—positron pair created on
|0). The vacuum contribution is included B, . Therefore,

netic shielding tensor are derived in Sec. Il C. They consist B (0[V[ng){(n,|V|0)

of RSPT1), RSPT?2), and RSPT3) corrections to the Schro Ea= ng'o Eo—E, ' )
dinger molecular energy. The existence of a sum rule con- ?

necting the present results to those of Fuikual® is explic- (0[V[nL)(ny|V|0)

ity shown in Sec. IID. Numerical results for the magnetic Eb:% Eo—En

shielding constants of the heavy and light nuclei in HX and L ° L

CH3X (X=Br,l) are presented in Sec. Ill. Concluding re- (vadV|np)(ny|V|vao

marks are discussed in Sec. IV. Details of calculations are _nEb Eo—E : ®)

Np
Expansion ofE, up to orderc™? yields the nonrelativistic
paramagnetic contribution to magnetic propertiés.agree-
IIl. THEORETICAL APPROACH ment with Ref. 11, it will be shown that expansion®Bf up
A. Magnetic properties within the RSPT  (2) to orderc™? yields the diamagnetic contribution. The lowest
Within th lativistic f K i lecul order relativistic corrections to molecular magnetic proper-
It' n r?_ rhea Msb'llg ram_ewt(;]r magnet_lc m? e({r Iar ties arise to ordec™* in E, and E,. Consistently to this
properties which are bilinear in the magnetic potentia order,E, can be approximated by expandir— E, ) ! as
=a-A (in a.u) such as the nuclear magnetic shielding tensor, I ) b
can be obtained from second order corrections to the relati\)(—0 ows:
istic molecular ground state energy. In the present work the (E;—E, ) 1=—(2mc®+A, o) !
. . . . . b b
unperturbed system Hamiltonian considered is the Breit

given in Appendices A, B, and C.

Hamiltonian®?~1° 1 Eo—En,
=— +
HB=hP+VC+VE, (1) om\ 2t ome& | 6)
wherehP stands for the one-body Dirac Hamiltonian for a whereA, o=E, —Eq—2mc” is of orderc® or lower.
particle in the field of thefixed) nuclei of the molecule, and Taking Eq.(6) into account, the following expression of

VC andV® stand for the Coulomb and Breit two-body inter- Ey, is valid up to orderc™*:
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1 {Iny)} areN=+2 andN*4 particle states with corresponding
Ep=— WZ 2(0|V|np){(ny|V|0) virtual pair corrections. In order to make clear this separation
Mb and easier the matrix element calculations involved in Eq.

Eo—Ep, (10 we _partiign the second quantized form of the®

+ W(o|v|nb><nb|v|o>} Hamiltonian a

HB=HO+H), (12)

n LE [2<V?ldV|nb><nb|V|EC) H(® contains those terms ¢41® which do not connect dif-
2m¢? Np ferent particle number manifolds in Dirac—Fock space, i.e., it
E—E. _ o is the_particle number c_onserving part EIP. The corre-

+ —b<vadv|nb><nblv|vac>}. (7)  sponding spectrum consists of fixed particle number states.

2m¢c? In particular, for a molecule of charg@=—eN, solving
Considering that H(® within the N-particles manifold of Dirac—Fock space
constitutes the no-pair approximation to molecular states. By
(Eo—En,)(0[V|np)=(0|[H®V]|ny), (8 construction, the one-body parf , which contains terms of

orderc? is wholly included inH(®), since it has been diago-
Eq. (7) can be expressed as nalized.H*) gathers those terms of the Coulomb and Breit
1 2 1 B two-body operators that create or destroy one and two
T omé < (0]2v+ W[H V1Ino)(ny|V[0) electron—positron pairs, i.e., connecting garticle mani-
fold with both theN=2 andN=*4 particle manifolds of the
same charg®). Matrix elements therein are of ordef or
lower. As a consequence, the influenceHSf) can be taken
into account by the application of perturbation theory with
X(nb|V|rm)}. ) c tas perturbation parameter. _ S
Taking into account the previous discussion, it is con-
4 cluded thatE® in Eq. (10) can be evaluated as a double
perturbation series expansion in the magnetic interadtion
and H™). Within this approach the “unperturbed” Hamil-
tonian isH®, i.e., the particle number conserving part of
EO= S (0V[na){ng|V[O) 1 HE. The fixed particle number spectrumigf®) can be clas-
nFo Eo—En, 2mc? sified as follows. States of typién,)} areN-particles states
and they correspond to the no-pair approximation of the mo-
lecular spectrum. They are hereafter dubbed {g")
=|ny)}. Eigenstates oH® of type {|n,)} areN+2 or N
+4 particles states and they are hereafter referred to as
{In{y=|n,),K=N=2N=+4}. Considering operatoi¢ and
H), evaluation ofE(® from Eq.(10), can be separated into
two terms: (1) a contribution obtained by considering the
x(nb|v|rm>]. (10 n(_)-p_air approximation tq the spe_ctrum of molecular states
within the N-particle manifold of Dirac—Fock space, af®t)

The set of unperturbed relativistic molecular states® contribution originating in one and two pair-creation ef-
{|n2),|ny)} in Eq. (10) is now considered. As mentioned €cts:
above, they correspond to eigenstates of the Breit Hamil-
tonianHEB, in Dirac—Fock space. The complete space can bﬁ
spanned in terms of the set of one-particle states obtained as
solutions of the one-body Dirac-HamiItoniath for a par- When the no-pair approximation of unperturbed states is
ticle in the Coulomb field of théfixed) nuclei in the molecu- considered within theN-particle manifold of Dirac—Fock
lar systemt? Consistently with the QED picture, this proce- space inE®), only the first termE, in Eq. (10) yields a
dure defines the set of “electronic” and “positronic” nonzero contribution. All quantities involved in it depend
bispinors needed to span the Dirac—Fock space. The bamnly on both the positive energy spectrum of the one-body
vacuum|vag is defined as the state which does not contairrelativistic Hamiltonianh? and on theN-particles states
neither electrons nor positrons. In terms of such one-particl¢|Oy),|ny)} which lead to the Schainger spectrum of states
states, molecular stat¢s,),|n,)} do not have a fixed num- in the nonrelativistic limit. SuchN-particle states contain
ber of particles, due to the presence of virtual pair creatioronly “electronic” bispinors, and they can be obtained con-
and destruction operators in the Coulomb and Breit interacsistently up to ordec ™2 applying perturbation theory to the
tion terms. nonrelativistic Schrdinger molecular spectrum via the

However, within perturbation theory in terms of the! Breit—Pauli Hamiltoniaf? (see Sec. Il B for further details
parameter, the set of statfs,)} consist ofN-particle states Therefore, theE, contribution toE(®), Eq. (10), within the
plus small virtual pair creation contributions; and statesno-pair approximation is

Eb:
¢ 1S Lvadevs ——HE v
md o (vad2V+ 55 [H"V][ny)
As a result, an expression &f?) consistent up to order™

is obtained from which relativistic corrections to magnetic
properties can be derived,

1
(0[2V+ =5 [HE V][n,)(ny| VI0)

x>
Np

1 — 1
+ Wan {(vad2V+ >mz[HE V)

No-pair approximation
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ENP_ S (OnIVInn){(nn|V[O) 12 EL=(ny|HIny)=0, (16)
e EON_EnN . +
. . . . . i (L)\ _ |m><m|H(_)|nN>
Equation(12) is a suitable expression to obtain relativ- Ina F; ﬁ

istic corrections as a power seriesdn? starting from the
Schralinger spectrum of states. To this end, matrix elements .
ici ion i ing ic” bispi =—| 2PNt 5= P2 [H Iy (17)
of the magnetic interaction involving “electronic” bispinors Amc omc
must be re-expressed in terms of their “large” components.

The detailed calculation of these terms is presented in Sedhe result in Eq.(17) is based on the following grounds.
Il C and Appendix A. Since|ny) is anN-electron stateid ) connects it with states

|m) which containN+2 or N+4 particles, i.e., one or two

electron—positron pairs created pry). The leading term in

) ) ) o the energy differencesE(,—E,,) is —2m¢c? in first place,

2. One and two virtual pair creation contributions and —4mc secondly. Keeping only these leading terms in

One and two virtual pair contributions 82, Eq.(10), the denominator the sum over intermediate statgs|acts as

are as follows: On the one hand, neglectig”), in E, the @ Projector onto theN+2 or N+4 particle manifolds, re-
magnetic interaction operatoN connects the no-pair SPECtively, yielding the final result of EG17). It is worth
N-particle ground state with the manifold df+2 particles ~Mentioning thatPy., ,H*)|ny) contains terms of ordec’

states. This contribution is taken into accoun&i*2, due to the Breit interaction operator, i ,H*)|ny) is of
orderc™?, or lower.
ENt2_ _ 1 D (On|2V Replacing Eqs(16) and (17) in Eqg. (10), and keeping
b 2met i, [V terms up to ordec ™4, the following corrections t&? due
1 to one and two virtual pair creation contributions originating
i (%) -
+ _chz[HB:V]|nN+2><nN+2|V|ON>] in H" are found:
1 1 B =— ch
- - a 2m
+ chznZz ((vad2v+ T . "
(ONIH P oV 4+ VP oH Ing)(ny | V[ Oy
><[HB,V]|n2><n2|V|vac>], (13 n#0o Eoy ™ Eny
— OnI VN (NN H Py oV + VP, H )]0
where the consistenivac state is the bare vacuufwag in +< Vi) (| S Njé N2 | N>,
the Dirac—Fock space. The intermediate states in the first O =Mn
(secondl term of Ef % areN+2 (2) particle states. There- (189

fore, the sums in Eq13) act as projectors onto the manifold 1
of the corresponding number of particles in each case. De=n+a_ OnlHE P VP VIO
fining the projection operatoPy onto theK-particle mani-  ° 8mzc“(< nl -4V Pr2VIOn)
fold of the Dirac—Fock space as .

P +(ON|V Py 2V Py 4H ) Oy)

Pc=2>, Ink){ngl, 14 1 +
K nEK Ini) (N (14 —8m2c4((vadH(*)P4VP2VlvaC>
E} "2 can be expressed as

) . +(vadVP,VP,H*)|vac), (18b
EN*2=— m(om 2V + W[HB,V]) Pn2V|0n) where it must be understood that in E8) all intermediate
states correspond to fixed particle number states.
1 1 5 Taking into account results Eq¢l2), (13), (183, and
+ Wwad 2V+ 5 z[HEV] P,V|vag). (18b), the second-order energy correction has been split up
as
(19 (2)_ NP =VP =N+2, =N+4
In Sec. 11 C 2 explicit expressions are derived for each term S T (19

in Eqg. (15 as a function of the Schdinger spectrum of . ) ) o
states consistently up to order?. B. Relationship between no-pair relativistic

On the other hand, virtual pair creation contributions areMelecular states and Schro —dinger molecular states:
also obtained when the effect bi*) is taken into account ' "¢ Bréit-Pauli Hamiltonian
into molecular states ik, andE,. These contributions can In order to evaluate the different contributionsB& in
be introduced considering the first-order correction given byEg. (19) as a series expansion in powerscof in terms of
H) to the no-pair molecular statéfn,)}. Following Ref.  the Schidinger spectrum of states, the relationship between
13, the leading term of this correction in the expansion parelativistic molecular state§0y),|ny)}, i.e., theN-particle
rameterc” ! can be expressed as solutions toH®, and the Schmdinger spectrum of states
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must be established. This connection is readily provided by 1 c—E .
the Breit—Pauli Hamiltoniaf?'!” which is briefly summa- |¢i>”2mc It 5 (op)| i) 27
rized here. _ B
The no-pair approximation to the Breit Hamiltonian of When the large component is exact up to ordef.
Eq. (20),*2Y7 The differential equation for the large compon¢¢f)
N N that arises from the Dirac Hamiltonian can be transformed
B o,.. 1 1 1 into an eigenvalue problem with unit metric consistently up
HB=> hP()+5> { — 5| aiq; = . e
=1 217 |rij  2rj to orderc™“ for a “normalized” spinor| ¢;) with the follow-
ing Pauli Hamiltoniart’
(ai-rij)(aj-rij) b
L (20) HP=hs+D,, (28)
ij

is obtained considering all possible configuratiop&*) where

4 4 e . 2
= of N positive-energy four-component spinors p ~
| Fy b NP o Tponent spinc |¢%>=(1— 7—z)|¢>i>, (29
| #;") which are solutions of the one-body Dirac Hamiltonian 8m-c
D .
hi,ie., hS stands for the one-body Scldiager Hamiltonian and®
Za is
h=cap+mcZB— >, ——=—, (21)
A Ir=Rd D= pt+ Vo)t~ a(VV Xp)
1~ 3~2 2.2 C N2~2 C ’
8m’c 8m-c 4m-c
h?lef)=(mc+E| ). (22 (30
A given positive energy four-component spinor can be splityhere the familiar mass—velociV), Darwin (DW) and
in its large(L) and small(S) components, spin—orbit (SO) terms are readily recognized. In an analo-
|¢_L> gous way, the two-body interaction terms HP between
|¢i4): 'S } (23 configurations of positive energy bispindis*) can be re-
|47) expressed in terms of configuratioh%} of the correspond-
|6 =R tc-(op)|¢F), (24)  ing “normalized” spinors| ¢;). Consistently up to order 2,
this procedure leads to the Breit—Pauli Hamiltonigi¥",
Ri=(2mc—(Vc—Ey)), (295 LB K = (T | HER a1
whereV stands for the one-body potential in Eg1) ando (LAHEKG =(L K, 3D
stand for the two-dimensional Pauli matrices. Consistently to  HBP=HS+D, (32
—4 _1 .
orderc™" R; ~ can be written as whereH S stands for theN-electron Schrdinger Hamiltonian
N 1 Vce—E; andD is given by
R =~ 1+ . 26
T 2me 2m¢c (26) D=D;+D,, (33
Replacing Eq(26) in Eq. (24) an expression foré?) which  with D, being the generalization of E¢B0) to theN-particle
is exact up to ordec™ 2 is obtained, state space an@, is
( T 3
—+o | .1 Xp;
1 L ripipy+ (i (ri -py)-py) . 2 e
Do=5— 22 4 r ! r > (34
2mece i 2
T 1 rij(O'iO'j)—3(O'irij)(0'jrij)
=5 (oi-op)é(ryj) + — 5
L 3 8 i )

Different terms inD, can be identified as follows: The first icles eigenstate$|ny)} of H® (i.e., within the no-pair ap-
term is the so-called orbit—orbi©O) interaction, the second proximation can be obtained correctly up to order? from
one is the two-body Darwin terrilDW(2)], the third one the Breit—Pauli Hamiltonian. As a consequence, consistently
represents the two-body spin orhfBQ(2)] and spin—other to this order, both the expectation values and the RSPT ex-
orbit (SOO interactions and the fourth and fifth terms standpressions in Eq9.12), (15), and(18), can be evaluated em-
for the spin—spin interaction terms, both Fermi cont&2-  ploying theH®P spectrum of states. To this end, the reduction
S9S and dipole—dipoléSD-SS interactions. of matrix elements of a given Dirac-type operatébetween
Therefore, the energy eigenvalues and configuratioronfigurations{|K#)} to those of a new operat@®(W) be-
coefficients{En,|nN>=ECnK|K4)} corresponding tdN-part-  tween the corresponding configurations of “nor-
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malized” spinors{|K)} must be carried out consistently to Positive energy bispinor configurations to spinor configura-
the desired order, tions is readily obtained if such reduction is carried out for

the positive-energy bispinors themselves according to the

(L9WIKH=(L|o(W)[K). (35 discussion in Sec. Il Bsee Eq(35)], i.e.,
Thus, hereafier use vlnll be made of E¢36) and(37), (¢ a-Algh=(H]O(a A)F). (41)
(0f|wjo®)=(0|o(w)[0), (36) Details of the derivation are presented in Appendix A. The

resulting one-body operatd® can be split up into a !

Ox|WIng){ny| WOy,
(On|WIni){niy| WOy contribution ©?), and ac~2 contribution ©3). For the spe-

N0 Eo~En, cific calculation of the nuclear magnetic shielding tensor one
~ o\ ~ operator of this kind can be defined as a function of the
= {O[oW)M)(AIO(W)[0) , (37)  uniform magnetic field® and another one as a function of the
n#0 Eo—Er nuclear magnetic moment,, . These operators can still be

where the superscripts are written in order to emphasize th&g-€xpressed according to their singlet or friplet character.
the Lh.s. of Eqs(36) and (37) are evaluated in terms of Explicit expressions are as follows. The first order singlet
configurations{|K*)}, whereas those of the r.h.s. are evalu-and triplet operators associated to the uniform magnetic field

ated in terms of configuration$K)}. are

In the r.h.s. of Eqs(36) and(37) the unperturbed states 1
correspond to eigenstates of the Breit—Pauli Hamiltonian OlS(B)ZZ—mCL-B. (429
HBP. The usefulness of such expressions comes from the fact
that relativistic effects irH®” are introduced via operators T 1
0*'(B)= =—o0.B, (42b

D, andD, which can be thought of as perturbations to the
Schralinger molecular Hamiltonian. The first order RSPT

2mc

corrections to the energy and molecular states yield result¢hich represent the orbital and spin Zeeman interactions

that are correct up to order 2,

En=Es+(n%(D;+Dy)[n%), (39
S(D1+Dy)|n®
m=in s S MOHDID g g
n#n n m

where the superscriptS’ identifies eigenstates of the Schro
dinger molecular HamiltoniarH S.

C. Relativistic corrections to the nuclear magnetic
shielding tensor

The nuclear magnetic shielding tensor for a nuclbus
can be obtained &%

9°E )
Ipni9BjJs=0 '

=0

O Mij (40)

where E stands for the molecular electronic energy in the

which hereafter will be referred to with the acronyms “OZ”
and “SZ,” respectively.

The first order singlet and triplet operators associated
with the nuclear magnetic moment are

1 pum-Lm
1S -
O™(uwm) me 13 (439
O )=LUB (43b)
M 2n1C PM
where
8 3(MM.rM)rM_r§AMM
Bm= ?5(rM)MM+ 5 . (430

M

OS(uy) is the paramagnetic spin—orbit interaction operator
(PSO and O'"(uy) contains the Fermi conta¢FC) and
spin-dipolar(SD) operators.

The singlet and triplet operators to the third ordecint

presence of both the external uniform and the nuclear maggssociated to the uniform magnetic fidcare

netic fields. In order to express relativistic correctionsrfp
consistently up to ordec™ in terms of the Schidinger

molecular spectrum, all quantities defined in Sec. Il A, i.e.,

ENP, Eq.(12); EYF, Eq.(188; E} "2, Eq.(15); andE}) 4,

1
Eq. (18b), must be re-expressed according to results in Sec. O3T(B)=— 8—m3€§(3(0-5)p2—(0-p)(p-5)

1B, Egs. (36)—(39). The corresponding expressions are ob-
tained in the present section. Contributions that arise from
ENP and EYF will be assigned to the paramagnetic term of

on, Whereas those originating iB} 2

spond to the diamagnetic term.

and E) "* corre-

1. Paramagnetic term

0%S(B)=— ! L.B,p? (443
(B) 8—mrcg{ .B,p7},
—4mo.VVcXAg), (44b)

where the curly brackets stand for the anticommutator and

V for the one-body Coulomb potential in the Pauli Hamil-
tonian.O>S(B) will be identified by the acronym OR- The
first two terms inO3T(B) will be identified altogether by the

a. Contribution from no virtual pair excitations to the acronym SZK and the third term will be calleB-SO (mag-

paramagnetic term:n order to evaluatEgIP of Eq.(12), the

reduction of matrix elements of the magnetic interaction op-

eratorV=qa-A (atomic units are used throughputetween

netic external field induced spin—orbit term
Singlet and triplet operators to the third orderdn?
associated with the nuclear magnetic moment are



J. Chem. Phys., Vol. 118, No. 2, 8 January 2003

1 M -Lw
OSS(MM)=—W —rr,pz}, (453
M
3T 1 3 2 1 2
O (1m) =~ grac3| 2 P (0-Bu) + 5 (0.Bw)p
+io.[AyXp,p?]—4mo.VVcX Ay |.
(45b)

035(uy) will be referred to as the PS®-term. The first,
second, and third terms @37 (uy,) will be identified alto-
gether by the acronym SBy,-K and the last one bB,,-SO
(nuclear magnetic field-induced spin—orbit term
Considering Eqs(42)—(45) the expression dE)" can be

evaluated first at the lowest possible order in the parameter
¢ L. In this case, the unperturbed molecular spectrum corre-
sponds to thédS spectrum and the perturbation operators are

OY(uy) and OY(B). For a system with a singlet ground
state it is found

g(paraNR — E(Ols(/_LM),Ols(B))a (46)
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E(A,B,C)

> (OJA(N)[n)}{n[B(N) =(B(N))|m){m|C(N)|0)
(Eo—En)(Eo—Em)

n+0
N (O[B(N)|n)(n|C(N)—(C(N))|m){m|A(N)|0)
(Eo—En(Eo—Em)
N (O[C(N)[n)(n[A(N)—(A(N))|m)(m[B(N)[0)
(Eo—En)(Eo—Em) ’
(51)

where(X(N))=(0|X(N)|0), the following terms are found
for a system with a singlet ground stdtaking spin symme-
try into accounk

E(para,3: E(Ols(,uM),OlS(B),DS)
+E(O'T(uy),0'(B),D)
+E(01T(MM)101T(B)1DT)! (52)

where the operatdd has been separated into tensor compo-
nents of rank Qsingled, DS; 1 (triplet), DT; and 2(quintu-
plet), DV, in spin-space. The singIeEDf term corresponds

where the shorthand notation for a second order RSPT exsoth to the DarwinDW) and mass—velocityMV ) operators

pression of Eq(47) has been introduced,

(OJA(N)[n)(n|B(N)|0)

BB~ 2, EoE,
(0[B(N)[n){n|A(N)|0)
- Eo—E, ’ “7)

where A(N) stands for the one-body operatér in the
N-particle state space,

AN)=2 A (48)

Result of Eq.(46) yields the nonrelativistic paramagnetic
contribution too, . Triplet operators do not contribute to
Eq. (46) because for a singlet ground state E£P) holds,

0'T(B)|0)y=0. (49)

Two classes of relativistic correctionsE§*originating
in EN" do appear up to order™ 4. Within the first class of
terms, a third-order operat@? is included in a second-order
RSPT expression,

E(Para2=E(O*(uy),0%%(B)) +E(O*(m),0%(B))
+E(0%(uy),0'%(B)). (50

We do not conside®®T(u,) due to the result of Eq49).
The second class of terms are those in whichGin

operator enters twice and the unperturbed molecular spec- o(W)= —E

trum contains relativistic corrections via operator=D,
+ D, defined in Sec. 1l B, Eq:33). These combinations yield

third order RSPT expressions. Introducing the short-hand no-

tation,

and the tripIetDI term corresponds to the spin—or80)
term. The singlet terms iD, are OO, DW2), and FC-SS
defined in Sec. Il B. The triplet ones are the two-body (80O
and SOO terms and the quintuplet one is SD-SS. For a sys-
tem with a singlet ground state, there is no contribution from
the SD-SS operator in E¢52), due to the result in Eq49).

In Table | all possible contributions originating in E50)
and(52) are presented. The total contributionE&) which
comes fromEYF is thus

EQIP: E(para,NR+ E(para,a+ E(para,s_ (53)

b. One and two virtual pair contributions to the para-
magnetic term:Turning the attention now to the operators in
EYP, Eq. (183, it is observed that due to the factor i2?
and to the fact that the magnetic interaction operatdre-
tweenN particles states yields matrix elements of ordet
or lower, only terms of ordet ! of the remainder operators
should be calculated. To this end, the corresponding reduc-
tion from bispinor configurations to the spinor configurations
representation of the operatdf defined in Eq(54) must be
carried out,

W=P(H® P,V + VP HE )Py (54)

Considering the second quantized form of the operators
involved and both the Coulomb and Breit interaction terms
in H), the final form of the operator reduced to spinors
configurations according to Ed35) (see Appendix C for

detailg, O(W) is
o} i]
i i

1S

mcis 1pi 1OijAj}

1#]

(55
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TABLE |. Relativistic corrections to the paramagnetic contribution of the nuclear magnetic shielding tensor

arising from Eqs(50) and (52).

Ternf
o (A,B) or
O(uwm) o(B) D ou(AB,C)
PSO 0zZK (PSO,0ZK)
PSOK oz (PSOK,02)
FC, SD SZ-K, B-SO (FC,SZK) (SD,SZK)
(FC,B-S0O) (SDB-SO)
PSO 0oz DW, MV (PS0O,0Z,DW (PS0O,0Z,MV
DW(2), OO, FC-SS (PS0O,0Z,DW2))
(PS0O,0Z,00
(PSO,0Z,FC-SB
FC,SD 0oz SO (FC,02,50 (sb,0z,50
(=SO(1)+S0(2)) (FC,0Z,S00 (SD,0Z,S00
FC,SD Sz SO (FC,57,50 (SD,SZ,50

(=SO(1)+S0(2))

(FC,SZ,S00 (SD,SZ,S00

aSee text for the definitions of the acronyms identifying the different involved operators.

whereOil stands for the first order magnetic operator definedvhich can be separated into two terms. The first one involves

in Egs. (42 and (43), the curly brackets stand for the anti-

commutator; the two-body tensor opera(ﬁq is defined as

6 . 1 (r+ r”rlt])
T 2ry i)
whereri‘j is the transpose ofj; . An operatorO(W), Eqg.
(55), can be defined for the uniform magnetic fie@i(W;g),
and another one for the nuclear magnetic mon@QWMM).
In order to obtain contributions tor, correct to orderc™
originating inEy", operatorsD(W) must be combined with
operatorsO? [Egs. (42) and (43)] in second order RSPT
expressions based on the Satinger molecular unperturbed

spectrum, i.e.,

(56)

1
Ea =~ 5z {E(O(Wg), O%(1wm))

(57)

where the shorthand notation of E¢.7) has been used.

+E(O(W,,),0%(B))},

2. Diamagnetic term

The contribution toE®) which arises fromE}) *2, Eq.

(15), is

2mc2<0N|

Ediam:

1
2V+ WlHB,VJ> Pn-2V[0y)

1 1
+ W(Vad 2V+ W[HB,V]) P,V|vac.

(58)
The reduction of matrix elements in EG8) from bi-

spinors configurations to spinor configurations according to

results in Sec. Il BEgs. (36)—(39)] is now considered. To
this end we define operateX,

— 1 B
X=2V+ 55[H®V], (59)

the one-body part oH® and the second one the two-body
part,

X(1)=2V+ —CZZ; [hP,V],

(60)
X(2)= L[vC+vB V]
2mc® P

VC,VB stand for the two-body Coulomb and Breit operators,
Eq. (1). The commutatopVC,V| vanishes and therefore only
the Breit interaction must be taken into accounii?).

Let us first analyze the contributions &) "2 originating
from X(1), which is a one-body operator. The corresponding
term is dubbed®™ (1),

) 1
EYam 1) = — m<0N|X(1)PN+2V|ON>

1
+ 52 (vadX(1)P,V|vag. (61)

Due to the factor 1/ ¢ the expectation values in E(61)
should be expanded up to order?. A more compact form
for E9@™(1) can be found considering the second quantized
form of the operators involved in it and also E¢36)—(37).
After rearrangement of termsee Appendix B for detailst

is found,

. 1 1
E“ m(l)=m<0|2 Az(l)|0>—m

><<6|2i ({op, A2+ (oA)p?(aA)

—(ap)A%(ap)+{p? A%+ 3{ A%, p?])(i)[0).
(62)
In Eq. (62) it is explicitly seen that, up to order 2, only the

first term remains antjf)) must be replaced by the Schro
dinger molecular ground staie). The nonrelativistic dia-
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Wj=2( s .B) 8(r ). (69

tained, in accordance to Ref. 11. In order to obtain a result

which is exact up to ordec™*, in the first term|0) must

include relativistic corrections via the operaf@ybut, due to

the factor 1/&13c*, the last expectation value must be calcu-

lated with the Schrdinger molecular ground state.
In order to simplify Eq.(62) it is useful to observe that

O3 157410 ~(0]| 3 923 a2l

=2m(0| |0y=0, (63

HSCh 2 A2
' & J
J

and, therefore, collecting terms bilinear in the magnetic poConsistently to ordec

tential of the external uniform field\g and of the nuclear
magnetic fieldAy, , Eq. (62) can be expressed as

' 1 - ~
ESM1)= -5 (012 Ag -Au(1)[0)

8m3c4<o|2i W;+W,"|0),

(64)
where
W=4(Ayp)(Agp)+2(aBy)(Agp)+2(Aup)(oB)
+(0By)(0B)+(aAy)(p?cAg)

—(op)(Ag.Aw)(op)+2(Ag.Ay)p>. (65
Taking into account that
(012 Wi+W;"|0)=2 Re(0] >, W[0) (66)

for a molecule with a real singlet ground state only thosq

terms ofW which do not contain the Pauli matrices or imagi-
nary operatorgin coordinates representatjooan give non-

The contribution toEE+2 originating in X(2) is now
considered. It will be referred to &2"(2),

) -1
Ed'am(Z) = W«OND«Z) PN+2V|0N>

—({vadX(2)P,|vag)

-1
= G (OnlVE.VIPy. oVI0y)

—(vad[VB,V]P,V|vac). (70

~4, only thec® contribution to the

expectation value in Eq(70) must be calculated. For the
magnetic interaction operatdf only terms creating or de-
stroying one electron—positron pair are of ordér For the
Breit interaction operator, matrix elements of ordérare
those creating two electron—positron pairs, destroying two
such pairs or containing one creation and one destruction
electron—positron pair operator. Therefore, the contributions
of orderc? to the expectation value for the ground stig)

can be expressed as

(ONILVB, V1P 2V|0n) =(On|VBPy . 4V Py 2V|Oy)
+(On| VPPNV Py 2V[Oy)
—(On| VP 2VBPN 4 2V|Oy)
—(ON| VPN 2VBPN 2V[On).
(71)

A similar expression holds for the expectation value for the
lvag state. Consistently to ordef the first term in Eq(71)

s exactly cancelled by} ™ in Eq. (180 (see Sec. Il A
The second and fourth terms vanish because of the presence

in VB of positron destruction operators. Therefore, the unique

zero contributions. The overall result in this case, includingnonvanishing contribution originates in the third term

relativistic corrections tg0), can be expressed as

. 1 1
Ediam(1)= W«)lAB Ayl0)+E —2As-Au ,DS)
1 !
~ e (012 Wilo),

/ (67)
W' =4(Ayup)(Agp) +B.By +Ayp?Ag

—p(Ag.Aw)p+2(Ag.Ay)p?,

where the shorthand notation of E¢7) is used to indicate a
second-order RSPT contribution. After a few algebraic step
W' can be re-expressed as

W' =W, + WS,
wi= j:ny AAwiAePipj+2(Ag . Ay)P?, (68)

) 1
EYam 2) = (Zm—cz)z(<ON|VPN+2VBPN+2V|ON>

—(vadVP,VEP,VBP,V|vac). (72

Finally, the Breit interaction operator is expressed as
VB

=32 a0jaj, (73

1#]

where O;; was defined in Eq(56). Reduction of Eq(72)
from bispinor configurations to spinor configurations is bet-

Ster carried out considering the second quantized form of the

operators involved in it. The final result {see Appendix C
for detail9

. 1 -
E%M(2)= —(chz)zwli; Ai-Ojj A

+(axA).0;) . (a;X A))|0), (74)

If the gauge origin of the external uniform magnetic potentialwhere|0) is the Schrdinger molecular ground state. Consid-

is placed at the positiony;, of the nucleusv, Eq. (69) holds,

ering the external uniform magnetic field contribution to the
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magnetic potentialAg, and the nuclear magnetic potential, where
Ay, and retaining only terms bilinear iB and u), it is

1
found that 0'3T(B)=— 8—m2—§2 2(a;.B)p?—2mo;.(VVe
' 2 -
Edm2)= ———(0|>, Ag;.C; Ay
zmey? Ol Aer A X Agi)+ 32 [ Lop.oAgl(i) |,
~ 8m°c’ (7 | rj;

Summing up, the total contribution originating i, of 1

Eq. (5) has been expressed as 0" T(B)=— s HS Y [op,aAg](i)|. (80)
I

_ pdia dia
Ep=E™M1)+ETN2). (76 The potentialV¢ in Eq. (79) stands for the one-body Cou-

lomb potential of the nuclei in the Schtinger Hamiltonian.
The last term in Eq(79) is now a two-body operator which
can be expressed as

In Sec. II C two operators were defined containing cor- ¢
rections of orderc™® to matrix elements of the magnetic mz [ JLop, O'AB](I)}
interaction, i.e.0%T(B) of Eq. (44), and 0%T(u,,) of Eq. memiz L
(45). According to the discussion in Sec. ll[6ee Eq(50)],

D. Sum rules and alternative expressions
for E(Paa2) gnd Ediam (1)

only the first one yields relativistic corrections to the mag- =~ 72 32 (U.XAB.) el (81)
netic shielding tensor for a singlet ground state molecule in a '
second order RSPT contribution, that is, This expression corresponds to the “field induced” two-body
T a1 spin—orbit contribution of Refs. 6 and 9.

E(O™ (1m),0%(B)). (77 The contribution to the molecular energy duedd'(B)
An alternative expression for the contribution to the molecuds now splitted up into
lar energy originating inO3"(B) can be obtained by re- (1) a second order RSPT expression containing
expressing this operator in a different way. Applying the re- -0'%7(B), i.e.,
sugl$s of Appgnd|x A' Eq. (A26} to the trlpl.et .operaFor. E(O(uy),0"%T(B)) (82
0O°'(B) associated with the uniform magnetic field within
the N-particle state space, E((8) is obtained and I .

’ ’ (2) one contribution due t®"3T(B) which can be re-
03T(B)=0"3"(B)+0"3"(B), (78)  expressed as

1 (OI[HS = [op,aAJ()]|n)(n|O* ()| O)
n3T 1T
E(0"°T(B),0" (1)) = ~ grzca E—E,
1 (01O T (up) [M)(n|[HSNE [op, oAl (1)]]0)
- 8mic 4 Eo— Ej,
1 . .
= gmzca (0= 2 [P, 0As10" () (1) + X O () 0p,oAG]()]0). (83
|
Inserting the explicit expression &*"(uy) of Eq. (43) into It is interesting to compare results in Sec. Il C to those of
Eq. (83) the final result is the present section. In the first cas@®"(B) enters in a
E(0"3T(B),0 (1)) second-order RSPT expression and the diamagnetic term

contains the ternd0|W5|0) of Eq. (68), which is the same as
that of Eq.(84) with opposite sign. Both operators involved
are one-body operators. It has been explicitly shown that this
1 procedure is equivalent to consider opera®r’(B) in a

= ——2(0| > (Ag.(VXBy))(i )|0). (84)  second-order RSPT expression and to cancel the contribution

8mc ‘ (0|W}|0) to the diamagnetic term. 18'3T(B), Eq.(79), the

This means that it can be expressed as a first-order correctighifferent operators involved have the same expressions as
to the molecular energy. It is worth noting that this contribu-those found in previous works. In E¢79) the MVEF-FC
tion cancels exactly that originating {i0|W;|0) in the dia-  contribution of Refs. 6 and 4, the field induced spin—orbit
magnetic component, Eq&8) and (69). term of Refs. 6 and 9, and the two-body field induced spin—

_ 1 S i
= 233 (0| i [0.By,[op,cA]](i)|0)
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TABLE II. Relativistic correctionsrfy (FC,SZK) [Egs.(44) and (50)] andadM(WQ) [Eg. (68)] to the isotropic
nuclear magnetic shielding constant in HX and &HValues in ppm.

p d '
Basis om(FC,SZK) om(W5)
Molecule Nucleus sef RPA SOPPA HF MP2
HBr Br | 729.44 —131.25
Il 729.24 729.06 —-131.25 —-131.25
b 724.24
CH3Br Br 1l 729.30 —-131.25
HI | | 2554.71 —465.01
Il 2554.22 2553.98 —465.01 —465.02
b 2558.8
CHsl | 1l 2554.30 —465.01
HBr H | —0.022 -.C
1] —0.020 —-0.016 - €
b —0.026 -
HI H | —0.024 - €
1l —0.024 —-0.017 - €
b —0.026 ..C
CH;Br C 1] 3.24 —-0.54
CHal C 1l 3.23 —-0.54
CH,Br H 1 R S
CHgl H 1l ... ...

#Basis set I: fully uncontracted sp-aug-ccpVTZ basis set of Ref. 21. Basis set Il: same basis set banohly
p-type AOs are fully uncontracted.

PThe MVEF-FC value of Ref. 4 is rescaled by a factor 4/3; see text for details.

“Absolute value smaller than 0.01 ppm.

orbit term of Refs. 6 and 9 are found. However, from thetained at the RPA and SOPPA levels for HX, and at the RPA
computational point of view, the first way of carrying out the level for CH;X. aﬁﬂ(wg) values were calculated for the HF

calculations is preferred, since all these contributicmse-  and MP2 molecular ground state. Geometric structures were
and two-body are readily taken into account in terms of taken from Ref. 20. The gauge origin was placed at the

one-body operators. nucleus position in each case and therefore (66) holds.
For HX the fully uncontracted sp-aug-ccpVTZ basis set of
Ill. RESULTS AND DISCUSSION Ref. 21 was used. It will be referred to hereafter as basis set

I. For CH;X, the same basis set was used, but onlyshad
nuclear magnetic shielding tensor obtained in Sec. Il C, th -type atomic orbital4AOs) were uncontracted, and it will

one combining the SX operator ofO3T(B) in Eq. (44) e referred to as basis set 1. _ ,
together with the FC operator and dubbe}j(FC,SZK) in Results are dlsplay_/ed in Table Il. For the isotropic
Table | is closely related to the term previously obtained by?uclear magnetic shielding constant, thi(FC,SZK) con-
Fukui et al® and quantitatively analyzed by Visscher al. tribution is exact_ly 4/3 times the MVEF-FC one in Ref._ 4.
and dubbed “MVEF-FC” in Ref. 4. The differences between 1€ cgrrespondmg values are included for comparison.
those terms are that operator 8Zn Eq. (44) carries differ- There is excellent agreement betweep Fhose values and the
ent constant factors and has an anisotropic contributiorPn€s of the present work. In Table Il it is seen that for the
while the MVEF-FC term is isotropic. As it was explicitly N€avy nuclei = Br, | the contributionsoy (FC,SZK) and
shown in Sec. 1D the addition of contributions originating om(W>) are large and have an opposite sign. It is also inter-
in E(O(uy),0%T(B)) and (W) [see Eqs(68) and(69)]  esting to observe that the corresponding values in HX and
is equiva|ent to the sum of the MVEF-FC, the “field in- CH3X are very similar, i.e., these contributions are Only
duced” one-body spin—orbit and the “field induced” two- slightly sensitive to the change in chemical environment
body spin—orbit contributions of Refs. 6 and(@e “field  from HX to CHgX. The insensitivity of theof,(W3) term
induced” spin—other orbit term is not includedt is impor-  can be explained taking into account that this term is propor-
tant to emphasize here that, within the present approach, tHignal to the electronic density at the nucleus site, 6§).
“field induced” two-body spin—orbit contribution is obtained For the heavy nuclei this density is hardly affected by the
from a calculation involving only one-body operators. change in chemical environment. The observed insensitivity
In the present section numerical results are presentedf the ofy(FC,SZK) term could be understood by the pres-
They correspond to the®,(FC,SZK) contribution defined ence ofp? in the SZK operator. The kinetic energy of the
in Table 1, and to the contribution originated W5, which  inner-shell electrons is larger than that of the valence elec-
will be referred to a&rﬁA(WQ). HX and CHX (X=Br,l) trons and therefore the main contribution d¢,(FC,SZK)
were taken as model compounds. Calculations were carriecbuld be due to the behavior of the inner shell electrons of
out with thepALTON codé® for both the heavy and the light the heavy atom, which are almost insensitive to the change in
nuclei in each compoundr},(FC,SZK) values were ob- chemical environment. However a deeper study needs to be

Among the different relativistic corrections to the
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carried out in order to obtain definite conclusions on thechange of chemical environment from HX to @K Elec-
origin of these relativistic effects. tronic correlation effects were shown to be very small for

The contributionsafy,(FC,SZK) and afy(W}) to the these relativistic corrections in all the cases analyzed in this
magnetic shielding constant of the H nuclei displayed inwork.

Table Il are negligibly small, for both the H directly bonded
to the heavy nucleus in HX and for the H nucleus two bonds
away in CHX. However, for the C nucleus directly bonded ACKNOWLEDGMENTS

to the heavy atom in CkX, the overall value of about 2.70 Grants by CONICET, UBACyT, and SGCyT-UNNE are
ppm (X=Br,) is not negligible in comparison to the spin— gratefully acknowledged. J.1.M. wants to recognize Ricardo
orbit contribution of about 12—14 ppm (XBr) and 20-40 |,770lino for his help in hardware design done for some of

— 8,22
ppm (X=1). _ the calculations.
SOPPA values ofrfy (FC,SZK) for the heavy and light

nuclei carried out with basis set Il are also displayed in Table
II, as well as the MP2 values af%,(W}). Comparing these APPENDIX A: TRANSFORMATION OF MAGNETIC

values with the respective RPA and HF ones, it is concludedNTERACTION MATRIX ELEMENTS FROM POSITIVE
that correlation effects yield only very small contributions to ENERGY BISPINOR CONFIGURATIONS

the calculateds}, (FC,SZK) and cr‘,i',l(Wé) relativistic cor- 1O SPINOR CONFIGURATIONS

rections to the nuclear magnetic shielding constant in this  Forv=a-A (e=+1, in a.u) a one body-operator, the

case. transformation of matrix elements from bispinor configura-
tions to spinor configurations is readily obtained if such re-
duction is carried out for the positive-energy bispinors them-
selves, considering results in Sec. 11 B, E¢&1)—(29). The
Within the approach followed in this work in order to matrix elements of the magnetic interaction operator between
obtain relativistic corrections to the nuclear magnetic shieldPositive-energy bispinors are considered in such a way that
ing tensor, different contributions consisting of first, secondthey are approximated by spinor matrix elements, i.e.,
and third order RSPT expressions were found. 4 N ~
On the one hand, cc?ntributions originating in the Dar- (¢ila-Algj)=(¢i|O(a A)[ ). (A1)
win, mass—velocity and spin—orbit corrections to the ground-irst, the elimination of the small component is carried out.
state vgzaglse function are obtained in agreement with previouéccording to Eq.(27),
works = <° It is interesting to point out that in previous cal- 4 ML 1
culations of relativistic cgorrestions to the nucFI)ear magnetic (¢ila-Alg))=(¢ilc(o-p)R(a.A)
shielding tensor, the Darwin and mass—velocity scalar effects +(o. AR} Yco.p)| ¢JL>_ (A2)
were included within the “unperturbed” molecular ) ) ]
Hamiltonian?223 An alternative approach based on the ze_Sec_ond, thg large component is wr|t.ten in terms of th?;nor—
roth order regular approximatioZORA) was presented by Malized” spinors of Eq(29). Expansion through order
Wolff et al?* yields
On the other hand, in agreement with Ref. 6, further <¢i4|a'A|¢J4>EOﬁ+O?j- (A3)
contributions are found when the effect of the small compo- . . o
nent of the electronic bispinors is included in the correspond? N€ first term is of ordec™~,
ing large component in the presence of the magnetic poten- o_l':<?¢')‘|ol|a).> (A4)
tial. This is the case, for example, of the “field induced” nea I
spin—orbit contributions, also discussed previously by Vaaravhere operatoO* is defined as
et al,? and of the MVEF-FC term of Fukuét al® which was
quantitatively analyzed by Visschet al? However, addi- o?!
tional contributions, not previously considered in the bibli-
ography, are obtained within the present approach. These affdie curly brackets stand for the anticommutator. On the
the ones indicated as OZ-and PSOK in Table | and con- other hand, the third-order contribution is

IV. CONCLUDING REMARKS

:%{UD,UA}. (A5)

tributionsW'’ to the diamagnetic term, E¢68). These novel 1 Ve—E. 1
contributions need careful quantitative analysis and work O?}:<<~I5i| (ap)( c CZI)((TA)+—(O'A)
along this line is presently being carried out by our group. It 2mc 2m 2mc

is also interesting to emphasize that within the present ap- Vc—E; 1

proach one and two virtual pair corrections to the unper- X
turbed molecular states were included and the corresponding
contributions to the nuclear magnetic shielding tensor werdaking into account thad?} is of orderc ™2, the zeroth order
obtained. Explicit calculations of the®,(FC,SZK) and  relation,

of\’,l(Wé) contributions in HX and CKX were carried out. - —p? .

Even though the corresponding contributions to the absolute (Vc—E)|¢)= WM&) (A7)
value of the nuclear magnetic shielding constant of the heavy

nucleus are very large, they are almost insensitive to thean be used to obtain

oM )(UD)_ 8m2C2{p2101}|2’j>- (A6)
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)|¢) [(op),(Vc—ED]|)

2

(Ve—E)(ap)|d)= (crp)<

((UP) tio. VVc)|¢> (A8)
Applying Eq. (A8), Oij can be re-expressed as
Oj = 8;31(:3<?isi|{<ap>p2,<aA>}+2mi[o.vvc,(aA>]
+3{p?% {op,0A}}[ )
= ﬁics@ilZ{pz,{ap,aA}H[pz,[op,aA]]

—8mo.(VVeXA)|d)). (A9)
It is observed that a new operator is defined in Eq(A9)

from which the third-order matrix elements can be obtained.

It is convenient to spliD? as follows:
03 A3A+ 03B+ O3C

1
0=~ 8mec3 {pz,{ap,aA}},
(A10)

1
0%®=— W[pZ'[UP,UA]].

03¢= a.(VVeXA).

2m*c?

Within the Coulomb gauge, results in Egi11) hold,
{op,cA}=2Ap+ 0By,

[op,0A]l=0B1—2i0.(AXDp), (A11)

whereB+ stands for the total magnetic field.
Taking Eq.(A11) into account it is seen th@* andO3”A

have singlet and triplet components bDE® and O3¢ are

triplet operators, i.e.,

o'=0'S+0', (A12)
0%=0%+0%, (A13)
olS—iAp (A14)
mc "’
1T _
5 BT (A15)
0%=0%S=_1 1 (p2 Ap) (A16)
4mscett b
OST: OSAT+ OBB+ O3C
(A17)
3AT
ame c3{p o.Br}.

The superscript$ and T stand for singlet and triplet opera-

tors.
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A: AM + AB y
Ag=1BXr, (A18)
Mm X Ty
AM = .
v

Explicit expressions can be derived f@* and O° corre-
sponding to each of these fields. Inserting the corresponding
magnetic potentials in Eq$A14)—(A15) the first order op-
erators in Eqs(42) and (43) are obtained straightforwardly.

In order to obtain explicit expressions for the third order
operators associated to the uniform magnetic field, the com-
mutator inO%8 is explicitly evaluated using EqA11),

[p%[op,oAg]]1=2(c.B)p*~2(c.p)(p.B). (A19)
Therefore,
1
038(8) == 8m3c3{B'L’p2}1
(A20)

OST(B):—;B(U B)p?—( B
8m3c3 .B)p“—(o.p)(p.B)

The third-order operators associated to the nuclear magnetic
field can be expressed as

1 Hm L
M
; (A21)
O3 (pum)=— a3 EDZ(U-BI\A)Jr E(U-BM)pZ

+io.[AyXp,p?]—4mo.VVc XAy |.

As a final point, it is interesting to show that operator
0O%8 of Eq. (A10), can be worked out in a different way,

1
O3B: - 1a,n3c3 lpzv[o-pa O-A]J

1
W[h Ve.[op,oA]]

1 1
=~ gmac s——3h,[op,cA]]+ —2—3[Vc [op,oA]l
(A22)

where h and V. stand for the one-body Hamiltonian and
potential from which the zeroth order normalized spin—
orbitals are obtained. The second term in E&R2) can be
expressed as

1 1
W[Vc,[UDﬁA]]: e 3U(VVc><A)

=-30°%¢ (A23)

The magnetic potential to be considered in order to ob-and included in the field induced spin—orbit term. When the

tain the nuclear magnetic shielding tensor is

operator defined in the first term,
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a8 1 beingM =V P X(1)=V(1—-P¢)X(1) whereP, stands for a
O (h)=— gzl lop.oAll (A24)  projector onto “positronic” states anl, for a projector onto

. _ . “electronic” states. OperatoM in Eq. (B4) is a one-body
is extended to thé&-particle state space, it can be expressetyperator.

as The projector onto “electronic” states can be expressed,
1 up to orderc™?, as
Ogg(h) = - W{Z h(i), > [moA](j)}
' Pe=2) |#e)(¢d

HS—U E [op, aA](n}

- 8mc? [ Ly, 4L Ly/ 4S
> loe)(eel 2 1o6) (¢l
=0%(H>N-0% (), (A25) i ¢
whereU stands for the Coulomb interaction between elec- DNt D |6 (b
trons in the many-electron Sclimger equation. Therefore, L e e
0320/3_’_0//3’ B ( p2 ) op
S
073=0%+10%-0%(U), (A26) _| 1 At ame (E5)
s |-
1 op p
22
0"3=0%(H)= - griocs | H* 2 [op.oAl(])]. L 2mc 4mTe
The operatoiX(1) of Eqg.(60) is
APPENDIX B: REDUCTION OF MATRIX ELEMENTS 1
IN EQ. (61) TO SPINOR CONFIGURATIONS X(l)— [Up oAl+(B+2)V
In order to evaluate the corresponding matrix elements 1
in Eq. (61), the set of creation and destruction operators 2mc[ap oA] 30A
{e} ,eﬁ;p; ,pg} for electrons and positrons is introduced. = ) (B6)
This set and the reference vacuum stpac) is obtained oA 1 —~ [op,oA]
from solutions of the one-body Dirac Hamiltonia§ for the 2mc

Coulomb field of the(fixed) nuclei in the molecular system.
Alternatively, they can be thought of as originating in the
Dirac—Hartree—Fock scheme. Following the QED picture,
one-body operators are defined introducing normal ordere
products of creation and destruction operat6rs,

Taking into account results from Eq®5) and (B6) the op-
eratorM in Eq. (B4) can be split in terms of the following
8omponents
M =A2—(cA i A ! A
L=A"—(o )W(U )—W(U )(op)

7o 7 + 7 + ot
;,;;<e“| legye, est(€qlZlpg)e, pg X[(ap),(cA)],

+(PalZleg)Paes—(PulZIPp)Ps Pa - (B1)

In Eg. (61) the terms ofV that need be considered are those
creating an electron—positron pair when acting|@g) (and

on |vag for the second terin As a consequence, the only Mg = —(a’A)( )(O'A)
terms of X(1) to be included are those destroying an 2me
electron—positron pair. Therefore, E@§.1) yields

Moo=~ 2(0)| g (o) - A% g,

(B7)

p o[ op

1 Mss—Z(O'A) ( aA)—A >mel
Efe1)=—— «Xleg)(e,lVIp,

) chzaz,ﬁ (PefXleg)(euVIPy) Due to the factor l/ﬁlczin E%aM(1), only terms of order up

e to ¢~ 2 are retained in Eq(B7).
X ((OnlP.€ge, P, [On) Following the arguments in Sec. || Bee Eq.(35)] the
- expectation value of the one-body operakérfor the mo-
—(vadp,ege, p, [vag). (B2) \ecular ground state is

Taking into account that
(Olp.ege, P, [0)—(vadp.ese, p, [vag
:_<0N|e;eﬁ|0N>5a,V1 (B3)

it follows that

(Onl 2 Mil0y)=(0| > O;(M)[0),
1 ) ap (B8)
O(M):MLL_W{p !MLL}+ML32_mC

ap ap ap
2mcMSL+ 2mcM532mc’

) 1
Edam1)= W<ON|M|ON>v (B4)
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where it must be recalled th#dy) stands for the no-pair

~ — (+)
solution to the Breit Hamiltonian an@) for the correspond- Cupys= g (eulVIpa)(paslH " [ee5)
ing solution to the Breit—Pauli Hamiltonian. Equati¢B8) .
can be re-expressed to yield H§2), =—(V ,e5H ) |eey),

C5
W ,)=P,Vle,), (€9

_ 1
E%am1)= —(0 M;|0
(L) 2mC2< N|2i 0n) whereP, stands for the projector onto “positronic” states in

1 the one-particle state space. Following a similar procedure to
=_——(0]> 0,(M)[0) that carried out in Appendix B in order to transform matrix
2m [ elements in Eq(C5) from bispinors configurations to spinors
1 configurations consistently to order !, the result in Eq.
=——(0]> A?[0) (55) is obtained.
! In order to reduce Ed72) from bispinors configurations
1 to spinors configurations consistently to orady the Breit
- W@'Z Wi|6>, (B9) operator within the Il + 2)-particles manifold must be con-
: sidered. There is only one® contribution. It is the one con-
taining one pair creation and one pair destruction operator,
W={op,c AL+ (0A)pA(oA) ~ (p)AX(P) £q Co. P P
+{p? A%+ A% p?].
Pra+2VEPNs 2= 2 (paeB|VB|e7p§>N(pae/§ pgey),
o, v

APPENDIX C: TRANSFORMATION OF MATRIX (C6)
ELEMENTS BETWEEN BISPINOR CONFIGURATIONS

TO SPINOR CONFIGURATIONS IN EQS. (54) where the symmetry of indices has been employed to elimi-
AND (72) nate a factor of and to write only one type of term. In Eq.

_1 - . (72) a product of three operators needs to be calculated. The
Thec _contr|but|on to the operator _sh_own n _E@A') third operator is the magnetic interaction operator connecting

can be obta_lned as fOHOWfS' The magnenc Interaction opergyq 4 2 particles manifold to th&l particles manifold. This

tor connecting theN particles manifold to the N+2)- ara10r is just the adjoint of that in E€C1). The product of

particles manifold contains matrix elements of ord®r creation and destruction operators involved in EZg) is

thus

PnioVPy=2 (e,V[p,)elp; . (C1)
N2 N ,UaV( a # p)\eUN(paeEp;e'y)e;p::N(e(re;eye;)gxﬁéavl

. . (C7)
In order to evaluate Eq54) consistently to ordec™ -, the ) o _
Coulomb and Breit two-body operators (™) connecting and, therefore, the resulting operator within tReparticles

theN+ 2 particles manifold to th&l particles manifold must ~ State space can be expressed as
contain one pair destruction operator and one electron exci-

H ! + +
tation, PWVP VPN oVP= 2 Chyiiselese,

PuHE Py o= 2 (paeslH ) le,es)N(p.esese,), ,
N N*2 0‘[375<p B| | 7 5> P By Cﬁuoy:;\ <e,u,|v|pa><paeB|VB|eyp)\><p)\|V|eo>

(C2
— B
where the symmetry of indices has been employed to elimi- =(V,.e6V7le, V),
nate a factor of and to write only one type of term in Eq. ¥ V=P.Vl|e,),
(C2). The product of operators shown in E¢E1) and(C2) peoo R
acting on arN-particle state leads to products of creationand |V )= PpV|e,,>, (C8)

destruction operators which, .accordlng to the QED pICtureWherePp stands for the projector onto “positronic” states in
must be evaluated as follovs3:

the one-particle state space. Following a similar procedure to
N(p.e}ese,)e)p; =N(ejese,e’)d,,, (c3  that carried out in Appendix B in order to reduce matrix
elements in Eq(C8) from bispinor configurations to spinor
where the normal ordered product of electronic operators ergonfigurations consistently to orde?, the result in Eq(74)
sures the correct elimination of contributions from theis obtained.
vacuum staté®?® The resulting operator can thus be ex-

pressed as
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