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Rescaling of diffusion coefficients in two-time scale chemical systems
Damián E. Striera) and Silvina Ponce Dawsonb)

Departamento de Fı´sica, Facultad de Ciencias Exactas y Naturales, U.B.A., Ciudad Universitaria,
Pabellón I, (1428) Buenos Aires, Argentina

~Received 14 June 1999; accepted 1 October 1999!

We study reaction–diffusion systems which involve processes that occur on different time scales. In
particular, we apply a multiscale analysis to obtain a reduced description of the slow dynamics.
Under certain assumptions this reduction yields a new set of reaction–diffusion equations with
rescaled diffusion coefficients. We analyze the Selkov model@E. E. Selkov, Eur. J. Biochem.4, 79
~1968!# and the ferrocyanide–iodide–sulfite reaction@E. C. Edblomet al., J. Am. Chem. Soc.108,
2826 ~1986!# to determine whether the rescaling in this case may account for the difference of
diffusivities that the formation of certain types of patterns requires. ©2000 American Institute of
Physics.@S0021-9606~99!51848-5#

I. INTRODUCTION

Self-organization in far-from-equilibrium systems has
become a major topic of scientific research during the last
decades.1 In particular, pattern formation in chemical sys-
tems has attracted a great deal of attention due to its possible
applications to biological systems.2 One of the first clear
steps to generate such interest was the work of Turing in
1952,3 who pointed out the possibility of finding steady non-
homogeneous structures as the result of the interplay be-
tween nonlinear reaction kinetics and diffusion processes.
Turing’s work enhanced the study of reaction–diffusion sys-
tems, both from a theoretical and an experimental point of
view. In fact, reaction–diffusion processes have become a
key problem to push forward our knowledge about the
mechanisms of pattern formation. Reaction–diffusion equa-
tions have been successfully applied to model different phe-
nomena in fluid dynamics, chemical reactions, and dendritic
growth, among others. Turing’s main concern was the far
reaching implications of this mechanism for generating pat-
terns in biological systems~see, e.g., Ref. 2!. Although there
is no definite proof that this type of mechanism is at work in
any real biological system, there are some very promising
recent results.4

Turing patterns were not observed in laboratory experi-
ments until 38 years after their theoretical description.5 This
was due in part to the fact that Turing patterns need the
chemicals to diffuse at different rates, and this was hard to
achieve in the dilute aqueous systems that the community
was focusing on. The experiments were done using the
chlorite–iodide–malonic acid~CIMA ! reaction.5 The analy-
ses of these experiments6,7 showed that the interaction be-
tween the reacting and diffusing species with other immobile
chemical complexes present in the system has a paramount
importance for the patterns to occur. Lengyel and Epstein6

proposed a kinetic mechanism for the CIMA reaction and
argued qualitatively that the gel where the reaction proceeds
~loaded with starch molecules that also ‘‘trap’’ iodide ions!

effectively reduces the diffusion coefficient of iodide. In this
way, the activator and inhibitor species diffuse at different
rates, as required for Turing patterns to exist. The more rig-
orous linear analysis of Ref. 7 was also supplemented with a
simple approximate calculation to explain this rescaling. A
similar approach was followed in Ref. 8 to explain both the
rescaling of diffusion coefficients and the appearance of a
differential flow among chemical species. The idea that dif-
fusion is rescaled by the interaction with immobile species
~buffers! is also widespread in biology. For example, the
interaction of calcium ions with buffers9 accounts for the
dependence of calcium diffusion on calcium concentration.10

Thus, it is clear that, given a reaction scheme, it is very
useful to find a way to predict the changes in the effective
diffusivity of the various species.

In this article we approach the rescaling problem from
an analytical point of view. The main feature underlying the
ability to produce such rescaling is the existence of at least
two time scales in the reaction–diffusion system. In fact, that
is the common property of all the systems mentioned before.
Therefore, in this article we focus on a two-time scale analy-
sis of reaction–diffusion systems that contain processes
which occur on different time scales. The approximate cal-
culations of Refs. 7 and 8 did not take this time scale split-
ting into account. On the other hand, they were done only for
one reaction of the formU1V


k8

k W with V andW both im-

mobile species. In this article we show how to handle more
general reactions. We also show that the rescaling of diffu-
sion coefficients obtained in Ref. 7 or 8 is reobtained in our
setting. Another drawback of the simple approach of Ref. 7
or 8 is the lack of information about the initial conditions for
the rescaled equations. These equations give the evolution
for an approximation to the concentrations and the initial
conditions must be changed accordingly. Our derivation au-
tomatically gives information on the new initial conditions. It
also shows under which assumptions it is possible to reduce
the original dynamical equations and what concentrations
and time scales these new equations describe.

We apply our calculations to two particular systems of
interest: the Selkov model11 and the ferrocyanide–iodide–
sulfite~FIS! reaction.12 The first one is a simple model that is
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able to describe single frequency oscillations in the glyco-
lytic pathway.13 Analytical and numerical studies have
shown that, in the spatially inhomogeneous case, this model
is also able to support Turing patterns, provided that the
product and substrate diffuse at different rates.14 The FIS
reaction, on the other hand was originally developed by Ed-
blom et al.12 as an example of a chemical system that can
support sustained oscillations. Later experiments15,16 have
shown a variety of patterns that can be easily visualized since
they appear as a variation in the pH. Theoretical explanations
of these patterns also require that the various species diffuse
at different rates.17,18 Thus, in both of these cases it is im-
portant to determine whether the necessary difference in the
diffusion coefficients can be produced by the interactions
with immobile species that occur on a fast time scale. This is
the point we try to unveil using the procedure described in
this article.

The organization of the article is as follows. In Sec. II
we briefly review the analytic tools to study two time scale
systems. In Sec. III, IV, and V we show how to handle
reaction–diffusion systems of this sort under different as-
sumptions. The case of the Selkov model is described in Sec.
VI and that of the FIS reaction in Sec. VII. Finally, the
conclusions are summarized in Sec. VIII.

II. THE EXISTENCE OF VARIOUS TIME SCALES AND
THE POSSIBILITY OF REDUCING THE NUMBER
OF VARIABLES

Many natural systems involve multiple processes that
occur at different rates. Often such systems are well de-
scribed by just two time scales. Then a small parameter can
be introduced, which is given by the ratio between the two
time scales. When there is a small parameter, the analysis
usually relies on perturbative methods. This occurs, for ex-
ample, in Hamiltonian systems that are ‘‘almost’’ integrable.
In that case anaveragingmethod is used~see, e.g., Ref. 19,
p. 167!, which results in a reduction of the number of equa-
tions we have to deal with.Adiabatic invariantsare obtained
in this way. Another situation in which there is a time scale
which is much slower than the rest takes place near local
bifurcations. Exactly at the bifurcation parameter value there
is a center manifoldon which the evolution is governed by
small nonlinear terms, while the contraction or expansion
along the stable and unstable manifolds, respectively, is
ruled by larger linear terms. In that case a systematic expan-
sion can also be introduced to obtain the evolution on the
center manifold. This also involves a reduction in the num-
ber of evolution equations, since this manifold is of lower
dimension than the whole phase space~see, e.g., Ref. 19, p.
117!. This approach can also be used near the bifurcation
point. Similar in spirit, but not tied to any type of bifurcation,
is the projection onto aninertial manifold for dissipative
partial differential equations~PDEs! ~see, e.g., Ref. 20!.
When it exists, the long-term evolution of the infinite dimen-
sional dynamical system effectively occurs on the~finite di-
mensional! inertial manifold. This allows a reduction from
the PDEs to a finite set of ordinary differential equations
~ODEs!.

The reduction to a center or inertial manifold is achieved
by replacing some of the original differential equations by
algebraic relations. This is calledadiabatic elimination. In
doing this, there is almost a one-to-one relationship between
time scales and variables in the following sense. It is possible
to rewrite the original equations so that only a subset of
variables evolves on the fast scale. Then, as many differen-
tial equations as ‘‘fast’’ variables can be replaced by alge-
braic relations. The fast variables very rapidly adjust them-
selves to the variation of the ‘‘slow’’ variables whose
evolution is described by differential equations. Introducing
the right rescalings in order to separate the variables in this
way is the first step in the analysis of chemical systems under
thequasisteady state assumption,21,22which has been largely
used when enzymatic reactions are involved.2 However,
there is another approach very well suited to situations in
which there is not a clear separation between fast and slow
variables, even if there are processes occurring on different
time scales. This is the method we use in Secs. III and IV
and is calledmultiple scales.23

III. THE CASE OF FAST REVERSIBLE REACTIONS

In this section we describe the main results that are ob-
tained in the case of fast reversible reactions using the
method of multiple scales. Their detailed derivation is in-
cluded in a set of accompanying notes.24 We consider a sys-
tem of n1N11 components that react and diffuse and as-
sume that there are two groups of time scales in the system:
fast and slow. We assume that diffusion and the external feed
or removal of the species occur on the slow time scale, while
there is a subgroup of reactions~we work out the details for
the case of one! that occur on the rapid time scale. There are
n11 species (S1 ,...,Sn , andQ) involved in the fast reac-
tions, while there are otherN (V1 ,...,VN , whereN might
equal zero! that are not. The spatio-temporal variation of the
various concentrations is described by a set ofn1N11
reaction–diffusion equations of the form:

]si

]t
5

f i

e
1gsi1Dsi¹

2si , 1< i<n, ~1!

]q

]t
5

f q

e
1gq1Dq¹2q, ~2!

]v i

]t
5gv i1Dv i¹

2v i , 1< i<N, ~3!

which are to be solved subject to boundary and initial con-
ditions for si(x,t), q(x,t), and v i(x,t). In Eqs. ~1!–~3!,
si(x,t), q(x,t), v i(x,t), Dsi , Dq , and Dv i are the con-
centrations and diffusion coefficients of then1N11 spe-
cies, Si (1< i<n), Q, and Vi (1< i<N), respectively.
f i , f q , gsi , gq , and gv i are functions of the concentra-
tions: f i and f q do not depend onv1 ,....,vN , but gsi , gq ,
andgv i may depend on any of the concentrations, including
v1 ,...,vN . These functions model the variation of the con-
centrations due to the chemical reactions and to the external
feed or removal of each species. Thef terms only include the
fast reactions while both the slow reactions, the feed, and the
removal are included in theg terms. We make the difference
between the two time scales explicit by introducing the small
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parameter,e, which is of the order of the ratio between the
time scales.Q is any species involved in the fast reaction
whose concentration varies because of it~see later!. In the
case with more fast reactions, we separate as many species,
Qi , as fast reactions, whenever that is possible.

We are interested only in the variations that occur on the
slow time scale. As we will show, this slow evolution is
described by a reduced set of differential equations. The dif-
ferential equations that are ‘‘eliminated’’ are actually re-
placed by algebraic relations among the concentrations. In
the case of one fast reaction the system is finally described
by n1N differential equations and one algebraic relation of
the form Q5Q(s1 ,...,sn), instead of the original set, Eqs.
~1!–~3!. In the general case ofl fast reactions (l>1), up to
l differential equations can be replaced by algebraic relations
~provided that the number of species involved in the fast
reactions is larger thanl ). As mentioned before, in this ar-
ticle we only work out in detail the case of one fast reaction.
Under certain assumptions, the case of more than one fast
reaction can be handled in a similar way.

We now consider that there is only one fast reaction,
which we write as

(
i 51

n

a iSi1aqQ

k8/e

k/e

(
i 51

n

b iSi1bqQ, ~4!

wherea j andb j stand for the stoichiometric coefficients of
the reactants and products, respectively. Here we are assum-
ing that the reaction occurs much faster in both directions
than any other process in the system. We make this explicit
by writing the reaction rates ask/e andk8/e, with k andk8
of order one. As usual, we describe the chemical reaction by
mass action kinetic equations.25 Thus the terms withf i and
f q in Eqs.~1!–~2! can be written as

f i

e
~s1 , . . . ,sn ,q!5~b i2a i !S k

e S )
j 51

n

sj
a j D qaq

2
k8

e S )
j 51

n

sj
b j D qbqD , ~5!

f q

e
~s1 , . . . ,sn ,q!5~bq2aq!S k

e S )
j 51

n

sj
a j D qaq

2
k8

e S )
j 51

n

sj
b j D qbqD . ~6!

The functionsf i and f q are then related by

~bq2aq! f i5~b i2a i ! f q . ~7!

The condition onQ mentioned before is equivalent to saying
that bq2aqÞ0. In this way, as required, the concentration
of Q varies due to the fast reaction.

We then define two times that take into account the two
groups of time scales present in the problem, the fast and the
slow time scale, respectively,T[t/e andt[t. We introduce
this rescaling explicitly so that bothT andt are quantities of
order one. We then assume that the concentrations of the
species involved in the fast reaction depend on these two
time variables,si5si(T,t), q5q(T,t),26 while the rest of
the concentrations,v i , 1< i<N, only depend on the slow

time variable,t. Following the steps described in Ref. 24 we
find that, on the fast time scale, the concentrations approach
slowly varying functions of times i andu:

si's i~t!1O~e!, 1< i<n, ~8!

q'u~t!1O~e!, ~9!

where

u5S k8

k D 1/~aq2bq!

)
j 51

n

s j
~b j 2a j !/~aq2bq! , ~10!

and

S 11S b i2a i

bq2aq
D 2 u

s i
D ]s i

]t
1

b i2a i

bq2aq
(
j Þ i

b j2a j

bq2aq

u

s j

]s j

]t

5Dsi¹
2s i1gsi~$s j%,u,$vk%!

2
b i2a i

bq2aq
~gq~$s j%,u,$vk%!1Dq¹2u!. ~11!

Equations ~10!–~11! together with Eq. ~3! @where gv i

5gv i($s j%,u,$vk%)] constitute the reduction of the original
set, Eqs.~1!–~3!. Clearly, this new set of equations describes
the evolution on the slow time scale. Given initial conditions
si(t50), q(t50), andv i(t50) for Eqs.~1!–~3!, the initial
conditions for Eq.~11! can be uniquely determined: they are
the asymptotic values that the solutions of the fast equations
approach for the givensi(t50), q(t50), andv i(t50). As
explained in Ref. 24, the fast equations have so many con-
stants of motion that the evolution takes place on a one-
dimensional level set defined by this constant. In this way it
is straightforward to obtain the corresponding initial condi-
tion, as is schematically depicted in Fig. 1~a! for the n52
case.

The meaning of the reduction is the following. After a
very short transient~during which the fast reaction equili-
brates! the dynamics is restricted to a lower-dimensional
manifold on which the evolution is slow. This manifold is
defined by the algebraic constraint, Eq.~10!. We illustrate
this schematically in Fig. 2~a!. The separation into a ‘‘fast’’

FIG. 1. Integration of the fast equations forn52. The straight line is the
level set which is uniquely determined by the values of the~in this case two!
constants of motion. The arrow indicates how the system evolves in time.
Each level set intersects the manifolds of fixed points of the fast equations at
isolated points. The first point of intersection provides the initial condition
for the reduced~slow! evolution equations.~a! The case of one fast revers-
ible reaction.~b! The case of one fast irreversible reaction.
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and a ‘‘slow’’ process is possible because of the different
weights that the various terms have in Eqs.~1! and~2!. It is
clear that the order-of-magnitude of the fast reaction terms in
these equations not only depends on the constants,k/e and
k8/e, but also on the concentrations of the variables in-
volved. The calculation we have presented is consistent as
long as there are not very large differences in the concentra-
tions so that the fast terms,f i /e and f q /e, are effectively of
the same order-of-magnitude as the slow ones~e.g.,gsi). If
this happens after a transient, as a consequence of the evo-
lution, the calculation is still consistent. But if the initial
conditions are such that, att50, f i /e;gsi or f q /e;gq ,
then the concentrations should be rescaled accordingly from
the very beginning. This is what happens, for example, in
most systems involving enzymatic reactions. The~spatially!
homogeneous dynamics of this type of system has been
mostly studied in the quasisteady-state assumption.21,22 A
very nice description of how the different variables need to
be rescaled in some of these cases can be found in Ref. 22.
We also discuss this later in Secs. V and VI. In this section
we assume that, at least initially, all fast terms are larger than
the slow ones.

We now consider a particular case of interest for appli-
cations: the one in which three species are involved in the
fast reaction, two of which do not diffuse. For example, this
is the case in which a complex is formed out of two species
and the complex and one of its forming species do not dif-
fuse. This is only a particular case of our general setting and
it is convenient to use as our speciesQ either one of the
nondiffusing species. So, we haveS1 , S2 , andQ, andDs2

5Dq50. For simplicity, from now on we will not write the
dependence ofgsi and gq on the concentrations explicitly.
After some algebraic manipulation, we obtain from the cor-
responding Eqs.~10! and ~11! ~see Ref. 24!

u5S k8

k D 1/~aq2bq!

s1
~b12a1!/~aq2bq!

s2
~b22a2!/~aq2bq! ,

~12!

and

]s1

]t
5

A22

D
Ds1¹2s11

A22

D
gs12

A12

D
gs2

1
A12~b22a2!2A22~b12a1!

D~bq2aq!
gq , ~13!

where

A11511S b12a1

bq2aq
D 2 u

s1
, A125

~b12a1!~b22a2!

~bq2aq!2

u

s2
,

A215
~b12a1!~b22a2!

~bq2aq!2

u

s1
, A22511S b22a2

bq2aq
D 2 u

s2
,

and D5A22A112A21A12. In this case, the reduction intro-
duces a rescaling of the diffusion coefficient, such that the
new coefficient,Ds18 , is related to the original one,Ds1 by

Ds18 5
A22

D
Ds1

5
~bq2aq!2s1s21~b22a2!2us1

~bq2aq!2s1s21~b12a1!2us21~b22a2!2us1

3Ds1 . ~14!

In certain cases there are conserved quantities in the sys-
tem that allow us to writes2 as a function ofs1, in which
case it is then possible to write the rescaled diffusion coeffi-
cient,Ds18 , only as a function ofs1. In particular, this is the
case for the situation previously discussed in the literature in

which the fast reaction is of the formS11S2

k8/e

k/e
Q. In this

case the quantitys21q remains constant during the evolu-
tion, from which we may conclude thats21u also remains
constant. SettingC5s21u and using Eq.~12!, which in this
case readsu5(k/k8)s1s2 , we obtain that the rescaled dif-
fusion coefficient, Eq.~15! can be rewritten as

Ds18 5
~11~k/k8!s1!2

~11~k/k8!s1!21~k/k8!C
Ds1 , ~15!

which, in the limit of (k/k8)s1!1 reduces to the values
obtained in Refs. 7 or 8. Notice that this rescaled coefficient
depends on the dissociation constantkd[k8/k as in Ref. 9. It
is interesting to note that, as expected, in the limit ofs1

→`, Eq. ~15! implies thatDs18 →Ds1. This may be under-
stood in the following way. IfS1 is in excess, there is not
enoughS2 to trapS1 particles. Thus, most of theS1 particles
diffuse with their ‘‘normal’’ diffusion coefficient,Ds1 . In
particular, this agrees with both the experimental measure-
ments of calcium diffusion in the presence of buffers and the
qualitative explanation of this behavior.10 Expression~14!
also implies thatDs18 →Ds1 ass1→`.

In the more general case in which at least two of the
species involved in the fast reaction diffuse, the reduction
not only rescales the diffusion coefficients, but also intro-
duces cross-diffusion terms. Consider for example the case
we have just analyzed, but suppose thatDs2Þ0. Then, from
Eq. ~11! we get:

]s1

]t
5

A22

D
Ds1¹2s12

A12

D
¹2s21

A22

D
gs12

A12

D
gs2

1
A12~b22a2!2A22~b12a1!

D~bq2aq!
gq , ~16!

FIG. 2. Schematic illustration of what the reduction means in the case of
one fast reversible reaction~a! and in the case of an irreversible one~b!. In
both cases, the reduced equations describe the evolution on the~slow! mani-
fold that is approached after a fast transient.
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]s2

]t
5

A11

D
Ds2¹2s22

A21

D
¹2s11

A11

D
gs22

A21

D
gs1

1
A21~b12a1!2A11~b22a2!

D~bq2aq!
gq , ~17!

with Ai j andD defined as before. If the factors of the form
Ai j /D do not vary too much with time or space and can be
treated as constants, then it is possible to find linear combi-
nations of s1 and s2 , c5a1s11a2s2 and j5b1s1

1b2s2, such that their evolution equations are of the form:

]c

]t
5Dc¹2c1gc , ~18!

]j

]t
5Dj¹

2j1gj . ~19!

This two-variable reaction–diffusion system can be analyzed
in terms of the usual inhibitor–activator scheme. However,
none of the quantities,c or j, correspond to the concentra-
tion of any actual chemical species present in the system.

In certain cases, a similar~but more complicated! calcu-
lation can be done if there is more than one fast reaction.
Depending on the number of fast reactions and on the num-
ber of species involved, as many variables as fast reactions
can be eliminated by this procedure. However, this is not
always possible to accomplish and the situation has to be
analyzed on a one-by-one basis. In any case, these systems
may be handled in an easier way following the approach of
Sec. V, of which we show several examples in the subse-
quent sections.

IV. THE CASE OF ONE FAST IRREVERSIBLE
REACTION

The case of fast reversible reactions can be clearly
handled in the way described in the previous section. In the
case that some of the reactions are fast in one direction and
slow in the reverse one, or if it only occurs in one direction,
then it is not always possible to find an algebraic relation like
Eq. ~10!. In general, the system relaxes rapidly to a situation
in which the concentration of one of the variables is almost
negligible. Therefore, the reduction is not related to the ex-
istence of an algebraic relation of the form Eq.~10! but
rather to the possibility of neglecting one of the concentra-
tions. In this section we analyze the simplest such example:
the case of one fast irreversible reaction. We illustrate the
corresponding behavior schematically in Fig. 2~b!.

As in the previous section, we consider a system de-
scribed by Eqs.~1!–~3! where nowf i and f q are given by
Eqs.~5! and ~6! with k850. Following the steps of Ref. 24,
we find that one of the species,Q, approaches very fast a
negligible value (q'eq(1)), while the others approach
slowly varying amplitudes,s i (si's i(t)1O(e)). In this
situation it is not always possible to perform a two-time scale
analysis as before. In fact, we can only find reduced equa-
tions if aq51, in which case we get

]s i

]t
5gsi~$s j%,0,$vk%!2

b i2a i

bq2aq
gq~$s j%,0,$vk%!

1Dsi¹
2s i , ~20!

or if aq.1 andgq($s j%,0,$vk%)50, in which case we get

]s i

]t
5gsi~$s j%,0,$vk%!1Dsi¹

2s i . ~21!

In none of these cases do the diffusion coefficients get res-
caled. This can be intuitively understood from the micro-
scopic point of view. Consider for example speciesS1 which
is irreversibly transformed into other species under the fast
reaction. Then, the only particles of speciesS1 that are still
in the system are those that have not undergone the fast
reaction. Those particles diffuse with their normal diffusion
coefficient. The initial conditions for the reduced equations
can be obtained as in the case of the previous section. This is
shown schematically in Fig. 1~b!.

V. ANOTHER APPROACH TO REDUCTION

In Sec. III we performed a systematic two-time scale
expansion of the original equations of motion and obtained a
reduced set of equations. The reduction was a consequence
of the algebraic relation Eq.~10! and of the ability to sepa-
rate the dependence on the two time scales in a certain way.
In this section we start seeking an algebraic relation among
the concentrations from the very beginning, without making
precise statements on the time-dependence of the variables
we are going to keep~the si of Sec. III!. In some sense, this
is almost an extension of the quasisteady-state
approximation22 for partial differential equations. However,
we do not discuss how the various variables need to scale
with the small parameter of the system in order to start a
consistent calculation. Rather, we look for an algebraic equa-
tion in the original variables. Under the assumptions of Sec.
III, this new calculation gives the same result as before. In
other situations, ana posterioricheck is necessary in order to
guarantee the validity of the reduction.

As before, we assume that there is only one fast reaction
and that we want to ‘‘eliminate’’ one of the variables,q,
involved in that reaction. To this end we expand

q'q(0)~s1 ,...,sn!1eq(1)~s1 ,...,sn!, ~22!

and replace it in Eq.~2!. We find

(
i 51

n
]q(0)

]si

]si

]t
1e(

i 51

n
]q(1)

]si

]si

]t

5
f q~q(0),s1 , . . . ,sn!

e
1

] f q

]q
q(1)

1q~q(0),s1 , . . . ,sn ,v1 , . . . ,vN!1Dq¹2q(0)1O~e!.

~23!

If we introduce the two time scales,T andt as before, then

]si

]t
5

1

e

]si

]T
1

]si

]t
.
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In the previous section we could justify thatsi5z i(T,t)
1s i(t) with z i!s i for T big enough. This condition implies
that ]si /]t']si /]t, so that]si /]t;O(1). If we assume
this, then, equating terms with equal powers ofe in Eq. ~23!
we obtain

f q~q(0),s1 , . . . ,sn!50, ~24!

q(1)5
1

] f q /]q S (
i 51

n
]q(0)

]si

]si

]t

2gq~q(0),s1 , . . . ,sn ,v1 , . . . ,vN!2Dq¹2q(0)D ,

~25!

provided that] f q /]qÞ0. Clearly, it is not possible to do this
in the case of one fast irreversible reaction. In most cases,
from Eq. ~24! we obtain the desired algebraic relationship
q(0)5q(0)(s1 , . . . ,sn). Replacing this relationship in Eq.
~25! we obtain q(1) as a function of s1 , . . . ,sn and
v1 , . . . .,vN . Replacing these functions in the expansion~22!
and inserting it in the equations for the concentrationssi we
get Eq.~11! with si , instead ofs i andq(0) instead ofu.

Even if we cannot guaranteea priori that ]si /]t
']si /]t, we can perform this calculation and check after-
wards if it is consistent. Namely, if the values ofq(0) and
q(1) that we obtain satisfy

ueq(1)u!uq(0)u, ~26!

then the calculation is correct. Notice that if the fast variation
of somesi is relevant, thenq(1) can be of order 1/e and the
condition Eq.~26! will fail. Under the assumptions of Sec.
III ~fast reversible reactions!, this ‘‘new’’ calculation gives
exactly the same result. If some of these assumptions do not
hold, we can still follow this new calculation and then per-
form the check we have just mentioned. For this reason, it
may be extended to cases not included in the assumptions of
Sec. III. However, the validity of this approach can only be
checkeda posteriori. On the other hand, it is not clear how
to obtain the initial conditions for the reduced equations. We
discuss this in detail in Ref. 24.

VI. THE SELKOV MODEL

The Selkov model11 represents an open monosubstrate
and monoproduct reaction catalized by an allosteric27 en-
zyme which is inhibited by the substrate and activated by the
product. The model describes the kinetics of the reactions
involved in the appearance of a single frequency oscillation
in the glycolytic pathway.13 The allosteric properties of the
enzyme~phosphofructokinase, PFK! are taken into account
in an approximate way,28 through a factor (g) which repre-
sents both the degree of product activation and that of sub-
strate inhibition. What makes the PFK special is that it be-
longs to a path that globally produces adenosine triphosphate
~ATP! but in the specific step it catalizes, it produces adeno-
sine diphosphate~ADP! out of ATP. Given that the PFK is
regulated by its global behavior, there is a positive feedback
exerted on the PFK by the ADP. This feedback gives rise to
the appearance of self oscillations on the concentration of
ATP and ADP.

As shown by Selkov,11 the time evolution of the dynami-
cal system that represents the chemical reactions of an ide-
ally homogeneous medium can be confined on a two-
dimensional manifold given by the ATP and ADP
concentrations. He then showed that the frequency of the
limit cycle predicted by his model is very close to the one
found in experiments. Moreover, it is simple to show that if
spatial variations are permitted, then Turing instabilities can
be observed in this system provided that ATP diffuses more
slowly than ADP.14 The possibility of finding mesoscopic
chemical patterns in biological cells is of fundamental im-
portance. Many other chemical species, not necessarily in-
volved in this reaction, could rest on ATP-rich paths created
by this instability. Besides, as pointed out by Goldbeter,28 if
the cell membrane is permeable to chemical reactants a
propagating structure may arise from the coupling of several
neighboring cells possesing enzyme oscillators synchronized
by the source of the substrate. It is also believed that this
kind of chemical supracellular pattern could play a role in
embryonic development since the dimensions for which they
arise are those of the morphogenetic field. However, at least
one point against this possibility must be overcome for gly-
colytic spatial patterns to be observed in cells: as mentioned
in the introduction, Turing patterns are mainly driven by dif-
ferences in the diffusion coefficients of chemical species.
Thus in this case the diffusion coefficient of substrateS1

~ATP! and the productS2 ~ADP! should become signifi-
cantly different for the structures to be observed. But, as long
as these molecules have almost the same structure and mass,
it is clear that without a selective interaction with nondiffus-
ing species, the necessary difference in the magnitude of the
diffusion coefficients cannot be achieved. It would be inter-
esting to apply in this case the methods developed in the last
sections and study if the rescaling of the diffusion coeffi-
cients can be large enough for this kind of pattern to be
observed.

The simple kinetic model developed by Selkov reads:

→
v1

S11ES2
g 


k21 /e

k11 /e

S1ES2
g ,

S1ES2
g →

k12 /e

ES2
g1S2→

v2

, ~27!

gS21E 

k23 /e

k13 /e

ES2
g ,

where S1 is supplied by an external source at the ratev1

which is supposed to remain constant during the reaction.
From the equations it is clear thatS1 is irreversibly converted
into the product moleculesS2. The product is then removed
by an irreversible sink at the ratev2. The free enzymeE is
inactive unless when it hasg product molecules bounded,
forming the complexES2

g . We start from the corresponding
Eqs.~1!–~3! in which we assume that the sink of the product
behaves as a first-order reaction (v25k2s2) and that the sub-
strate and product diffuse in space, but neglect the diffusion
of the enzymes and its complexes. These are five reaction–
diffusion equations for the concentrationss15@S1#, s2

5@S2#, q15@ES2
g#, q25@S1ES2

g#, and q35@E# ~see Ref.
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24!. However, taking into account the constancy of the total
amount of enzymeq1(t)1q2(t)1q3(t)5const[e0 it is pos-
sible to reduce the number of equations by one.

According to Selkov’s data, the concentration ofE and
its complexes is three to four orders-of-magnitude below
those of ATP and ADP.11 So, we can rescale theqi concen-
trations by a small parameter~of the order ofe), as done in
Ref. 22. In order to discuss the validity of the approximation
in different limits we will introduce a new parameter,ẽ, such
that qi5 ẽq̃i and e05 ẽẽ0 , and use the expansionqi5 ẽq̃i

5 ẽ(qi
(0)1eqi

(1)) to simplify the notation. Thus,ẽ is propor-
tional to the ratio of enzyme to product or substrate concen-
tration.

We proceed as described in the last section in order to
get rid of q̃1 , q̃2 , and q̃3 in favor of s1 and s2. After a
lengthy calculation we obtain:24

]j1

]t
5

a(0)1 ẽ~a(1)b(0)1d(1)a(0)!

D
1

D1

D
~11 ẽd(1)!¹2j1

1 ẽa(1)
D2

D
¹2j2 , ~28!

]j2

]t
5

b(0)1 ẽ~b(1)a(0)1c(1)b(0)!

D
1

D2

D
~11 ẽc(1)!¹2j2

1 ẽb(1)
D1

D
¹2j1 , ~29!

where we have defined the rescaled concentrations,j1

[k11 /(k211k12)s1 and j2[(k13 /k23)1/gs2 , d[1
1j2

g(11j1) and

a(0)5
k11

k211k12
S v12

ẽ

e

k12j1j2
g

d
ẽ0 ,D ,

b(0)5S k13

k23
D 1/g ẽ

e

k12j1j2
g

d
ẽ02k2j2 , ~30!

a(1)5
gk11j1j2

g21ẽ0

~k211k12!d2
,

b(1)5S k13

k23
D 1/g ~k232k12!j2

gẽ0

k23d2
, ~31!

c(1)5
k11j2

gẽ0

k23d2 S j11
k21

k211k12
D ,

d(1)5S k13

k23
D 1/g k23g~11j2

g!j2
g21ẽ0

~k211k12!d2
, ~32!

D5~11 ẽc(1)!~11 ẽd(1)!2 ẽ2a(1)b(1). ~33!

First we must notice that botha(0) andb(0) contain terms
that are proportional toẽ/e @see Eq.~30!#. Thus, if ẽ;e
!1, then the calculation is consistent since we may assume
that ]j1 /]t and ]j2 /]t are of order one@see Eqs.~28!–

~29!#, in which case the conditionsueqi
(1)u!uqi

(0)u are easily
satisfied, provided thate is small enough~see the detailed
calculations of Ref. 24!. Then, keeping up to linear terms in
ẽ, Eqs.~28!–~29! may be approximated by

]j1

]t
5a(0)1 ẽ~a(1)b(0)2a(0)c(1)!

1D1~12 ẽc(1)!¹2j11 ẽa(1)D2¹2j2 , ~34!

]j2

]t
5b(0)1 ẽ~b(1)a(0)2b(0)d(1)!

1D2~12 ẽd(1)!¹2j21 ẽb(1)D1¹2j1 . ~35!

Also in this approximation there are cross diffusion terms,
which can be neglected ifẽ is small enough. However, under
that assumption, the rescaling of the diffusion coefficients is
also negligible. The ratio between the effective diffusion co-
efficients of the substrate and the product is approximately
given by (D1 /D2)(11 ẽd(1)2 ẽc(1)) and this might not give
the necessary value to sustain Turing patterns.14 Now, the
ratio of enzyme to product or substrate concentration~which
is proportional toẽ in our notation! is very small in experi-
ments donein vitro. It has been argued14 that conditionsin
vivo can be largely different. Namely, ifẽd(1);O(1) or
ẽc(1);O(1) then the rescaling could be important. How-
ever, the cross-diffusion terms would also be important and a
new analysis of pattern formation in this context should be
done, which goes beyond the scope of this article. In any
case, we must note that the conditions for the reduction to be
valid @the natural extension of Eq.~26!# may not hold ifa(0)

or b(0) become too large due to their dependence onẽ/e.
This consistency condition must be checked for each specific
application before drawing any conclusions for this system.
We will study the general reduced system in more detail in
the future.

VII. THE FIS REACTION

We now analyze the case of the FIS reaction, which was
originally studied in Ref. 12 and later in Refs. 15, 16, where
a variety of patterns were observed. A set of basic reaction
steps involved in the FIS system was first proposed in Ref.
12 and then improved in Ref. 29. It was later shown30 that,
under certain assumptions which hold in the experiments, the
evolution may be described in terms of four dynamical vari-
ables. We will consider this model, which is given by the
following set of reactions:

A1V

kN1 /e



kN18 /e

U, ~36!

U→
kN2

V, ~37!

2V →
kN3 /e

Z, ~38!
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Z1U →
kN4 /e

3V, ~39!

Z→
kN5

, ~40!

whereU5HSO3
2 , V5H1, A5SO3

22 , andZ5I 2. In this
case, we start from a set of four reaction–diffusion equations
in which we have assumed that the speciesV andA are fed
into the system at the same rate at which all of the species
are removed (k0) and that all the species may diffuse~see
Ref. 24!.

Taking into account the huge differences in the various
rates, Ga´spár and Showalter further reduced the correspond-
ing homogeneous dynamical system~our reaction–diffusion
equations with no diffusion terms! to a set of two ODEs.
With the addition of diffusion terms these two equations
form an inhibitor–activator system with bisulfite (U) the in-
hibitor and protons (V) the activator species. Theoretical
analyses and numerical simulations of this type of inhibitor–
activator system indicates that the inhibitor needs to diffuse
faster than the activator for patterns to be formed.17,18,16This
seems unrealistic if protons are the activator species. In this
section we apply the methods of Sec. V to see if the diffusion
coefficients are rescaled so as to satisfy this theoretical con-
dition.

In order to make this calculation more specific, we con-
sider the parameter values that are used in the experiments
when replicating spots are observed:kN250.06 s21 kN1 /e
55.031010 M21 s21, kN18 /e58.13103 s21, kN3 /e57.5
3104 M21 s21, kN4 /e52.33109 M21 s21, kN5543.68 s21.
It is not completely clear what the values ofv0 anda0 actu-
ally are inside the gel where the reaction takes place. We will
considera050.089 and 0.0072 M<v0<0.085 M. We then
see why we can introduce the small parametere to distin-
guish between fast and slow reactions. However, we also see
that there are more than two time scales. In any case, at this
point, we only distinguish two groups. Inspired by the reduc-
tion of the ODEs performed in Ref. 30, we seek a reduction
of the PDEs in which the variablesa andz are eliminated in
favor of u andv. To this end we follow the steps of Sec. V
consideringS15U, S25V, Q15A, andQ25Z. Since the
Z species is iodine which binds to the gel, its diffusion coef-
ficient may be neglected. For the sake of simplicity, we will
also neglect the diffusion term ofA. With these assumptions
we obtain, after a lenghty calculation,24

]u

]t
52

kN3

e

v2

D S 11
4kN3v
kN4u D

1
Du

D
¹2uS 11

6kN3v
kN4u

1
kN18 u

kN1v2D
1

Dv

D
¹2vS kN18 u

kN1v2 1
2kN3v
kN4u D 1BuA111BvA12,

~41!

]v
]t

5
kN3

e

v2

D S 12
2kN3v2

kN4u2 D
1

Dv

D
¹2vS 11

kN18

kN1v
1

kN3v2

kN4u2D
1

Du

D
¹2uS kN18

kN1v
1

3kN3v2

kN4u2 D 1BvA221BuA21,

~42!

where we have defined Bu[(2kN2u2k0u1k0(a0

2 kN18 u/kN1v) 1 (kN5 1 k0)(kN3v2/kN4u) )/D, Bv [ (kN2u
1k0(v0 2 v ) 2k0 ( a0 2 kN18 u/kN1v ) 23(kN51k0)(kN3v2/
kN4u))/D,

A11511
6kN3v
kN4u

1
kN18 u

kN1v2 , A125
kN18 u

kN1v2 1
2kN3v
kN4u

,

A22511
kN18

kN1v
1

kN3v2

kN4u2 ,

A215
kN18

kN1v
1

3kN3v2

kN4u2

andD5A11A222A12A21. Now, the whole calculation is con-
sistent provided thatuea(1)u!ua(0)u and uez(1)u!uz(0)u, but
both a(1) and z(1) contain terms that are proportional to
]u/]t and ]v/]t ~see Ref. 24!. These time derivatives may
get large given that Eqs.~41!–~42! contain terms which are
proportional to 1/e. However, the existence of more than two
time scales is of help in this case. Assuming that the right-
hand side of Eqs.~41! and ~42! are dominated by the terms
proportional to 1/e, we may rewrite the conditionsuea(1)u
!ua(0)u and uez(1)u!uz(0)u as ~see Ref. 24!:

kN3

kN1
U v
uD S 11

2kN3v
kN4u D1

1

DU!1, ~43!

kN3

kN4
U2v

D
1

v2

uDU!1. ~44!

For the parameter values we are considering it iskN3 /kN1

51.531026 andkN3 /kN4 53.2631025. Thus, provided that
v/u does not become too large, the conditions~43! and~44!
are satisfied and the calculation is self-consistent. As in the
Selkov model, also in this case we get cross-diffusion terms
which are small forkN3 /kN4 , andkN18 /kN1v small enough.
Under these conditions, however, the rescaling of the diffu-
sion coefficients is not very important and the ratio between
them may be approximated by

Du /Dv'11
6kN3v
kN4u

1
kN18 u

kN1v2 2
kN18

kN1v
2

kN3v2

kN4u2 .

For some values ofu andv of interest for the experimental
system this ratio becomes larger than one. As we discuss in
Ref. 31, the dependence of the rescaled coefficients with the
concentrations must be taken into account in this case. Fur-
thermore, via an approximate local analysis we have recently
found that the reduction does not hold for all the concentra-
tion values that may be achieved in the experiment. How-
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ever, in the regions where it holds, we may conclude that the
rescaling is indeed enough to explain the formation of the
observed patterns.31 In any case, a more detailed analysis of
the full reduced set of equations is still necessary.

VIII. CONCLUSIONS

We have used a multiple scale analysis23 to study the
slow-time dynamics of reaction–diffusion systems with sev-
eral time scales. The method is particularly suitable for the
case of reversible reactions. We have also approached the
reduction in a way similar to the quasisteady-state approxi-
mation used for ordinary differential equations.21,22 Both ap-
proaches are the same in the case of one fast reversible re-
action. The reduced equations are usually a generalization of
reaction–diffusion equations, since they involve cross-
diffusion terms and diffusion coefficients that are
concentration-dependent. Thus, these diffusion coefficients
vary in space through their dependence on the concentra-
tions. If taking them as constant is a good approximation,
then the cross-diffusion terms may be eliminated by a linear
transformation. In this case, the resulting~reduced! equations
are of the usual reaction–diffusion type, but for variables
that do not correspond to the concentration of any actual
chemical species~they correspond to linear combinations of
the concentrations!.

In cases involving several fast reactions, some of them
irreversible, it is easier to follow the steps in the quasisteady-
state style. However, in this case, the validity of the reduc-
tion is not knowna priori and ana posterioricheck is nec-
essary. We have analyzed in this way the Selkov model and
the FIS reaction.

The Selkov model is a model for the glycolytic oscilla-
tions that describes the conversion of ATP into ADP. The
possibility of developing Turing patterns within the small
scales of the cell for this pathway was discussed in Ref. 14.
It required that ATP and ADP diffused at unequal rates,
which seemed unrealistic given the similarities in their struc-
ture. However, they both react differently with enzymes that
may be assumed to remain immobile. Thus, we reduced the
evolution equations involving ATP, ADP, and the enzymes
to a system that described the slow dynamics of ATP and
ADP. We wanted to determine if the resulting system could
be of reaction–diffusion type with diffusion coefficients res-
caled in the right way. We concluded that under the experi-
mental conditionsin vitro, this rescaling is very small, while
for other conditions that may holdin vivo, the resulting sys-
tem involves cross-diffusion terms. A further analysis of this
more complicated system is necessary in order to achieve
any conclusion on the possibility of developing patterns. We
will do this in the future.

The interest in the FIS reaction was motivated by the
observation of a variety of patterns that could be reproduced
in numerical simulations of very simple models. The exis-
tence of patterns in the models also required different diffu-
sivities. In this case again we investigated if the reduction of
the original system to a set of two equations could account
for this difference. However, as in the case of the Selkov
model, the rescaling was not important when the reduced

system was of the usual reaction–diffusion type in the origi-
nal variables, with negligible cross-diffusion terms. When
these cross-diffusion terms~with concentration-dependent
‘‘diffusion coefficients’’! become important, a further analy-
sis is necessary. By means of a local analysis we have re-
cently found that, under the experimental conditions of Ref.
15, the rescaling may account for the formation of the
patterns.31
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