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Three-dimensional analytical infinite order sudden quantum theory 
for triatomic photodissociation: Dependence on initial rotational 
and vibrational state and on thermal averages for NOel dissociation 
on T1 (1 3 A") surface 

Horacia Grinberg,a) Carl J. Williams, and Karl F. Freed 
James Franck Institute and Department of Chemistry, The Uniyersity of Chicago, Chicago, Illinois 60637 

(Received 18 January 1994; accepted 1 March 1994) 

Our previously developed analytical infinite order sudden quantum theory of triatomic 
photodissociation is generalized to compute fragment internal energy distributions when the initial 
triatomic rotational state has K=I=O. The dependence of product rotational energy distributions on 
initial rotational and vibrational state is illustrated through model computations for the direct NOCI 
photodissDciation from the ground to the TJ (1 3 A") potential energy surface. The calculations 
consider all J,K:s;;.9 and employ a repulsive potential that is fit to ab initio computations. 
Comparisons of fragment rotational distributions with previous semiclassical approximations further 
elucidate the role of the mapping of the initial state bending wave function onto the fragment 
rotational distributions and the influence of parent rotations on this mapping. The infinite order 
sudden quantum-mechanical distributions exhibit a more complex structure, but upon thermal 
averaging they are already transformed at T=3 K into fairly broad rotational distributions. The 
present theory readily permits the calculations of energy distributions for initial states of high J 
andK. 

I. INTRODUCTION 

Theories for the photodissociation of triatomic mol­
ecules are progressing through a natural succession of stages. 
The first theories have been constructed based on simple 
models that attempt to elucidate generic properties of the 
photodissociation process and thereby to guide the interpre­
tation and design of experiments: 1-4 The earliest such mod­
els use one-dimensional impulsive, Franck-Condon, etc., 
approximations,5 while subsequent models confront the full 
multidimensionality of the triatomic photodissociation. The 
next stage in the maturation of our theoretical understanding 
is associated with the development of accurate computational 
schemes for numerically solving the Schrodinger equation 
governing the photodissociation dynamics, a stage that cur­
rently permits including three internuclear degrees of free­
dom in modeling the dissociation. When applied to triatomic 
molecules, the full numerical treatment is generally restricted 
to initial triatomic states of low total angular momentum 
quantum numbers J=0.6 Given the ability of numerically 
solving the three-dimensional Schrodinger equation, a final 
state of development involves the resurrection of simple 
models7- 17 to determine which successfully reproduce exact 
numerical solutions in specific limits,18,19 so that these tested 
models are available for more routine usage in interpreting 
and predicting pho'todissociation experiments. 

One important class of models centers around Franck­
Condon, or sudden-type approximations. The first Franck­
Condon model of Berry focuses on a single product vibra­
tional mode and an "effective" vibration for the same 
coordinate in the initial bound state of the polyatomic 
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Investigaciones Cientlficas y Tecnicas (CONICET), Republica Argentina. 

molecule.21 The more sophisticated Franck-Condon models 
of Freed et al. 14,22-25 account for the fact that the product and 
initial state vibrational modes, in general, differ and that the 
reaction coordinate cannot be described by a single normal 
mode in the initial bound molecular state. The difference 
between the natural coordinates for the initial bound and 
final dissociative potential surfaces thereby provides one 
mechanism for imparting vibrational excitation to the photo­
fragments. An additional mechanism arises from the pres­

. ence of final state interactions between the receding photof­
ragments on the dissociative potential surface, interactions 
that can and often do alter the nascent energy distributions 
produced by the sudden Franck-Condon excitation process. 

The'multidimensional Franck-Condon models 18-20 pre­
dict that diatomic fragment rotational distributions have 
structures reflecting the nodal patterns in the initial bound 
state bending vibration wave functions, a prediction subse­
quently verified by Reisler et at. in the indirect photodisso­
ciation of NOCI,26,27 found in full three-dimensional quan­
tum photodissociation calculations,19,20 and explained for 
J=O by the simpler (one-dimensional) reflection principle 
model of Schinke and co_workers.5,28-32 The latter is, in fact, 
an approximation to the one-dimensional bending Franck­
Condon integral in the bend-stretch approximation dis­
cussed below. The multidimensional Franck-Condon mod­
~ls, however, predict the diatomic fragment rotational 
distributions from the photodissociation of bent triatomic 
molecules to have an additional oscillatory contribution that 
is not observed experimentally. Various suggestions for the 
lack of observing the extra oscillf.lctjolls are associated with 
experimental data containing averages over fragment fine 
structure states and over the narrow range of initial rotational 
states for molecules in a supersonic jet. 26,27 
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In order to obtain analytical tractability, the bent tri­
atomic photodissociation Franck -Condon model of Morse 
and Freed14,15 invokes several approximations that are lifted 
in the more general three-dimensional infinite order sudden 
model by Grinberg et al. 18,19 The improved treatment of 
Grinberg et al. lifts the prior assumptions of isotropic final 
potential energy surfaces and of the separation between ini­
tial bound state bending and stretching motions (called the 
bend-stretch approximation). The bend-stretch approxima­
tion is commonly invoked in numerical three-dimensional 
photodissociation computations because the initial bound 
state wave function is represented in these computations by 
basis set expansions involving functions of the Jacobi scat­
tering coordinates, which are more appropriate for describing 
dynamics on the final dissociative surface than the normal 
mode-like coordinates usually used by spectroscopists to de­
scribe the bound state vibrations of polyatomic molecules. 
Thus, the bend-stretch approximation restricts the basis set 
expansion to separate two-dimensional expansions for the 
stretching functions and a one-dimensional expansion for the 
bending function. Infinite order sudden computations by 
Grinberg et al.,19,20 on the other hand, provide examples for 
which the bend-stretch approximation is inadequate, a result 
which emphasizes the merits of theoretical methods based on 
the use of separate coordinate systems for describing the 
bound and dissociative surface motions. Recent full numeri­
cal three-dimensional quantum computations likewise lift 
this approximation. As noted above, Schinke's useful reflec­
tion principle is based on an approximation to the one­
dimensional bending Franck-Condon factor with the as­
sumption of the bend-stretch separation. 

As the initial state rotational quantum number J in­
creases, so does the number of basis functions (or the equiva­
lent) required for full three-dimensional quantum photodis­
sociation computations. Thus, these calculations are 
currently extremely costly for the large J required to perform 
inital state thermal averages appropriate to many realistic 
experiments. Consequently, the prior infinite order sudden 
model of Grinberg et al. is still useful to elucidate the influ­
ence of parent rotation and vibration on fragment rotational 
energy distributions since the computational labor involved 
in applying the model only scales with J roughly as J + 1 or 
one-half of the degeneracy. This low order scaling arises be­
cause of the fully analytic character of the infinite order sud­
den theory of Grinberg et al. The combination of infinite 
order sudden and Airy approximations are shown by Grin­
berg et al. to analytically permit performing two of the inte­
grations in the nonseparable three-dimensional transition am­
plitudes, leaving only one remaining integration. The last 
integration is converted to a fully analytical expression upon 
introduction of a quadrature formula. Hence, the theory of 
Grinberg et al. produces purely analytical, albeit lengthy, ex­
pressions for the rotational and vibrational energy distribu­
tions of the photofragments.18,19 

One of our interests here is to extend our infinite order 
sudden theory33-35 to study the temperature or number of 
rotational states necessary to wash out the predicted second­
ary oscillations in the fixed initial J diatomic fragment rota­
tional distributions. This study requires computations for a 

number of J and K, which is nontrivial for even full numeri­
cal three-dimensional theories. Since the previous work of 
Grinberg et al. limits explicit consideration to K=O, a nec­
essary prelude to the desired computations requires the 
evaluation of the infinite order sudden transition amplitudes 
for both J and its projection K different from zero, a techni­
cally difficult analytical problem owing to the presence of 
Wigner rotation matrices (or the equivalent Jacobi polynomi­
als) in the integrands. Thus, Sec. II briefly reviews the infi­
nite order sudden theory and the current generalization to 
J,K=I=O. lllustrative computations in Sec. ill describe the 
variation of product rotational distributions with initial rota­
tional and vibrational states and with the initial rotational 
temperature. Computations are performed for nine initial vi­
brational states and all J,K~9. The K=O limit of the 
quantum-mechanical lOS rotational distributions are com­
pared with previous semiclassical models. 14 The computa­
tions, for concreteness, use potential functions fit to the re­
pulsive portion of the ab initio NOCI T 1 state potential 
surface36 and assume a direct ground to T 1 state dissociation. 
However, our computations are still purely illustrative be­
cause of the indirect character observed for the NOCI T 1 

state photodissociation.26 Work is in progress on developing 
a generalization of the infinite order sudden theory to de­
scribe these indirect photodissociations. 

II. THEORY 

The different photodissociation processes, such as direct 
photodissociation, predissociation, vibrational predissocia­
tion, etc., may be described through the Hamiltonian 

(2.1) 

where VI is the interaction Hamiltonian which couples the 
bound and continuum eigenstates of H o. If the dissociation 
inducing the coupling VI is sufficiently weak, the usual 
Golden Rule expression for the dissociation rate r ij from 
initial bound or quasibound state I i) to the final state If) is 
valid 1 and is given by 

(2.2) 

In addition, we adopt the Born-Oppenheimer and Condon 
approximations. Thus, the initial I i) and final If) states are 
written below as products of nuclear and electronic wave 
functions. The electronic matrix elements of VI are taken to 
be only weakly dependent on the nuclear coordinates in the 
regions where the overlap of the initial and final vibrational 
functions I i) and If) is nonzero. 

A. Initial state wave function 

The initial bound state nuclear wave function for the 
bent triatomic molecule is represented in terms of a basis set 
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TABLE 1. Spectroscopic data and relevant parameters used in the model 
photodissociation NOCI--->NO(X 2II3/2)+Clep 3/2). 

wl=1799.7 cm- 1 

w2=332.0 cm- 1 

w3=S9S.9 cm- 1 

~o=1903.68 cm- I 

KI=14.087 mdynlA 
K 2= 1.243 mdynlA 
K3=l.lS mdynNrad2 

rNo(NOCl)=l.lS A 
rNa= 1.975 A 
8=2.007 rad 
rNo(N=O)=l.lS08 A 
p=0.8270 
7]=0.8840 
R=2.302 A 
8=0.8906 rad 
A =2.9582 cm- I 

B=0.1865 cm- I 

C=0.1754 cm- I 

B u(NO)=1.7 cm- I 

/30=2.3080 rad 

N=O stretch (99%) 
N-Cl stretch (71 %), CINO bend (29%) 
N-CI stretch (32%), CINO bend (68%) 

(N=O stretch) 
(N-CI stretch) 

(ONCI bend) 

of rigid-rotor (asymmetric top),37,38 harmonic oscillator func­
tions 

'It;(Q) = 2: gK[(2J+ 1)/87T2 ]112 

K 

;=1 

(2.3) 

where the wave functions for the asymmetric top are formed 
from linear combinations of the appropriate symmetric-top 

functions DCK with coefficients gK?9 The 1/In.(Qi) are har-
I 

monic oscillator wave functions in the normal coordinates 
Qi ,40 and (a,{3,y) specify the Euler angles providing the ori­
entation of the eqUilibrium principal axes of inertia relative 
to the space-fixed coordinate system.37,38 Anharmonicities 
and vibration-rotation couplings may be included by tiling 
linear combinations of harmonic basis functions of the form 
(2.3). Below we treat an individual harmonic term arising 
from the use of anharmonic potentials since the general case 
follows directly. Table I summarizes some of the spectro­
scopic data for the ground electronic state of NOCl. Notice 
that although the force constants for the initial vibrational 
potential energy do not contain cross terms between local 
mode bend and stretch, the V2 and V3 modes are mixtures of 
bend and asymmetric stretches due to the kinetic energy op­
erator (G matrix)41 coupling between bend and stretch. 
These bend-stretch couplings often qualitatively affect20 

predictions of fragment rotational energy distributions. 

B. Final state wave function 

Scattering coordinates are the most appropriate to de­
scribe the dynamics in the final repulsive electronic state. 

FIG. 1. Body-fixed coordinate systems for a bent triatomic molecule. The 
angles (f3,a) give the orientation of the principal axis of smallest moment of 
inertia (along the z' axis), «(}SF ,<PSF) give the orientation of the atom to 
diatom vector (along the z axis), and (13' ,a') give the orientation of the 
diatomic molecule (along the Z axis), all relative to the space-fixed frame. 
The (X)lz), (x'y'z'), and (;Yz) frames are all body-fixed frames specified 
with the z axis along the three vectors mentioned above. The molecular 
center of mass is located at the origin, and the diatomic center of mass is 
indicated by an asterisk. R( == QD is the distance from atom C to the center 
of mass of the diatomic photofragment, and r( == Q~) is the interatomic 
distance for A-B. 

Thus, the asymptotic limit Q; -+ <Xl of the nuclear wave func­
tion on the final electronic surface is written in the scattering 
coordinate basis as 

x2: (1' M'lljjLm)Yjm({3' ,a')YZ/1-(8SF ,cPSF), 

/1-,m 

(2.4) 

where 1/In/Q;) is a harmonic oscillator function for the 
separated diatomic photofragment. The angular momenta 
(j,m) and (l,jL) refer to the rotation of the diatomic fragment 
and its z component and the orbital motion of the atom rela­
tive to the diatomic center of mass and its z component, 
respectively. The angles ({3' ,a') are the polar and azimuthal 
angles specifying the orientation of the diatomic molecule 
relative to space-fixed axes, while (8SF ,cPSF) give the orien­
tation of the atom-diatom vector relative to the space-fixed 
frame (see Fig. 1). Assuming that no electronic angular mo­
mentum is present these two angular momenta I and j are 
coupled to give well-defined values of the total angular mo­
mentum and its z component (1' ,M') using the Clebsch­
Gordan coefficients (J' M' Ilj jLm).37,38,42 Finally 1/I/f..Q; ; 8) 
is the asymptotic continuum wave function for the relative 
translational motion of the photofragments with asymptotic 
kinetic energy E. Below this fragment wave function 
1/1 ft( Q; ; 8) is taken to be given by infinite order sudden 
(lOS) and Airy approximations, as described previously.19 
Here Q; and f} are, respectively, the distance between the 
diatom center of mass and the atom and the angle between 
the diatomic axis and the atom to diatom vector (Fig. 1). 

The infinite order sudden approximation applies when 
the dissociation proceeds rapidly compared to diatomic rota-
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tional times. Hence, the atomic fragment essentially moves 
in a straight line trajectory with the diatomic at fixed orien­
tation. An average is then performed over all relative orieta­
tions of the diatomic with respect to the direction of the 
atom's motion. An equivalent representation of the lOS ap­
proximation considers the asymptotic fragment kinetic en­
ergy to be far in excess of the diatomic rotational energies, so 
that the diatomic rotational energy may be neglected with 
respect to the kinetic energy. This lOS approximation then 
results in the approximate wave function taking on the the 
asymptotic form of Eq. (2.4). Corrections to this approxima­
tion become important at low asymptotic kinetic energies 
and when there are substantial torques exerted in the exit 
channel. 

C. Potential energy surface 

The initial bound state is taken as the ground electronic 
state with spectroscopic constants summarized in Table I. 
The dissociative potential energy surface is fit to ab initio 
calculations for the repulsive portion of the TI(l 3A") state 
potential for NOCI as provided in Ref. 36. The fit is obtained 
using the functional form 

U(R;e) =F(e)exp[ -(R-R)f(e)], (2.5) 

where f( e) and F( e) are numerically determined with a cubic 
spline fit. In Eq. (2.5), R is the distance of atom C (the CI 
atom) to the center of mass of the diatom A-B (the NO 
diatomic photofragment), and R is the corresponding equi­
librium distance. 

D. Evaluation of multidimensional transition 
amplitudes 

Our previous paperl9 presents the relations between nor­
mal and scattering coordinates as well as the details for the 
analytical evaluation of the integrals involving the coordi­
nates r (interatomic distance of the diatomic photofragment) 
and R. The rotational distributions are evaluated using the 
Condon approximation and ignoring the dependence of the 

scattering wave function if! ;(R; e) on orbital angular mo­
mentum l. In order to alleviate the computational complexity 
inherent in the calculation of the matrix element in Eq. (2.2), 
two other approximations are required for analytical tracta­
bility: (a) the infinite order sudden (lOS) approximation is 
used for the rotational motions, and (b) an Airy function 
approximation is introduced for the rotational lOS wave 
functions. We assume dipole coupling (direct photodissocia­
tion) and approximate the rotational motions by symmetric 
top functions (see discussion below). This then permits 
elimination of the sum over K in Eq. (2.3). Following the 
steps leading to Eq. (3.8b) of Ref. 14, the rotational angular 
momentum distributions P JK(j) are obtained for the present 
case as 

PJKU) = V7U+ 1/2)~ Joo d/
oo 

dR('" de 
mA -<X> J 0 J 0 

where the transformation Q i = Q i( r ,R, e) is discussed below. 
The quantum numbers J and K specify the initial (bound) 
rotational state; j is the diatomic fragment rotational quan­
tum number; and A designates the polarization of the incident 
light with respect to space-fixed coordinates. d6m and d~-AK 
are Wigner rotation matrix elements which can be expressed 
in terms of normalized associated Legendre polynomials,37,38 

dbm(e)=(j+ 1/2)-lf2Pj(cos e), (2.7) 

and Jacobi polynomials,37 respectively (see beloW). J B is the 
Jacobian of transformation from initial bound state normal 
coordinates Q i (i = 1, 2, 3) to the Jacobi scattering coordi­
nates (r,R, e) on the repulsive potential energy surface. De­
tails of this transformation and the different coordinate sys­
t~ms along with the relation between them are given in 
previous papers. 14,19 Here it is enough to note that if e is the 
angle between the diatomic axis and the atom to diatomic 
molecule center of mass vector (see Fig. 1), it can be shown 
that 14 

(2.8) 

where e is the eqUilibrium angle in the initial bound state 
configuration, and CPI and CP2 describe, respectively, the an­
gular displacements of the diatomic vector and of the atom to 
diatom vector of the vibrating molecule from their equilib­
rium bound state positions as defined by the appropriate Eck­
art frames. 14 The angles (CPI,CP2) are functions of the internal 
coordinates of the molecule, and both CPI and CP2 vanish, by 
definition, for the bound state equilibrium geometry. In prin­
ciple, CPI and CP2 and e depend on all three coordinates 
(r ,R, 0), but as long as stretching vibrations have displace­
ments that are much smaller than bending amplitudes, the 
dependences on R and r can be ignored. Thus, we adopt the 
leading linear approximations l4 

CPI=p(0-8), (2.9) 

CP2=[P-(~:) ](0-8), 
eq 

(2.10) 

where (0- 8) is the instantaneous displacement of the bond 
angle relative to the equilibrium angle in the initial bound 
state configuration of the molecule. The molecular parameter 
p can be determined from the Eckart and center of mass 
conditions as a function of the atomic masses and inter­
atomic distances of the initial bound molecular state.14 After 
some rather involved algebra, p is obtained as 

(2.11) 
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where r AB and rBe are the equilibrium bonds length of the 
AB and BC bonds in the initial bound molecular state 1 i), 
and Inj is the mass of atom i. The angle (30 in Eq. (2.6) is 
evaluated from the diagonalization of the inertia tensor for 
the initial bound state of the triatomic molecule and is found 
to be given by 

.Bo=(1I2)arctan[ -2Ix/Uxx-Iyy)], (2.12) 

where the bond of the diatomic fragment A-B is along the x 
axis, Ixy is the product of inertia, and Ixx and Iyy are the 
moments of inertia about the x and y axes, respectively. For 
transitions polarized in the plane of the molecule, 0 in Eq. 
(2.6) is given by lS 

(2.13) 

where [J' is the Euler angle which rotates the body-fixed 
frame (XI,yl,Z/), whose axes are coincident with the princi­
pal axes of inertia, into the body-fixed frame (XI,yl,Z"), 
with ;:./1 along the transition dipole for the photodissociative 
transition. The (x" ,ylt ,zit) axis system can be visualized with 

reference to Fig. 1, where this axis is not explicitly repre­
sented to avoid clutter in the figure. This axis system is sim­
ply obtained by rotating the z axis in the plane of Fig. 1 to 
now point along the direction of the in-plane transition di­
pole (not shown in Fig. 1). 

This paper studies fragment rotational distributions as 
functions of initial triatomic rotational and vibrational states 
and temperatures. Thus, it is necessary to evaluate Eq. (2.6) 
for K *0, and this requires expressing the asymmetric top 
wave functions in terms of symmetric top functions with the 
unique axis in the plane of the molecule. The rotational con­
stants for NOel in Table I indicate that this molecule is a 
near prolate symmetric top (A>B~C). The solution of the 
Schrodinger equation for such a system can be expressed in 
terms of Jacobi polynomials, 

d~K(O)=MJKmxlK-mI/2(1-x)IK+mll2 

x p~":.I-:l~:Z~IIK-mI/2(z), (2.14) 

where the normalization factor M JKm is given by 

_ [(1+ IK +mI/2+: IK-~>1(2).!f! -1[( +mj!~-IK -~J(2) l] 112 

MJKm - (J-IK+mll2+IK-mll2)!(J+IK+mll2-IK-mll2)! 
(2.15) 

and 

x=(l-z)l2, z=cos e. 
The numerical evaluation of the Jacobi polynomials P~,q(x) 
involves using the relation43 

with ao(x) determined recursively from 

alll-I (x) = 1- (b",/cm)f(x)am(x) 

[m=n,n -1 , ... ,2, 1 ;an(x) = 1], 

where 

bm=(n-m+ 1 )(p+q+n+m); 

c",=2m(p+m); f(x)=I-x. 

(2.16) 

(2.17) 

(2.18) 

The above choices for the wave functions in the initial 
and final states produce three-dimensional nonseparable tran­
sition amplitudes which are reduced to analytical forms by 
introduction of the lOS and Airy function approximations for 
rotational motions and the continuum wave functions. In 
fact, as long as vibrational motions are described by har­
monic oscillator wave functions, the analytical integration 
over the scattering coordinate r (interatomic distance of the 
diatomic photofragment) can be straightforwardly per­
formed. The result is a Gaussian function of Rand O. In 
order to treat the integral over R analytically, the potential 
energy surface of Eq. (2.5) is first linearized around the clas­
sical turning point. 19 The Schrodinger equation with this lin­
ear potential admits a solution in terms of the Airy function, 

thus allowing the integral over the radial coordinate R to be 
performed analytically, after use of the integral representa­
tion for the Airy function. 8 This leaves only the integral over 
0, which is converted to analytical form by introducing a 
Gaussian-Legendre quadrature procedure. While the details 
are rather involved,19 the final results are algebraic expres­
sions that are readily evaluated numerically. 

III. RESULTS AND DISCUSSION 

The present calculations consider the model direct pho­
todissociation from NOCI in the T 1 (1 3 A") state to produce 
NO(X 2n3/~' The geometry, valence force constants, and 
normal mode frequencies for the initially ground NOCl state 
and for the X 2n312 electronic state of NO are taken from 
Refs. 44 and 45 and are provided in Table I along with other 
relevant parameters. The present lOS model ignores inelastic 
scattering processes on the repulsive surface. Thus, the 
model in Eq. (2.4) effectively assumes that the dissociation 
direction is· along the atom to diatomic molecule vector. 
Since NOCI belongs to the C s symmetry group, only two 
types of transitions exist with symmetries A' (where the tran­
sition dipole moment IL lies in the molecular plane) and A" 
(where IL is perpendicular to the molecular plane). 

The direction of the transition dipole moment in the mol­
ecule must be properly defined. The index A in Eq. (2.6) is 
zero for linearly polarized light and yields parallel transi­
tions, while circularly polarized light and perpendicular tran­
sitions emerge from A= ± 1. Thus, there is one type of 
photofragment rotational distribution produced when the 
transition dipole is along the atom to diatom vector (with 
0=0) and another when the transition dipole is perpendicu-
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lar to this vector (with 0,=7T'/2). For the NOel case, we 
assume the transition dipole lies along the NO bond, so that 
f30=-f3". Equation (2.13) then yields 0,=</>[-8 and there­
fore the resulting rotational distributions are linear combina­
tions of those from parallel and perpendicular transitions. 

Normalized, thermally averaged rotational distributions 
are calculated from 

I(j;T) 
P / T) = z:, .J( .. T) , 

J j, 
(3.1) 

where IU;T) is given by 

N max J 

I(j;T) = L L (2J+l)P JK(j)exp(-EJKlkT), (3.2) 
J=O K=O 

with the unnormalized rotational distributions P JKU) deter­
mined from Eq. (2.6). T is the absolute temperature, and the 
initial state rotational energy is 

EJK=(1/2)(B+ C)J(J+ 1) +[A - (l/2)(B+ C)]K2 

=EJ,-K. (3.3) 

The present calculations include states of total angular mo­
mentum J from J=O through J=9 in Eq. (3.2). The lOS 
approximation applies when the total energy E is much 
larger than the rotational energy B uj (j + I) for all states 
populated during the fragmentation process, a condition well 
satisfied in the present calculations for lower j, but some 
errors may arise in the higher j tails of the P JK(j) distribu­
tion where almost all the available energy goes into fragment 
rotation. 

In order to emphasize the influence of parent internal 
excitations on product state distributions, computations have 
been performed for excitation originating from nine excited 
vibrational states of the ground electronic state and for sev­
eral temperatures. Thermal averages are evaluated for each 
vibrational state separately since vibrations are generally not 

where j < is the minimum of J and j and where 71 is given in 
the 0 representation[9 by 

( 
ae) rBC 

71= aa = rBC- yr c~s l; ; 
eq 

(35) 

with y=lI(1 +mBlmA), and with M33 obtained from Eq. (2.7) 
of Ref. 19 as 

TABLE II. Available fragment and photon energies for initial vibrational 
states in the model photodissociation NOCl-->NO(X 2II3n)+Cl(2P3J0. 

Photon 
Vibrational E:v energyh 

state (eV) (em-I) 

(0,0,0,0) 0.3823 16206 
(0,0,1,0) 0.4324 16611 
(0,0,2,0) 0.4849 17035 
(1,0,0,1) 0.3385 17730 

~ (1,0,1,1) 0.3864 18115 
(1,0,2,1) 0.4364 18519 
(2,0,0,2) 0.3053 19306 
(2,0,1,2) 0.3470 19646 
(2,0,2,2) 0.3900 20000 

·Calculated from E.v=hv-Do-Ev(NO)-Eel(NO) where hv is the photon 
energy, Do is the dissociation threshold (13000 em-I) (see Ref. 46), 
Ev(NO) is the energy of the NO vibration, and Eel(NO) is the NO spin­
orbit electronic energy (123 em-I) [see Ref. 26(b)]. 

hraken from Ref. 26(b). 

totally thermalized in a supersonic jet. The upper surface 
available energy is presented in Table IT for each initial vi­
brational state. 

The WKB approximation of Morse and Freed[4 yields a 
simplified, physically transparent analytical expression for 
P JK=OU). When (a) the initially bound state of the triatomic 
molecule is a symmetric top, (b) the bend-stretch approxi­
mation is invoked, (c) the dissociative potential surface is 
isotropic, and (d) when K=O, this WKB approximation dis­
plays both the mapping of the ground state bending contri­
bution P JOU) along with the additional higher frequency os­
cillations whose washing out upon averaging we wish to 
study. Thus, comparisons between the quantum-mechanical 
rotational distributions computed from Eq. (2.6) and this 
semiclassical approximation help to illustrate the role of this 
bending wave function mapping. Taking the particular case 
of parallel transitions the Morse-Freed WKB approximation 
for P JOU) is given by 

(3.4) 

(3.6) 

where ~ is the frequency of the bending mode (see Table I). 
Both terms in Eq. (3.4) contain similar factors which are the 
squares of a Hermite polynomial times a Gaussian function 
and which are merely the square of the momentum represen­
tation of the ground state bending wave function. The addi­
tional sinusoidal oscillatory factors in Eq. (3.4) are associ-
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FIG. 2. Normalized rotational distributions for the model photodissociation NOCI---+NO(X 2II3(2)+CI(ZP312) under dipole coupling. (-) quantum-mechanical 
IOS calculations; (_._._.) semiclassical WKB approximation; (---) mapping of bending wave function. (a) J=O, K=O; nj =n2=n4=0, n3=0. (b) Same as (a), 
but 113=1. (c) Same as (a), but n3=2. (d) J=9, K=O; nj =n2=n4=0, 113=0. (e) Same as (d), but 113=1. (f) Same as (d), but 113=2. 

ated with the probability that the dissociation of a molecule 
along the direction described by e finds an orbital angular 
momentum state t. Schinke's reflection principle has been 
used to obtain an approximation to Eq. (3.4) for J=O only. 

Figure 2 displays three different computations of the nor-

malized P IOU) for excitation from the vibrational states 
(O,O,n3) (a progression in the bending vibration n3) with the 
initial total angular momentum J=O and J=9 and with n4, 
the final diatomic vibrational quantum number, taken to be O. 
The solid line presents our full quantum computations from 
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Eq. (2.6); the dot-dashed lines are obtained from the semi­
classical WKB approximation of Eq. (3.4); and finally the 
dashed lines come from Eq. (3.4) with the sin2 factors omit­
ted. Thus, the dashed lines provide the mapping of the 
ground state bending wave function onto P lOU) for com­
parison with the other two descriptions. For instance, con­
sider first J = K = 0. The dashed line in Fig. 2(a) displays the 
Fourier transform of the n3=0 ground bending function, 
while the WKB approximation (dot-dash) curve imposes the 
higher frequency oscillations but retains the overall width 
and shape of the rotational distributions. The intensity of the 
highest peak in the semiclassical approximation is almost the 
same as that predicted by the full quantum calculations. The 
semiclassical approximation also succeeds well in predicting 
the locations of the first node and second peak at j =4. How­
ever, the infinite order sudden (solid curve) quantum­
mechanical calculation has more complicated structure and is 
broadened somewhat from the WKB approximation. These 
changes emerge in the infinite order sudden (lOS) quantum 
calculations from the presence of coupling [neglected in de­
riving Eq. (3.4)] between bends and stretches in the initial 
bound state, couplings which have been shown by us in a 
previous workl9,20 as possibly substantially altering P lK(j). 
Other contributing factors to the difference between the lOS 
quantum and WKB approximations include the anisotropy of 
the repulsive potential surface, and the incorporation of 
slowly varying factors, such as the d~o(n) in Eq. (2.6) and 
the e-dependent part of the Jacobian in Eq. (2.6), 

(3.7) 

Figure 2(b) presents normalized rotational distributions 
produced by excitation from the the first excited bending 
state n3 = 1 of the ground electronic state. The example in 
Fig. 2(b) shows similar trends to those found for n3=0 in 
Fig. 2(a). The dashed line in Fig. 2(b) exhibits the influence 
of the node in the ground electronic state n3=1 bending 
wave function at 0= 8, which translates to the node in P ooU) 
at j =0, while the WKB approximation superimposes the os­
cillations of Eq. (3.4). The IOS computations (solid line) are 
again more structured and somewhat broader than the WKB 
approximation. The general rotational distribution shifts to 
higher j with increasing excitation of the ground state bend. 
This shift is a result of the mapping of the bending wave 
functions as in Eq. (3.4) but again with some additional 
broadening. Similar patterns appear in Fig. 2(c) for n3=2 
(zero vibrational angular momentum) and J =0, but there is 
even more pronounced broadening of P IOU) with respect to 
the semiclassical approximations, probably due to errors as­
sociated with the bend-stretch approximation used in deriv­
ing Eq. (3.4). Excitation of initial state rotational motion to 
J=9 in Figs. 2(d), 2(e), and 2(f) shifts the n3=0 dashed peak 
to j =4, consistent with the simple semiclassical arguments 
of Ref. 14 that the initial state angular momentum is parti­
tioned (unequally) between fragment rotation and orbital an­
gular momenta. Apart from this shift in the peak, the transi­
tion between the three curves in Fig. 2( d) displays similar 
trends as for J=O. The underlying initial state bending wave 

function, however, is no longer readily discernible in the full 
calculations (solid lines) for J=9. The semiclassical rota­
tional distributions, on the other hand, roughly reflect the 
nodal patterns of the initial state bending wave function. The 
small shift in P IOU) with J indicates that the main source of 
fragment NO angular momentum is still from the mapping of 
the NOCI ground state bending wave function. However, 
now the motions along e are no longer separate from pure 
stretches, so the "effective" bending along e is more com­
plicated and leads to the departures from the simple WKB 
approximation. 

Figure 3 presents the normalized rotational distributions 
obtained for excitation from the bending progression n3=0, 
1,2 for K=4 and 7 and for various total angular momenta J. 
No apparent ground state bending wave function structure is 
discernible in these figures, apart from the general shifting to 
higher j of the rotational distributions with increasing exci­
tation in the ground state bend. This shifting.to higher j with 
larger n3 arises because the wider angular spread of the 
higher bending functions which upon Fourier transform 
translates to a wider j range in P IKU), Oscillatory structure 
is still present in Fig. 3 but tends to become washed out at 
higher K, especially for J=K, probably due to initial state 
bend."..stretch couplings and the anisotropy of the potential 
which makes the scattering wave function WE( Q i ; e) of Eqs. 
(2.4) and (2.6) dependent on the bending angle. This is par­
ticularly evident for higher total angular momentum states, 
as is clearly seen, e.g., when K=J=7 in Figs. 3(d)-3(f). 

Computations have been performed for cases in which 
there is initial excitation in the symmetric NO stretch in 
NOCl (with nl=O, 1,2 but with the NO fragment unexcited 
n4=0) and also for others in which the fragment NO stretch 
is excited with n4=0, 1, 2 (but with no fragment excitation 
n 1 = 0). All these cases also consider initial excitation of the 
bending vibration with n3=0, 1, or 2, and J and K range 
separately from ° to 9. The normalized rotational distribu­
tions in all these cases are almost identical to those obtained 
for the same n3, J, and K but for nl =n4 =0. However, Fig. 
4 illustrates the differences from the n 1 = n4 = ° case which 
begin to emerge for n 1 = n 4 = 1 or 2, corresponding to initial 
state excitation in the symmetric NO stretch and the frag­
ments produced with the same NO excitation. The differ­
ences between the n 1 = n 4 = 1 or 2 examples and those for 
n 1 = n4 = ° are very slight when n3 =0, but become evident 
when n3*0. Particularly interesting is the structure of the 
rotational distributions for J=K. When J=K=4 [Figs. 
4(a)-4(c)], excitation of the bending mode to n3=1 or 2 
produces a shifting of the highest peak to larger j, but there 
is very similar structure to the rotational distributions pro­
duced from both initial stretching vibrational states. Basi­
cally, the relative intensities are changed, but not the struc­
ture of the normalized PI KU), For higher J = K, e.g., 
J=K=9 [Figs. 4(d)-4(f)], the structured pattern is com­
pletely washed out, as previously noted for n 1 = n4 = ° and 
J=K=7 in Fig. 3(d). The two different rotational distribu­
tions in each of Figs. 4(d)-4(f) are very similar but again are 
shifted to larger j for excitation from the excited bending 
states n3=1 and 2. However, while the peak in the rotational 
distribution function for n 1 = n 4 = 1 moves to higher j for 
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FIG. 3. Nonnalized lOS quantum-mechanical rotational distributions for the model photodissociation NOCI->NO(X 2rr3/:J+CICZP3t0 under dipole coupling. 
(a) (-) J=4, K=4; (---) J=7, K=4; n1 =n2=n4 =0, n3=0. (b) Same as (a), but n3=1. (c) Same as (a), but n3=2. (d) (-) J=7, K=7; (---) J=9, K=7; 
111=112=114=0; 113=0. (e) Same as (d), but 113=1. (f) Same as (d), but 113=2. 

n3=2, it shifts to lower j for n3=1, but the previous trend is 
found for the n 1 = n4 = 2 case. When J =9 and K =7 [Figs. 
4(g)-4(i)], there is no variation in the position and intensity 
of the highest peak in the n 1 = n 4 = 1 state rotational distri­
bution for excitation from both the ground and first excited 
bending states. However, the intensity of the highest peak for 

n 1 = n 4 = 0 is reduced and shifted to higher j in passing from 
n3=O to n3=2. The n3=1 example in Fig. 4(h) clearly dis­
plays identical structures to both P JK(j) but with altered 
intensities when the NO stretches are excited and unexcited. 
The computed differences between the n 1 = n4 1= 0 and 
n I = n 4 = 0 cases must again arise primarily from the pres-
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ence of bend-stretch couplings in the ground electronic state 
vibrational wave function. 

The lOS model describes the rotational distribution pro­
duced by the sudden Franck-Condon absorption between 
electronic states with very different natural coordinate sys-
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terns. However, as the molecule dissociates this initial lOS 
rotational distribution is changed by the interfragment 
torques aU(R; 8)/ae on the excited state potential U(R; 8) of 
Eq. (2.5). These final state interactions with even modest 
Ilj = ± 1 transitions could wash out the lOS calculated oscil-
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FIG. 4. (Continued.) 

lations in P JKU), since the computed oscillations are of high 
frequency. Nevertheless, we now continue to ignore the final 
state interactions and assess the influence of thermal averag­
ing on the washing out of these oscillations and on the rela­
tionship of the thermally averaged rotational distributions to 
the mapping of the ground state bending wave functions. 

Figure 5 displays the thermally averaged NO rotational 
distributions for given initial vibrational states and for exci­
tation originating from the bending progression n3=O, 1, 2 
with nl = n2 = n4 = 0. There is still some structure in the in­
dividual thermal rotational distributions for T= 1 or 2 K, but 
already for T=3 K the thermally averaged Pj(T) become 
structureless single peak distributions. Comparing Fig. 5 
with Fig. 2, it is clear that the widths of the thermally aver­
aged distributions are considerably larger than those arising 
from the simply mapping of the bending wave function. As 
the initial state bend is progressively excited, the T=3 K 
rotational distributions peaks at higher j, consistent with the 
behavior of individual contributing J and K. A consideration 
of the processes with n 1 = n 4 = I or n 1 = n 4 = 2 yields trends 
in the thermal rotational distributions which again parallel 
those for the individual contributing J and K. 

IV. CONCLUSIONS 

This paper studies the model NOCI direct photodissoci­
aiton process to the T 1 (1 3 A ") state using an extension of 
our previously developed three-dimensional analytical infi­
nite order sudden (lOS) quantum-mechanical theory to in­
clude contributions for initial states with K *0. Our compu­
tations use a realistic ground state basis set of rigid-rotor and 
harmonic vibrational wave functions of the natural normal 
modes, while the continuum state is taken as a product func­
tion in the natural Jacobi scattering coordinates appropriate 
to the dissociative surface. Although the ground state vibra­
tional potential energy does not contain couplings between 
pure local mode bends and stretches, couplings present in the 
kinetic energy operator41 imply that the ground state normal 
modes cannot generally be represented as pure angular and 
pure stretching motions. The repulsive part of this NOCI 
excited potential energy surface is fit to ab initio calcula­
tions. 

The different coordinate systems used for describing the 
ground and excited surfaces lead to three-dimensional non­
separable transition anplitudes, which are reduced to analyti­
cal forms by introduction of our infinite order sudden and 
Airy approximations for the continuum wave function and a 
quadrature formula for the integral over bending motions. 
Morse and co-workers I4 have previously presented approxi­
mate analytical lOS approximation computations of frag­
ment rotational distributions as functions of initial rotational 
state (J,K), providing the first prediction for the mapping of 
the ground state bending vibration on the fragment rotational 
distributions. This earlier work, however, introduces several 
convenient approximations that are lifted here, including the 
retention of bend.,...stretch coupling and the use of anisotropic 
repulsive potentials for the continuum, as these features of 
the theory are important for an accurate description of disso­
ciation processes. 

The strong bend-stretch couplings present in the v2 and 
v3 modes of NOCI are again found to profoundly influence 
the predicted fragment rotational distributions. Calculated 
K=O, J*O diatomic photofragment rotational distributions 
are compared with a previous semiclassical approximation in 
order to illustrate the role of the mapping of the initial state 
bending wave function onto the fragment rotational distribu-
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FIG. 5. Normalized thermally averaged lOS quantum-mechanical rotational 
fragment distributions for NOCI photodissociation under dipole coupling. 
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n3=1. C-) T=l K; (_._._.) T=2 K; (---) T=3 K. (c) Same as (b), butn3=2. 

tions. Although this semiclassical approach reflects the nodal 
patterns of the initial bending wave function, our full lOS 
quantum-mechanical calculations have a more complex 
structure than the semiclassical counterpart, a behavior 

which emerges from the inclusion of the bend-stretch cou­
plings in our analytical theory in addition to the use of an 
arusotropic potential energy surface and the incorporation of 
some slowly varying factors in the integral of Eq. (2.6). It 
should be emphasized that the present theory readily permits 
calculation of rotational distributions to be performed for any 
J>O (and all K) without any additional computational effort, 
a technically difficult problem for close coupled theories be­
cause of the large number of channels which must be in­
cluded for large J. In fact, the computation of thermally av­
eraged rotational distributions for T~lO K have required our 
computations for all J,K~9. This has been done for nine 
initial vibrational states to illustrate the role of the mapping 
oithe ground state bend and the coupling between pure an­
gular and stretching motions. 

The present computations are not compatible with the 
_. exp~r!ments on NOCIT1 state photodissociation because the 

latter is observed to be an indirect process, whereas the 
present computations of a direct photodissociation therefore 
represent a model. (Work is in progress to deal analytically 
with indirect and nonadiabatic photodissofiations.) The com­
putations, however, indicate that the fast oscillations in the 
fragment rotational distributions for a single J,K initial state 
are transformed already for T=3 K into fairly broad frag­
ment rotational distributions when a thermal average is per­
formed over the initial rotational states. 
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