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Let 3 be a set of real numbers unbounded on both sides and let B be a finite set
of positive integers. We characterize the entire functions that can be uniformly
approximated on bounded sets by polynomials of the form >j # B pj (z j), where each
pj (z) is a polynomial with zeros in 3. � 1999 Academic Press

1. INTRODUCTION: PRELIMINARIES

A theorem of Weierstrass (see [1, pp. 155�159]) states that every entire
function can be written as
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where h is an entire function, m is a nonnegative integer, al are nonzero
complex numbers, and nl�0 are integers so that
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When the sequence nl (l�1) can be chosen to be constant, the smallest
integer n�0 such that �l�1 |al |
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and ?(z) is called a canonical product. Otherwise it is said that the corre-
sponding product has infinite genus. A classical result of Laguerre [4] and
Po� lya [5] asserts that an entire function f can be uniformly approximated
on bounded sets by polynomials with real zeros if and only if
f (z)=*zme:z+#z2?(z), where * # C, m�0 is an integer, : # R, #�0 and ?(z)
is a canonical product with real zeros of genus at most 1. See [2] for a
proof and several generalizations (see also [3]).

The purpose of this paper is to generalize this theorem in one of many
possible directions. Given a finite set of positive integers B and a set of real
numbers 3/R unbounded on both sides, we characterize the entire
functions f that can be approximated by polynomials of the form p(z)=
>j # B p j (z j), where each pj (z) is a polynomial with zeros in 3. The charac-
terization involves a curious numerical function depending on B. We begin
by defining this function and studying some of its properties. This will
enable us to state the main result, Theorem 1.2. There follows a short dis-
cussion comparing our theorem with the Laguerre�Po� lya Theorem and
with a generalization of it given by Korevaar [2, Thm. 6.1]. Next we give
some definitions and an elementary lemma that will be used during the rest
of the paper. The proofs of necessity and sufficiency for Theorem 1.2 will
be given in Sections 2 and 3, respectively. We have split the proofs into
some preparatory lemmas and a final conclusive argument.

Let N denote the set of positive integers and let j, s # N. The notation
j | s will mean ``j divides s'' in N.

Definition. Let B/N be a finite set. The function HB : N � [0, 1, 2]
is recursively defined by the following conditions.

(a) HB(s)=1 if s # B or there is j # B such that j | s, s�j is odd and
HB(tj)=1 for all t<s�j.

(b) HB(s)=2 if HB(s)=% 1 but there is j # B such that j | s and
HB(tj)=1 for all t<s�j.

(c) HB(s)=0 if s has no divisor in B or for every j # B with j | s there
is t<s�j such that HB(tj)=2.

Additionally, we define a function VB : B � N as

VB( j)=min[t # N : HB(tj)=2], j # B.

Remark 1.1. We can recover HB from VB by the following rules.
HB(s)=0 if and only if s has no divisor in B or jVB( j)<s for every j # B
that divides s. The complementary case arises when there is some j # B such
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that j | s and s� jVB( j), that is, when s=tj for some j # B and t�VB( j).
We then have

HB(s)=HB(tj)={1
2

if t<VB ( j)
if t=VB ( j)

. (1.1)

An immediate consequence is that HB(s)=% 0 only for finitely many values
of s. More precisely, if m=2 >j # B j then every j # B divides m and m�j is
even. Thus HB(m)=% 1, meaning that HB(m)=2 or 0. By (1.1) then
VB( j)�m�j for every j # B, and consequently HB(s)=0 for every s>m. An
analogous application of (1.1) shows that HB(s)=2 if and only if there is
some j0 # B such that j0VB( j0)=s. In the latter case we also have that
jVB( j)�s for every j # B such that j | s. Finally, observe that (1.1) and con-
dition (a) in the definition of HB imply that VB( j) is an even number for
every j # B.

Now we can establish the result that motivates this paper. If f is an entire
function denote by Z( f ) the family of its zeros, where repetitions are
allowed according to multiplicities. Also, if B/N and 3/R, let AB(3)
denote the class of entire functions that can be uniformly approximated on
bounded sets by polynomials of the form >j # B pj (z j), where each pj (z) has
its zeros in 3. If 3� denotes the closure of 3 then it is clear that
AB(3)=AB(3� ). Thus, we can restrict our analysis to closed sets 3/R.

Theorem 1.2. Let B/N be a finite set and let 3/R be a closed set
unbounded on both sides. Then f # AB(3) if and only if f has the form

f (z)=*zm exp \ :
s�1

dszs+ `
j # B

?j (z j), (1.2)

where * is a complex constant, m=�j # B nj j for some integers n j�0 if 0 # 3
and m=0 if 0 � 3, ds=0 if HB(s)=0, ds�0 if HB(s)=2, ds is any real
number if HB(s)=1, and each ?j (z) is a canonical product of genus <VB( j)
with Z(? j)/3.

If B=[1] and 3=R then HB(1)=1, HB(2)=2, HB(s)=0 for s�3
and VB(1)=2. Therefore Theorem 1.2 says that A[1](R) is the Laguerre�
Po� lya class. For a general B we cannot expect to write every f # AB(R) as

f (z)= `
j # B

f j (z j) with fj (z) # A[1](R). (1.3)

However, the theorem shows that this is the case for several particular
choices of B/N, for instance, when B has only odd numbers, when B has
a single element, for B=[1, 4, 5], etc. In general, the class AB(R) could be
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much wider than the class given by (1.3). Take, for instance,
B=[1, 2, 3, 4]. Then HB(s)=1 for s=1, ..., 7, 9, HB(s)=2 for s=8, 12
and HB(s)=0 otherwise. Consequently VB(1)=8, VB(2)=4=VB(3), and
VB(4)=2. So, the theorem asserts that AB(R) consists of the functions of
the form

*zm exp(a1z+ } } } +a7z7+b8 z8+a9z9+b12z12) `
4

j=1

? j (z j), (1.4)

where * is a complex constant, m is some nonnegative integer, as are
arbitrary real numbers, bs�0, and ? j (z) are canonical products with real
zeros of genus <VB( j). Hence, the function e&z12

is in AB(R) but it is not
of the form (1.3), because the exponential of largest order in (1.3) is ebz8

with b<0.
For general closed sets 3/R (unbounded on both sides) and B/N

finite, the zeros of a function f # AB(3) are contained in

R =def[| # C : | j # 3 for some j # B].

Let C(R) denote the class of entire functions that can be uniformly
approximated on bounded sets by polynomials with zeros in R. Obviously
AB(3)/C(R), and the inclusion is proper except for B=[1]. Indeed, sup-
pose that there is j # B"[1] and take x # 3 with x<0. If |l (1�l� j) are
the j-roots of x then the polynomials z&|l belong to C(R) for l=1, ..., j,
but at least one of them does not belong to AB(3).

In general, the difference between both classes of entire functions is much
more significant than the one expressed by the above polynomials. In [2,
Thm. 6.1] Korevaar obtained a result that, as a particular case, provides a
characterization of C(R) in terms of Weierstrass's decomposition. So, a
direct comparison between his theorem and Theorem 1.2 shows how dif-
ferent C(R) could be from AB(3).

Let k be the smallest positive integer such that Rk =def[|k : | # R] is con-
tained in an angular sector of opening <?. It is easy to see that k=2m,
where m is the least common multiple of the elements of B.

Theorem (Korevaar). The class C(R) consists of the entire functions of
the form

*zm exp\ :
1�s�k

cszs+ ?(z),

where * # C, m�0 if 0 # 3, and m=0 otherwise; ?(z) is a canonical product
of genus �k&1 with zeros in R"[0], cs # C for 1�s�k&1 and ck�0.

40 DANIEL SUA� REZ



Going back to our example 3=R and B=[1, 2, 3, 4], the theorem says
that C(R) is formed by the functions

*zm exp(c1z+ } } } +c23 z23+b24z24) ?(z),

where * # C, m�0, genus ?(z)�23 (with Z(?)/R"[0]), cs # C, and
b24�0. The difference with (1.4) is clear.

It will be enough to prove Theorem 1.2 for a set 3 not containing the
value 0. When 0 � 3, by a dilation of the variable z we can assume without
loss of generality that |%|>1 for every % # 3. So, for the rest of the paper
3 will denote a fixed closed set of real numbers of modulus >1 which is
unbounded on both sides.

Lemma 1.3. Let f (z)=*eb(z) >j # B ?j (z j), where b(z)=�k�1(bk �k)zk is
an entire function and ?j (z) is a canonical product of genus gj , with
Z(?j)/3 for every j # B. Then for s�1 integer,

1
2?i | |z|=1

f $(z)
f (z)

z&s dz=bs& :
j # B, j | s, gj<s�j _ :

a # Z(?j)

ja&s�j& . (1.5)

Proof. By the theorem of residues,

1
2?i ||z|=1

f $(z)
f (z)

z&s dz=
1

2?i ||z|=1
(b1+ } } } +brzr&1+ } } } ) z&s dz

+
1

2?i
:

j # B _||z|=1
jz j&1 :

a # Z(?j)

z jgj

a gj (z j&a)
z&s dz&

=bs+ :
j # B

:
a # Z(?j)

j Res \z j&1z jgjz&s

a gj (z j&a) +
=bs& :

j # B

:
a # Z(?j)

j Res \a&gj&1 :
d�0

a&dz j (d+gj+1)&s&1+ .

(1.6)

Here Res(h(z)) denotes the residue of h(z) at z=0. The residue vanishes
unless j(d+ gj+1)=s. If this equality holds then j divides s and
d=s�j& gj&1�0. Hence, the residue is zero if j does not divide s or
gj�s�j, and it is

a&gj&1a&s�j+ gj+1=a&s�j if j | s and g j<s�j.

Inserting this in (1.6) we obtain (1.5). K
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Corollary 1.4. Let p(z)=>j # B pj (z j ), where each pj (z) is a polyno-
mial with Z( pj )/3. Then

1
2?i |

|z| =1

p$(z)
p(z)

z&s dz=& :
j # B, j | s _ :

: # Z( pj)

j:&s�j& (1.7)

for every integer s�1.

Proof. This is a particular case of (1.5), where bs=0 for all s # N and
gj=0 for all j # B. K

Definition. Let B/N be a finite set and for each j # B let P j/3 be a
finite family (i.e., with repetitions allowed). For s # N we write

;([P j : j # B], s) =def
:

j # B, j | s _ :
: # Pj

j:&s�j& .

Observe that with this notation Corollary 1.4 asserts that ;([Z( pj ):
j # B], s)=(&1�2?i) � |z|=1( p$�p)(z) z&s dz.

2. PROOF OF NECESSITY: f # AB(3) IMPLIES (1.2)

Lemma 2.1. Let P j
n /3 ( for j # B and n�1) be finite families such that

for every s # N there is C(s)>0 with |;([P j
n : j # B], s)|�C(s) for all n�1.

Then there is K>0 such that

:
: # P j

n

|:|&VB ( j)<K for all j # B and n�1.

Proof. By Remark 1.1, H &1
B (2) =def[s # N : HB(s)=2]=[ jVB( j) : j # B].

Let us write its elements as s1<s2< } } } <sk . We will prove by induction
on i that if j # B is such that jVB( j)=s i then there is K i>0 such that

:
: # P j

n

j |:|&VB ( j)<Ki for all n�1. (2.1)

Suppose first that j0 # B is such that j0 VB( j0)=s1 . Since s1=min H &1
B (2),

for every j # B that divides s1 we must have HB(tj)=1 for t<s1 �j, and s1 �j
must be even. Then

:&s1�j=|:|&s1�j for all : # P j
n , j # B, j | s1 .
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In particular, this holds for s1 �j0=VB( j0). Hence

:
: # Pn

j0

j0 |:|&VB ( j0)� :
j # B, j | s1

_ :
: # P j

n

j |:|&s1�j&=;([P j
n : j # B], s1)�C(s1),

which proves the first inductive step with K1=C(s1). Now suppose that
(2.1) holds when jVB( j)=s l for l=1, ..., i&1, and let j0 # B be such that
j0VB( j0)=si . Remark 1.1 tells us that jVB( j)�si for all j # B that divide si .
Then

;([P j
n : j # B], si)

= :
j # B, j | si , jVB ( j)<si

_ :
: # P j

n

j:&si �j&+ :
j # B, jVB ( j)=si

_ :
: # P j

n

j:&si�j&
=I1(n)+I2(n).

When j # B is such that jVB ( j)=si then si �j=VB( j) is even and conse-
quently :&si �j=|:|&si �j for : # P j

n . In particular, this is the case for j0 .
Therefore

:
: # P n

j0

j0 |:|&VB ( j0)�I2(n)=;([P j
n : j # B], si)&I1(n)�C(si)+|I1(n)|. (2.2)

When j # B is such that jVB ( j)<s i then jVB ( j) # [s1 , ..., si&1], and
|:|&si �j<|:|&VB ( j) for all : # P j

n (because |:|>1). Therefore by the induc-
tive hypothesis

|I1(n)|� :
j # B, j | si , jVB ( j)<si

_ :
: # P j

n

j |:|&si �j&
< :

j # B, j | si , jVB ( j)<si
_ :

: # P j
n

j |:|&VB ( j)&
� :

j # B

max[K1 , ..., Ki&1]=>(B) max[K1 , ..., Ki&1], (2.3)

where >(B) denotes the number of elements in B. By (2.2) and (2.3) then
(2.1) holds for i with Ki=C(si)+>(B) max[K1 , ..., Ki&1]. The lemma now
follows if one takes K=max[Kl : 1�l�k]. K

We are ready to prove that every f # AB(3) has the form (1.2). Let
pn # AB(3) be a sequence of polynomials that tends to f uniformly on
bounded sets. If we write [|k] for the zero sequence of f, it is clear that
for every |k there is some j # B such that |k is a j-root of some element in
3. Since we are assuming that every element of 3 has modulus bigger than
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1 then ||k |>1 for all k. If m=2 >j # B j, the zeros of pn(z) are contained
in the rays arg z=2?l�m for l=1, ..., m, implying that #&m=|#|&m for
every # # Z( pn). Then for an arbitrary N # N the theorem of residues gives

:
1�k�N

||k | &m�lim sup
n

:
# # Z( pn)

|#|&m=lim sup
n

:
# # Z( pn)

#&m

=lim
n

&1
2?i ||z|=1

p$n
pn

(z) z&m dz

=
&1
2?i ||z| =1

f $
f

(z) z&m dz.

Therefore �k�1 ||k | &m<�, and by the theorem of Weierstrass we can
factorize f (z)=*eb(z)?(z), where * is constant, b(z) is an entire function
such that b(0)=0, and ?(z) is a canonical product. Moreover, the
geometry of Z( pn) makes it clear that we can arrange the zeros of ?(z) in
such a way that ?(z)=>j # B ? j (z j ), where each ?j (z) is a canonical
product of finite genus with zeros in 3.

Let j0 # B. Among the several possible factorizations of the type pn(z)=
>j # B p j, n(z j ) with Z( pj, n)/3, choose one for every n that maximizes the
number of zeros of pj0 , n(z). If [ak] is the zero sequence of ?j0

(z) then
Lemma 2.1 implies that

:
1�k�N

|ak |&VB ( j0)�lim sup
n

:
: # Z( p j 0 , n)

|:|&VB ( j0)<�

for all N�1. So, gj0
=genus ?j0

(z)<VB( j0).
If r>0 and h is an entire function such that h(0)=% 0, let Trh denote the

polynomial defined by the conditions (Trh)(0)=1 and Z(Trh)=
[| # Z(h) : |||�r], where multiplicities are taken into account. For r>0
consider qn(z)= pn(z)�Trpn(z) and g(z)= f (z)�Tr f (z). So, qn(z) and g(z)
are zero free on |z|�r, and qn(z) � g(z) uniformly on bounded sets if f (z)
has no zeros on |z|=r. Furthermore,

g(z)=*eb(z)e� j # B hj (z) `
j # B

?~ j (z j ),

where

?~ j (z j )= `
a # Z(?j), |a|>r j \1&

z j

a + exp_\z j

a++ } } } +
1
g j \

z j

a +
gj

&
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and

hj (z)= :
a # Z(?j), |a|�r j _\

z j

a ++ } } } +
1
gj \

z j

a +
gj

& .

In the above two formulas the expression between square brackets reduces
to 0 if gj=0. Write also b(z)=�k�1(bk �k) zk.

Suppose that s is a positive integer such that HB(s)=2 or 0. Then either
there is no j # B that divides s or for every j # B that divides s we have
jVB ( j)�s. Since we have proved that gj<VB( j) then jgj<s for every
divisor j # B of s. This means that for every such j the polynomial hj (z) has
degree less than s. Hence, by (1.5),

&bs+ :
j # B, j | s, gj<s�j _ :

a # Z(?j), |a| >r j

ja&s�j&
=

&1
2?i ||z| =1

g$
g

(z) z&s dz= lim
n

&1
2?i ||z| =1

q$n
qn

(z) z&s dz

=lim
n

:
j # B, j | s _ :

: # Z( pj , n), |:| >r j

j:&s�j& . (2.4)

Let =>0. The condition gj<s�j implies that �a # Z(?j)
|a|&s�j<�. So, if r is

large enough we obtain

} :
j # B, j | s, gj<s�j _ :

a # Z(?j), |a| >r j

ja&s�j& }<=. (2.5)

On the other hand, since jVB ( j)�s for every j # B that divides s then we
can split the sum under the limit in (2.4) in two sums, according to whether
jVB ( j)<s or jVB ( j)=s. Lemma 2.1 tells us that there is a constant K>0
not depending on j or n such that �: # Z( pj, n) j |:|&VB ( j)<K. Therefore, for
large values of r we also get

} :
j # B, j | s, jVB ( j)<s _ :

: # Z( pj , n), |:|>r j

j:&s�j&}
� :

j # B, j | s, jVB ( j)<s _ :
: # Z( pj , n), |:|>r j

j |:| &VB ( j) |:|&s�j+VB ( j)]

� :
j # B, j | s, jVB ( j)<s

r&s+ jVB ( j) _ :
: # Z( pj , n)

j |:|&VB ( j)&
�r&1 :

j # B, j | s, jVB ( j)<s

K�r&1 >(B) K < =. (2.6)
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Let

A(n)= :
j # B, jVB ( j)=s _ :

: # Z( pj , n), |:| >r j

j:&s�j& ,

where A(n) reduces to 0 if there is no j # B such that j VB ( j)=s. Taking
estimates (2.5) and (2.6) into equality (2.4) we obtain

lim sup
n

|bs+A(n)|�2=. (2.7)

Summing up, (2.7) holds when HB(s)=2 or 0, f (z) is zero free on |z|=r
and r is large enough so that (2.5) and (2.6) hold.

Since by Remark 1.1 VB( j) is even for every j # B, in the sum defining
A(n) we have :&s�j=:&VB ( j)=|:|&VB ( j). Consequently A(n)�0 for all n,
which together with (2.7) gives bs�2=. Since = is arbitrary then bs�0, as
wished.

If HB(s)=0 there is no j # B such that jVB ( j)=s (because otherwise
HB(s)=2). Therefore A(n)=0 and (2.7) says that |bs |�2=. So, actually
bs=0, concluding the proof of necessity. K

3. PROOF OF SUFFICIENCY: f AS IN (1.2) IMPLIES f # AB(3).

My original proof was based on three preparatory lemmas. All of them
can be replaced by the next simpler and ingenious result of Korevaar (per-
sonal communication). Thanks to him this paper is shorter and much
easier to read.

Since AB(3) is multiplicative we can factorize a general f of the form
(1.2) as convenience dictates and prove that each of the factors is in AB(3).
Notice also that AB(3) is closed in the topology of uniform convergence
on bounded sets.

Lemma 3.1. Let f be an entire function of the form

f (z)=exp(b1z+b2 z2+ } } } +bszs+ } } } ),

where bs=0 if HB(s)=0, bs�0 if HB(s)=2 and bs is an arbitrary real
number if HB(s)=1. Then f belongs to AB(3).

Proof. We will use induction on the set NB=[tj : t # N and j # B]. Let
s # B and suppose that b=% 0 is a real number. For r # R let [r] denote the
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integer part of r (i.e., [r]�r<[r]+1). If a # 3 is such that ab<0 then
m=[&ab]�0. Taking limits when |a| � � we get

\1&
zs

a +
m

� exp(bzs),

with uniform covergence on bounded sets. Since HB(s)=1 for every s # B,
this proves the first step of the induction. Suppose now that s # NB is not
in B and HB(s)=% 0. Therefore

s=vj, where j # B, v>1 and HB(tj)=1 for 1�t<v. (3.1)

If HB(s)=1 we can further assume that v is odd, while v is necessarily even
if HB(s)=2. The inductive hypothesis says that the lemma holds for every
s$ # NB with s$<s. Let b=% 0 be an arbitrary real number if HB(s)=1 and
b<0 if HB(s)=2. In any of these cases, by choosing a # 3 such that ab<0
we obtain m=[&vavb]�0. Using that log(1&|)=&�k�1 |k�k for
|||<1, we see that for |z j|<|a|,

m log \1&
z j

a ++m \z j

a
+

z2j

2a2+ } } } +
zvj

vav+=&m :
k�v+1

zkj

kak . (3.2)

It is clear from our choice of m=m(a) that the right member of (3.2) tends
uniformly to 0 on bounded sets when |a| � �. Therefore, letting |a| � �
with a # 3 and ab<0, one finds that

exp(bzvj )=lim \1&
z j

a +
m

exp _m \z j

a
+ } } } +

z(v&1) j

(v&1) a(v&1)+& ,

with uniform convergence on bounded sets. The polynomial in the above
expression is in AB (3) and each one of the exponentials exp(mztj�tat), with
1�t<v, belongs to AB(3) by (3.1) and the inductive hypothesis. K

Let j # B. In order to finish the proof we must see that if ?j (z) is a
canonical product with Z(?j )=[ak]/3 and gj=genus ? j (z)<VB( j) then
?j (z j ) is in AB (3). But ?j (z j ) is the uniform limit on bounded sets of the
functions

fn (z)= `
n

k=1 \1&
z j

ak+ exp _\ z j

ak++ } } } +
1
gj \

z j

ak+
gj

&
=exp { :

n

k=1
_\ z j

ak++ } } } +
1
gj \

z j

ak+
gj

&= `
n

k=1
\1&

z j

ak+ , (3.3)
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where the expressions between square brakcets reduce to 0 if gj=0. Since
jgj< jVB ( j) then HB( j)=HB(2j)= } } } =HB( jg j )=1. Therefore Lemma
3.1 tells us that the exponential in (3.3) is in AB(3). Consequently so is
?j (z j ).
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