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1. Introduction and preliminaries

For an arbitrary K-vector space W we will identify A2V as the subspace of V ® V and similarly
AW CWWeW, so we ask % % € K. Even though one might consider the full exterior algebra
A*W, our computations only involve AW for k = 2, 3, so all general results in this paper hold for
an arbitrary field K of characteristic different from 2 and 3.

Recall [4,5] that a Lie bialgebra over a field K is a triple (g, [—,—],8) where (g,[—,—]) is a Lie
algebra over K and &:g — AZ2g is such that

e 8:g— A2g satisfies co-Jacobi identity, namely Alt((8 ® Id) 0 §) =0,
e 8:g— A%g is a 1-cocycle in the Chevalley-Eilenberg complex of the Lie algebra (g, [—,—]) with
coefficients in AZ2g.

In the finite-dimensional case, § : g — A2g satisfies co-Jacobi identity if and only if the bracket defined
by §*: A%2g* — g* satisfies Jacobi identity. In general, co-Jacobi identity for § is equivalent to the fact
that the unique derivation of degree one 95 : A®g — A®g, whose restriction to g agrees with §, satisfies
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832 = 0. We will usually denote a Lie bialgebra, with underlying Lie algebra g = (g,[—,—1), by (g, d).
A Lie bialgebra (g, 8) is called a coboundary Lie bialgebra if there exists r € A%g such that §(x) =
adx(r) Vx € g; i.e. § =0r is a 1-coboundary in the Chevalley-Eilenberg complex with coefficients in
A?g. Coboundary Lie bialgebras are denoted by (g, r), although r is in general not unique. We have
that r and 1’ give rise to the same cobracket if and only if r —1’ € (A2g)9, so r is uniquely determined
by § in the semisimple case, since (A%g)% =0 for g semisimple.

Recall that r € g ® g satisfies the classical Yang-Baxter equation, CYBE for short, if

[T'12, r13] + [rlZ7 T23] + [TB, T23] =0,

where the Lie bracket is taken in the repeated index; for example, if r=73 ;1 ® rithen r'?:=r®1,
=3 n@1er and r? :=10r eU(@®3, 50 [r'2,r3] =", i, 1j1@r @ri e g@g® g — U()*?,
and so on for the other terms of CYBE. We denote the left-hand side of CYBE by CYB(r).

If r € A%g, then § = dr satisfies co-Jacobi if and only if CYB(r) € A3g is g-invariant. If (g,r) is
a coboundary Lie bialgebra and r satisfies CYBE, (g,r) is called triangular. A Lie bialgebra is quasi-
triangular if there exists r € g ® g, not necessarily skew symmetric, such that §(x) = adx(r) Vx € g and
r satisfies CYBE; if, moreover, the symmetric component of r induces a non-degenerate inner product
on g*, then (g, ) is called factorizable [12]. Quasi-triangular Lie bialgebras are also denoted by (g, r),
although r is in general not unique. Nevertheless, in the semisimple case the skew symmetric com-
ponent r, of r is uniquely determined by 3. A quasi-triangular Lie bialgebra (g,r) is, in particular,
a coboundary Lie bialgebra, with the coboundary chosen as the skew symmetric component of r.

If (g, 8) is a real Lie bialgebra, then g®g C is a complex Lie bialgebra with cobracket § ®r Idc : gQr
C— (A]%@g) RrC= Aé(g ®r C). A real Lie bialgebra is coboundary if and only if its complexification
is coboundary. On the other hand, it may happen that (g ®r C, § ®r Idc) is factorizable but (g, §) is
not; in this case we call it almost factorizable.

1.1. The theorem of Belavin and Drinfeld

Let g be a complex simple Lie algebra, £2 € (52g)? the Casimir element corresponding to a fixed
non-degenerate, symmetric, invariant, bilinear form (—,—) on g, and let h C g be a Cartan subalgebra.
Let A be a choice of a set of simple roots. A Belavin-Drinfeld triple (BD-triple for short) is a triple
(In, Ib, T), where I, Iy are subsets of A, and 7:17 — I3 is a bijection that preserves the inner
product and satisfies the nilpotency condition: for any « € I, there exists a positive integer n for
which t"(«) belongs to I, but not to I'y. Let (I'7, I, T) be a BD-triple. Let I be the set of positive
roots lying in the subgroup generated by I7, for i =1, 2. There is an associated partial order on &+
given by o < g if @ € I, Be I5 and B =1"(a) for a positive integer n. A continuous parameter for
the BD-triple (I'1, I3, T) is an element rg € h ® h such that (t(«¢) ® Id +1d ® a)ro =0 Vo € I'7, and
ro +ral = R0, the h ® h-component of £2.

Theorem 1.1 (Belavin-Drinfeld). (See [2].) Let (g, §) be a factorizable complex simple Lie bialgebra. Then there
exists a non-degenerate, symmetric, invariant, bilinear form on g with corresponding Casimir element £2, a Car-
tan subalgebra b, a system of simple roots A, a BD-triple (I'1, I>, T) and continuous parameter ro € h ® b such
that §(x) = adx(r) for all x € g, with r given by

T=To+zx—a®xa+ Z X_oq AXg (1

aedt aedt: a<p

where X1y € giq, £o € £@T are root vectors normalized by (Xq,X_o) = 1, VEa € £&7, clearly,
r+r¥l=g.

Reciprocally, any r of the form given above satisfies CYBE and endows the Lie algebra g of a factorizable Lie
bialgebra structure.
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The component Y, 4+ X—o A Xg + 2 is called the standard part and it is denoted by r, so r =
Tst + Zwﬂ X_g AXg + A, if we decompose rg =21 + £29, A € Azb.

Remark 1.2. Some authors have considered more general versions of the previous theorem (see [10]
and [3] for the semisimple and reductive versions). In this work, we give a new description for the
reductive Lie bialgebras without using the previous works but starting from a given Lie bialgebra
structure on the semisimple factor g.

Our point of view is the following: From a Lie algebra g over a field K with char K = 0 satisfying
Z(g) =0 and A%(g)?9 =0 we describe explicitly all the Lie bialgebra structures on extensions of the
form £ =g x K in terms of Lie bialgebra structures on g and its biderivations. If moreover, [g, g] =g,
then we describe also all the Lie bialgebra structures on extensions £ =g x K¢ for any d. In the
semisimple factorizable case, the Lie bialgebra structures on g are known [2,1,3]; we make a detailed
analysis of the biderivations in this case and give an alternative description of the extensions to
reductive Lie bialgebras. This characterization includes the reductive factorizable case, but actually
we obtain all Lie bialgebra structures on £ =g x K9 that restrict to a given Lie bialgebra structure
on g, which include non-factorizable and even non-coboundary ones. The latter were not considered
in previous works.

1.2. The center and the derived ideal [g, g]
The next statement is straightforward but useful:
Proposition 1.3. Let £ be a Lie algebra and § : £ — A%£ a 1-cocycle, then
1. [£, £]isacoideal, ie. 5[L, £] C [£, £] A L. As a consequence, if (£, 8) is a Lie bialgebra then the quotient
£/1£, £] admits a unique Lie bialgebra structure such that the canonical projection is a Lie bialgebra map.
Moreover, if (£, 81) = (£, 82) as Lie bialgebras, then (£/[£, £], 81) = (£/[£, £], §2).
2. If Z(£) denotes the center of the Lie algebra £, then §(Z(£)) C A%(£)*.

Proof. 1. It is enough to notice that for any x, y € £, §[x, y] =adxdy —ady dx e [£, L] A L.
2. If z is central, then [z, x] =0 for all x € £, so for a 1-cocycle § we get

0=5([z,x1) = [2,8(0] + [8(2),x] = [6(2), %],
and hence, ady8(z) =0 for all xe £. O
Corollary 1.4. If £ is a Lie bialgebra such that (A2£)< = 0 then Z(£) is a coideal.

1.3. 1-cocycles in product algebras

Let £ =g x V, where g is a Lie algebra over a field K and V is a K-vector space, considered as
abelian Lie algebra. The second exterior power of £ can be computed as

A=A @x V)= (A%g0 A%) @ (Alge A'V) @ (A%g® A%V)
X A%gpgeV e A%V.

Notice that this is an £-module decomposition, so

H'(g, A%L) = H'(L, A%g) @ H' (L, g V) ® H(L, A?V).
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Now we recall the Kiinneth formula

H'(g x V,M; ® M) = H' (g, M1) ® H*(V, M2) ® H(g, M1) @ H'(V, M)
= H'(g, M1) ® My & MY @ Hom(V, M)

where we use the equality HO(g, M) = M9 for any g-module M. We assume that M; is a trivial
representation of V (e.g. My =K, V3, or A2V), so My = M, and H'(V, M;) = Hom(V, My). If we
apply the Kiinneth formula in our case, we get
H'(L, A%8) =H'(g, A%g) @ (A%g)° @ V* @ H'(g.9) ® V ® ()¢ ® Hom(V, V)
@ H'(g.K) ® A>V @ Hom(V, A?V).

Recalling that H'!(g, M) = Der(g, M)/ InnDer(g, M) and, in particular,

H'(g.K) = Der(g. K) = (g/[g. g1)"

we get the final formula:

H'(2, 4%28) = H'(g, 4%g) ® (4%g)" ® V* @ Der(g, g)/ InnDer(g, ) ® V
® Z(g) ®End(V) @ (g/[g, g)* ® A>V @ Hom(V, A%V).

We have the following special, favorable cases:

Lemma 1.5. Let £ =g x V as before.

1. IfdimV =1 then

H'(g, A%2) = H'(g, A%g) ® (A%g)° @ Der(g, g)/ InnDer(g, g) ® Z(g).

2. If g is semisimple, then H' (£, A%2£) =~ Hom(V, A2V).
3. Ifdim V = 1 and g is semisimple, then H' (£, A%) = 0, in particular, every Lie bialgebra structure on £ is
coboundary.

Example 1.6. If g =su(2) or g =sl(2, R), then every 1-cocycle in g x R is coboundary. But this prop-
erty does not hold for instance in sl(2, R) x R?, or gl(2,R) x gl(2, R).

1.4. Extensions of scalars

Let K C E be a field extension, if g is a Lie (bi)algebra over K, then g ®x E is naturally a Lie
(bi)algebra over E and A%E(g Rk E) = (A%(g) ®xk E. Let us denote by Hy (g, —) and Hp (g ®k E, —) the
Lie algebra cohomology of g as K-Lie algebra and of g @k [E as [E-Lie algebra, respectively. Since Lie
cohomology extends scalars, i.e. if M is a g-module and we consider M ®x E as (g ®k [E)-module
then Hy(g ®x E, M ®k E) = Hy (9, M) ®k E, we have Hy (g ®x E, M ®k E) =0 & Hy (g, M) =0 and
Hg (g, M) identifies with a K-vector subspace of Hp(g ®x E, M ®k E). In particular, if (g, d) is an
R-Lie bialgebra, then it is coboundary if and only if its complexification is coboundary.
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2. Biderivations

For a Lie bialgebra (g, §), a map D:g— g which is at the same time a derivation and a coderiva-
tion is called a biderivation. The set of all biderivations of (g, §) is denoted by BiDer(g). For an inner
biderivation we understand a biderivation which is inner as a derivation.

Definition 2.1. Let (g, §) be a Lie bialgebra; we consider the characteristic map Dy : g — g defined by
Dy(x):=[, 1(6x) = [x1, x2] for any x € g, where we denote 5x = x1 A X, in Sweedler-type notation.

This map contains much information of the Lie bialgebra and it will be useful along this work.
When it is clear from the context, Dy will be denoted by D. Due to the next proposition, we will call
Dy the characteristic biderivation of g.

Proposition 2.2. If (g, 8) is a Lie bialgebra then its characteristic map D is both a derivation and a coderivation.
Proof. Let us see that D is a derivation. If x, y € g, then
D([x, y]) =1, 1(8[x. y]) =, 1(adx 8y — ady 8x)
=[x Y11 A y2 +y1 AR Y2l + [X1, Y1 A X2 4 X1 A [X2, ¥])
=[[x. y11, y2] + [y1. [x. y21] + [[x1, y1. x2] + [x1, [%2. ¥1] = [*. [y1, y21] + [[%1. %21, ]
=[x, Dyl + [Dx, y].
Notice that for a finite-dimensional Lie bialgebra (g,[ , 1,8), once we know that Dy is a derivation

in (g,[ , 1), Dy« is a derivation in (g*, §*), thus Dy is a coderivation in (g, §), since Dy« = (Dg)*.
Alternatively, one may prove it directly:

8(D(x)) = 8([x1, x21) = [8x1, X2] + [X1, 8X2] = [X11 A X12, X2] + [X1, X21 A X22]
= [X11, X2] A X12 + X11 A [X12, X2] + [X1, X21] A X22 + X21 A [X1, X22]. (2)
On the other hand, co-Jacobi identity for § implies
0=060Q®1—-1Q®¥5)5(X) =X11 AX12 AX2 — X1 AXa1 A XD
then x11 A X12 A X2 = X1 AX21 A X2 and X711 A X2 A X12 = X1 A X22 A X21; hence

[x11, x2] A X12 = [X1, X22] A X21.

So, the first and the last terms of the four terms in formula (2) cancel and we get

§(D(x)) =8([x1, x21) = X11 A [x12, X2] + [X1, X21] A X225
using co-Jacobi identity again, the last formula equals
=X1 A X1, X021+ [X11, X2l AX2 = X1 ADX2) + DX A2 =(1QD+DR1(X). O

Proposition 2.3. Let g be a coboundary Lie bialgebra and r € A2g such that §(x) = adx(r); consider H, :=
[—.—1(r) € g and Dy the characteristic biderivation of g, then Dy = —adp, .
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Proof. Write r =r; ® r in Sweedler-type notation, so for any x € g

Dy(x) =[—,—]08(x) =[—.—](adx(r1 ® 12)) = [[x, r1]. 72] + [r1. [x. 12]]
=[x, [r1.72]] =[x, H]

= —adp, (x). O

Proposition 2.4. Let g be a Lie bialgebra and Dy its characteristic biderivation. If E € BiDer(g) then
[D, E]=0.

Proof. The definition of coderivation says that E satisfies (E ® Id +1d ® E)d = §E; on the other hand,
since E is a derivation, E[x, y] = [Ex, y] + [x, Ey], in other words,

[-.—(E®Id+1d® E) = E[—,—].
Both properties together imply
DyE =[—,—10E=[-,—(E®Id+1d ® E)§ = E[—,—16 = ED,. O
Corollary 2.5. Let g be a Lie bialgebra such that Dy is an inner biderivation; write Dy = ady, for some Hg € g.

1. If E is a biderivation, then E(Hp) € Zg.
2. If E = ady € BiDer then [x, Ho] € Zg; if also Zg = 0 then x commutes with Hy.

Proof. 1. We know [E, D4] =0, then for any x € g,

0=[E, Dgl(x) = [E, adp, | (x) = E(adp, (x)) — ady, (E(x))
= E([Ho.x1) — [Ho. E(¥)]
=[E(Ho), x|+ [Ho, E(®)] — [Ho, E(®)]
= [E(Ho), x] = adgHy) (X)

hence E(Hgp) € Ker(ad) = Zg. The second statement is a direct consequence of the first. O

Remark 2.6. Because of the interesting properties and applications of Dy, one may wander for an
analogous map in the associative case. For a Hopf algebra H with multiplication m: H ® H — H and
comultiplication A:H — H ® H one may define mo A:H — H. This map has some similarities but
also many differences with the Lie case. First, it is clear that it commutes with any Hopf algebra
map f:H — H (in analogy with Proposition 2.4), but in contrast, if H is not commutative, m is not
an algebra map, and if H is not cocommutative, A is not a coalgebra map, so it is not expected
for mo A to be a Hopf algebra map, and in fact it is not, except for a very small family of Hopf
algebras. Nevertheless, maps similar to this one were considered by Etingof and Gelaki (see [6]) with
very useful applications. On the other hand, for a Lie algebra g, the obvious Hopf algebra to look at
is U(g), the universal enveloping algebra, with comultiplication determined by Ax=x® 1+ 1 ® x.
If in addition (g,8) is a Lie bialgebra, one may consider the ring A = K[t]/t*> and define a Hopf
algebra structure on H := U(g) ®x K[t]/t> over A declaring As(*) =x® 1+ 1Qx+t5(x) (x € g). It
is well known that the cocycle condition says that As is well defined and gives an A-algebra map
As:H — H®4 H, and co-Jacobi for § gives coassociativity for As. In this case, the antipode S is given
by S(x) = —x+ 3tDg(x), and S?(x) = x — tDg(x). We conclude that $? =1Id if and only if Dg =0, and
that is the reason why a Lie bialgebra with Dy =0 is called involutive. Also, this example shows that



62 M.A. Farinati, A.P. Jancsa / Journal of Algebra 390 (2013) 56-76

S? is a possible candidate for an analogue to the “exponential” of —Dy in the abstract setting of Hopf
algebras. Notice that S? also commutes with any Hopf algebra map f:H — H (since S does) but in
addition S? is also a Hopf algebra map itself, in analogy with Proposition 2.2,

Going back to Lie bialgebras, we quote a result from [1], which together with Corollary 2.5 implies
a very interesting fact.

Proposition 2.7. If g is real or complex semisimple and (g, r) is an (almost) factorizable Lie bialgebra, then
Hy :=[—,=1(r) is a regular element and so b := Z4(H;), the centralizer of Hy, is a Cartan subalgebra of g.

Proof. This statement is proved for both, real and complex, simple cases in [1], but the proof remains
valid mutatis mutandis for the semisimple case. O

Corollary 2.8. Any biderivation of a factorizable semisimple Lie bialgebra (g, r) is of the form ady with H €
b = Z4(Hy). In particular, BiDer(g, ) is an abelian Lie algebra.

Proof. If g is semisimple then every derivation is inner and Zg =0, so E = ady, and xg commutes
with H;. In particular, xo belongs to the centralizer of H;. O

Another characterization of inner biderivations is the following.

Proposition 2.9. Let (g, §) be a Lie bialgebra and D = ady, an inner derivation, then D is a coderivation if
and only if $xg € (A%g)9®. In particular, if (A%g)9 = 0, then the map xo — ady, induces an isomorphism of Lie
algebras Ker §/(Z(g) N Ker§) = InnDer(g) N CoDer(g).

Proof. By definition, D is a coderivation if and only if (D ® Id+1d ® D) 0§ =6 o D. Since D = ady,,
we have (D ® Id +1d ® D)(x ® y) = adx, (x ® y). So, the coderivation condition reads

8[x0, z] = ady, §(2)

for all z € g. On the other hand, § is a 1-cocycle, namely

8[x0, z] = ady, 8(z) — ad; §(xp).
Hence, D is a coderivation if and only if ad;5(xg) =0 forall zeg. O

Corollary 2.10. Let (g, 8) be a Lie bialgebra such that every derivation is inner, Zg = 0 and (A%g)® = 0, then
BiDer(g, §) = Ker 8. In particular, if g is semisimple then the result holds.

Example 211. The non-commutative two-dimensional Lie algebra g = aff,(K), verifies Der(g) =
InnDer(g), Z(g) =0 and (A%g)9 =0 but it is not semisimple. In fact, this is the “sly-case” of the
general and classical result (see for instance [9]) that a Borel subalgebra b of a semisimple Lie algebra
satisfies Der(b) = InnDer(b), Z(b) =0 and (A26)® =0.

2.1. Biderivations in the real or complex semisimple case

Let (g,r) be an (almost) factorizable semisimple Lie bialgebra, with r a BD classical r-matrix, i.e.
r of the form as in Eq. (1) of Theorem 1.1, that is, for a fixed non-degenerate, symmetric, invariant,
bilinear form on g, a certain Cartan subalgebra h, an election of positive and simple roots @+ C
@(h) and A ={wq,...,ae}, respectively, a pair of discrete and continuous parameters (I, I, T) and
ro € h ® b, respectively, with ro = A + 29, A € A%h, A = 2 i<i<j<e Mijhi A hj, where hj := hy;, the
antisymmetric component r4 of such an r-matrix is of the form
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TpA= Zx,a/\xa—i—Zx,a/\xﬂ—i—A. 3)

acdt a<p

Here ¢ = dimb is the rank of the Lie algebra g. Notice that adyr = adyxr, since the symmetric compo-
nent of r is g-invariant. If we are in the real almost factorizable case (g, §), namely (g ®r C, § Qg C)
is factorizable, so there exists r € (g ®r C) ®c (g ®r C) = (g ®r g) ®r C with § ®r Idc (x) = adx(r) for
all x € g®r C; suppose that r is of the form as above, then necessarily §(x) = adx(r) = adx(r ), for all
x € g. In particular 4 € Ag.

The goal of this section is to prove the result given in the following theorem. In fact, we exhibit
two different proofs of it, namely, one is the application of Corollary 2.8, which gives Proposition 2.16.
The second is longer but direct and follows in this section, being Proposition 2.16 the most subtle part
of the proof.

Theorem 2.12. Let (g, r) be an (almost) factorizable semisimple Lie bialgebra, with r as in the previous para-
graph. If D : g — g is a biderivation, then D = ady for a (unique) H € b satisfying

o¢(H)=(ta)(H), foralla eIt.

In particular, if there are no discrete parameters, then any H € ) determines a biderivation and all biderivations
are of this type.

It is useful to recall the notion of level or height of a root; if @ = Zf:1 nja; define the height of «
as the integer

¢
height() = Zni.

i=1

The same definition can be extended for any weight u € h*, namely, if u = Zf:] uiai, define

height(u) = Zle ui € C. The adjoint representation of g decomposes in height spaces, explicitly
given by

9 = b Ja

ae®U{0}: height(a)=n

where we include gy =go =0, s0 g = @,z 9. Analogously, the representation A?g decomposes
in weight spaces (Azg)ﬂ, with weights of integer levels. For each w in the Z-span of &, we have

(A%g),, = e, (9o A 98)-
o,fe@U{0}: a+B=un
This decomposition can be rearranged as a decomposition in height spaces as follows:

Po= @y, =B B (), =B,

neb* neZ " peh*: height(u)=n nez

where (A%g)m) := B cp: height(uy=n (A’ is said to be the component of height n. Notice that A%h C
(Azg)(o) but also x_o A Xy € (Azg)(o); moreover, conditions on the BD-triple (see [2] and [1]) force
that a < 8 implies height(c) = height(B) and so, x_q AXg € (Azg)(o), then, all the terms which appear
in r, are in (A?g)(). Hence,
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ra€ (Azg)(o)

Also, from [g,, A%gy] € A%gu+v, it is clear that [gam), (A%g)@y] S (A2@) (k). This discussion im-
plies the following lemma.

Lemma 2.13. Let g = ny @ h & n_ be the triangular decomposition related to h and a to an election of
positive roots; if we write x = X1 + Xy + X_ then adx(r) = 0 if and only if ady, (1) = ady, (r) = 0. Moreover,
ifx="23", Xm) with X € g corresponding to the decomposition of g in height spaces, then §x = adx(r) =0
if and only if 8x(m) = ady,, (r) = 0 for alln € Z.

The proof of the theorem relies in a close observation of the adjoint action, explicitly stated in the
following lemma.

Lemma 2.14. Let x,, € g, withy € @7, then

adxy r=hy, Axy + Z (Cy,—aX—aty NXq +CypaX_a ANXyta)
y#aedt

+ Z (Cy,aX—aty NXg+Cy pX_o AXgyy) + Z (hy Axg+cCy pXx_y AXpg1y)
a=<pry#a.p B:y=p

+ Z Cy,—aX—g+y N Xy +[Xy, A]

aa<y

where ¢, +q € C are the structure constants such that [x,, X+q] = Cy +oXy+q. In addition, if we write A =
130 :
Z1<i<]<l Ajjhi ARy = 3 Zi,j:l Aijhi A hj with A j; = —A;j then

Xy Al=— > )»ij()/(hi)xy/\hj+)/(hj)hi/\xy)=< > /\z’j(J/(hf)hj—)/(hj)hi)>AXy

1<i<j<t 1<i<j<t
1L ¢
=3 Z Lij(y (hdhj — y (hphi) Ax, = Z Aijy (hi)hj A xy,.
i,j=1 i,j=1

Proof. Straightforward. O

In order to deal with this formula, we simplify it by considering the following decomposition of
A?g induced by the triangular decomposition g = b @ (n, @ n_), namely

A2g=Ah @ (HhA (e ®n))® A2(ny D).

Define p: A%g — A%h @ (h A (ny ®n_)), the canonical projection associated to the above decomposi-
tion. The formula of Lemma 2.14 implies the following:

pady, ) =hy A <XV + Z x,g> + ( Z Lij(y (hphj — y(hj)hi)> AXy.
B:y=<B 1<i<j<e

It is convenient to introduce the element H; i=hy + Zf,j:] Aijy (hi)hj. Write y = Zf:1 n;ja; then
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¢ ¢ ¢
HY = Z(nj + Z/\,-,-y(hi)>hj = Z(nj + injnkak(h,-)>h,-,
j=1 i=1 j=1 ik
under this notation we have
p(ady, 1) = H) Axy +hy A ( Z Xﬂ),
B:y=<B
Lemma 2.15. For any y € ® and any » € A%Y, the element Hi’ € b is nonzero.

Proof. Recall we write y = Zle nja;; if H;f =0 then, in particular, a(H’{) =0 for all ¢ € h*, so

¢ ¢ ¢
0= Zam(Hi’)nm = Z Nmotm (hj)nj + Z it (hi)Aijotm (h ).
m=1 j.m=1 J.k,m=1

It is convenient to use matrix notation. Let us denote by K the matrix with entries kjj = «;(hj),
A the matrix with coefficients ;; and n = (n1,...,ny). Notice that K is the matrix of the Killing form
restricted to h. The formula above can be written as

O=n-K-n"+n-K-A-K-n".

The second term is easily seen to be zero since

g-K-A.K.gf:(g-K-A.1<-gf)t=n-1<f.Af.Kf-r_zfz—g-K.A-1<-gf

where the first equality holds because we are transposing a complex number, the second is valid
for any product of matrices, and the last uses the fact that K is symmetric and A antisymmetric.
Besides, in the basis {hq, ..., h.}, the matrix K is real symmetric and positive defined (see for instance
[11, Corollary 2.38]), hence

Zam(H)nm = an/(mjnj =n-K-n">0 VneR"\0;
m j.m
in particular, it gives a nonzero real number for any 0 # (ny,...,ny) € Z". O

Proposition 2.16. Let x € ny & n_, then ady(r) =0 < x=0.

Proof. Let x = Z},E(p cyxy with ¢, arbitrary, and suppose adyr = 0. Since ad_(r) preserves the height
(see Lemma 2.13), we can consider different heights separately. Since we will not need such refine-
ment in all its strength, we will only consider separately the cases height(y) > 0 or height(y) <0,
namely y a positive or negative root.

So let us consider an element x=73 4+ Cy Xy, the case in @~ is analogous. We have

O=p@dyr)= Y cyH Ax,+ Y cyhy/\< > Xﬂ).
yept yept B:y=<B

Denote I the Z-span of the discrete parameter; we claim that if y € IFnot, then ¢y = 0. To see this,
consider Iy € @+ the set of minimal elements y € I" such that ¢y # 0 (minimal with respect to <).
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Notice that the terms with xg where y < 8 cannot cancel any term with x, for y € Iy, because if
cg # 0 then y could not be minimal. Hence, if we consider only elements in I'p, necessarily

_ 14
0= Z cyH; Axy
v€lp

since the {x, }yer, are linearly independent, then
0=cyH] Vyel.

But H” # 0 implies ¢, = 0, which is absurd because y € I';y. We conclude that ¢, =0 for all y in I".
Hence the equality ady(r) = 0 implies

O=p(@dyr)= Y cyH] Ax,.
yedt

Now we can repeat word by word the same argument as in case y € Ip, namely the linear indepen-
dence of the x, implies ¢, H =0 ¥y € &, but H #0 implies ¢, =0 Vy e #*. O

Proof of Theorem 2.12. In order to conclude the proof, almost all work is done. We know that if
ady(r) =0 then x € g) = go = h. Notice that the standard component and the continuous parameter
have total weight equal to zero, i.e. ady (rst +1) =0 for H € b, then the only terms surviving in ady (r)
are

ady(r) = Z ady (X—g AXg) = Z(ﬁ(H) —o(H))X_o AXg

a<p a<p

so o(H) = B(H) for all @ < B, and that is equivalent to «(H) = (t)(H) for all @ € I'1. At this stage,
we have finished the description of Ker(§), but in virtue of Corollary 2.10, this implies as well a
description of the biderivations in (g, §). Notice that in the real case, even if r € (g ®r C) ®c (gQr C) \
g ®r g, we know that 14 € A%g, so the proof of the complexified Lie algebra descends to the real
formg. O

Remark 2.17. Corollary 2.8 says that if ady € BiDer(g, r) then x € b, so Corollary 2.8 together with the
very last argument above gives an alternative proof of Theorem 2.12.

2.2. Extension of scalars

For a given Lie bialgebra, it is possible to define a (double) complex of the form CP-9g =
APg* ® Alg, where the vertical differentials are the Chevalley-Eilenberg differential of g with co-
efficients in AY%g, and horizontal differentials are the dual of the Chevalley-Eilenberg differential
corresponding to the Lie coalgebra structure. This complex was first described in [8]. In particular,
for p =q =1, if one identifies g* ® g = Hom(g, g) = End(g), we get that the kernel of the vertical
differential consists of derivations (the image of the preceding differential are the inner ones), and
the kernel of horizontal differential consists of coderivations, so the kernel of both differentials is pre-
cisely the set of biderivations. As a consequence, the set of biderivations extends scalars in the sense
that if K C E is a field extension, then BiDerg (g ®k E) = BiDerk (g) ®k E, and a given biderivation D
of a K-Lie algebra g is inner if and only if D ®x Idg is inner as biderivation of g ®k E.
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3. Main construction for trivial abelian extensions

Along this section, we denote by V a d-dimensional vector space over a field K, {t1,...,tq} a basis
of V and {¢],...,t}} the associated dual basis of V*.

Theorem 3.1. Let (g, 84) be a Lie bialgebra, (V, 8v) a d-dimensional Lie coalgebra, V* the dual Lie algebra and
D: V* — BiDer(g) a Lie algebra map, then the following map defines a Lie bialgebra structureon £ =g x V,
forallxegandv e V:

d
S(X+V)=84(X)+2) _ Di(X) Ati+8y(v)
i=1

where {t1, ..., tq} isabasis of V, {t], ..., t]} the dual basis of V* and D; =D(tf), 1 <i < d.

Proof. We need to prove co-Jacobi and the 1-cocycle condition. In order to prove co-Jacobi for §,
for any linear function f:g— A%(g), denote by df: A%(g) — A3(g) the map given by df(x A y) =
fx) Ay —x A f(y). So, under this notation, § satisfies co-Jacobi if and only if d5 o § = 0. Notice that
df1g =05 + g, SO

d
=05, +2) _ dpy—yat; + D5y -
i=1

Let us prove first that d;5 o §(x) =0 for any x € g,

d
35 (8(x) = 9s(85(x)) +2 Z ds(Dix A £)
i=1
d d
=05, (8g(0) +2 Z Ipint (89 (%)) +2 Z(S(Dix) Ati —Dix A S(t}))
i=1 i=1
=A+B+C

where these three terms are computed separately as follows. The first term, A = 95 s (3g(x)) has to be
zero since 8 satisfies co-Jacobi. For the second term,

d d
1
SB= > 00 (8g®) =Y (Dix{ Ati AX§ —x§ A DiX§ Aty)
i=1 i=1
d
=-— Z((Di ®Id+1d ® Dj)(x] AX3) Ati)
i—1

=-) ((Di®Id+1d® D;)(8gx) A t;) € A*g AV
i=1

where we used the Sweedler-type notation §gx = x? A xg . Half of the third term equals
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d
1
SC= ;(5(Dix) Ati—Dix A8 (L))
d d d
=Y 85D Ati+2 Y Dj(Dix) AtjAti— Y Dix ASy ().
i=1 i.j=1 i=1

Notice that, in C, only the first sum belongs to A%g A V, and it cancels with B because D; are
coderivations. It only remains to verify that the second and third terms of C cancel each other, or,
equivalently, that the following identity holds

d d
2% Dj(Dix) AtjAti= Y Dix Ay (t). (4)
i,j=1 i=1

Observe that in the left-hand side we have

d d
2% DjDx) AtjAti= Y [Dj, D) Atj AL
i, j=1 i,j=1

because t; A t; is antisymmetric in the indexes i, j. On the right-hand side of (4), we may write
8y (tx) as a linear combination of the t; At;, explicitly v (ty) = Z?,j:l c,fc’ltj Ati. So, identity (4) is also
equivalent to

d
[Dj,Dil=)_c; Dk
k=1

which holds because the map D: V* — BiDer(g), t; +— Dj, is a Lie algebra map.

Finally, 8|y =8y and 8y (V) € A2V since by construction (V,8y) is a Lie subcoalgebra. Hence,
958(v) =358y (v) =05, 8y(v)=0forany ve V. O

Example 3.2. As a toy example, consider g = aff,(K) the non-abelian 2-dimensional Lie algebra, with
basis {h, x} and bracket [h,x] =X, and V =Kt. All possible cobrackets in aff,(K) up to isomorphism
of Lie bialgebras are (see [7]) as follows:

1. 8%h) =h A x, 8%(x) =0, in this case D = —ad, and BiDer(aff,, §°) = Kady; or

2. the 1-parameter family &8, (h) =0, §,(x) = uh A X, © € K, so D = pady. In this case,
BiDer(aff,, 8,,) = Kady if u # 0 and BiDer(aff,, §;.) = Der(aff,) if u = 0. Notice that Der(aff,) =
InnDer(aff,).

The biderivations given above were easily obtained by means of Corollary 2.10. The procedure de-
scribed in Theorem 3.1 says that if D € BiDer(aff,(K), 8aj,).

8(t) =0, S(u) = 8q55, (W) + D(u) AL, Vu € aff,(K)

is a Lie cobracket on aff,(K) x K. We obtain the whole list of possible such choices (see table below).

Notice that the Lie bialgebra of the case (i) is isomorphic to the one of case (ii) by means of the
map x+— x; h+— h+t; t+ t. Analogously, the Lie bialgebra of the case (iii) with parameter w is
isomorphic to the one of case (iv) with parameter —u, by means of the map x+> x; h+> h + ﬁt;
t+> t. In case (v) if the derivation D = adyx4gn then D:x+> Bx, h — —ax, so the cobracket has the
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Possible Lie cobrackets on aff,(K) x K.

(i) §(x)=0 S(hy=hAx+xAt §(t)=0

(ii) §(x)=0 S(hy=hAx 5(t)=0
(iii) S(x)=phAx+xnt 8(hy=0 3(t)=0 n#0
(iv) S(x) =phAax 8(hy=0 8(t)=0 n#0
(v) S(x)=D(x) At 8(h) = D(h) At, D € Der(aff,) 8(t)=0

form éx = Bx At, §t =0 and 6h = —ax At. In matrix notation, choosing basis {x, t, h} of the Lie algebra
£ = aff, x Kt, and basis {xAt,t Ah, hAx} of A2L, the cobrackets given by the above construction are

000 000 B 0 —a
(ii) (o 0 0); (iv)(O 0 0); (v)(O 0 o).
00 1 nw 00 00 0

001
Case (v) is isomorphic to (0 0 0) if « 20, B =0, simply by considering the transformation x <> %x.
000 100

If B # 0, then (v) is isomorphic to (0 0 0) by the transformation x+ x, h— h + %x, t — Bt. If one

000
compares all this possibilities with the classification result in [7] for the Lie algebra t3 ,—¢ one sees
that we have covered all possibilities. This is not surprising due to the following result.

Next theorem says that with some extra hypothesis, Theorem 3.1 has its converse. See the table in
Example 3.5 for non-semisimple examples where next theorem applies.

Theorem 3.3. Let g be a Lie algebra such that (A%g)% = 0 and Z(g) = 0; let V be a vector space considered
as abelian Lie algebra; assume that either dimV > 1 and [g,g]l =g, ordimV = 1. If £ = g x V then all Lie
cobrackets on £ are as in Theorem 3.1. Explicitly, if § defines a Lie bialgebra structure on £, then

1. 8(V) € A%(V), so, V is a Lie subcoalgebra with 8y = §|y. In particular, V is an ideal and a coideal, hence,
£/V inherits a unique Lie bialgebra structure such that 7 : £ — £/V is a Lie bialgebra map.

2. Let Ty : £ — g be the canonical projection associated to the decomposition £ =g x V, then 84 := (w3 A
Tg)oblg:g— A?g is a Lie bialgebra structure on g and £/V = g canonically as Lie bialgebras.

3. 8(g) S A%gDgAV. If{ti}j?’:l is a basis of V, then for any x € g, §(X) is of the form

d
(SX=39X+ZZD1X/\Q
i=1

where D;:g— g,i=1,...,d, are derivations and coderivations of (g, §4). The linear subspace generated
by {D1, ..., Dq} is a Lie subalgebra of BiDer(g); moreover, the map D: (V*, 8},) — BiDer(g) defined by
D(tf) = Dj, is a Lie algebra map.

4. Let (£, 8) be the Lie bialgebra associated to a data (£, 84,8y, D1, ..., Dg). Let @ = (¢g4, ¢v) be a linear
automorphism of £, with ¢4 a Lie algebra automorphism of g and ¢y € GL(V). If we denote by gg = (pg A

¢g) 08g 0071, 8y = (dv Adv)ody ogy ", Di= Y I_; Aijdg 0 Djo gy, where gy (t)) = Y, Ayjti,
1<j<d and (2,3) the Lie bialgebra associated to the data (2,39,3\/, Di,..., 13d), then @ : (£, 8) =
(£,93) is a Lie bialgebra isomorphism. If, moreover, [g, g] = g then any Lie bialgebra isomorphism from
(£,9) to (£, 3) is of this form.

Proof. Consider the decomposition A%(£) = A%(g) ® g A V @ A%(V). It is straightforward to see that
if 5(g) € A2g@® g AV and §(V) € A%V then the implications in the proof of Theorem 3.1 can be
reversed. This will prove items 1, 2, 3. So, let us see §(V) C A2V first:
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By Proposition 1.3 together with Z(g) =0, we have
5(V) =58(2(8)) < (4%8)" = (A%0)° @ Z(g) AV @ A2V = A2V,

On the other hand, 8(g) € A%2g@® g A V is trivial in case dim V =1 since in this case, A%V =0. If
dimV > 1, assuming g = [g, g] then also g =[£, £], so by Proposition 1.3

8(9)=5(lg,91) =8(I€. L) C IS, LINL=gA L= A%gD gD V.

4. Notice that 8¢ = (@ A ®) 08¢ 0@~ if and only if 55 = (¢g A ¢pg) 085 0 b5, Sy = (¢v Ay) o
S -1
vog, and

(@ A @)(Z Di(pg'x) A r,-) =Y Dix At
i i
The identities concerning '59 and 3y are true by hypothesis. For the last, notice that

(@ A D) (Di(pg %) Ati) = (pgDidg ' (%)) A ¢ (£i):

write ¢y (t;) = Zj Ajjt;j, then
(@ A ®)(Di(¢g ") Ati) ZA,]% 2 X)) At

For the converse, if (£, 8£) and (£, ’gg) are Lie bialgebras, then we have the corresponding
(84,0v,D1,...,Dy) and (69, 6\/, D1, .. ﬁd) If they are isomorphic Lie bialgebras, then there exists a
Lie algebra 1somorph15m P:£—-> L such that ¢ = (@ AP)oSco® LIt is necessary to prove that it
induces the existence of ¢4:g— g and ¢y :V — V, or, in other words, that ®(g) Cg and ®(V) C V.
This holds because [g,g] =g and Z(g) =0 imply @(g) = @([g.9]) = (L. £]) =[£, L] =[g,9] =
and (V)= (Z(£)=2L)=V. O

Specializing the main theorem to the case of dimV =1, we obtain the following.

Corollary 3.4. Let £ = g x K be a Lie bialgebra where the underlying Lie algebra is the product of the Lie
algebra g and the field K = (t) considered as trivial one-dimensional Lie algebra; suppose that Z(g) = 0 and
(A%g)% = 0; then the Lie bialgebra structures on £ are determined by pairs (84, D), where 8 is a Lie bialgebra
structure on g and D € BiDer(g, 84). The Lie cobracket on £ is explicitly given by §(x) = §4(x) + D(X) A t, for
any x € g, and §(t) =0.

Example 3.5. The table below exhibits some properties of the non-abelian, real 3-dimensional Lie
algebras. We see that there are non-semisimple examples of g where Z(g) =0 and (A2g)% = 0; so,
the previous result applies in order to describe Lie bialgebra structures on 4-dimensional real Lie
algebras of type g x R.

The hypothesis Z(g) =0 and (A2g)? =0 hold in the semisimple case.

Corollary 3.6. Let g be a semisimple Lie algebra (so all cocycles on g are coboundary and every derivation on
g is inner), then
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Invariants of 3-dimensional real Lie algebras.

g Zg (A2g)8 [g. 9]
b3:lx,yl=z Rz RxAz®Ry Az Rz

3

[h,x]=x [h,yl=x+y, [x,y]=0 0 0 Rx@® Ry
T3

[h,x]=x, [h,y]=2y, [x,y]=0:

re(=1,1, 2 #0 0 0 Rx @Ry
r=-1 0 RxAy Rx® Ry
A=0 Ry 0 Rx

vy, A0

[h,x]=2x—y, [h,y]=x+2, [x,y]=0 0 0 Rx@® Ry
s5u(2) 0 0 su(2)
s[(2,R) 0 0 sl(2,R)

1. All Lie bialgebra structures on £ = g x Kt are coboundary and determined by a Lie bialgebra structure
on g, denoted by §4(x) = ady(r), withr € A%g satisfying [r, 1] € (A3g)9, and a biderivation D : (g, 8g) —
(g9, 84), which is necessarily of the form ady with H € Ker §4. The cobracket on £ is given by

§(x) =ady(r) + [H,x] At =ady(r — HAT)

for any x € g and 5(t) = 0. Since we may choose t up to scalar multiple, the element H may be modified
by a nonzero scalar without changing the isomorphism class of the Lie bialgebra.

2. Assume in addition that (g, 8) is (almost) factorizable, §4(x) = adx(r) with r given by a BD-data, i.e.
a Cartan subalgebra b, simple roots A, a BD-triple (I'1, Iz, T) and a continuous parameter with skew
symmetric component A € A2, withr 4 as in Eq. (3). Then H € Ker8g if and only if H € h and ta(H) =
o(H) forall ¢ € I7.

Example 3.7. Lie bialgebra structures on gl(2, R) = sl(2, R) x Rt. Let § be any Lie bialgebra structure on
sl(2,R), which is a simple Lie algebra, § = dr. From [7], we know that there are factorizable, almost
factorizable and triangular structures on s[(2, R). Let {x, h, y} be the usual basis of s[(2, R).

Case 1. If r = h A x, then H, = 2x (which is not a regular, but a nilpotent element). We get that
ah+bx+cy commutes with x if and only if a =c =0, so BiDer(sl(2, R)) = Rady. In particular,
(sl(2,R), r) is a triangular Lie bialgebra.

Case 2. If r=xAy then H, =h, then every biderivation is a multiple of ady, in this case. In particular,
(sl(2,R), r) is a factorizable Lie bialgebra.

Case 3. If r=h A (x+ y) then H, =x — y is semisimple non-diagonalizable. One can easily check that
every biderivation is a multiple of ady_y. In particular, (sl(2,R),r) is an almost factorizable
(non-factorizable) Lie bialgebra.

Hence, we obtain the following description.

Corollary 3.8. An exhaustive list of isomorphism classes of Lie bialgebra structures on gl(2, R) = sl(2, R) x Rt
is given as follows.

(a) With nonzero cobracket on s((2, R):
1. Letr=xhAxifD=0,0orr==xh Ax+xAt)if D #0; in particular, (gl(2, R), r) is a triangular Lie
bialgebra.
2. letr=BxAyifD=0,orr=8xAy+hAt)ifD+#0, 8 eRy; in particular, (gl(2,R),r) is a
factorizable Lie bialgebra.
3. Letr=ahA(x+y)ifD=0,orr=ahAx+y)+ x—y)At)ifD #0,a € R\ {0}; in particular,
(gl(2, R), 1) is an almost factorizable Lie bialgebra.
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(b) With zero cobracket on sl(2, R) we have BiDer(sl(2, R)) = Der(g), then there are three nontrivial iso-
morphism classes and, in each of them, there is a unique derivation up to the action of sl(2, R). In each
case, (gl(2, R), r) is a triangular Lie bialgebra.

1. If D = ady with X nonzero nilpotent, conjugated to x, thenr = x A t.

2. If D = ady with H semisimple diagonalizable, conjugated to any non-negative multiple of h, then
r=hAtorzero.

3. If D = ady with U semisimple non-diagonalizable, conjugated to any multiple of x — y, thenr =
(x—y)At.

Remark 3.9. If g is a simple Lie algebra, then any Lie bialgebra structure on g is either triangular or
(almost) factorizable. If g is a semisimple Lie algebra, then any Lie bialgebra structure on it may be
triangular, (almost) factorizable or none on them, depending on the situation in each component.

Remark 3.10 (Dimension of the space of solutions). Let £ =g x K-t, with g a semisimple Lie algebra, and
suppose that (g, 84) is (almost) factorizable such that 4 = dr4, with r, of BD-form, then Corollary 3.6
applies. For each BD-triple (I't, I, T), [2] gives the dimension of the space of solutions of the skew
symmetric component of all possible continuous parameters A € A%h, namely "U‘Tf” if k=1|A\I7|.
Besides, there are |I1| amount of equations for the possible H € i such that Ta(H) = o(H) for all
o € I; this gives in addition |A \ I'1|; hence, the set of pairs (A, H) is an affine space of dimension
k(k Dyk= "("2+ D for each BD-triple. Since we may choose t up to scalar multiple, this dimension is,
1ndeed, one unit less.

Example 3.11. The r-matrices corresponding to all the (almost) factorizable Lie bialgebra structures
on real forms of complex simple Lie algebras are given in [1]. This, together with the techniques
explained in this section, gives an exhaustive list of Lie bialgebra isomorphism classes on real Lie
algebras of the form s x V, with s a real form of a complex simple Lie algebra with a given (almost)
factorizable structure. For instance, u(n) = su(n) x R, u(p, q) = su(p, q) x R.

Example 3.12. The classification of the Lie bialgebra structures on three-dimensional real Lie algebras,
both in the (almost) factorizable and in the triangular case, is given in [7]. This, combined with the
results of this section, provides all the Lie bialgebra isomorphism classes on real Lie algebras of shape
g x V, with g any three-dimensional real Lie algebra such that Zg =0 and (A%g)% = 0. For instance,
su(2), sl(2,R), 3, t3, with 0 # X € (—1, 1], and t’“ satisfy the hypothesis, so Theorem 3.3 applies
for £ =g x R. However, among them there may be some repetitions, since in general we do not have
[g, g1 = g if g is solvable.

3.1. Abelian extensions with dimV > 1

If dimV > 1, there are more possibilities than D =0 or D # 0; we can stratify them by the
dimension of the image of D. If the image of a linear map D:V* — BiDer(g) is do-dimensional,
0 < do < d, consider a basis {t1,...,tq} of V and the corresponding dual basis {t7,...,t;} of
V* such that {tZ‘OH,.. ,t3} is a basis of KerD, namely, D1,...,Dgy, are linearly independent and

Dgy+1 =+ = Dgq =0. The condition [D;, D;] = Zk 1Ck Dk = d” c,< Dy, determines uniquely ck for
k=1,. do in terms of the constant structures of the Lie algebra Im(D) C BiDer. In the case (g, d4)
semisimple and factorizable, we know that BiDer(g, 84) € b (Theorem 2.12), which is abelian, so the
general Theorem 3.3 specializes in the following result:

0

Proposition 3.13. Let g be a semisimple Lie algebra over K, V = K9, the abelian Lie algebra of dimension d.
Consider £ = g x V the trivial abelian extension of the Lie algebra g by V. If § : £ — A% is a Lie bialgebra
structure on £ such that (g, 84) is an (almost) factorizable Lie bialgebra, 54(x) = adx(r) for all x € g, with r
given by a BD-data by, A, (I't, Iy, T), . € A2, then, there exists a basis {t1, ..., ts} of V and H1, ..., Hg, €
linearly independent elements (dy < d) satisfying
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o(H)) =ta(H;j)) VYo elrn, i=1, ...,do,

such that forallx € g

do do
§(X)=84(X) + Y _[Hi, X] Ati = adx<r — Y Hin ti)

i=1 i=1

and a Lie coalgebra structure 8y : V — A2V satisfying

dytq =~-~=(Svtd0 =0.

Remark 3.14. In the notation of the above theorem, if dy =d then §y = 0. Notice that if dimV > 1,
the structure on £ is coboundary if and only if §y =0, which was already predicted in item 2
of Lemma 1.5. The examples with 8y # 0 were not covered in [3], since this work considers only
coboundary structures.

Notice that the election of the H; appearing in the theorem above depends on a choice of a basis
for the complement of Ker(D) C V*. If one fixes a complement (of dimension dp in the notations
of the theorem), then the action of GL(dg, K) acts on the set of basis of this complement, so we
see that GL(dp, K) acts on the set of dp-uples (Hi,..., Hq,) in the obvious way, without changing
the isomorphism class of the Lie bialgebra £. The case dg =1 is Corollary 3.6. The following is an
example for dimV =2.

Example 3.15. Suppose that £ =g x V is a product of a semisimple Lie algebra g and an abelian
Lie algebra V with dimV = 2; write V = (t1, t3); then the Lie bialgebra structures on £ are of three
possible types:

1. f D=0 then £=g x V is a product Lie bialgebra, i.e.

(x4 v)=2685() +dv(v)

for any x e g, v € V. For any fixed Lie bialgebra structure 84 on g, there are two isomorphism
classes, namely, y =0, or §y # 0, which is the unique non-coabelian two-dimensional Lie coal-
gebra.

2. If InD =KD #0, then

3(x) =8g(x) + [H,x] A tq, 8t1 =0, Sty=at1 Aty

with 8y a Lie cobracket on g and H € Ker(8g). Changing H by a nonzero scalar multiple, the
isomorphism class of the Lie bialgebra does not change. We may also assume a =0 or 1. Notice
that if a =1 then the cobracket is not coboundary.

3. If ImD =KD & KD; of dimension two, D; =ady;, i =1, 2, then

S(x+v)=085() + [H1,X] Aty + [Hz, X] Aty + 8y (V)

for any x € g, v € V, with the following restrictions: there exists c =0, 1 such that [H1, Hy] = cH;
and the Lie coalgebra structure 8y is given by Syty = ct1 A ta, Syty = 0. Notice that if the Lie
bialgebra structure 8,4 on g is factorizable, then ¢ =0 and hence § is coboundary.
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Example 3.16 (Cremmer-Gervais). Consider £ = gl(n, K) = sl(n, K) x K with K=R or C. Fix the Car-
tan subalgebra § of traceless diagonal matrices and the factorizable Lie bialgebra structure on sl(n, C)
given by an r-matrix r with r +r2!1 = £ and skew symmetric component obtained from the discrete
parameter 1 = {1, ..., p—2}, [2 ={oa,...,ap—1} and 7(a;) = aj4+1, 1 <i<n—2, and any corre-
sponding A € A2h. As it was proved in [1], this BD-data on sl(n, C) gives place to a factorizable Lie
bialgebra structure on sl(n, R), considered as its split form via the usual sesquilinear involution, if
and only if A € AZ(h) N A%sl(n,R) = A% (hr), if we denote by bg the Cartan subalgebra of sl(n, R)
consisting of traceless real diagonal matrices.
The equations

a(H) = (ta)(H)

for all @ € I'1, H € b, form a system of n— 2 equations in the n— 1 variables which are the coefficients
of H in the basis {Hg,, ..., Hy, ;} of b; hence the space of solutions has dimension one. In fact, we
knew by other means that the regular element

Hr:=[,104)= ) Ha

aedt

lies in Ker(8), since D =[, ]oé =adp, is a biderivation, in virtue of Propositions 2.2 and 2.9. As
a consequence, all biderivations of (g,r) are scalar multiples of ady,. On the other hand, analogous
result holds in the real case, if we consider the subspace of hr of real solutions. Notice that H, =
[, 1(ra) €sl(n,R).

Both in the complex and in the real case, we conclude that there are exactly two isomorphism
classes of Lie bialgebra on £ such that £/V = (g, r), given explicitly by

81(x+v)=384(x) + D(X) At =adx(r) + [Hy, X] At

and

82(x 4+ v) =845(x) = ady(r).

Example 3.17. Let £ = gl(4, C) = 5[4, C) x C and £ = gl(4, R) = sl(4, R) x R, denote also g =sl(4, C)
and go =sl(4,R). Let A ={«, B, ¥} be a choice of simple roots with respect to a root system for a
given Cartan subalgebra h of g. Recall that a basis of root vectors of g is

B={Xq,Xg, Xy, Xa1 8, Xp+y s Xatpty  X—a>X_g, X—a—p,X_g_y,X_a—p—y} U {hg, hg, hy}

2 -10 @ B 7
the Cartan matrix is A = <—1 2 —1) and the Dynkin diagram is O O O.

0 -1 2

In case of the empty BD-triple, all H € § are solutions of ta(H) = «(H). In the following table, we
list (up to isomorphism of the Dynkin diagram) all possible nontrivial discrete parameters for sl(4, C)
and generators of the space of solutions {H € h: «(H) = (ta)(H) Yo € I't}. Notice that h = Z3(Ho)
(see Proposition 2.7), i.e. the initial Cartan subalgebra coincides with the centralizer of the regular
element Ho =[, ](r4) explicitly given by

Ho=3hg +4hg +3hy, = > Hq.

acdt
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Iy and Iy are subsets of A represented by the black roots.

a B v a B v a By

o—C—eo oOo—e—O @@ O—e—e

Ho, H1 = hqy Jrhy Ho, Hy =hqy Jrhﬁ Hg

Indeed, we knew that the regular element Hg lies in Ker(§) for § coming from any choice of BD-
triple, because D =[, ]o8 = —ady, is a biderivation, in virtue of Propositions 2.2 and 2.9, and it is
independent of the BD-triple by inspection.

On the other hand, for the real case, Ho=[ , 1(ra) € sl(4,R), then in particular, b := Z4,(Ho) is
a (real) Cartan subalgebra of gg. For each data, it is only left to find the generators of the real space
of solutions of ta(H) = «(H) for all H € ho. Notice

dimg{H € ho: a(H) = (ta)(H) Va € I} =dimc{H € h: a(H) = (ta)(H) Yo € I},
i.e. this real space is a real form of the complex space of solutions of the same equations viewed in b.

Example 3.18 (A non-triangular, non-factorizable and not coboundary example). Consider g = su(2) x
sl(2,R), £ =g x R?, {uq,up,us} a basis of su(2) with brackets [u;, ujl =)y €ijkk, where € is the
totally antisymmetric symbol, and {h, x, y} the standard basis of sl(2,R). There are no nontrivial
triangular structures in su(2) (see [7]); moreover, all Lie bialgebra structures on su(2) are almost fac-
torizable and isomorphic to some positive multiple of the coboundary associated to u; A uz. On the
other hand, there are nontrivial triangular structures in s[(2,R), all of them isomorphic to the cor-
responding to +h A x. So, let us fix r =uj; Auy +h Axe A%g and 8g(w) =ady (r), for all w € g. In
order to list all isomorphism classes of Lie bialgebra structures on £ =g x R?, we need to compute
BiDer(g, 4). Let

Hy =[—,—1(r) =[ug, uz] + [h, x] =u3 + 2x

thus, by Corollaries 2.10 and 2.5, we know that

BiDer(g, 83) =Kerdy € {w € g: [w, H;] =0}.

For any w = u+s € su(2) x s[(2, R), we get [w, H;] =0 < [u, u3] =0 and [s, x] = 0. We conclude that
BiDer(g, §g) is 2-dimensional, with basis {ady,, ady}. In order to determine all possible Lie bialgebra
structures on £ one may proceed as in Example 3.15. We illustrate it showing only one possibility.
Choose {t1,t;} a basis of R?; if one defines

S(w) =ady () + [w, cius + c2x] A tq, 8t1 =0, Sty =t1 Aty

for any c1,cy € R, then this structure is not coboundary, since §|z2 # 0. We remark also that all
non-coboundary structures on £, such that induce §4 on g, are of this form.
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