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Introduction

In [G-Z] Giaquinto and Zhang develop the notion of a universal deformation formula based on
a bialgebra H, extending earlier formulas based on universal enveloping algebras of Lie algebras. Each
one of these formulas is called universal because it provides a formal deformation for any H-module
algebra. In the same paper the authors construct the first family of such formulas based on non-
commutative bialgebras, namely the enveloping algebras of central extensions of a Heisenberg Lie

Corresponding author.

E-mail addresses: vander@dm.uba.ar (J.A. Guccione), jjgucci@dm.uba.ar (J.J. Guccione), cvalqui@pucp.edu.pe (C. Valqui).
Supported by UBACYT 095, PIP 112-200801-00900 (CONICET) and PUCP-DAI-2009-0042.

Supported by UBACYT 095 and PIP 112-200801-00900 (CONICET).

Supported by PUCP-DAI-2009-0042, Lucet 90-DAI-L005, SFB 478 U. Miinster, Konrad Adenauer Stiftung.

The author thanks the appointment as a visiting professor “Catedra José Tola Pasquel” and the hospitality during his stay at
the PUCP.

[

4

0021-8693/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2010.12.022


http://dx.doi.org/10.1016/j.jalgebra.2010.12.022
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:vander@dm.uba.ar
mailto:jjgucci@dm.uba.ar
mailto:cvalqui@pucp.edu.pe
http://dx.doi.org/10.1016/j.jalgebra.2010.12.022

264 J.A. Guccione et al. / Journal of Algebra 330 (2011) 263-297

algebra L. Another of these formulas, based on a Hopf algebra Hq over C, where g € C* is a parame-
ter, generated by group like elements ! and two skew primitive elements D, D,, were obtained in
the generic case by the same authors, but were not published. In [W] the author generalizes this for-
mula to include the case where g is a root of unity, and she uses it to construct formal deformations
of a crossed product S(V)#7G, where S(V) is the polynomial algebra and the group G acts linearly
on V. More precisely, she deals with deformations whose infinitesimal sends V®V to S(V)wg, where
g is a central element of G.

In this paper we prove that some results established in [W] under the hypothesis that G is a fi-
nite group, remain valid for arbitrary groups, and with C replaced by an arbitrary field. For instance
we show that the determinant of the action of g on V is always 1. Moreover, we do not only con-
sider standard Hq-module algebra structures on S(V)#¢G, but also the more general ones introduced
in [G-G1], and we work with actions which depend on two central elements g; and g, of G and
two polynomials Py and P;. When the actions are the standard ones, gy =1 and P; =1, we obtain
the case considered in [W]. Finally, in Section 3.2 we show how to extend the explicit formulas ob-
tained previously, to non-central g1 and g;. As was noted by Witherspoon, these formulas necessarily
involve all components of S(V)#¢G corresponding to the elements of a union of conjugacy classes
of G.

The paper is organized as follows: in the first section we review the concept of braided mod-
ule algebra introduced in [G-G1], we adapt the notion of universal deformation formula (UDF) to
the braided context, and we show that each one of these formulas produces a deformation on any
braided H-module algebra whose transposition (see Definition 1.6) satisfy a suitable hypothesis. We
remark that, when the bialgebra H is standard, the use of braided module algebra gives rise to more
deformations than the ones obtained using only module algebras, because the transposition can be
different from the flip. With this in mind, although we are going to work with the standard Hopf
algebra Hg, we establish the basic properties of UDF's in the braided case, because it is the most ap-
propriate setting to deal with arbitrary transpositions. In the second section we recall the definitions
of the Hopf algebra Hq and of the UDF exp, considered in [W, Section 3], which we are going to
study. We also introduce the concept of a good transposition of Hg on an algebra A, and we study
some of its properties. Perhaps the most important result in this section is Theorem 2.4, in which
we obtain a description of all the Hg-module algebras (A, s), with s a good transposition. This is the
first of several results in which we give a systematic account of the necessary and sufficient con-
ditions that an algebra (in general a crossed product S(V)#G) must satisfy in order to support a
braided Hg-module algebra structure satisfying suitable hypothesis. In Section 4 of [W], using the
UDF exp, the author constructs a large family of deformations whose infinitesimal sends V ® V to
S(V)wg, where g is a central element of G. Using cohomological methods she proves that if G is
finite, these deformations are non-trivial, that the action of g on V has determinant 1 and that the
codimension of &V is 0 or 2. In the first part of Section 3 we study a larger family of deformations
and we prove that the last two results hold for this family even if G is infinite and the characteristic
of k is non-zero. Finally, in Section 4 we show that, under very general hypothesis, the deformations
constructed in the previous section are non-trivial. Once again, we do not assume characteristic zero,
nor that the group G is finite. One of the interesting points in this paper is the method developed
to deal with the cohomology of S(V)#;G when k[G] is non-semisimple. As far as we know it is
the first time that this type of cochain complexes is used to prove the non-triviality of a Hochschild
cocycle.

1. Preliminaries

After introducing some basic notations we recall briefly the concepts of braided bialgebra
and braided Hopf algebra following the presentation given in [T1] (see also [T2,L1,F-M-S,A-S,D,So]
and [B-K-L-T]). Then we review the notion of braided module algebra introduced in [G-G1], we recall
the concept of universal deformation formula based on a bialgebra H, due to Giaquinto and Zhang,
and we show that such a UDF produces a formal deformation when it is applied to an H-braided
module algebra, satisfying suitable hypothesis, generalizing slightly a result in [G-Z].
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In this paper k is a field, k* =k \ {0}, all the vector spaces are over k, and ® = ®,. Moreover we
will use the usual notation (i)g=1+q+---+¢"~! and ()lg = (1)q--- (i)q, for g €k* and i e N.
Let V, W be vector spaces and let c:V @ W — W ® V be a k-linear map. Recall that:

- If V is an algebra, then c is compatible with the algebra structure of V if co(p @ W) =W ® 1
and co(u @ W)= (W ® w)o(c ® V)o(V ®c), where n:k— V and n:V ® V — V denotes the
unit and the multiplication map of V, respectively.

- If V is a coalgebra, then c is compatible with the coalgebra structure of V if (W ® €)oc=€ @ W
and (W ® A)oc =(c® V)o(V ® c)o(A ® W), where €¢:V — k and A:V — V ® V denotes the
counit and the comultiplication map of V, respectively.

Of course, there are similar compatibilities when W is an algebra or a coalgebra.
1.1. Braided bialgebras and braided Hopf algebras

Definition 1.1. A braided bialgebra is a vector space H endowed with an algebra structure, a coalgebra
structure and a braiding operator ¢ € Aut;(H®?) (called the braid of H), such that c is compatible with
the algebra and coalgebra structures of H, Ao = (1t ® )o(H ® c ® H)o(A ® A), 1 is a coalgebra
morphism and € is an algebra morphism. Furthermore, if there exists a k-linear map S: H — H, which
is the inverse of the identity map for the convolution product, then we say that H is a braided Hopf
algebra and we call S the antipode of H.

Usually H denotes a braided bialgebra, understanding the structure maps, and c¢ denotes its braid.
If necessary, we will use notations as cy, 4y, etcetera.

Remark 1.2. Assume that H is an algebra and a coalgebra and c € Aut,(H®?) is a solution of
the braiding equation, which is compatible with the algebra and coalgebra structures of H. Let
H ®c H be the algebra with underlying vector space H®2 and multiplication map given by HUH®H =
(M ® uw)o(H®c® H). It is easy to see that H is a braided bialgebra with braid c if and only if
A:H— H®:H and € : H — k are morphisms of algebras.

Definition 1.3. Let H and L be braided bialgebras. A map g: H — L is a morphism of braided bialgebras
if it is an algebra homomorphism, a coalgebra homomorphism and co(g ® g) = (g ® g)oc.

Let H and L be braided Hopf algebras. It is well known that if g: H — L is a morphism of braided
bialgebras, then goS = Sog.

1.2. Braided module algebras
Definition 1.4. Let H be a braided bialgebra. A left H-braided space (V, s) is a vector space V, endowed

with a bijective k-linear map s: H®Q V — V ® H, which is compatible with the bialgebra structure of H
and satisfies

(S® H)o(H®S)o(c®V)=(V®c)o(s® H)o(H® s)
(compatibility of s with the braid). Let (V’,s’) be another left H-braided space. A k-linear map
f:V — V'’ is said to be a morphism of left H-braided spaces, from (V,s) to (V',s'), if (f ® H)os =

s'o(H® f).

We let LBy denote the category of all left H-braided spaces. It is easy to check that this is a
monoidal category with:
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- unit (k, t), where T:H @ k - k ® H is the flip,
tensor product (V,sy) ® (U,sy) :=(V ® U, sygu), where sygy is the map

Ssveu = (V ®sy)o(sy ® U),
- the usual associativity and unit constraints.

Definition 1.5. We will say that (A, s) is a left H-braided algebra or simply a left H-algebra if it is an
algebra in LBy.

We let ALBy denote the category of left H-braided algebras.

Definition 1.6. Let A be an algebra. A left transposition of H on A is a bijective map s: HQ A — AQH,
satisfying:

(1) (A,s) is a left H-braided space,
(2) s is compatible with the algebra structure of A.

Remark 1.7. A left H-braided algebra is a pair (A, s) consisting of an algebra A and a left transposi-
tion s of H on A. Let (A’,s’) be another left H-braided algebra. A map f:A — A’ is a morphism of
left H-braided algebras, from (A, s) to (A’,s’), if and only if it is a morphism of standard algebras and
(f @ Hlos=5'o(H® f).

Note that (H,c) is an algebra in £By. Hence, one can consider left and right (H, c)-modules in
this monoidal category.

Definition 1.8. We will say that (V,s) is a left H-braided module or simply a left H-module to mean
that it is a left (H, c)-module in LBy.

We let y(LBp) denote the category of left H-braided modules.

Remark 1.9. A left H-braided space (V,s) is a left H-module if and only if V is a standard left
H-module and

so(H® p) =(p ® H)o(H® $)o(c® V),

where p denotes the action of H on V. Furthermore, a map f:V — V' is a morphism of left H-modules,
from (V,s) to (V’,s'), if and only if it is H-linear and (f ® H)os =s'o(H ® f).

Given left H-modules (V,sy) and (U, sy), with actions py and py respectively, we let pygu
denote the diagonal action

pveu = (pv ® pu)o(H® sy @ U)o(Ag ®V @ U).

The following proposition says in particular that (k, t) is a left H-module via the trivial action and
that (V,sy) ® (U, sy) is a left H-module via pygu.-

Proposition 1.10. (See [G-G1].) The category y(LBp), of left H-braided modules, endowed with the usual
associativity and unit constraints, is monoidal.

Definition 1.11. We say that (A, s) is a left H-braided module algebra or simply a left H-module algebra
if it is an algebra in g(LBpy).
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We let y(ALBy) denote the category of left H-braided module algebras.
Remark 1.12. (A, s) is a left H-module algebra if and only if the following facts hold:

(1) A is an algebra,

(2) s is a left transposition of H on A,

(3) A is a standard left H-module,

(4) so(H® p) =(p ® H)o(H ® s)o(c ® A),

(5) pnao(p ® p)o(H®s® A)o(Ay ® A® A) = po(H ® [La),
(6) h-1=¢€(h)1 for all h € H,

where p denotes the action of H on A. So, (A, s) is a left H-module algebra if and only if it is a left
H-algebra, a left H-module and satisfies conditions (5) and (6).

In the sequel, given a map p: H ® A — A, sometimes we will write h - a to denote p(h ® a).

Remark 1.13. If X generates H as a k-algebra, then conditions (4), (5) and (6) of the above remark are
satisfied if and only if

shel-a)=(p @ Ho(H®Ss)o(c® A)(h®l®a),
h-(ab) = pao(p ® p)o(H®s® A)(A(h) ®a®b),
h-1=¢€(h),

foralla,be A and h,l € X.

Let (A’,s’) be another left H-module algebra. A map f:A — A’ is a morphism of left H-module
algebras, from (A,s) to (A’,s’), if and only if it is an H-linear morphism of standard algebras that
satisfies (f ® H)os =so(H® f).

1.3. Bialgebra actions and universal deformation formulas
Most of the results of [G-Z, Section 1] remain valid in our more general context, with the same
arguments and minimal changes. In particular Theorem 1.15 below holds.

Let H be a braided bialgebra. Given a left H-module algebra (A, s) and an element F € H® H, we
let F[:A® A— A® A denote the map defined by

Fia®@b):=(p®p)o(HRs@ A)(FRa®Db),

where p:H ® A — A is the action of H on A. We let Ar denote A endowed with the multiplication
map paof.

Definition 1.14. We say that F € H ® H is a twisting element (based on H) if
(1) (e ®id)(F) = (id®e€)(F) =1,

(2) [(A®I)(A)I(F® 1) =[({d®A)(F)I1®F) in H® H® H,

(3) (c®H)o(H®c)(F®h)=hQ®F, forall he H.

Theorem 1.15. Let (A,s) be a left H-module algebra. If F € H ® H is a twisting element such that
(S®H)o(H®s)(F®a)=a®F, forall a € A, then A is an associative algebra with unit 14.

The notions of braided bialgebra, left H-braided module algebra and twisting element make sense
in arbitrary monoidal categories. Here we consider the monoidal category M|t] defined as follows:
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- the objects are the k[t]-modules of the form M[t] where M is a k-vector space,
the arrows are the k[t]-linear maps,
- the tensor product is the completion

M{t] ®kgep N[1]

of the algebraic tensor product M[t] ®[,j N[¢] with respect to the t-adic topology,
- the unit and the associativity constrains are the evident ones.

We identify M [t] &pe N[t] with (M ® N)[t] by the map
O :M[t] &gy N[t] — (M ® N)[t]
given by @ (mt! @ ntf) := (m @ n)t' 4.
If A is a k-algebra, then A[t] is an algebra in M t] via the multiplication map

Ao A[t] — A[t]
Y (@i @ bt ——= Y ajb;t’,

where a;b; = p4(a; ® b;). The unit map is the canonical inclusion k[t] < A[t].
If H is a braided bialgebra over k, then H[t] is a braided bialgebra in Mt]. The multiplication
and unit maps are as above. The comultiplication and counits are the maps

€

H[t] —2~ (H® H)[t] g Pl k[t]
Zhiti P ZAH(hi)ti Zhiti P ZGH(hi)ti,

and the braid operator is the map

c|t

[t]
(He H)[t] ——— (H® H)[t]
Y @It =Y cu(h @t
If (A, s) is an H-module algebra, then (A[t], s[t]), where s[t] is the map
s[t]
(HRA[t] ———= (A H)[t]
Y (hi @apt' ——= Y s(hi @ apt’,
is an H[t]-module algebra, via
o
(HeAt] Alt]
Y(hi@ant' ——= 3 pa(hi @ apt'.

A twisting element based on H[t] in M[t] is an element F € H[t] ®kﬂt]] H[t] satisfying con-
ditions (1)-(3) of Definition 1.14. It is easy to check that a power series F = Fit' € (H ® H)[t]
corresponds via @~ to a twisting element if and only if
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(1) (e ®id)(Fp) = (id®¢€)(Fp) =1 and (e ® id)(F;) = (id®¢)(F;) =0 for i > 1,
(2) foralln >0,

Y (ARIDFNFi@) =Y (d®ANF)1®F)) inH®H®H,
i+j=n i+j=n

(3) (c®H)o(H®c)(F,®h)=h® F,, forall he H and n > 0.
We will say that F is a universal deformation formula (UDF) based on H if, moreover, Fo =1® 1.
Theorem 1.16. Let (A, s) be a left H-module algebra. If F =) F;t' is a UDF based on H, such that
(S®H)o(H®s)(Fi®a)=a® F; foralli>0andac A,

then, the construction considered in Theorem 1.15, applied to the left H[t]-module algebra (A[t], s[t]) intro-
duced above, produces a formal deformation of A.

Proof. It is immediate. O

2. Hq-module algebra structures and deformations

In this section, we briefly review the construction of the Hopf algebra Hq and the UDF exp, based
on Hy considered in [W], we introduce the notion of a good transposition of Hq on an algebra A, and
we describe all the braided Hg-module algebras whose transposition is good.

Let g € k* and let H be the algebra generated by D{, Dy, o*1, subject to the relations

D1Dy =D>D1, oo '=0"1l0=1 and goD;j=Dio fori=1,2.
It is easy to check that H is a Hopf algebra with

A(D1):=D1®0c +1®Dy, €(D1):=0, S(Dy):=—Di07",
AD2):=D2®1+0 @Dy, €(D3):=0, S(D2):=—0"1Dy,
A(0):=0®o0, €(0):=1, S(o):=0"1

If q is a primitive [-root of unity with [ > 2, then the ideal I of H generated by Dl] and D’2 is a Hopf
ideal. So, the quotient H/I is also a Hopf algebra. Let

T H/I ifqis a primitive [-root of unity with[ > 2,
7| H if g =1 or it is not a root of unity.

The Hopf algebra Hq was considered in the paper [W], where it was proved that

Y ﬁ(tDl ® Dy)t if g is a primitive I-root of unity (I > 2),

exp,;(tD1 ® Dy) := .
1 %% #q!(tm ® Dy)' ifg =1 or it is not a root of unity,

is a UDF based on Hy.
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2.1. Good transpositions of Hq on an algebra

One of our main purposes in this paper is to construct formal deformation of algebras by using the
UDF exp,(tD1 ® D2). By Theorem 1.16, it will be sufficient to obtain examples of Hg-module algebras
(A, s), whose underlying transpositions s satisfy

(S®Hg)o(Hg®s)(D1®D;®a)=a® D1 ®D, forallae A. (2.1)
Definition 2.1. A k-linear map s: H; ® A — A ® Hg is good if condition (2.1) is fulfilled.

It is evident that s:Hg ® A — A ® Hy is good if and only if there exists a bijective k-linear map
o :A— A such that

s(D1®a)=wa(@®D; and s(D;®a)=o"'(@)® D, forallac A.

Lemma 2.2. Let k[0 *!] denote the sub-Hopf algebra of Hg generated by o. Each transposition s: Hg @ A —
A® Hg takes klo*1] ® A onto A @ k[o*1].

1

Proof. Let T be the flip. Since Tos~'otT is a transposition, it suffices to prove that s(c*! ® a) €

A ®k[o*!] for all a € A. Write
s(o®a) = Z Yiik(@) ® GiD{D’E.
ijk
Since S2(D1) =q D4, S?(D3) =qD> and S%(c*!) =o*!, we have
Y yijk@ ® o' D{Dk = s(0 ®a)
ijk
=50(S’® A)(0c ®a)
= (A® S?)os(o ®a)
=Y ¢ yp@e® o'DJ Dk,
ijk
and so y;jx =0 for j # k. Using now that
> %@ ® AG) A(D1)/ A(D2)! = (A® A)os(o ® a)
ij
= (s® Hy)o(Hy ® 5)o(A ® A) (0 ® a)

= vy (vj@) ® o' Dy Dy ® o' Dy Dy,
iji'j’
it is easy to check that y;j; =0 if j > 0 (use that in each term of the right side the exponent of D,

equals the exponent of D;). For o ! the same argument carries over. This finishes the proof. O

In the following result we obtain a characterization of the good transpositions of Hq on an alge-
bra A.
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Theorem 2.3. The following facts hold:
(1) Ifs:Hg ® A — A ® Hyq is a good transposition, then s(c*! ® a) = a ® o*! for all a € A and the map
o:A— A, defined by s(D1 ® a) = a(a) ® D1, is an algebra homomorphism.

(2) Given an algebra automorphism o : A — A, there exists only one good transpositions: H;® A — AQ Hy
such that s(D1 ® a) = a(a) ® D1 foralla € A.

Proof. (1) By Lemma 2.2, we know that s induces by restriction a transposition of k[c*!] on A.
Hence, by [G-G1, Theorem 4.14], there is a superalgebra structure A=A, @ A_ such that

i _|a®o’ ifaeAy,
s(o ®a)_{a®a*' ifacA_.

Let «: A — A be as in the statement. Since o is a transposition, if a € A_, then
2(@®D1 Q@0 +a(@®1®D1=(A® A)os(D1 ®a)
= (s® Hq)o(Hq ® 5)o(A ® A)(D1 ®a)
=a@®D1®0c '+a(@®1®D.
So, A_ =0. Finally, « is an algebra homomorphism, because
sth®1)=1®h foreachhe H; and so(HqQ® pta) = (ta ® Hg)o(A®S)o(s® A).
(2) By item (1) and the comment preceding Lemma 2.2, it must be
s(c*'®a)=a®0c™', s(D1®a)=a@®D; and s(D;®a)=a"'(a)® D>.
So, necessarily
s(o0'DJ DY ®a) =al*(a) ® o' DI DX.
We leave to the reader the task to prove that s is a good transposition. O
2.2. Some Hg-module algebra structures

Let A be an algebra. Let us consider k-linear maps ¢, 81,82 : A — A. It is evident that there is a
(necessarily unique) action p:Hq ® A — A such that

plec®a)=¢@, pD1@a)=38(@ and p(Dz®a)=38() (22)
for all a € A, if and only if the maps ¢, §; and §; satisfy the following conditions:

(1) ¢ is a bijective map,

(2) 81082 = 82081,

(3) ggod; =djog fori=1,2,

(4) if g#1 and ¢' =1, then §} =8} =0.

Let s:Hy® A — A® Hg be a good transposition and let o be the associated automorphism. Let ¢,
81 and & be k-linear endomorphisms of A satisfying (1)-(4). Next, we determine the conditions that
¢, 81 and 8, must satisfy in order that (A, s) becomes an Hg-module algebra via the action p defined
by (2.2).
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Theorem 2.4. (A, s) is an Hg-module algebra via p if and only if

(5) ¢ is an algebra automorphism,

(6) aodj =djox fori=1,2,

(7) aog =goa,

(8) 8i(1)=0fori=1,2,

(9) 81(ab) =681(a)c(b) + a(a)d1(b) foralla,b € A,
(10) 83(ab) = 83 (a)b + ¢ (o~ 1(a))8z(b) foralla,b € A.

Proof. Assume that (A, s) is an Hg-module algebra and let 7:Hy ® H; — Hq ® Hq be the flip. Evalu-
ating the equality

so(Hg® p) = (p ® Hy)o(Hg ® s)o(T ® A)
successively on D1 ® Dj®a and D1 ® o ®a with i € {1,2} and a € A arbitrary, we verify that items (6)

and (7) are satisfied. Item (8) follows from the fact that D1 -1=D;-1=0. Finally, using that o -1 =1
and evaluating the equality

po(Hq ® 1a) = ao(p ® p)o(Hg ® s ® A)o(A® A® A)
ono ®a®band D;j®a®Db, withi=1,2 and a,b € A arbitrary, we see that items (5), (9) and (10)

hold. So, conditions (5)-(10) are necessary. By Remark 1.13, in order to verify that they are also
sufficient, it is enough to check that they imply that

h-1=¢€(h),
sth®l-a)=(p ® Hy)o(Hg ®5)(I@h ®a),
h-(ab) = pao(p ® p)o(Hg ® s ® A)(A(h) ®a®D),

for all a,b € A and h,l € {Dq, D2, c=!}. We leave this task to the reader. O

Note that condition (8) in Theorem 2.4 is redundant since it can be obtained by applying condi-
tions (9) and (10) witha=b=1.

3. Hy-module algebra structures on crossed products

Let G be a group endowed with a representation on a k-vector space V of dimension n. Consider
the symmetric k-algebra S(V) equipped with the unique action of G by automorphisms that extends
the action of G on V and take A = S(V)#;G, where f:G x G — k* is a normal cocycle. By definition
the k-algebra A is a free left S(V)-module with basis {wg: g € G}. Its product is given by

(Pwg)(Qwp) :=P8Qf(g, MHwg,

where £Q denotes the action of g on Q. This section is devoted to the study of the Hg-module
algebras (A, s), with s good, that satisfy

sS(Hg® V) SV ® Hg, S(Hg @ kwg) Ckwg ® Hg, o-veV and o-wgekwg,

for all ve V and g € G. In Theorem 3.5 we give a general characterization of these module algebras,
and in Section 3.1 we consider a specific case which is more suitable for finding concrete examples,
and we study it in detail. Finally in Section 3.2 we consider the case where the cocycle involves
several not necessarily central elements of G.
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In the following proposition we characterize the good transpositions s of Hg on A satisfying the
hypothesis mentioned above. By Theorem 2.3 this is equivalent to require that the k-linear map
a:A— A associated with «, takes V to V and kwg to kw, for all g € G.

Proposition 3.1. Let & :V — V be a k-linear map and x, : G — k> a map. There is a good transposition
s:Hqg® A— A® Hg, such that

s(D1®@Vv)=&(v)®Dy; and s(D1Q® wg) = Xa(8)Wg ® Dy
forallv e V and g € G, if and only if & is a bijective k[G]-linear map and X, is a group homomorphism.
Proof. By Theorem 2.3 we know that s exists if an only if the k-linear map o : A — A defined by
(Vi VmWg) i=&(V1) - &(Vm) X (§) Wy,
is an automorphism. But, if this happens, then:
a) Xq is @ morphism since
Xa (&) Xa (M) f(g. MWen =a(Wg)a(wp) =a(WgWp) = Xo(gh) f(g, MW

for all g,h G,
b) & is a bijective k[G]-linear map, since it is the restriction and corestriction of « to V, and

&(2v) = awo)@(Ma(wy') = Xa (@)Wl (V) (Xa (©)Wg) ' = Wb (VIwy ' =G (v).

Conversely, if & is a bijective map then « is also, and if & is a k[G]-linear map and x, is a morphism,
then

a(Wg)&(v) = Xa (9 Wl (v) =84 (V) xa (&) Wg = &(4Vv)a(wg)
and
a(Wg)a(Wh) = Xa(8)Wg Xa (WWh = f(g, ) Xa(gMWen = a(f (g, W) Wgn),
for all ve V and g, h € G, from which it follows easily that o is a morphism. O

Let A= S(V)#¢G be as above. Throughout this section we fix a morphism x:G — k* and a
bijective k[G]-linear map &:V — V, and we let «:A — A denote the automorphism determined
by & and x,. Moreover we will call

s:H;®A— A® Hq

the good transposition associated with «. Our purpose is to obtain all the Hg-module algebra struc-
tures on (A, s) such that

o-veV and o -wgekwg forallveVandgeG. (3.3)

Under these restrictions we obtain conditions which allow us to construct all Hg-module structures
in concrete examples. Thanks to Theorem 1.16 and the fact that exp, (¢tD1 ® D>) is a UDF based on Hy,
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each one of these examples produces automatically a formal deformation of A. First note that given
an Hg-module algebra structure on (A, s) satisfying (3.3), we can define k-linear maps

~

51:V—>A, 5:V—>A and &:V—V
and maps
51:G— A, 82:G—>A and xc:G—k*,
by
gi(v)::D,--v, c(v):=0-v, 5i(g2) :=Dij-wg and o -wg:= ) (gWg.

Lemma 3.2. Let $: V — V be a k-linear map and x. : G — k* be a map. Then, the map ¢ : A — A defined
by

SWVimWg) == G (V1) -+ S(Vm) Xc (&)W,
is a k-algebra automorphism if and only if ¢ is a bijective k[G]-linear map and . is a group homomorphism.
Proof. This was checked in the proof of Proposition 3.1. O
Lemma3.3.Let§;:V — Aand §,:V — A be k-linear maps and let §1:G — A and §3 : G — A be maps.

(1) The k-linear map &1 : A — A given by

m

51(VimWg) = Y (V1 j-1)61(V)S (Vj11.mWg) + & (Vim)81 (),
j=1

where vy = vy, - - - vy, is well defined if and only if
S1(V)E(W) + (V)81 (w) =8 (W) é(v) + a(w)bi(v) forallv,we V. (3.4)
(2) The map 8, : A — A given by
m
S (Vimwyg) = Z S (V1 i) 82 (v)HVjrmwe + () (Vim)d2(8)
j=1
is well defined if and only if
H MW+ ¢ (@71 ()8 (w) =5 (w)v + ¢ (&1 (w))s2(v) forallv,we V. (3.5)

Proof. We prove the first assertion and leave the second one, which is similar, to the reader. The only
if part follows immediately by noting that

51 W) +a((v)81(w) =81 (vw) = 81(wv) =51 (W) E(v) + a(w)§1 (v).
In order to prove the if part it suffices to check that
81(V1- - Vic1Vig1ViViga - - VmWg) = 81(Vimwg) foralli <m,

which follows easily from the hypothesis. O
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Lemma 3.4. Assume that ¢ is an algebra automorphism and 81, &, are well defined. The following facts hold:

(1) The map &1 satisfies

31(X1 -+ Xm) = Za(xl cXj—1)81(Xj) S (Xj1 -+ Xm)
j=1

forallxq,...,xm €ek#G UV, ifand only if
(a) 81(Bv) X (@) Wg +G(Ev)51(8) = 31(8)S (V) + Xa(g)Wgdi (V),
(b) f(g, Mé1(gh) =61(&) xc(MWh + Xa(gWgd1(h),
forallveVand g,heG.

(2) The map &, satisfies

m
Sa(x1 -+ Xm) =Y G0 (X1 +++Xj_1)81(X})Xj11 -+ Xim
j=1

forallxq,...,xm €k#;G UV, ifand only if
(@) S2C8V)wg + S@ 1 (Ev))52(8) = 82(8)V + X (8) Xo | (&) Wgba(V),

(b) f(g 82(gh) =2(8)wi + X (&) Xy ' (§)Wgd2(h),
forallveVand g,h eG.

Proof. We prove the first assertion and leave the second one to the reader. For the only if part it
suffices to note that
81(5v) s (wg) + a(5v)51(g) = 81 (Bvwg) = 81(Wgv) =51(2)s (V) + a(wg)di (v),
f(g.Ms1(gh) =81(wgwh) = 51(8)s (Wh) + a(wg)d1(h),

and to use the definitions of ¢(wg) and o (wg). We prove the sufficient part by induction on r =
m+1—1i, where i is the first index with x; € k#,G (if x1,...,%n € V we set r:=0). For r € {0, 1}
the result follows immediately from the definition of §;. Assume that it is true when r < ro and that
m+1—i=rg. If x; =wg and x;41 =v eV, then
xj ifje¢fi,i+1},
81(X1++-Xm) =81(y1---ym) whereyj=18v ifj=i,
wg ifj=i+1,

and hence, by the inductive hypothesis and item (a),

8101+ Xm) =Y _a(y1---¥ji )81 (Y)S(Vjr1-+Ym)
j=1

NE

(X1 Xj—1)801 (X)) G (Xjy1 - - Xm).
1

-
Il

If X = wg and X1 = wy, then

xj ifj<i,
S1(x1---xm) = f(g, )81(y1---Yym—1) wherey; =1 wgy ifj=i,
Xjy1 ifj>1i,



276 J.A. Guccione et al. / Journal of Algebra 330 (2011) 263-297

and hence, by the inductive hypothesis and item (b),

m—1
S1(X1 -+ Xm) = Z f@Egmnayr-yi-00 NSt Ym-1)
=1

m
=) (X D81 XS Xy -+ Xm),
j=1

as we want. 0O

Theorem 3.5. Let §1:V — A, §,:V — A and &:V — V be k-linear maps and let §1:G — A, §,:G — A
and X : G — k™ be maps. There is an Hg-module algebra structure on (A, s), such that

v=2E(v), o-wg=xc(®wg, Di-v=4§(v) and D; wg=35i(g)

forallveV,geGandie{l1,2},ifand only if

(1) ¢:V — V isa bijective k[G]-linear map and x is a group homomorphism,

(2) conditions (3.4) and (3.5) in Lemma 3.3 and items (1)(a), (1)(b), (2)(a) and (2)(b) in Lemma 3.4 are
satisfied,

3) Siod = O(ogi,

4) Xa(8)4i(8) =a(3i(g)) forallg € G,

5) o = @0,

6) themaps ¢:A— A,81:A— Aand 8, : A — A, introduced in Lemmas 3.2 and 3.3, satisfy the following
properties:

(
(
(
(

82031 :81032, Siofzqgog,-, 87081 = 81087,
Xc(@8i(®) =qs(5i(g)), 8 =8,=0 ifg#1landq =1.

Proof. By Theorem 2.4 and the discussion above it, we know that to have an Hg-module alge-
bra structure on (A,s) satisfying the requirements in the statement is equivalent to have maps
¢, 81,82 A — A satisfying conditions (1)-(10) in Section 2.2 and such that

s(v)=¢(v), S(wg) = xs(&)wg, §i(v)=8i(v) and &(wg)=5i(g)
forall veV, geG and i € {1, 2}. Now, it is easy to see that:

a) If ¢, 81 and &, satisfy conditions (5), (9) and (10) in Section 2.2, then
SWimwg) =S (v1)--- S (Vvm) Xc (&) Wy,

§1WimWg) = Y (V1 j-1)81(V))S (Vit1.mWg) + @(Vim)31(g),

=1
2 (Vimwg) = Z s‘(Ofl(V1,j—1))32(vj)vj+1,mwg + §(0571(V1m))32 (&),
j=1

where vy = vy - v
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b) By Lemmas 3.2, 3.3 and 3.4, the maps defined in a) satisfy conditions (1), (5), (8), (9) and (10) in
Section 2.2 if and only if items (1) and (2) of the present theorem are fulfilled.

So, in order to finish the proof it suffices to check that:

¢) Conditions (6) and (7) in Section 2.2 are satisfied if and only if items (3)-(5) of the present
theorem are fulfilled.

d) Conditions (2), (3) and (4) in Section 2.2 are satisfied if and only if item (6) of the present
theorem is fulfilled.

We leave this task to the reader. O

We are going now to consider several particular cases, with the purpose of obtaining more pre-
cise results. This will allow us to give some specific examples of formal deformations of associative
algebras.

3.1. First case

Let &, Xo, @ and s be as in the discussion following Proposition 3.1. Let 51:V > A, 5:V—> Aand
¢:V — V be k-linear maps and let x. : G — k* be a map. Assume that the kernels of 81 and §; have
codimension 1, ker$; #* ker$, and there exist xieV\ ker&, such that S,-(xi) = Pjwg; with P; € S(V)
and g; € G. Without loss of generality we can assume that x; € kerSz and x; € ker<§1 (and we do it).
For g€ G and i € {1, 2}, let g, w;, v; € k be the elements defined by the following conditions:

EX; — AigXi € ker§;, &(x;) —wix; ekerd; and @ (x;) — vix; € kers;.

Theorem 3.6. There is an Hg-module algebra structure on (A, s), satisfying

A

=S¢(v), o-wg=xc(@wg,  Di-v=24(v) and Dj-wg=0

forallveV,geGandie{l,2},ifand only if

(1 isa byectwe k[G]-linear map and x is a group homomorphism,
(2) é(v)y=281 (x(v)for all v € kerdy and &(v) =&8&(v) forall v € ker 8,
(3) g1 and g, belong to the center of G,

) ¢
)
)
(4) kerdy and ker$, are G submodules of V,
(5) £P1=higxy (@) xc (& f (g, 81) f(g1,8)P1 forall g € G,
(6) £P2 =l Xa (&) X5 (8)f 7' (8, 82) f (&2, &) P2 forall g € G,
(7) @(kerd;) = kerd; forie{1,2},
(8) Py €kerd, and P, € ker 81, where 81 and 8, are the maps defined by
m
§1(WimWg) 1= Y (V1 j-1)81(V))S (Vit1.mWy),
j=1

m
S (VimWwyg) := Z §(0171 (V1,171))(§2(Vj)vj+1,mwg,
=1

in whichvpy = vy ---vy,
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(9) ¢(P) =q 'wix; ' (gi)Pi and a(Pi) = vixy ' (€i)Pi for i € (1,2}, where g is the map given by
SWimWg) = S(V1) -+~ S(Vm) Xc (&) Wy,
(10) ifg# 1 and ¢' = 1, then 8} =85 = 0.
In order to prove this result we first need to establish some auxiliary results.

Lemma 3.7. The following facts hold:

(1) Condition (3.4) of Lemma 3.3 is satisfied if and only if 81§ (v) = @ (v) forall v € ker 8 .
(2) Condition (3.5) of Lemma 3.3 is satisfied if and only if 82v = (&~ 1 (v)) for all v € ker §».

Proof. We prove item (1) and we leave item (2), which is similar, to the reader. We must check that
S (WMEW) +a(Md1(w) =8 (W)E(v) +@(w)dy(v) forallv,weV (3.6)

if and only if & (v) = g17161(\/) for all v € kerd;. It is clear that we can suppose that v, w € {zq}uker&.
When v, w € kerd; or v=w = x; the equality (3.6) is trivial. Assume v =x; and w € ker§;. Then,

§1(V)E (W) + @ (V)81 (W) = Prwg, &(w) = P18 S(w)wg,
and
S1(W)EW) + & (W)S1 (V) = &(W)P1wg, = P1a(W)wy, .
So, in this case, the result is true. Case v € kerd; and w = x; can be treated in a similar way. O

Lemma 3.8. The following facts hold:

(1) Items (1)(a) and (1)(b) of Lemma 3.4 are satisfied if and only if
(a) kerd; is a G-submodule of V,
(b) g1 belongs to the center of G,

(€) EP1=2agXs (@) Xc(®) 7' (g 1) f (g1, 8Py, forall g €G.
(2) Items (2)(a) and (2)(b) of Lemma 3.4 are satisfied if and only if

(a) kerd, is a G-submodule of V,
(b) g belongs to the center of G,

(0) EP2 =lagxa (@) (&) f7(g, 82) f (g2, 8)P2, forall g € G.

Proof. We prove item (1) and we leave item (2) to the reader. Since §; = 0, it is sufficient to prove
that

51 (gv))(g(g)w‘g = Xa(g)wg<§1 (v) forallveVandgeg, (3.7)

if and only if gonditions (1)a), (1)(b) and (1)(c) are satisfied. We can assume that v € {x1} U ker ;.
When v € ker §1, then equality (3.7) is true if and only if v € ker §;. Now, since

81(3%1) xc (@) Wg = Mg P1Wg, Xc (8)Wg = A1gP1Xc (8) f (81, ) Werg

and
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Xa(©)Wgb1(X1) = Xa () WgP1Wg, = Xa (8) EP1f (g, 81)Wyg,,

equality (3.7) is true for v =x; and g € G if and only if conditions (1)(b) and (1)(c) are satisfied. O

Proof of Theorem 3.6. First note that item (1) coincide with item (1) of Theorem 3.5 and that, by
Lemmas 3.7 and 3.8, item (2) of Theorem 3.5 is equivalent to items (2)-(6). Item (4) of Theorem 3.5
and two of the equalities in item (6) of the same theorem, are trivially satisfied because §1 =8, =0.
Since

Si(@(x)) = vibix) =vPiwg, and (%)) =a(Piwg) = a(P)) Xa(8)Wg;,

item (3) of Theorem 3.5 is true if and only if item (7) and the second equality in item (9) hold.
Since & is k[G]-linear, item (5) of Theorem 3.5 is an immediate consequence of item (2) of The-
orem 3.6. Finally we consider the non-trivial equalities in item (6) of Theorem 3.5. It is easy to
see that & (g(xl)) = qg(al (xp)) if and only if the first equallty in item (9) holds. On the other hand
6,(g(v)) = qg(8 (v)) for all v € ker8, if and only if g(keré) - ker8,, which follows from items (2),
(4) and (7). The equality 82(81(v)) = 81(82(v)) s trivially satisfied for v € ker$; N kerd,, and for
v € {x1, X2} it is equivalent to item (8). Lastly, the remaining equality coincides with item (10). O
Remark 3.9. The following facts hold:

- Since & and ¢ are bijective k[G]-linear maps, from item (2) of Theorem 3.6 it follows that

-1 ~ A
&1 v =58y forall v ekerd; Nkerd,. (3.8)
- Since x1 € ker§2 and ker 32 is G-stable, 8x1 —A1gx1 € ker 31 Nker 32. Similarly &xp —A1gxy € ker(§1 N
kerSz.

- Since kerd; is a G-submodule of V and the k-linear map

V——V

Vi—— 8y

is an isomorphism for each g € G, it is impossible that 8x; € Ker §;. Consequently, Ajz € k* for
each g € G. Moreover, using again that kerd; is a G-submodule of V, it is easy to see that the

map g+ Ajg is a group homomorphism. Items (1), (2), (4), (7) and the fact that & is bijective
imply that also w1, w3, v1, v2 € k*.
- Since
E(x1) = Q(52x1) = h1g,@(x1) = h1gvix1  (mod kerdy),

we have w1 = A1g, V1. A similar argument shows that vy = Ayg 3.

Corollary 3.10. Assume that the conditions above Theorem 3.6 are fulfilled and that there exists an Hq-module
algebra structure on (A, s) satisfying

v=2_(v), 0 -wg=xc(g)wg, Di-v:S,-(v) and Di-wg=0
forallveV,geGandie{1,2}.IfP1 € S(ker 1) and P, € S(ker$,), then
Mgirg, =4 and Aagih2g, = q_l

Moreover go := g182 has determinant 1 as an operator on V.
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Proof. By items (9), (2) and (5) of Theorem 3.6,

-1, _ -1 _ _
wixs (g)P1=g(P1) =% &(P1)=vixy (€)% P1=viry xo ' (8)P1.

T
Hence Mg, A1g, =g as We want, since wy = V1A1g,. The proof that g, A2g, = ¢! is similar. It remains
to check that det(gp) = 1. Since kerd; and kerd, are G-invariant, we have

8x; ekerd, and $x, ekerd; forallgeG,
and so
goX] € )qgl)qux] + W and gon € )‘281 kzgle + W,

where W = ker8; Nker$,. Moreover, by Remark 3.9 we know that gg acts as the identity map on W
and hence det(go) = A1g, AgA2g A2g, =1. O

Remark 3.11. A particular case is the Hg-module algebra A considered in [W, Section 4], in which
P1=1, gy =1 and & is the identity map. Our P;, g; and f correspond in [W] to s, g and «, re-
spectively. Our computations show that the condition that h(s) = x1 (h)xz(h)c (g, h)a~1(h, g)s, which
appears as informed by the cohomology of finite groups in [W], is in fact necessary for the existence
of the Hg-module algebra structure of A, and it does not depend on cohomological considerations.
In particular we need this condition for any group G, finite or not. Similarly the conditions that g is
central and det(g) =1 are necessary even for infinite groups.

Let G, V, f:G x G — k> and A be as at the beginning of this section. Let &:V — V be a bijective
k[G]-linear map, x:G — k* a group homomorphism, o : A — A the algebra automorphism induced

by & and x, and s the good transposition associated with «. Let

a) Vi # V, subspaces of codimension 1 of V such that V; and V; are &-stable G-submodules of V,

b) g1 and g, central elements of G such that gl_lv =&y forall ve ViNVsy,
) Xc:G— k* a group homomorphism and ¢:V — V the map defined by

é‘(v)::{&(gl]\o ifvevy,
adv) ifveVsy,

d) X1 € Vo \ Vq, x2 € V1 \ Vo, P1 € S(V1), P2 € S(V2) and 81,8, :V — A the maps defined by
kerS,' =V; and Si(xi) = Piwg,.

For g € G and i € {1,2}, let Ajg, vi,w; € k* be the elements defined by the conditions &x; —
Xigxi € Vi, @(x;j) — vix; € V; and &(x;) — wix; € V;.

The following result is a sort of a reformulation of Theorem 3.6, more appropriate to construct
explicit examples. The only new hypothesis that we need is that P; € S(V;).
Corollary 3.12. There is an Hq-module algebra structure on (A, s), satisfying

o-v=2_,(v), 0-Wg=xc(8)wyg, D;-v=3§j(v) and Di-wg=0

forallveV,geGandie{l,2},ifand only if

(1) g =r1g Mg, and q_1 = A2gi A2gys
(2) 8Py =higxy (@) xc(8) f (8. g1) f(g1.8)P1.
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3) 8Py =g Xa (@ XS (@) F (8. 82) f (82, £) P2,
) «(P) = vixg ' (8)Pi,
) Py € kerd, and P, € ker 81, where 81, 82 : A — A are the maps defined in item (8) of Theorem 3.6,
)

(
(
(
( ifq;élandqlzl,then(?’]:5’220.

4
5
6
Proof. <) By a), b), c¢) and d), it is obvious that items (1), (2), (3), (4) and (7) of Theorem 3.6 are
satisfied. Moreover items (2), (3), (5) and (6) are items (5), (6), (8) and (10) of Theorem 3.6. So, we
only must to check that item (9) of Theorem 3.6 is satisfied. But the second equality in this item is
exactly the one required in item (4) of the present corollary, and we are going to check that the first

one is true with q = Aqg,A1g,. Arguing as in Remark 3.9, and using item (2) with g = g1, items (1)
and (4), we obtain

g lorxs ' @)P1=q""hgvixs (€D P
= q_l)Wg]MnglXo?](gl)g;] P4
=v1)(a_1(g1)g1_1P1
=& a(Py)
=¢(Py),

where the last equality is true since Py € S(V1). Again arguing as in Remark 3.9, and using item (3)
with g = g5, items (1) and (4), we obtain

q lwax; " (82)P2 =72 vax(€2)P2
=q Ao ag, V2 Xe  (82)%2P2
=12Xg ' (82) 2P,
=8q(Py)
=g (P),

where the last equality is true since Py € S(V5).
=) Items (2), (3), (5) and (6) are items (5), (6), (8) and (1) of Theorem 3.6, and item (4) is the
first equality in item (9) of that theorem. Finally item (1) follows from Corollary 3.10. O

The following result shows that if x; and x, are eigenvectors of the maps v &'v and v > &v,
then item (5) in the statement of Corollary 3.12 can be easily tested and item (6) can be removed
from the hypothesis.

Proposition 3.13. Assume that conditions a), b), c) and d) above Corollary 3.12 are fulfilled. Let 81 and §, be
the maps introduced in item (8) of Theorem 3.6. If

MgiMg, =4, Mg hag, = q’l and gin =Ajgxj for1<i, j<2,
then:
(1) 8% = 8’2 =0, whenever q #1and q' = 1.
(2) Ifq=1 oritis not a root of unity, then Py € ker 8, and P, € Ker 81 if and only if Py, Py € S(V1 N V3).

(3) Ifq # 1 is a primitive I-root of unity, then P1 € keré, and P € ker 87 if and only if P1 € S(kx’2 e Vin
V2)) and Py € S(kx} @ (V1N V2)).
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Proof. The proposition is a direct consequence of the following formulas:
Sy 1=S, 12 n
85 (XX wg) = {CO[ (1 xg X W fors<m,
0 otherwise,
and
12=5 g5 (1,03 . yin
85(x) X wg) = {d"2 Xy X ) Wesg fOrS ST,
0 otherwise,

where o’ denotes the s-fold composition of «,

s—1 s—1
c=xs@x& " @nxa’ @) ( [T - k>q> (]‘[ f(er, g’{g)>oﬁ—1 (P3),

k=0 k=0

k=0

s—1 s—1 s—1
d=332 D2 ( [Jo2— k)q) ( [1f(e g’z‘g)> ( 1% Pz).
k=0 k=0

We will prove the formula for 85 and we will leave the other one to the reader. We begin with the

case s=1. Since x,, ..., X, € kerd; and §;(x;) = Pywyg,, from the definition of §; it follows that
I‘]f]
r T, j ri—j—1_r T,
S1(x} - xnwyg) = Z a(x])P1wg, ¢ (x} X X Wy).
j=0

Thus, using the definition of ¢, item c) above Corollary 3.12, the fact that « is G-linear and the
hypothesis, we obtain

ri—1

S X wg) = 3 a(x]) Prwg (826 TS (62 X ke (9w
j=0
T]—] . .
=3 a(x])Pro(B8x) T o (x5 X)X (8) F (81, )Wy
j=0

ri—1_r

= Xc (@ )qf (g1, ©P1a(X]' ™ Xy - X7 )Wy, g

Assume that s <y and that the formula for 8] holds. Since ¢ depends on s, r{ and g, it will be con-
venient for us to use the more precise notation ¢, (g) for c. From items (3) and (5) of Theorem 3.5
and item (9) of Theorem 2.4. It follows easily that ®o8; = 810c¢ on S(V). Using this fact, item (9) of
Theorem 2.4 and the inductive hypothesis, we obtain

s+1 r—s
51

(X7 - Xy wg) = a(csr, () (81 (%) %y "'X;"))g(wgig)'
If s=ry, then 8; (x]' °x3 ---x") = 0. Otherwise,
5?4—1 (qu .. X;;n Wg) —ca’ (O[ (qu 7571)‘;2 .. 'X;n)Wg1)§(Wg§g)

= ¢t (qu_s_1xgz X)) Xa (8D XS (8 X (8) f (21, gig)ngﬂg,

where ¢ = a(cs r, (8))*(C1,r,—s(1)). The formula for Si” follows immediately from this fact. O
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Example 3.14. Let G = (g) be an order r cyclic group, £ an element of k* and f::G ® G — k the
cocycle defined by

u o, )1 fut+v<r,
fe(g" g )'_{g otherwise.

Of course, if r = 0o, then for any & this is the trivial cocycle. Let V be a vector space endowed with
an action of G and let A be the crossed product A = S(V)#y,G. Let {x1,...,x} be a basis of V. Let us
V1 and V;, denote the subspaces of V generated by {xa,...,x,} and {x1, X3, ..., xp}, respectively. Let
&:V — V be a bijective k[G]-linear map. Assume that V; and V, are &-stable G-submodules of V
and that there exist A1, Ap € k™ such that &x; = A1x7 and 8x; = AyXp. Let my, my € Z. Assume that
gty — v for all v e V1NV, (if r < oo we can take 0 < my,my <r). Let £:V — V be the map
defined by

aE ™My ifvevy,
&E™v)  ifveVs,

S(v):= {

and let x4, Xc :G — k* be two morphisms. Consider the automorphism of algebras o.: A — A given
by a(v) :=&(v) for v e V and a(wg) = xa(g)Wg, and define 1,5,:V — A by
§1(x) =+ =81(xa) =0,  51(x1) 1= Pywgm,

() =6a(x3) =+ =81(X) =0, S2(x2) := Pawgm,

where Pq e S(V1) \ {0} and P, € S(V3) \ {0}. Let s be the transposition of Hq with A associated
with o. There is an Hg-module algebra structure over (A, s) satisfying

o-v=_(v), 0 -Wg = Xc(2wyg, D,--v:S,-(v) and D;-wg=0 forallveV,
if and only if

1) q= )‘Tlerz and q—l — Agl1+m2‘

2) 8Py =X (&) Xs(g)P1 and EPy = o xa (8 X' (&) P2,

) a(P1) =VviXe " (g)P1 and a(P2) =v2xq "> (8)P2,
) if g=1 or q is not a root of unity, then Pq, P, € k[x3, ..., Xn],
) if ¢ # 1 is a primitive [-root of unity, then

(
(
(
(
(
Pq elc[le,X3,...,xn] and Py ek[xll,x;;,...,xn].
Consequently, in order to obtain explicit examples of braided Hg-module algebra structures on an
algebra A of the shape S(V)#, G, where V is a k-vector space with basis {x1,...,x:} and G = (g) is
a cyclic group of order r < oo, we proceed as follows:

First: We define an action of G on V. For this we choose

- a k-linear automorphism y of Vi, :=(x3, ..., Xp), whose order divides r if r < oo,
- A, A2 €k such that A] =4, =1if r < oo,
and we set
)\.]X] ifi = 1,
Exi =1 Aaxy ifi=2,

y(x) ifi>3.
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Second: We construct the algebra A. For this we choose & € k* and we define A = S(V)#r, G, where
fe is the cocycle associate with &.

Third: We endow A with a k-algebra automorphism «. For this we take vi,v2,n € k* such that
n" =1 if r < oo, a k-linear automorphism «’ of V13 and vy, vy € V13, and we define

vxy+vy ifi=1,
a(wg) :=nwg and o(x;) = vaxp+vy ifi=2,
o' (%)) ifi > 3.

Fourth: We choose my,my € Z and ¢ € k* such that
ymtmz —id, (AMAr)™¥M2 =1 and ¢"=1 ifr <oo,
and we define

)\.TZ(U1X1+V1) ifi=1,
Swg):=¢wg and ¢(xi):= 1 A, " (vaxa + v2) ifi=2,
o (Y™ (x)) ifi > 3.

Fifth: We set q:=A]""™ and we choose P1, P, € S(V) \ {0} such that
- if g is not a root of unity, then Pq, Py € k[x3, ..., Xn],
- if g is a primitive [-root of unity, then

Plek[x'z,X3,...,xn] and Pzek[xq,@,...,xn],

- &8Py =xn"1¢Py and Py = An¢ 1Py,
- a(P1) =vin™™ Py and a(P;) = v ™2 Py,

Now, by the discussion at the beginning of this example, there is an Hg-module algebra structure on
(A,s), where s: H; ® A — A ® Hg is the good transposition associated with ¢, such that

0 if i # j,
0-Xj=6K), o-wg=fwg, Di-wg=0 and Di("f>==p,~wgm,- ifi=j,

where i € {1,2} and je{1,...,n}.

Remark 3.15. If P1(0) 0 and P,(0) # 0, then the conditions in the first step are fulfilled if and only
if M{A2 =1, n=A1Z, v1 =n™, v =™, P; and P, are G-invariants, «(P1) = P1 and «(P;) = P5.

3.2. Second case

Let &, x«, @ and s be as in the discussion following Proposition 3.1, let x. :G — k* be a map and
let §;:V > A, §:V —> A and ¢:V — V be k-linear maps such that ker 8 # ker 8, are subspaces of
codimension 1 of V. Here we are going to consider a more general situation that the one studied in
the previous subsection. Assume that for each i € {1, 2} there exist

- an element x; € V \ker(gi),
- different elements gj1, ..., gin, of G,

- polynomials Pg,.)l s Pgil_ e S(V)\ {0},
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such that
n;
Bix) = Py wg,.
j=1

(The reason for the notation P(gig. instead of the more simple P;; will became clear in items (5) and (6)

of the following theorem.) Without loss of generality we can assume that x; € kerd, and x; € keré;
(and we do it). For g€ G and i € {1, 2}, let Ajg, w;, v; € k be the elements defined by the following
conditions:

EX; — AigXi € ker§;, &(x;) —wix; ekerd; and @ (x;) — vix; € kers;.

Lemma 3.16. The following facts hold:

(1) Condition (3.4) of Lemma 3.3 is satisfied if and only if 81 ¢ (v) = &(v) forall j <nj and v € ker 8A1.A
(2) Condition (3.5) of Lemma 3.3 is satisfied if and only if 82iv = &(&~1(v)) for all j <ny and v € ker 8.

Proof. Mimic the proof of Lemma 3.7. O

Lemma 3.17. The following facts hold:

(1) Items (1)(a) and (1)(b) of Lemma 3.4 are satisfied if and only if
(a) kerd; is a G-submodule of V,
(b) {g1j: 1< j <ny}isaunion of conjugacy classes of G,
(c) 8Py =higke (©)Xs(@)f ' (8.81))f (88118 P,
(2) Items (2)(a) and (2)(b) of Lemma 3.4 are satisfied if and only if
(a) kerd, is a G-submodule of V,
(b) {g2j: 1< j <ny}isaunion of conjugacy classes of G,

(c) BPg) = hagXa (@)X (S 1 (8. 82))f (882j8 " &Py 1 for <2,

g1 | for j <njy.

Proof. Mimic the proof of Lemma 3.8. O

Theorem 3.18. There is an Hq-module algebra structure on (A, s), satisfying

A

=2(v), 0 -wg=xc(@wg, Di-v=3§() and Di-wg=0

forallveV,geGandie{l,2},ifand only if

isa bijective k[G]-linear map and x ¢ is a group homomorphism,

Mg

(2) §‘(v) —gU &) for j<nyandallv e ker$;, and Sc(v)y=8ia(v)forj<nyandallv e ker 8,
(3) {gij: 1< j <ny}isaunion of conjugacy classes of G fori e {1, 2},

(4) kerd, and ker$, are G-submodules of V,
(5)
(6)
(7) a

5) Py, = higke (@)X (@) f (@ g1))f (88187 QP i forj<m,

6) £Py,) = hagXa (DX (&) 7' (8. 82)) f (88258 OP,) - forj<my,

7) &(kerd;) = ker §; forie{l,2},
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(8) Z'}‘:] Pgiwgw € ker &, and 272:1 Pfgzzi.wgzj € ker 81, where 81 and &, are the maps defined by
m
81(VimWg) 1= Y (V1 j-1)81(V))S (Vit1.mWy),
j=1

m
B (Vimwy) = Z s‘(Ofl(Vl,j—l))gz(vj)VjH,ng,
j=1

in which vy = vp---vy, A . .
(9) g(P'(g'l.;) = q_lwixg‘l(g,-j)Pg; and oc(ng.) = v,-xojl(g,-j)ng forie{1,2} and j < n;, where ¢ is the
map given by
SWimWwg) := ¢ (V1) -+ S(Vm) Xc (&) Wg,

; I I I
(10) ifq#1andq =1, then §; =&, =0.

Proof. Mimic the proof of Theorem 3.6, but using Lemmas 3.16 and 3.17 instead of Lemmas 3.7
and 3.8, respectively. O

Remark 3.19. Since « and ¢ are bijective k[G]-linear maps, from item (2) it follows that

8jy =%y for1<j,h<njandallv ekerds, (3.9)
B2jy =8ny for1< j,h<nyandall v ekerd,, (3.10)
7‘1 ~ N

815y =8ny for1 <j<ny, 1<h<nyandallv ekerd; Nkeréd,. (3.11)

On the other hand, arguing as in Remark 3.9 we can check that

- 8Xj — higXi € kerd; Nkers, for all g G,
- Aigek* forall geG,

the maps g+ Ajg are morphisms,

w1, Wy, V1,V €k*.

Finally, since
$(x1) =@(%2ix1) =A1g,;@(x1) (mod kerdy),
we have w1 = Mgy for j < ny. Similarly, v, = Aog @2 for j <nj. Consequently,
Mgy =+ = Mgy, and  Azg, == A2gin, s
which also follows from (3.9) and (3.10).

Corollary 3.20. Assume that the conditions at the beginning of the present subsection are fulfilled and that
there exists an Hg-module algebra structure on (A, s), satisfying

o-v=_(v), 0 -Wg=xc(2wyg, D,--v:gi(v) and D; -wg=0
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forallveV,geGandie({l,2}. IfP(gB. € S(kergl) and sz; € S(kergz)for all j <njandh < ny, then

-1
Mglj)‘lgzh =q and )‘Zglj)‘Zgzh =q
Moreover g1, has determinant 1 as an operator on V.
Proof. This result generalizes Corollary 3.10, and its proof is similar. O

Let G, V, f:GxG—k*, A &:V—>V, x0:G—k*, a:A— A and s be as below of Remark 3.11.
Assume we have

a) subspaces V # V5 of codimension 1 of V such that V; and V; are &-stable G-submodules of V,
and vectors x; € V \ V1 and x; € V1 \ V3,
b) different elements gi1, ..., gn; Of G, where i € {1, 2}, such that:
e {g11,...,81n,} and {g21, ..., g2n,} are unions of conjugacy classes of G,
o 8ljy =8y for 1< j,h<ny and all v € Vq,
. g2J'v=g2hv for 1< j,h<nyandall v e Vs,
o &y —Eny for1<j<n;,1<h<myandal veVinVy,
€) a morphism x¢:G — k*,
d) non-zero polynomials Pfgll; € S(V1) and ng1 € S(Vy), where 1 < j<n; and 1 <h<ny.

Let £:V — V and 31,32 :V — A be the maps defined by

-1 nj
. 5 (8 - . .
E(v) = ‘i‘( vy ifvev, kerd;:=V; and &(x):= E ngwgu
a(821y) ifveV,, izl

For g € G and i € {1,2}, let Xjg, v; € k* be the elements defined by the following conditions: £x; —
AigXi € Vi and a(x;) — vix; € V;. Note that, by item b),

Aagy =--= )‘Zglnl and Ayg, =---= Algznz .

Corollary 3.21. There is an Hq-module algebra structure on (A, s), satisfying

=¢(v), 0 -wg=xc(@wg, Dp-v=38(v) and Dy wg=0,
forallveV,geGandie({l,2},ifand only if for all j <nq and h < n; the following facts hold:

(1) =g gy, and g1 = Aagy, Aagy,,
(2) Py} = hgxa @ X (@) (g &1 f (8818 OPY) 1,
(3) £Pg) = hagXa (@5 (@ F (g gan) f(ggmg ™, ©PS) .
(4)

(5)

888
1 ) ]
4 P‘{gli) =V1 )Xo 1(g1])Pg1J and O[(Péﬁ) =Xy 1(g2h)P§2?,y
5 an p(U iWg,; € keréy and py Pgh Wg,, € keréy, where 81,82:A — A are the maps defined in

ltem (8) ofTheorem 3.18,
; I I !
(6) fq#1andq =1, then; =48, =0.

Proof. It is similar to the proof of Corollary 3.12, using Theorem 3.18 instead of Theorem 3.6. The
proof that ¢ is G-linear requires additionally the fact that 88i&"'y = &y for 1<i<2and 1<j<n;
which is true by b). O
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Remark 3.22. Assume that the hypotheses of Corollary 3.21 are fulfilled. Then, as it was note above
this corollary,

Aagyy =-+=Aagy, and Aig, = =Rig,,-
Moreover, by item (1) it is clear that

Mgy == A’lglnl and  Azgy =---= )"2an2 :

Proposition 3.23. Let G, V, f, A, o, V1, V2, 811, ..., 81ny» 821, ---» &2ny0 §» Xo» 81, 82, x1, X2, V1, 12, Ag
and Ag, where g € G, be as in the discussion above Corollary 3.21. Assume that

Aagy = =}"2g1n1’ Mgy =-+- =)"1g2n2’

Mgn ="'=)‘1g1n17 A2gn ="'=)‘2g2n2v
and that conditions a), b), c) and d) above that corollary are fulfilled. If
Mg Mgy =4, A2gi1h2gy = qi] and gihxj =XjguXjs
for1<i, j<2and 1 < h <nj, then:

(1) 8} =8, =0, wheneverq#1andq' =1.
(2) If g =1 or q is not a root of unity, then PV ¢ ker 8, and PP ¢ ker 8y if and only if PV p@ ¢
gu gzn 81j° " 82h
S(ViNVy).
(3) Ifq # 1 is a primitive I-root of unity, then P(g) € kerd; and Pg . € kerdq if and only lfP(l) € S(kx’2 @

(ViNVy)and PE) € Sk & (V1 N V).

Proof. Let X" —xl --x". Using the hypothesis it is easy to check by induction on s that

n—s r2 'n
8 (x‘wg) _ { Zhe]{s ChCpo (X XS Xy YW gin,_; - Ein, & fors <rq,
otherwise,
and
2—S g5 1 r3 ™
52 (X Wg) { Zheﬂs dhdl‘lx 2 (X s Xp )Wg2h5g2h571 8, 8 fOl‘ N < ra,
otherwise,
where

L5, =In x -+ x I, withly ={1,....n},
———
s times

o denotes the s-fold composition of &,

s—1
ch=x5@ [ xS €m) ]_[ xe (&),

k=1

s—1 s s
Ci‘l = (l—[(r] - k)q) <1_[ f(glhk! glhk,l © 81hy g)) (l_[as_l (Pglzk)> s
k=0

k=1 k=1
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sry—s(s+1)/2

dn = )L2g21 ’
s—1 s s—1 L

dy = (l_[(fz - k>q> (1‘[ f(ahy- Bomy - ~g2h1g>) (1‘[ &1 Pg:,sk).
k=0 k=1 k=0

The result follows easily from these formulas. O

Example 3.24. Let D, be the Dihedral group D, := (s, t | s2, t*, stst). Then D, acts on k[X1, X>] via
X1==X1, ‘Xo=-X2, Xi=X; and "Xz =Xu.

Let A=k[X71, X2]#D,. We have:

- Assume u is even. Then, there is an Hi-module algebra structure on A, such that

o-X1=Xq, o - X=X, O - Wi =Wy, 0 - Wiig = —Wgig,
D1 - X1=wt + w1, Dq-X2=0, D1 -w.i =0, Dy -wiig=0,
Dy - X1 =0, D - X2=Wtu/2, Dy - Wi =0, D, - Wtis=0.

- There is an H_q-module algebra structure on A, such that

o - X1=Xq, o -Xy=—X», O - Wi =W, O - Wiig = —Wiig,
u—1

Di-X1=)» Wi  Di-Xa=0, D1 - w,i =0, D1 - w,i;=0,
i=0

D5 - X1 =0, Dz-Xz:Wt-‘rWtq, Dz-Wti:O, D2~Wti320.

- Assume u is even. Let « : A — A be the k-algebra map defined by
a(Qw;i):=Qw, and o(Qw;i) :=—Q Wi,

and let s:Hy ® A— A ® Hy be the transposition associated with «. There is an H{-module
algebra structure on A, such that

o - X1=X1q, o - Xy=Xp, O - Wi =Wy, O - Wiig = Wi,
D]~X1:Wt+Wt_1, D1-X2=0, D]-WtiZO, D1~Wtis:0,
D, - X1 =0, Dz-XzZWtu/z, D2~Wti:0, Dz-WtiSZO.

4. Non-triviality of the deformations

Let A= S(V)#;G be as in Section 3. By Theorem 1.16 we know that each Hg-module algebra
(A, s), with s a good transposition, produces to a formal deformation Ar of A, which is constructed
using the UDF F = exp,(tD1 ® D). The aim of this section is to prove that if (A,s) satisfies the

conditions required in Corollary 3.21 and Pg;, Pfgzzi eS(ViNnVy) for 1< j<ny and 1 <h < ny, then

Afr is non-trivial. We will prove this showing that its infinitesimal
®@®b) =8 (" (@)s2(b),

is not a coboundary. For this we use a complex X*(A), giving the Hochschild cohomology of A, which
is simpler than the canonical one.
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4.1. A simple resolution

Given a symmetric k-algebra S := S(V), we consider the differential graded algebra (Y., d,) gen-
erated by elements y, and z,, of zero degree, and v, of degree one, where v € V, subject to the
relations

Ziv+w =AZy + Zw, Yiv+w =AYy + Yw, V+w=AvV+Ww,
YvYw=Ywlv, YvZw=Zw)Yv, ZyZw =ZwZy,
Vyw=YywV, VZy =2zZwV, v2=0,

where A €k and v, w € V, and with differential 0 defined by d(v) := p,, where p, =z, — y,.

Note that S is a subalgebra of Y, via the embedding that takes v to y, for all v € V. This produces
a structure of left S-module on Y,. Similarly we consider Y, as a right S-module via the embedding
of S in Y, that takes v to z, forall ve V.

Proposition 4.1. Let [i: Yo — S be the algebra map defined by [i(yy) = i(zy) :=v for all v € V. The
S-bimodule complex

i 01 02 03 04 05 3
S Yo Y1 Y> Y3 Y4 Ys s (412)

is contractible as a left S-module complex.

Proof. Let {x1,...,xy} be a basis of V. We will write y;, z;, p; and V; instead of yy;, zx;, px and Vy;,
respectively. A contracting homotopy

Go:S—Yo and Gry1:Yr— Y (r>0),
of (4.12) is given by
s():=1,
1581 M58 m—12

my =81 m =8y (—1)5,0-m Vi P Vi P vy if§ =0,
g(,ol.1 Vil vil),_{o i Yy i i P ! 5= 1.

where we assume that i; <--- <i, 61 +---+ & =s and m; + & > 0. In fact, a direct computation
shows that:

floo ') =() =1.
cofi(1) = ¢(1) =1 and doc(1) = 3(0) = 0.
- If x=xp;"", where m; > 0 and X' = p;" plT:

! with i; <--- < 1ij, then

cofi(X) =¢(0)=0 and aog(x)za(x/pg”_lv,-,):x.

7 A=

_ ] ) mp =01 mj—1 =811
- Let x=X Py Vi where m; 48, > 0 and X' = Py Viy Py Vi

Si=s>0.If §, =0, then

with iy <---<ijand 81 +---+

cod®) =g (a(x)pj") = (=1 1o (x) p" ¥y,

dog () =d((—=1)*X p" ' ¥y)) = (=1 () ] " ¥y +x,

i
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and if § =1, then
cod(®) = (3(X) oy Vi + (=1 "X p" ") =x.
dog(x) =09(0) =0.
The result follows immediately from all these facts. O
Let G be a group acting on V. We consider S as a k[G]-module algebra via the action induced
by the one of G on V. Let f:k[G] x k[G] — k* be a normal cocycle and let A = S#¢k[G] be the
associated crossed product. In the sequel we will use the following

Notation 4.2. We let k[G] denote k[G] /k. Moreover:

- Given g1,...,gs€k[Gl and 1<i<j<s, wesetgj =g ® - ®gj.
- Given vq,...,vreV and 1<i< j<r, we set vjj :=Vj---Vj.

For all r,s >0, let
Z;=(AQKIGI®*)®s A and X5 =(A®KIGI®) ®s Yr ®s A,
where we consider A ® k[G]®* as a right S-module via
(apWg, ® g15) - a=0ag %" " awg, @ gis.
The X;s’s and the Z;’s are A-bimodules in a canonical way. Note that
Zs~A®KGI® ®K[G] and X;s~ARKGI®® ® AV ® A.

In particular, X;s is a free A-bimodule. Consider the diagram of A-bimodules and A-bimodule maps

—8
w2 df, a3,
4) Xo2 X12
782
M1 d?l d(Z)l
VA Xo1 X11
-8
Mo d(l)O dgo
A Xoo X10
where
- each §; is defined by
s—1 )
51 @815 ®s 1) i=wg, @ ®s 1+ ) (=1)'f(gi, &it1) ®L1.i1 ® Liit1 @ Liyas Vs 1
i+1

+(-1)°1® g15-1 Qs Wg,,
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- for each s > 0, the complex_(X*S, dys) is (—1)° times (Y4, 04), tensored over S, on the right with A
and on the left with A ® k[G]®®,
- for each s > 0, the map us is defined by

HAeg:;®1):=1081sQs 1.
Each row in this diagram is contractible as a left A-module. A contracting homotopy
Go:Zs— Xos and G i Xps— Xrp1s (r>0),
is given by
P1@gs@s ) =108 1,
"(1©081s®sP®s 1) := (-1’1 81s®s 5 (P) ®s 1.

For r > 0 and 1 <I<s, we define A-bimodule maps dlrS:XrS — Xr41-1,5—1, Tecursively on I and r,
by

¢%8ou(x) ifl=1andr=0,
—¢%dod(x) ifil=1andr >0,
— >4 ¢OdJodi(x) if1<landr=0,
— >0 ¢%dodi(x) if1<landr >0,

d'(x) :=

forx=1®g; Vv ®1.

Theorem 4.3. There is a resolution of A as an A-bimodule

—u di dy ds dy ds
A Xo X1 X2 X3 Xy R

where  : Xoo — A is the multiplication map,

n n n-—r
Xo=EP Xis and dy=> do,+> Y di, .
r+s=n =1 r=11=0

Proof. See [G-G2, Appendix A]. O

Proposition 4.4. The maps d' vanish for all | > 2. Moreover

1R @V ®1) =wg @8 @V, @1
s—1 )
+ ) D8 8is1) @ 81io1 ® Ziit1 ® Bit2s @V ® 1

i=1

+ (D) 1®g1s1 @5V -V, ® wy,.
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In particular, (X, dy) is the total complex of the double complex

d03 0 d}3 0 d23 0
XOZ dlZ X12 d22 XZZ d32
o di, . d i
XOl dll Xl] d21 XZl d31
dOl 0 d}l 0 d21 0
XOO le Xlo dZO XZO d30

Proof. The computation of d}s can be obtained easily by induction on r, using that

d'(x) = ¢%8opu(x) forx=10g;s®1,

and

d'x)=—c%d'od’(x) forr>1andx=1®gs @ Vi ® 1.

The assertion for dl,, with [ > 2, follows by induction on [ and r, using the recursive definition
of d. O

4.2. A comparison map
Let A = A/k. In this subsection we introduce and study a comparison map from (X,,d,) to

the canonical normalized Hochschild resolution (A ® A* ® A, b’,). It is well known that there is an
A-bimodule homotopy equivalence

Ot (X, dy) — (A ® A* ®A, b/*)
such that 6y =idaga. It can be recursively defined by 6p :=idaga and
0X) 1= (—1D)""0odx) @1 forx=1®g;; Vi, ® 1 withr +s>1.

Next we give a closed formula for 6,. In order to establish this result we need to introduce a new
notation. We recursively define (wg, ® --- ® wg,) * (P1 ® --- ® P;) by

- (W ®---QWg)*x(Q1®---®Qr):=(Q1®---®Qr) if s=0,
- (Wg, @ ®@Wg)*(Q1 Q- ® Q) i=(Wg, ®---®Wwy,) if r=0,
- ifr,s>1, then (Wg, ® ---® Wg,) % (Q1 ® --- ® Q) equals

DD (W ® - @wg, )#(¥Q O @%Q)®Wg, ®Qiy1 ® B Qr.
i=0
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Proposition 4.5. We have

01@gs @V, ®1)= (=1 ) sg(1) ® (Wg, ® -+ ® Wg,) % Vr(an) ® 1,

17€6,
where &, is the symmetric group in r elements and Ve (1) = V¢(1) ® - - - @ V().

Proof. We proceed by induction on n =r +s. The case n =0 is obvious. Suppose that r +s=n and
the result is valid for 6,_1. By the recursive definition of 6 and Theorem 4.3,

0(1®gsQVir®1)=(—1)"0ed(1Qg1; @V @D Q1
= (=1)"00(d"+d") (1081 @7, ® 1) ® 1

.
= Z(—1)1+r9(g“"gsvi RLgs®V1,i—1Viy1,,r ®1) @1

i=1

.
= DT @ g1s ® Vi i—1¥ip1, @ Vi) ® 1
i=1
+ (—1)"9(Wg1 RV ®1
s—1 )
+Y D01 @811 ® &gy ®Lit1.s®Vr @D ® 1
i=1

+(—1D0(1®815-1QE1s-1 @5V &V, @Wg ) Q1.
The desired result follows now from the inductive hypothesis. O

4.3. The Hochschild cohomology

Let M be an A-bimodule and A€ the enveloping algebra of A. Applying the functor Homge (—, M)
t0 (X4, d,,dl,) and using the identifications

Hom e (Xrs, M) 2 Homy (k[G1®* ® A"V, M)

we obtain the double complex

403 13 23
d] dl d]
alz 322 532
%02 Lo g2 o gn °
402 412 322
dl dl dl
al] a21 a:ﬂ
R PR
401 411 421
dl d] d]
410 420 430
dO dU dO

X00 X10 X20 e
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where

X" = Homy (k[G1®* ® A"V, M),

r+1
do(@)(&1s ®Var11) = Y (=1 0(g15 @ V1 1¥it1.r41)Vi
i=1
r+1 )
+ Y (DT E (g1 @ Vi 1Vig1ri1)s
i=1

d1(9) (81,541 ® V1r) = Wg, (82,541 ® V1)

S
+ ) (=D (i 8419 (@1.i-1 ® Zigit1 ® it1.s41 ® Viy)
i=1

+ (_1)S+]§0(gls ® Est1vy .- &+l Vr) Wgeiqs

whose total complex X*(M) gives the Hochschild cohomology H*(A, M) of A with coefficients in M.
The comparison map 6, induces a quasi-isomorphism

6* : (Homy (A*, M), b*) — X*(M).
It is immediate that

0()(81s ®V1r) = (—1)" Z sg(T)P((Wg, ® -+ ® Wg,) % Ve(1r)),

1€S,

where &; is the symmetric group in r elements and V¢(1r) = V(1) @ -+ ® V().
From now on we take M = A and we write HH*(A) instead of H*(A, A).

4.4. Proof of the main result

We are ready to prove that the cocycle @ is non-trivial. For this it is sufficient to show that (&)

. i 1 2 2
is not a coboundary. Let xq,..., X, Pfg]i,...,P‘(g];l, P;ﬁ,..., Pfgziz, 811, ..., &1n, and ga1, ..., g2n, be

as in Corollary 3.21. A direct computation, using the formulas for §; and §, obtained in the proof of
Proposition 3.23, shows that

6(P)(g®V)=0 and O(®)(g®h)=0
for g,he G and v € V, and that

ny n
= —— — — 1 52
D@)ET) =Y Y Xe (@) f (&) G (PG )EIPE Wi g,
j=1h=1
and

0(®)(xixj) =0 for1<i< j<nwith(,j) #(1,2).

We next prove that (@) is not a coboundary. Let ¢g € Xo1 and ¢; € X1¢. By definition
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d1(p0)(g ® h) = wggo(h) — f(g, H)go(gh) + po(g) wh,
do(¢o)(g ® V) =Eveo(g) — ¢o(8)V,

di(p1)(g® V) = wep1(V) — ¢4 (8v)wy,

do(1) (V17V2) = @1 (V2)v1 — V191 (V2) + V21 (V1) — @1 (V1) V2,

and so 6(®) is a coboundary if and only if there exist ¢g and ¢ such that

wgpo(h) — f(g. Mpo(gh) +¢o(g)wp =0 forallg.heG,
Eveo(g) — @o(8)V + wgp1(V) — @1 (8v)wg =0 forallgeGandveV,
[01%)), xi] + [xj, ¢1(&)] =0 foralli < j with (i, j) # (1,2),
where, as usual, [a, b] =ab — ba, and

ny np
(o1, x1 ]+ [x2. 1G] =D > xa (1) f (&1j. gamder (PG ) U PE Wi, .
j=1h=1

But, since wgxj =&x;wg,

-1 -1
Wg1jg2hxl = f(gl_]» gZh) ngj Wgthl =({qx1 and Wg1jg2hx2 =q X2,

PiED =) Qg'we and ¢1() =) Qg we.

geG geG
then necessarily
ny np
1 2

Z(q - 1)(X1Q +q7'x Q( : Jwe —ZZD]hOl P ))gwpéziwgngzw

ger j=1h=1
where

Djn=Xo ' (81))f(81j.82n) and T ={g1jgon: 1< j<niand1<h<ny},
which is impossible because oF](Pgi.)gUPg?l ek[x3,...,xp]\ {0}.
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