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Introduction

Let k be a commutative ring with 1. A monogenic extension of k is a k-algebra k[x]/〈 f 〉, where
f ∈ k[x] is a monic polynomial. In [F-G-G] this concept was generalized to the noncommutative set-
ting. Examples are the rank 1 Hopf algebras in characteristic zero, recently introduced in [Kr-R]. In
the paper [F-G-G], mentioned above, the Hochschild cohomology ring of these extensions was com-
puted. In the present paper we study their Hochschild, cyclic, periodic and negative homology groups,
generalizing the results obtained in [B]. We think that the computations of the type cyclic homology
groups of these algebra can be a first step in order to calculate other important invariants such as
their K -theory groups. We are also interested in these computations because some crossed products
can be present as noncommutative monogenic extensions, and we believe that the calculations made
out in this paper may help understand the homology of a such crossed product A # f G , where f
is a cocycle with values in A, at least when A is a noncommutative smooth algebra. For the prob-
lem of computing the type cyclic homology groups of crossed products we refer to [F-T,N,G-J,A-K,K-R]
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and [C-G-G]. The main result obtained by us, is that, for any monogenic extension A of a k-algebra K ,
there exists a small mixed complex (C S∗ (A),d∗, D∗), giving the Hochschild, cyclic, periodic and nega-
tive homology of A relative to K . When K is a separable k-algebra this gives the absolute Hochschild,
cyclic, periodic and negative homology groups. The mixed complex (C S (A),d∗, D∗) is simple enough
to allow us to compute these homologies for each rank 1 Hopf algebra.

The paper is organized as follows: In Section 1 we give some preliminaries we need. In partic-
ular we recall from [F-G-G], the simple Υ -projective resolution C ′

S (A) of a monogenic extension
A/K (where Υ is the family of all A-bimodule epimorphisms which split as K -bimodule maps),
and the comparison maps φ′∗ : C ′

S (A) → (A ⊗ A⊗∗ ⊗ A,b′) and ψ ′∗ : (A ⊗ A⊗∗ ⊗ A,b′) → C ′
S (A). We

also prove that ψ ′∗φ′∗ = id and construct a homotopy ω′∗+1 from φ′∗ψ ′∗ to id. Let M be an A-
bimodule (symmetric over k). In Section 2 we use the mentioned above resolution to build a complex
C S (A, M) = (C S∗ (A, M),d∗) giving the Hochschild homology of A relative to K , with coefficients in
M . Moreover we obtain explicit quasi-isomorphism φ∗ from C S (A, M) to the relative to K normalized
Hochschild complex of A with coefficients in M , and ψ∗ in the opposite direction, satisfying ψ∗φ∗ = id
and φ∗ψ∗ is homotopically equivalent to the identity map. We also get an explicit homotopy ω∗+1
from φ∗ψ∗ to id. We apply these results to calculate the Hochschild homology of A with coefficients
in M is several cases. When M = A we write C S (A) and C S∗ (A), instead of C S (A, A) and C S∗ (A, A),
respectively. In Section 3 we prove that C S (A) is the Hochschild complex of a mixed complex, gen-
eralizing the main result of [B]. Our method of proof consists in to use the perturbation lemma to
construct a complex giving the cyclic homology of A relative to K , and then to use an ad hoc argu-
ment to prove that this complex is the total complex of the mixed complex (C S∗ (A),d∗, D∗), which
also gives the periodic and negative homology of A relative to K . We use this fact to compute the
cyclic homology of A in several cases, including the rank 1 Hopf algebras. Finally, in Section 4, we
compute the periodic and negative homology groups of A under suitable hypothesis.

1. Preliminaries

In this section we recall some well known definitions and results that we will use in the rest of
the paper.

1.1. A simple resolution for a noncommutative monogenic extension

In the sequel we recall the definition of noncommutative monogenic extension and we give a brief
review of some of its properties (for details and proofs we refer to [F-G-G]). Let k be a commutative
ring, K an associative k-algebra and α a k-algebra endomorphism of K . Consider the Ore extension
E = K [x,α], that is the algebra generated by K and x subject to the relations

xλ = α(λ)x for all λ ∈ K .

Let f = xn + ∑n
i=1 λi xn−i be a monic polynomial of degree n � 2, where each coefficient λi ∈ K sat-

isfies α(λi) = λi and λiλ = αi(λ)λi for all λ ∈ K . Sometimes we will write f = ∑n
i=0 λi xn−i , assuming

that λ0 = 1. The monogenic extension of K associated with α and f is the quotient A = E/〈 f 〉. It is
easy to see that {1, x, . . . , xn−1} is a left K -basis of A. Moreover, given P ∈ E , there exist unique P
and

...

P in E such that

P = P f + ...

P and
...

P= 0 or deg
...

P< n.

In this paper, unadorned tensor product ⊗ means ⊗K , all the maps are k-linear and all the K -
bimodule are assumed to be symmetric over k. Given a K -bimodule M , we let M⊗ denote the
quotient M/[M, K ], where [M, K ] is the k-module generated by the commutators mλ − λm, with
λ ∈ K and m ∈ M . Let A2

αr = Aαr ⊗ A, where Aαr is A endowed with the regular left A-module struc-
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ture and with the right K -module structure twisted by αr , that is a · λ = aαr(λ), for all a ∈ Aαr and
λ ∈ K . We recall that

T

T x
: E → A2

α

is the unique K -derivation such that T x
T x = 1 ⊗ 1. Notice that

T xi

T x
=

i−1∑
�=0

x� ⊗ xi−�−1.

Let Υ be the family of all A-bimodule epimorphisms which split as K -bimodule maps.

Theorem 1.1. The complex

C ′
S (A) = · · · A2

α2n+1

d′
5

A2
α2n

d′
4

A2
αn+1

d′
3

A2
αn

d′
2

A2
α

d′
1

A2,

where

d′
2m+1 : A2

αmn+1 → A2
αmn and d′

2m : A2
αmn → A2

α(m−1)n+1 ,

are defined by

d′
2m+1(1 ⊗ 1) = x ⊗ 1 − 1 ⊗ x,

d′
2m(1 ⊗ 1) = T f

T x
=

n∑
i=1

λn−i

i−1∑
�=0

x� ⊗ xi−�−1,

is an Υ -projective resolution of A.

Let (A ⊗ A⊗∗ ⊗ A,b′) be the canonical Hochschild resolution relative to K , where A = A/K .

Theorem 1.2. There are comparison maps

φ′∗ : C ′
S (A) → (

A ⊗ A⊗∗ ⊗ A,b′) and ψ ′∗ :
(

A ⊗ A⊗∗ ⊗ A,b′) → C ′
S (A),

which are inverse one of each other up to homotopy. These maps are given by

φ′
0(1 ⊗ 1) = 1 ⊗ 1,

φ′
1(1 ⊗ 1) = 1 ⊗ x ⊗ 1,

φ′
2m(1 ⊗ 1) =

∑
i∈Im

λn−i

∑
�∈Ji

x|i−�|−m ⊗ x̃�m,1 ⊗ 1,

φ′
2m+1(1 ⊗ 1) =

∑
i∈Im

λn−i

∑
�∈Ji

x|i−�|−m ⊗ x̃�m,1 ⊗ x ⊗ 1,

ψ ′
2m

(
1 ⊗ xi1,2m ⊗ 1

) = xi1+i2 xi3+i4 · · · xi2m−1+i2m ⊗ 1,

ψ ′
2m+1

(
1 ⊗ xi1,2m+1 ⊗ 1

) = xi1+i2 xi3+i4 · · · xi2m−1+i2m
T (xi2m+1 )

,

T x
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where

• Im = {(i1, . . . , im) ∈ Zm: 1 � i j � n for all j},
• Ji = {(�1, . . . , �m) ∈ Zm: 1 � � j < i j for all j},
• λn−i = λn−i1 · · ·λn−im ,
• x̃�m,1 = x ⊗ x�m ⊗ · · · ⊗ x ⊗ x�1 ,
• |i − �| = ∑m

j=1(i j − � j),

• xi1r = xi1 ⊗ · · · ⊗ xir .

Proposition 1.3. ψ ′∗φ′∗ = id and a homotopy ω′∗+1 from φ′∗ψ ′∗ to id is recursively defined by ω′
1 = 0 and

ω′
r+1(x ⊗ 1) = (−1)r+1(φ′

rψ
′
r − id − ω′

rb′
r

)
(x ⊗ 1) ⊗ 1

= (−1)r+1φ′
rψ

′
r(x ⊗ 1) ⊗ 1 + ω′

r(x) ⊗ 1,

for x ∈ A ⊗ A⊗r
.

Proof. The equality ψ ′∗φ′∗ = id follows immediately from the definitions. For the second assertion see
[G-G, Proposition 1.2.1]. �
1.2. The suspension

Let s be an integer number. The sth suspension of a chain complex (X,d) is the complex
(X,d)[s] = (X[s],d[s]), defined by X[s]∗ = X∗−s and d[s]∗ = (−1)sd∗−s .

1.3. Mixed complexes

In this subsection we recall briefly the notion of mixed complex. For more details about this con-
cept we refer to [K] and [Bu].

A mixed complex (X,b, B) is a graded C-module (Xr)r�0, endowed with morphisms b : Xr → Xr−1
and B : Xr → Xr+1, such that

bb = 0, B B = 0 and Bb + bB = 0.

A morphism of mixed complexes f : (X,b, B) → (Y ,d, D) is a family fr : Xr → Yr of maps, such that
df = f b and D f = f B . A mixed complex X = (X,b, B) determines a double complex

BP(X ) =

.

.

.

b

.

.

.

b

.

.

.

b

.

.

.

b

. . . X3
B

b

X2
B

b

X1
B

b

X0
B

. . . X2
B

b

X1
B

b

X0
B

. . . X1
B

b

X0
B

. . . X0.
B
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By deleting the positively numbered columns we obtain a subcomplex BN(X ) of BP(X ). Let BN′(X )

be the kernel of the canonical surjection from BN(X ) to (X,b). The quotient double complex
BP(X )/BN′(X ) is denoted by BC(X ). The homology groups HC∗(X ), HN∗(X ) and HP∗(X ), of the
total complexes of BC(X ), BN(X ) and BP(X ) respectively, are called the cyclic, negative and periodic
homology of X (the nth module of the total complex is the product of all the modules which are in
the nth diagonal). The homology HH∗(X ), of (X,b), is called the Hochschild homology of X .

If we truncate BP(X ) to the left of the pth column we obtain a complex BC(X )[2p]. Note that

BC(X )[0] = BC(X ), Tot
(
BC(X )[2p]) = Tot

(
BC(X )

)[2p]

and that there is a natural epimorphism

S : BC(X )[2p] → BC(X )[2p + 2] for each p.

It is immediate that Tot(BP(X )) = limp Tot BC(X )[2p] and that there is a diagram of short exact se-
quences

0 BN(X ) BP(X ) BC(X )[2]
=

0

0 (X∗,b∗) BC(X ) BC(X )[2] 0.

Taking homology in the above diagram we obtain the following commutative diagram with exact rows

· · · B
HNn(X )

i
HPn(X )

S
HCn−2(X )

=

B
HNn−1(X )

i · · ·

· · · B
HHn(X )

i
HCn(X )

S
HCn−2(X )

B
HHn−1(X )

i · · · .

The rows in this diagram are name the SBI Connes periodicity exact sequences of X . Finally, it is clear
that a morphism f : X → Y of mixed complexes induces a morphism from the double complex BP(X )

to the double complex BP(Y). Let A be a noncommutative monogenic extension of K . The normalized
mixed complex of A relative to K is (A ⊗ A⊗∗⊗,b, B), where b is the canonical Hochschild boundary
map and

B
([a0 ⊗ · · · ⊗ ar]

) =
r∑

i=0

(−1)ir[1 ⊗ ai ⊗ · · · ⊗ ar ⊗ a0 ⊗ · · · ⊗ ai−1],

in which [a0 ⊗ · · · ⊗ ar] denotes the class of a0 ⊗ · · · ⊗ ar in A ⊗ A⊗r ⊗. The cyclic, negative, periodic
and Hochschild homology groups HCK∗ (A), HNK∗ (A), HPK∗ (A) and HHK∗ (A) of A, are the respective
homology groups of (A ⊗ A⊗∗⊗,b, B).

1.4. The perturbation lemma

Next we recall the perturbation lemma. We give the version introduced in [C].
A homotopy equivalence data

(Y , ∂)

i

(X,d),

p

h : X∗ → X∗+1, (1)
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consists of the following:

(1) Chain complexes (Y , ∂), (X,d) and quasi-isomorphisms i and p between them.
(2) A homotopy h from ip to id.

A perturbation δ of (1) is a map δ : X∗ → X∗−1 such that (d + δ)2 = 0. We call it small if id − δh is
invertible. In this case we write Δ = (id − δh)−1δ and we consider

(
Y , ∂1

)
i1

(X,d + δ),

p1

h1 : X∗ → X∗+1, (2)

with

∂1 = ∂ + pΔi, i1 = i + hΔi, p1 = p + pΔh, h1 = h + hΔh.

A deformation retract is a homotopy equivalence data such that pi = id. A deformation retract is
called special if hi = 0, ph = 0 and hh = 0.

In the case considered in this paper the map δh is locally nilpotent, and so (id − δh)−1 =∑∞
j=0(δh) j .

Theorem 1.4. (See [C].) If δ is a small perturbation of the homotopy equivalence data (1), then the perturbed
data (2) is a homotopy equivalence. Moreover, if (1) is a special deformation retract, then (2) is also.

2. Hochschild homology of A

Let k, K , α, f = Xn + λ1 Xn−1 + · · · + λn and A be as in Subsection 1.1. Given an A-bimodule
M , we let [M, K ]α j denote the k-submodule of M generated by the twisted commutators [m, λ]α j =
mα j(λ)−λm. As usual, we let Ae and HK∗ (A, M) denote the enveloping algebra A ⊗k Aop of A and the
Hochschild homology of A relative to K , with coefficients in M , respectively. When M = A we will
write HHK∗ (A) instead of HK∗ (A, A).

Theorem 2.1. Let M be an A-bimodule. With the notations introduced in Theorem 1.2, we have:

1. The chain complex

C S (A, M) = · · · d4 M

[M, K ]αn+1

d3 M

[M, K ]αn

d2 M

[M, K ]α
d1 M

[M, K ]α0
,

where the boundary maps d∗ are defined by

d2m+1
([m]) = [mx − xm],

d2m
([m]) =

n∑
i=1

i−1∑
�=0

[
λn−i x

i−�−1mx�
]
,

in which [m] denotes the class of m ∈ M in M
[M,K ]

αmn+1
and M

[M,K ]αmn
respectively, computes HK∗ (A, M).

(2) The maps

φ∗ : C S (A, M) → (
M ⊗ A⊗∗⊗,b∗

)
and ψ∗ :

(
M ⊗ A⊗∗⊗,b∗

) → C S (A, M),

defined by
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φ0
([m]) = [m],

φ1
([m]) = [m ⊗ x],

φ2m
([m]) =

∑
i∈Im

∑
�∈Ji

[
λn−imx|i−�|−m ⊗ x̃�m,1

]
,

φ2m+1
([m]) =

∑
i∈Im

∑
�∈Ji

[
λn−imx|i−�|−m ⊗ x̃�m,1 ⊗ x

]
,

ψ2m
([

m ⊗ xi1,2m
]) = [

mxi1+i2 · · · xi2m−1+i2m
]
,

ψ2m+1
([

m ⊗ xi1,2m+1
]) =

i2m+1−1∑
�=0

[
xi2m+1−�−1mxi1+i2 · · · xi2m−1+i2m x�

]
,

where [m ⊗ xi1r ] denotes the class of m ⊗ xi1r in M ⊗ A⊗r ⊗, are chain morphisms which are inverse one
of each other up to homotopy.

(3) Let

β : M ⊗Ae A ⊗ A⊗r+1 ⊗ A → M ⊗ A⊗r+1⊗

be the map defined by

βr+1(m ⊗ x0 ⊗ · · · ⊗ xr+2) = [xr+2mx0 ⊗ x1 ⊗ · · · ⊗ xr+1].

The composition ψ∗φ∗ is the identity map, and the family of maps

ω∗+1 : M ⊗ A⊗∗⊗ → M ⊗ A⊗∗+1⊗,

defined by

ωr+1
([m ⊗ x]) = β

(
m ⊗Ae ω′

r+1(1 ⊗ x ⊗ 1)
)
,

is a homotopy from φ∗ψ∗ to the identity map.

Proof. For the first item, apply the functor M ⊗Ae − to the resolution C ′
S (A), and use the identification

M ⊗Ae A2
α j

∼= M

[M, K ]α j

m ⊗ (a ⊗ b) [bma].

For instance

d2m
([m]) =

n∑
i=1

i−1∑
�=0

[
xi−�−1mλn−i x

�
]

=
n∑

i=1

i−1∑
�=0

[
xi−�−1mx�λn−i

]

=
n∑ i−1∑[

λn−i x
i−�−1mx�

]
.

i=1 �=0
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Let ψ∗ and φ∗ be the morphisms induced by the comparison maps ψ ′∗ and φ′∗ . The second and third
items follow easily from Theorem 1.2 and Proposition 1.3 in a similar way. �

When M = A we will write C S (A) and C S∗ (A) instead of C S (A, A) and C S∗ (A, A), respectively. The
following result will be used in the proof of Theorem 3.6.

Corollary 2.2. There is a special deformation retract

Tot BC
(
C S∗ (A),d∗,0

)
Φ̃

Tot BC
(

A ⊗ A⊗∗⊗,b,0
)
,

Ψ̃

W̃ ,

where

Φ̃n
([a]n, [an−2], . . .

) = (
φn

([a]n
)
, φn−2

([an−2]
)
, . . .

)
,

Ψ̃n(xn,xn−2, . . .) = (
ψn(xn),ψn−2(xn−2), . . .

)
and

W̃n+1(xn,xn−2, . . .) = (
ωn+1(xn),ωn−1(xn−2), . . .

)
.

Proof. It is immediate. �
2.1. Explicit computations

The aim of this subsection is to compute the Hochschild homology of A relative to K , with coeffi-
cients in A, under suitable hypothesis. We let Z(K ) denote the center of K .

Theorem 2.3. Let C S
r (A) denote the rth module of C S (A). If there exists λ̆ ∈ Z(K ) such that

• αn(λ̆) = λ̆,
• λ̆ − αi(λ̆) is invertible in K for 1 � i < n,

then λ1 = · · · = λn−1 = 0 and

C S
r (A) =

⎧⎨⎩
K

[K ,K ]αmn
if r = 2m,

K
[K ,K ]

α(m+1)n
xn−1 if r = 2m + 1.

Proof. Since λ̆λi = λi λ̆ = αi(λ̆)λi and λ̆ − αi(λ̆) is invertible in K for 1 � i < n, we have λ1 = · · · =
λn−1 = 0. By item (1) of Theorem 2.1 we know that

C S
r (A) =

⎧⎨⎩
A

[A,K ]αmn
if r = 2m,

A
[A,K ]

αmn+1
if r = 2m + 1.

Moreover

[a, λ]αr =
n−1∑[

λ′
i, λ

]
αr+i x

i

i=0
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for each a = ∑n−1
i=0 λ′

i x
i ∈ A and λ ∈ K . Hence, it will be sufficient to check that if i is not congruent

to 0 module n, then [K , K ]αmn+i = K . But this follows immediately from the facts that

[λ′, λ̆]αmn+i = λ′αmn+i(λ̆) − λ̆λ′ = λ′(αi(λ̆) − λ̆
)
,

since λ̆ ∈ Z(K ) and αn(λ̆) = λ̆, and αi(λ̆) − λ̆ is invertible if i is not congruent to 0 module n. �
Theorem 2.4. Under the hypothesis of Theorem 2.3, the boundary maps of C S (A) are given by

d2m+1
([λ]xn−1) = [(

α(λ) − λ
)
λn

]
,

d2m+2
([λ]) =

[
n−1∑
�=0

α�(λ)

]
xn−1,

for all m � 0. Consequently, if λn = 0, then the odd boundary maps d2∗+1 are zero.

Proof. By item (1) of Theorem 2.1,

d2m+1
([λ]xn−1) = [

λxn − xλxn−1] = [(
λ − α(λ)

)
xn] = [(

α(λ) − λ
)
λn

]
,

where the last equality follows from Theorem 2.3. Again by item (1) of Theorem 2.1 and Theorem 2.3,

d2m+2
([λ]) =

n−1∑
�=0

[
xn−�−1λx�

] =
[

n−1∑
�=0

αn−�−1(λ)

]
xn−1,

as we want. �
Theorem 2.4 implies that λλn − αn(λ)λn ∈ [K , K ]αmn for all λ ∈ K and m � 0. Indeed, this can

be proved directly from the hypothesis at the beginning of this paper and then it is true with full
generality. In fact,

λλn − αn(λ)λn = λλn − λnλ = λαmn(λn) − λnλ.

Corollary 2.5. Under the hypothesis of Theorem 2.3,

HHK
0 (A) = K

[K , K ] + Im(α − id)λn
,

HHK
2m+1(A) = {λ ∈ K : (α(λ) − λ)λn ∈ [K , K ]αmn }

[K , K ]α(m+1)n + Im(
∑n−1

�=0 α�)
xn−1,

HHK
2m+2(A) = {λ ∈ K :

∑n−1
�=0 α�(λ) ∈ [K , K ]α(m+1)n }

[K , K ]α(m+1)n + Im(α − id)λn
.

Assume now that k is a field, the hypothesis of Theorem 2.3 are fulfilled, K is finite dimensional
over k and α is diagonalizable. Let ω1 = 1,ω2, . . . ,ωs be the eigenvalues of α and let K ωh be the
eigenspace of eigenvalue ωh . Write

[K , K ]ωh
αr = K ωh ∩ [K , K ]αr .

Note that 1, λn ∈ K 1. We assert that there is a primitive nth root of 1 in k (which implies that the
characteristic of k does not divide n), and that all the nth roots of 1 in k are eigenvalues of α. In fact,
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since α is diagonalizable, we can write λ̆ = x1 + · · · + xs , where xi is an eigenvector of eigenvalue wi .
Since

wi
1x1 + · · · + wi

sxs = αi(λ̆) �= λ̆ for i < n

and

wn
1x1 + · · · + wn

s xs = αn(λ̆) = λ̆,

w1, . . . , ws are nth roots of 1 and the least common multiple of their orders is n. Hence, there exist
i1, . . . , is ∈ N such that w := wi1

1 · · · wis
s is a primitive nth root of 1, and so (xi1

1 · · · xis
s )i is an eigenvec-

tor of eigenvalue wi of α, because α is an algebra morphism.

Theorem 2.6. The chain complex C S (A) decomposes as a direct sum C S (A) = ⊕s
h=1 C S,ωh (A), where

C S,ωh
r (A) =

⎧⎪⎨⎪⎩
Kωh

[K ,K ]ωh
αmn

if r = 2m,

Kωh

[K ,K ]ωh
α(m+1)n

xn−1 if r = 2m + 1.

Moreover the boundary maps dωh∗ of C S,ωh
r (A) are given by:

dωh
2m

([λ]) =
(

n−1∑
�=0

ω�
h

)
[λ]xn−1 and dωh

2m+1

([λ]xn−1) = (ωh − 1)[λλn].

Proof. It follows easily from Theorems 2.3 and 2.4, since the fact that λn ∈ K 1 implies that if λ ∈ K ωh ,
then λλn ∈ K ωh (and so C S,ωh (A) is a subcomplex of C S (A)). �
Corollary 2.7. Let HHK ,ωh∗ (A) denote the homology of C S,ωh (A). By Theorems 2.1 and 2.6 we know that
HHK∗ (A) = ⊕s

h=1 HHK ,ωh∗ (A). Moreover,

HHK ,ωh
0 (A) =

⎧⎨⎩
K 1

[K ,K ]1 if h = 1,

Kωh

[K ,K ]ωh +Kωh λn
if h �= 1,

HHK ,ωh
2m+1(A) =

⎧⎨⎩
{λ∈Kωh : λλn∈[K ,K ]ωh

αmn }
[K ,K ]ωh

α(m+1)n

xn−1 if h �= 1 and ωn
h = 1,

0 otherwise,

HHK ,ωh
2m+2(A) =

{
Kωh

[K ,K ]ωh
α(m+1)n +Kωh λn

if h �= 1 and ωn
h = 1,

0 otherwise.

Note that if αn has finite order v (that is αnv = id and αnj �= id for 0 < j < v), then

HHK ,ωh
2m+1(A) = HHK ,ωh

2(m+v)+1(A) and HHK ,ωh
2m+2(A) = HHK ,ωh

2(m+v)+2(A)

for all m � 0.

Example 2.8. Let k be a field, K = k[G] the group k-algebra of a finite group G and χ : G → k×
a character, where k× is the group of unities of k. Let α : K → K be the automorphism defined by
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α(g) = χ(g)g and let f = xn + λn ∈ K [x] be a monic polynomial whose coefficients satisfy the hy-
pothesis required in the introduction. Let Z(G) be the center of G . Assume that there exists g1 ∈ Z(G)

such that χ(g1) is a primitive nth root of 1. Here we apply the results obtained in Section 2 to
compute the Hochschild homology of A = K [x,α]/〈 f 〉 relative to K , with coefficients in A (if the
characteristic of k is relative prime to the order of G , then k[G] is a separable k-algebra and so, by
[G-S, Theorem 1.2], HHK∗ (A) coincides with the absolute Hochschild homology HH∗(A) of A). Note
that the hypothesis of Theorem 2.3 are fulfilled, taking λ̆ = g1. Since α is diagonalizable Theorem 2.6
and Corollary 2.7 apply. In this case

{ω1, . . . ,ωs} = χ(G),

K ωh =
⊕

{g∈G: χ(g)=ωh}
kg,

[K , K ]ωh

α j =
∑

{g1,g2∈G: χ(g1 g2)=ωh}
k
(
χ j(g2)g1 g2 − g2 g1

)
.

Next we consider another situation in which the cohomology of A can be computed. The following
results are very close to the ones valid in the commutative setting.

Theorem 2.9. If α is the identity map, then

C S
r (A) = K

[K , K ] ⊕ K

[K , K ] x ⊕ · · · ⊕ K

[K , K ] xn−1 = A

[A, A] .

Moreover, the odd boundary maps d2m+1 of C S (A) are zero, and the even boundary maps d2m takes [a] to
[ f ′a].

Proof. This is an immediate consequence of Theorem 2.1. �
Corollary 2.10. If α is the identity map, then

HHK
0 (A) = A

[A, A] ,

HHK
2m+1(A) = A

[A, A] + f ′ A
,

HHK
2m+2(A) = ([A, A] : f ′)

[A, A] ,

where ([A, A] : f ′) = {a ∈ A: f ′a ∈ [A, A]}.

2.2. Hochschild homology of rank 1 Hopf algebras

Let k be a characteristic zero field and let n � 2 be a natural number. Recall that k× denotes the
group of unities of k. Let G be a finite group and χ : G → k× a character. Assume there exists g1 ∈
Z(G) such that χ(g1) is a primitive nth root of 1. In this section we compute the Hochschild homology
of the k-algebra A = k[G][x,α]/〈xn − ξ(gn

1 − 1)〉, where ξ ∈ k and α ∈ Aut(k[G]) is defined by α(g) =
χ(g)g . We divide the problem in three cases. The first and second ones give the Hochschild homology
of rank 1 Hopf algebras. For the sake of completeness we recall from [Kr-R] that A is the underlying
algebra of a rank 1 Hopf algebra if ξ(gn

1 − 1) = 0 or χn = 1. In both cases the comultiplication Δ is
determined by

Δ(x) = x ⊗ g1 + 1 ⊗ x and Δ(g) = g ⊗ g for all g ∈ G,
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the counit ε by ε(x) = 0 and ε(g) = 1 for all g ∈ G , and the antipode S by S(x) = −g−1
1 x and S(g) =

g−1 for all g ∈ G .
Let Cn ⊆ k be the set of all nth roots of 1.

ξ = 0. In this case A = K [x,α]/〈xn〉, where K = k[G]. Since K is separable over k, we know that
HH∗(A) = HHK∗ (A). So, by Corollary 2.7,

HH0(A) = K

[K , K ] ,

HH2m+1(A) =
⊕

ω∈Cn\{1}

K ω

[K , K ]ω
α(m+1)n

xn−1,

HH2m+2(A) =
⊕

ω∈Cn\{1}

K ω

[K , K ]ω
α(m+1)n

.

ξ �= 0 and χn = 1. In this case f = xn −ξ(gn
1 −1) satisfies the hypothesis required in the preliminaries.

In fact

α
(
ξ
(

gn
1 − 1

)) = ξ
(

gn
1 − 1

)
since α(gn

1) = χ(gn
1)gn

1 = χ(g1)
n gn

1 = gn
1, and

ξ
(

gn
1 − 1

)
λ = αn(λ)ξ

(
gn

1 − 1
)

for all λ ∈ k[G],

since ξ(gn
1 − 1) ∈ Z(G) and αn(λ) = λ, because χn = 1. Note also that Cn is the set of eigenvalues of

α, since G is a multiplicative basis of eigenvectors of α, the eigenvalue χ(g1) of g1 is a primitive
nth root of 1 and the eigenvalue χ(g) of every g ∈ G is an nth root of 1 (again because χn = 1).
Moreover, the algebra K = k[G] is separable over k and so, HH∗(A) = HHK∗ (A). By Corollary 2.7,

HH0(A) = K 1

[K , K ]1
⊕

⊕
ω∈Cn\{1}

K ω

[K , K ]ω + K ω(gn
1 − 1)

,

HH2m+1(A) =
⊕

ω∈Cn\{1}

{λ ∈ K ω: λ(gn
1 − 1) ∈ [K , K ]ω}

[K , K ]ω xn−1,

HH2m+2(A) =
⊕

ω∈Cn\{1}

K ω

[K , K ]ω + K ω(gn
1 − 1)

.

ξ �= 0 and χn �= 1. Let g ∈ G such that χn(g) �= 1. Since

g−1(xn − ξ
(

gn
1 − 1

))
g = χn(g)xn − ξ

(
gn

1 − 1
)
,

we conclude that the ideal 〈xn − ξ(gn
1 − 1)〉 coincides with the ideal 〈xn, gn

1 − 1〉. So, A = k[G/

〈gn
1〉][x, α̃]/〈xn〉, where α̃ is the automorphism induced by α. We consider now K = k[G/〈gn

1〉] and
f = xn . These data satisfy the hypothesis of Theorem 2.6 with λ̆ the class of g1 in G/〈gn

1〉. Moreover
the algebra K = k[G/〈gn

1〉] is separable over k and so, HH∗(A) = HHK∗ (A). Thus, by Corollary 2.7,
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HH0(A) = K

[K , K ] ,

HH2m+1(A) =
⊕

ω∈Cn\{1}

K ω

[K , K ]ω
α̃(m+1)n

xn−1,

HH2m+2(A) =
⊕

ω∈Cn\{1}

K ω

[K , K ]ω
α̃(m+1)n

.

3. Cyclic homology of A

Let k, K , α, f = Xn + λ1 Xn−1 + · · · + λn and A be as in Subsection 1.1. In this section we get a
mixed complex, simpler than the canonical of Tsygan, computing the cyclic homology of A relative
to K .

A simple tensor a0 ⊗· · ·⊗ar ∈ A ⊗ A⊗r
will be called monomial if there exist λ ∈ K \ {0}, 0 � i0 < n

and 1 � i1, . . . , ir < n such that a0 = λxi0 and a j = xi j for j > 0. We define the degree of a monomial
tensor

λxi0 ⊗ · · · ⊗ xir ∈ A ⊗ A⊗r
,

as deg(λxi0 ⊗ · · · ⊗ xir ) = i0 + · · · + ir . Since 1, x, . . . , xn−1 is a basis of A as a left K -module, each
element a ∈ A ⊗ A⊗r

can be written in a unique way as a sum of monomial tensors. The degree deg(a),
of a, is the maximum of the degrees of its monomial tensors. Since [A ⊗ A⊗r

, K ] is a homogeneous
k-submodule of A ⊗ A⊗r

we have a well defined concept of degree on A ⊗ A⊗r ⊗. Similarly it can be
defined the degree deg(a) of an element a ∈ A ⊗ A⊗r ⊗ A.

Proposition 3.1. Let ωr+1 as in item (3) of Theorem 2.1. It is true that deg(ωr+1(a)) � deg(a).

Proof. Let x1 = 1 ⊗ xi1 ⊗ · · · ⊗ xir ⊗ 1 ∈ A ⊗ A⊗r ⊗ A. By the definition of ωr+1 it suffices to show that
ω′

r+1(x1) is a sum of tensors of the form

λ′x j0 ⊗ x j1 ⊗ · · · ⊗ x jr+2 ,

with j0 + · · · + jr+2 � i1 + · · · + ir . Using the formulas for φ′
r and ψ ′

r establish in Theorem 1.2 it is
easy to see that

deg
(
φ′

rψ
′
r(x1)

)
� deg(x1).

The fact that w ′
r+1(x1) can be expressed as a sum of simple tensors satisfying the mentioned above

property follows now by induction on r, since

ω′
r+1(x1) = (−1)r+1φ′

rψ
′
r(x1) ⊗ 1 + ω′

r(x2)xir ⊗ 1,

where x2 = 1 ⊗ xi1 ⊗ · · · ⊗ xir−1 ⊗ 1. �
Let Dr : C S

r (A) → C S
r+1(A) be the composition Dr = ψr+1 Brφr .

Theorem 3.2. (C S∗ (A),d∗, D∗) is a mixed complex, giving the Hochschild, cyclic, negative and periodic homol-
ogy of A relative to K .
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Proof. By Theorem 2.1 we already know that the Hochschild homology of (C S∗ (A),d∗, D∗) is the
Hochschild homology of A relative to K . Let

X = (
C S∗ (A),d∗, D∗

)
and X ′ = BC

(
A ⊗ A⊗∗⊗,b∗, B∗

)
.

By the perturbation lemma, in order to prove the assertion for the cyclic homology it suffices to check
that there is a special deformation retract

Tot BC(X )

Φ

Tot BC(X ′),
Ψ

W . (3)

Finally, in order to prove the assertion for the periodic and negative homology it suffices to show that
the maps Φ , Ψ and W commute with the canonical surjections

Tot BC(X ) → Tot BC(X )[2] and Tot BC(X ′) → Tot BC(X ′)[2].

In fact, from this, the fact that

Tot BP(X ) = lim
p

Tot BC(X )[2p], Tot BP(X ′) = lim
p

Tot BC(X ′)[2p]

and (3), it follows that there is a special deformation retract

Tot BP(X )

Φ̂

Tot BP(X ′),
Ψ̂

Ŵ ,

which immediately implies the assertion for the periodic homology, and also for the negative homol-
ogy, because from the existence of a commutative diagram with exact rows

0 Tot BN(X ) Tot BP(X )

Φ̂

Tot BC(X )[2]
Φ

0

0 Tot BN(X ′) Tot BP(X ′) Tot BC(X ′)[2] 0

with Φ and Φ̂ quasi-isomorphisms, it follows that there is a quasi-isomorphism Tot BN(X ) →
Tot BN(X ′) making the diagram commutative.

Next we prove there is a special deformation retract (3) satisfying the above required conditions.
Let

Tot BC
(
C S∗ (A),d∗,0

)
Φ̃

Tot BC
(

A ⊗ A⊗∗⊗,b,0
)
,

Ψ̃

W̃ ,

be the special deformation retract obtained in Corollary 2.2. Consider the perturbation induced by B .
Applying the perturbation lemma we obtain a special deformation retract

(
Ĉ S∗ (A), d̂∗

)
Φ

Tot BC
(

A ⊗ A⊗∗⊗,b, B
)
,

Ψ

W ,
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where

Ĉ S
n (A) = C S

n (A) ⊕ C S
n−2(A) ⊕ · · ·

and d̂n = ∑
j�0 ψn−2l+2 j+1(Bω) j Bφn−2l on C S

n−2l(A). In order to finish the proof it suffices to show

that ψr+2 j+1(Bω) j Bφr = 0 for all j > 0. Assume first that r = 2m. By the definition of φ2m and Propo-
sition 3.1,

deg
(
(Bω) j Bφ2m

([
λ′x j])) < mn + n.

On the other hand ψ2m+2 j+1 vanishes on elements of degree less than (m + j)n. The fact that
ψr+2 j+1(Bω) j Bφr = 0 for all j > 0 follows by combining theses facts. The case r = 2m + 1 is sim-
ilar. �

Recall from Subsection 1.1, that given P ∈ E , there exist unique P and
...

P in E such that

P = P f + ...

P and
...

P= 0 or deg
...

P< n.

Theorem 3.3. The Connes operator D∗ is given by

D2m
([

λx j]) =
[ j−1∑

h=0

αmn+h(λ)x j−1

]
+

[
n∑

i=1

(
m−1∑
u=0

i−1∑
�=0

αnu+�(λ)

)
λn−i xi−1+ j

]
,

D2m+1
([

λx j]) =
{

0 if j < n − 1,

[(id − α)(
∑m

u=0 αnu(λ))] if j = n − 1.

Proof. Besides the notations introduced in Theorem 1.2 we use the following ones.

• x̆�u,1 = x�u ⊗ x ⊗ · · · ⊗ x�1 ⊗ x,
• x̃�m,u+1 = x ⊗ x�m ⊗ · · · ⊗ x ⊗ x�u+1 ,
• |�u,1| = �1 + · · · + �u + u.

We shall first compute D2m+1. By definition

Bφ2m+1
([

λx j]) =
m∑

u=0

∑
i∈Im

∑
�∈Ji

Δ�
i,u −

m∑
u=0

∑
i∈Im

∑
�∈Ji

Γ �
i ,

where

Δ�
i,u = [

λn−iα
|�u,1|(λ) ⊗ x̆�u,1 ⊗ x j x|i−�|−m ⊗ x̃�m,u+1 ⊗ x

]
and

Γ �
i,u = [

λn−iα
|�u,1|+1(λ) ⊗ x̃�u,1 ⊗ x ⊗ x j x|i−�|−m ⊗ x̃�m,u+1

]
.

If ψ2m+2(Δ
�
i,u) �= 0, then �1 = · · · = �m = n − 1. So i1 = · · · = im = n. Thus,

∑
i∈I

∑
�∈J

ψ2m+2
(
Δ�

i,u

) = [
αnu(λ)x j+1

] =
{

0 if j < n − 1,

[αnu(λ)] if j = n − 1.

m i
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Similarly, ψ2m+2(Γ
�

i,u) �= 0 implies that �1 = · · · = �m = n − 1. Hence i1 = · · · = im = n and

∑
i∈Im

∑
�∈Ji

ψ2m+2
(
Γ �

i,u

) = [
αnu+1(λ)x j+1

] =
{

0 if j < n − 1,

[αnu+1(λ)] if j = n − 1.

The formula for D2m+1 follows immediately from these facts. We now compute D2m . By definition

Bφ2m
([

λx j]) =
m−1∑
u=0

∑
i∈Im

∑
�∈Ji

(
Γ �

i,u + Δ�
i,u

) +
∑
i∈Im

∑
�∈Ji

Υ �
i ,

where

Γ �
i,u = [

λn−iα
|�u,1|(λ) ⊗ x̃�u,1 ⊗ x j x|i−�|−m ⊗ x̃�m,u+1

]
,

Δ�
i,u = [

λn−iα
|�u+1,1|−1(λ) ⊗ x�u+1 ⊗ x̃�u,1 ⊗ x j x|i−�|−m ⊗ x̃�m,u+2 ⊗ x

]
,

Υ �
i = [

λn−iα
|�m,1|(λ) ⊗ x̃�m,1 ⊗ x j x|i−�|−m]

.

If ψ2m+1(Γ
�

i,u) �= 0, then �1 = · · · = �̂u+1 = · · · = �m = n − 1. In this case i1 = · · · = îu+1 = · · · = im = n
and

ψ2m+1
(
Γ �

i,u

) =
�−1∑
h=0

[
x�−h−1λn−iα

nu(λ)
.....................

x j+i−�−1 xxh]

=
�−1∑
h=0

[
λn−iα

nu+�−h−1(λ)x�−h−1
.....................

x j+i−�−1 xxh]

=
�−1∑
h=0

[
λn−iα

nu+�−h−1(λ)x�−1
.....................

x j+i−�−1 x
]

=
�−1∑
h=0

[
λn−iα

nu+�−h−1(λ)x�−1(x j+i−� − x j+i−�−1x
)]

.

In the third equality we have used that

.....................

x j+i−�−1 xxh = xh
.....................

x j+i−�−1 x,

which is valid since

.....................

x j+i−�−1 x ∈ Z[λ1, . . . , λn−1].

So,

∑
i∈Im

∑
�∈Ji

ψ2m+1
(
Γ �

i,u

) =
n∑

i=1

i−1∑
�=1

�−1∑
h=0

[
λn−iα

nu+�−h−1(λ)x�−1x j+i−�
]

−
n∑ i∑ �−1∑[

λn−iα
nu+�−h−1(λ)x�−1x j+i−�

]

i=1 �=2 h=1
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=
n∑

i=1

i−1∑
�=1

[
λn−iα

nu+�−1(λ)x�−1x j+i−�
]
.

Similarly, ψ2m+1(Δ
�
i,u) �= 0 implies �2 = · · · = �m = n − 1. In this case i2 = · · · = im = n and

ψ2m+1
(
Δ�

i,u

) = [
λn−i1α

nu+�1 (λ)x�1

.....................

x j+i1−�1−1
]

= [
λn−i1α

nu+�1 (λ)
(
x j+i1−1 − x�1 x j+i1−�1−1

)]
.

Hence,

∑
i∈Im

∑
�∈Ji

ψ2m+1
(
Δ�

i,u

) =
n∑

i=1

[
λn−i

(
i−1∑
�=1

αnu+�(λ)

)
x j+i−1

]

−
n∑

i=1

i−1∑
�=1

[
λn−iα

nu+�(λ)x�x j+i−�−1
]
.

Consequently,

∑
i∈Im

∑
�∈Ji

ψ2m+1
(
Γ �

i,u + Δ�
i,u

) =
n∑

i=1

i−1∑
�=1

[
λn−iα

nu+�−1(λ)x�−1x j+i−�
]

−
n∑

i=1

i∑
�=2

[
λn−iα

nu+�−1(λ)x�−1x j+i−�
]

+
n∑

i=1

[
λn−i

(
i−1∑
�=1

αnu+�(λ)

)
x j+i−1

]

=
n∑

i=1

[
λn−iα

nu(λ)x j+i−1
]

+
[

n∑
i=1

λn−i

(
i−1∑
�=1

αnu+�(λ)

)
x j+i−1

]

=
[

n∑
i=1

λn−i

(
i−1∑
�=0

αnu+�(λ)

)
x j+i−1

]

=
[

n∑
i=1

(
i−1∑
�=0

αnu+�(λ)

)
x j+i−1λn−i

]

=
[

n∑
i=1

(
i−1∑
�=0

αnu+�(λ)

)
λn−i x j+i−1

]
.

Lastly, ψ2m+1(Υ
�

i ) = 0 except if �1 = · · · = �m = n − 1. In this last case i1 = · · · = im = n. So
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∑
i∈Im

∑
�∈Ji

ψ2m+1
(
Υ �

i

) =
j−1∑
h=0

[
x j−h−1αmn(λ)xh]

=
[ j−1∑

h=0

αmn+h(λ)x j−1

]
.

The expression for D2m follows immediately from all these facts. �
Remark 3.4. Another formula for D2m useful for some computations is the following

D2m
([

λx j]) =
[mn+ j−1∑

h=0

αh(λ)x j−1

]
−

[
n−1∑
�=0

(
m−1∑
u=0

αnu+�(λ)

)
�∑

i=0

λn−i xi−1+ j

]
.

This follows from Theorem 3.3 and the fact that

n∑
i=1

i−1∑
�=0

αnu+�(λ)λn−i xi−1+ j =
n−1∑
�=0

αnu+�(λ)

n∑
i=�+1

λn−i xi−1+ j

=
n−1∑
�=0

αnu+�(λ)

(
x j−1 −

�∑
i=0

λn−i xi−1+ j

)
.

3.1. Explicit computations

Let k, K , α, f = Xn +λ1 Xn−1 +· · ·+λn and A be as above. In this subsection we compute the cyclic
homology of A relative to K , under suitable hypothesis. We will freely use the notations introduced
at the beginning of Section 2 and below Corollary 2.5. Recall that by Theorem 2.3, if there exists
λ̆ ∈ Z(K ) such that

• αn(λ̆) = λ̆,
• λ̆ − αi(λ̆) is invertible in K for 1 � i < n,

then λ1 = · · · = λn−1 = 0 and

C S
r (A) =

⎧⎨⎩
K

[K ,K ]αmn
if r = 2m,

K
[K ,K ]

α(m+1)n
xn−1 if r = 2m + 1.

Moreover, by Theorem 2.4, the Hochschild boundary maps of the mixed complex (C S∗ (A),d∗, D∗) are
given by

d2m+1
([λ]xn−1) = [(

α(λ) − λ
)
λn

]
,

d2m+2
([λ]) =

[
n−1∑
�=0

α�(λ)

]
xn−1.

We now compute the Connes operator D∗ .
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Theorem 3.5. Under the hypothesis of Theorem 2.3, we have:

D2m
([λ]) = 0,

D2m+1
([λ]xn−1) =

[
(id − α)

(
m∑

u=0

αnu(λ)

)]
.

Proof. It follows immediately from Theorem 3.3. �
Theorem 3.6. Assume the hypothesis of Theorem 2.6 are fulfillled. Then the mixed complex (C S∗ (A),d∗, D∗)
decomposes as a direct sum

(
C S∗ (A),d∗, D∗

) =
s⊕

h=1

(
C S,ωh∗ (A),dωh∗ , Dωh∗

)
,

where the Hochschild complexes (C S,ωh∗ (A),dωh∗ ) are as in Theorem 2.6. Moreover the Connes operators Dωh∗
satisfy Dωh

2m = 0 and

Dωh
2m+1

([λ]xn−1) = (1 − ωh)

(
m∑

u=0

ωnu
h

)
[λ].

Proof. It follows immediately from Theorem 3.5. �
In the rest of this section we assume that k is a characteristic zero field and that hypothesis of

Theorem 2.6 are fulfilled. We let HCK ,ωh∗ (A), HNK ,ωh∗ (A) and HPK ,ωh∗ (A) denote the cyclic, negative
and periodic homology of (C S,ωh∗ (A),dωh∗ , Dωh∗ ), respectively.

Theorem 3.7. The cyclic, negative and periodic homology of A relative to K decompose as

HCK∗ (A) =
s⊕

h=1

HCK ,ωh∗ (A),

HNK∗ (A) =
s⊕

h=1

HNK ,ωh∗ (A),

HPK∗ (A) =
s⊕

h=1

HPK ,ωh∗ (A).

Moreover, we have:

HCK ,ωh
2m (A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K 1

[K ,K ]1 if h = 1,

Kωh

[K ,K ]ωh +Kωh λn
if ωn

h �= 1,

Kωh

[K ,K ]ωh +Kωh λm+1
n

otherwise,

and

HCK ,ωh
2m+1(A) =

⎧⎨⎩
0 if h = 1 or ωn

h �= 1,

{λ∈Kωh :λλm+1
n ∈[K ,K ]ωh }

[K ,K ]ωh
α(m+1)n

xn−1 otherwise.
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Proof. The first assertion is an immediate consequence of Theorems 3.2 and 3.6, and the computation
of HCK ,ωh∗ for h = 1 and for ωn

h �= 1 follows from Corollary 2.7, using the spectral sequence associate

with the filtration by columns of BC(C S,ωh∗ (A),dωh∗ , Dωh∗ ), which collapse in the first step since the
homology of (C S,ωh∗ (A),dωh∗ ) is concentrate in zero degree (it is also possible to give a direct argument
that avoids any reference to spectral sequences). So, in order to finish the proof it remains to consider
the case h > 1 and ωn

h = 1. By Theorems 2.6 and 3.6, the cyclic homology of the mixed complex

(C S,ωh∗ (A),dωh∗ , Dωh∗ ), is the homology of

.

.

.

dωh

.

.

.

0

.

.

.

dωh

.

.

.

0

.

.

.

dωh

X4

0

X3
Dωh

dωh

X2

0

0
X1

dωh

Dωh
X0

0

X3

dωh

X2
0

0

X1

dωh

Dωh
X0

0

X2

0

X1
Dωh

dωh

X0
0

X1

dωh

X0
0

X0,

where

• X2m = Kωh

[K ,K ]ωh
αmn

and X2m+1 = Kωh

[K ,K ]ωh
α(m+1)n

xn−1,

• Dωh
2m+1([λ]xn−1) = (m + 1)(1 − ωh)[λ],

• dωh
2m+1([λ]xn−1) = (ωh − 1)[λλn].

We first compute the homology in degree 2m. Let

ι : X0 → X2m ⊕ X2m−2 ⊕ · · · ⊕ X0

be the canonical inclusion. By using that each Dωh
2i+1 map is an isomorphism it is easy to see that ι

induces an epimorphism

ι : X0 → HCK ,ωh
2m (A).

A direct computation shows now that the boundary of([ζ2m+1]xn−1, . . . , [ζ1]xn−1) ∈ X2m+1 ⊕ · · · ⊕ X1

equals ι([λ]) if and only if

[ζ2i+1] = i! [
ζ2m+1λ

m−i
n

]
for 0 � i � m (4)
m!
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and ωh−1
m! [ζ2m+1λ

m+1
n ] = [λ]. The assertion about HCK ,ωh

2m (A) follows easily from these facts. We now
are going to compute the homology in degree 2m + 1. It is immediate that([ζ2m+1]xn−1, . . . , [ζ1]xn−1) ∈ X2m+1 ⊕ · · · ⊕ X1

is a cycle of degree 2m + 1 if and only if it satisfies (4) and ζ2m+1λ
m+1
n ∈ [K , K ]ωh . So the map

j : X2m+1 → X2m+1 ⊕ · · · ⊕ X1,

given by

j
([λ]) =

(
[λ]xn−1,

1

m
[λλn]xn−1, . . . ,

1

m!
[
λλn

m

]
xn−1

)
,

induce a quasi-isomorphism

j :
{λ ∈ K ωh : λλm+1

n ∈ [K , K ]ωh }
[K , K ]ωh

α(m+1)n

xn−1 → HCK ,ωh
2m+1(A),

as desired. �
Remark 3.8. Theorem 3.7 applies in particular to the monogenic extensions of finite group algebras
K = k[G] considered in Example 2.8. Note that since K is a separable k-algebra, this computes the
absolute cyclic homology, as follows easily from [G-S, Theorem 1.2] using the SBI-sequence.

3.2. Cyclic homology of rank 1 Hopf algebras

Let k, G , χ , g1, α and A be as in Subsection 2.2. Here we compute the cyclic homology of A. Let
Cn ⊆ k be the set of all nth roots of 1. As in the above mentioned subsection we consider three cases.

ξ = 0. That is A = K [x,α]/〈xn〉, where K = k[G]. Since K is separable over k, from Theorem 3.7 it
follows that

HC2m(A) = K

[K , K ] ,

HC2m+1(A) =
⊕

ω∈Cn\{1}

K ω

[K , K ]ω
α(m+1)n

xn−1.

ξ �= 0 and χn = 1. In this case A = K [x,α]/〈xn − ξ(gn
1 − 1)〉, where K = k[G]. Arguing as in Subsec-

tion 2.2, but using Theorem 3.7 instead of Corollary 2.7, we obtain

HC2m(A) = K 1

[K , K ]1
⊕

⊕
ω∈Cn\{1}

K ω

[K , K ]ω + K ω(gn
1 − 1)m+1

,

HC2m+1(A) =
⊕

ω∈Cn\{1}

{λ ∈ K ω: λ(gn
1 − 1)m+1 ∈ [K , K ]ω}
[K , K ]ω xn−1.

ξ �= 0 and χn �= 1. In this case A = K [x, α̃]/〈xn〉, where the algebra K = k[G/〈gn
1〉] and α̃ is the auto-

morphism induced by α. Since K is separable over k, from Theorem 3.7 it follows that
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HC2m(A) = K

[K , K ] ,

HC2m+1(A) =
⊕

ω∈Cn\{1}

K ω

[K , K ]ω
α̃(m+1)n

xn−1.

4. The periodic and negative homology

Assume that k is a characteristic zero field and that the hypothesis of Theorem 2.6 are satisfied.
The aim of this section is to compute the periodic and negative homology of A when α has finite
order.

In the following remark we compute the maps of the SBI exact sequence of the mixed complex
(C S,ωh∗ (A),dωh∗ , Dωh∗ ) of Theorem 3.6. We will use the notations introduced above Theorem 3.7.

Remark 4.1. From the computations of Theorem 3.7 it follows that:

(1) If h = 1 or ωn
h �= 1, then the map

S : HCK ,ωh
2m+2(A) → HCK ,ωh

2m (A)

is the identity map.
(2) If h > 1 and ωn

h = 1, then we have:

a. The map S : HCK ,ωh
2m+2(A) → HCK ,ωh

2m (A) is the canonical surjection.

b. The map i : HHK ,ωh
2m (A) → HCK ,ωh

2m (A) is given by

i
([λ]) = 1

m!
[
λλm

n

]
.

c. The map B : HCK ,ωh
2m (A) → HHK ,ωh

2m+1(A) is zero.

d. The map S : HCK ,ωh
2m+3(A) → HCK ,ωh

2m+1(A) is given by

S
([λ]xn−1) = 1

m + 1
[λλn]xn−1.

e. The map i : HHK ,ωh
2m+1(A) → HCK ,ωh

2m+1(A) is the canonical inclusion.

f. The map B : HCK ,ωh
2m+1(A) → HHK ,ωh

2m+2(A) is given by

B
([λ]xn−1) = (m + 1)(1 − ωh)[λ].

Theorem 4.2. Assume the hypothesis of Theorem 2.6 are fulfilled and that there exists m0 ∈ N such that
αm0 = id. Then,

HPK ,ωh
0 (A) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

K 1

[K ,K ]1 if h = 1,

Kωh

[K ,K ]ωh +Kωh λn
if ωn

h �= 1,

K ωh⋂
m�0([K , K ]ωh + K ωh λm+1

n )
otherwise,

HPK
1 (A) = 0.
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Moreover there exists a nonnegative integer m1 such that⋂
m�0

([K , K ]ωh + K ωh λm+1
n

) = [K , K ]ωh + K ωh λ
m1+ j+1
n ,

for all j � 0.

Proof. We first compute HPK ,ωh
0 (A). By items (1) and (2a) of Remark 4.1, the sequence

· · · S
HCK ,ωh

4 (A)
S

HCK ,ωh
2 (A)

S
HCK ,ωh

0 (A)

satisfies the Mittag–Leffler condition. So,

HPK ,ωh
0 (A) = lim←−

S

HCK ,ωh
2m (A).

If h = 1 or ωn
h �= 1, then by item (1) of Remark 4.1,

HPK ,ωh
0 (A) = HCK ,ωh

0 (A) = K ωh

[K , K ]ωh + K ωh λn
.

If h �= 1 and ωn
h = 1, then by item (2a) of Remark 4.1,

HPK ,ωh
0 (A) = K ωh⋂

m�0([K , K ]ωh + K ωh λm+1
n )

.

Moreover, since K ωh is a finite dimensional k-vector space, there exists a nonnegative integer m1 such
that ⋂

m�0

([K , K ]ωh + K ωh λm+1
n

) = [K , K ]ωh + K ωh λ
m1+ j+1
n ,

for all j � 0. We now compute HPK ,ωh
1 (A). Since HCK ,ωh

2n+1(A) is a finite dimensional k-vector space, the
sequence

· · · S
HCK ,ωh

5 (A)
S

HCK ,ωh
3 (A)

S
HCK ,ωh

1 (A)

satisfies the Mittag–Leffler condition. Thus,

HPK ,ωh
1 (A) = lim←−

S

HCK ,ωh
2m+1(A).

If h = 1 or ωn
h �= 1, then by Theorem 3.7, we have HPK ,ωh

1 (A) = 0. Assume now that h �= 1 and ωn
h = 1.

By Theorem 3.7,

HCK ,ωh
2m0m−1(A) = {λ ∈ K ωh : λλ

m0m
n ∈ [K , K ]ωh }

ωh
xn−1. (5)
[K , K ]
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Again since K ωh is a finite dimensional k-vector space, there exists m2 such that

HCK ,ωh
2m0(m2+ j)−1(A) = HCK ,ωh

2m0m2−1(A) for all j � 0. (6)

Let m � m2 arbitrary. By item (2d) of Remark 4.1, the map

Sm0m2 : HCK ,ωh
2m0(m2+m)−1(A) → HCK ,ωh

2m0m−1(A),

is given by

Sm0m2
([λ]xn−1) = 1

m(m + 1) · · · (m + m2 − 1)

[
λλ

m0m2
n

]
xn−1. (7)

Since, by (5) and (6) with j = m − m2,

HCK ,ωh
2m0m−1(A) = {λ ∈ K ωh : λλ

m0m2
n ∈ [K , K ]ωh }

[K , K ]ωh
xn−1,

using (7) we obtain that Sm0m2 ([λ]xn−1) = 0, and so

HPK ,ωh
1 (A) = lim←−

S

HCK ,ωh
2m0m−1(A) = 0,

as desired. �
Theorem 4.3. Assume the hypothesis of Theorem 4.2 are fulfilled. Then,

HNK ,ωh
2m (A) =

{
HCK ,ωh

2m−1(A) if h = 1 or ωn
h �= 1,

HCK ,ωh
2m−1(A) ⊕ Lm otherwise,

HNK
2m+1(A) = 0,

where

Lm = [K , K ]ωh + K ωh λm
n⋂

l�0([K , K ]ωh + K ωh λl+1
n )

.

Proof. Consider the canonical exact sequence

HPK
0 (A)

S
HCK

2m(A)
B

HNK
2m+1(A)

i
HPK

1 (A).

Since HPK
1 (A) = 0 and S is an epimorphism, HNK

2m+1(A) = 0. Now, for each ωh consider the exact
sequence

HPK ,ωh
1 (A)

S
HCK ,ωh

2m−1(A)
B

HNK ,ωh
2m (A)

i
HPK ,ωh

0 (A)
S

HCK ,ωh
2m−2(A).

Since HPK ,ωh
1 (A) = 0, we have

HNK ,ωh
2m (A) � HCK ,ωh

2m−1(A) ⊕ ker
(

S : HPK ,ωh
0 (A) → HCK ,ωh

2m−2(A)
)
.

The theorem follows now from Theorems 3.7 and 4.2. �
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