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Abstract

We find a generalization of the restricted PBW basis for pointed Hopf algebras over abelian groups
constructed by Kharchenko. We obtain a factorization of the Hilbert series for a wide class of graded Hopf
algebras. These factors are parametrized by Lyndon words, and they are the Hilbert series of certain graded
Hopf algebras.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Hopf algebras [Swe69] are far from being classified. Up to now there are two main direc-
tions of study: semisimple and pointed Hopf algebras. This paper is mainly a contribution to
the latter, although all considerations are performed in a more general context. Specifically, we
work with Hopf algebras H generated by a Hopf subalgebra H0 and a vector space V satisfying
properties (4.2) and (4.3) below. This includes in particular pointed Hopf algebras generated by
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group-like and skew-primitive elements. In Theorem 4.12 we prove a factorization result about
the Hilbert series of grH . Moreover, with Theorem 4.18 we show that to each factor one can
associate in a natural way a graded Hopf algebra which projects onto a Nichols algebra. These
are the main results of the present paper.

Kharchenko [Kha99] proved that when H0 is the group algebra of an abelian group and it
acts on V by characters, H admits a restricted PBW basis. The PBW generators in this basis are
labelled by Lyndon words on an alphabet given by a set of skew-primitive elements. Examples,
where H0 is the group algebra of a nonabelian group [MS00,Gra00b,AG03], indicate that in gen-
eral one cannot expect Kharchenko’s result to hold in its strong form. Nevertheless, by extending
his ideas we were able to construct a basis of grH using ordered products of subquotients of
it. In the particular case of Kharchenko’s setting one recovers the PBW basis. This is possible
because graded braided Hopf algebras generated by one primitive element are easy to classify.
The difficulty in the more general setting arises from the fact that the structure of graded braided
Hopf algebras generated by an irreducible Yetter–Drinfel’d module over H0 is not known.

A generalization of Kharchenko’s PBW theorem in a different direction was done by Ufer
[Ufe04]. Instead of character Hopf algebras (i.e., Hopf algebras of diagonal type) he considers
braided Hopf algebras with “triangular” braidings. On the one hand Ufer is able to give a re-
stricted PBW basis. On the other hand some information about the relations of the Hopf algebra
is lost. Although we believe that it is possible to obtain a generalization of Ufer’s approach to
our context, we stick to a simpler setting for two reasons. First, valuable additional information
can be obtained in our starting context. Second, the proofs in the triangular case would be even
more technical, obscuring the essential arguments.

The proof of the main results of the present paper was possible due to taking advantage both
from the lexicographic and the inverse lexicographic order on the set of monotonic super-words
built from an alphabet of Lyndon words. This leads in a natural way to the construction of sub-
quotients of a graded Hopf algebra. In this way Kharchenko’s PBW theorem becomes more
transparent. Note that Ufer’s more technical proof stems from the fact that in his setting the
inverse lexicographic order on the set of monotonic super-words cannot be used.

Kharchenko’s PBW theorem turned out to be essential in the construction of the Weyl
groupoid [Hec06] corresponding to a Nichols algebra of diagonal type. This groupoid played
the crucial role in the classification of such Nichols algebras [Hec04]. In turn, the knowledge of
these Nichols algebras is important for example for the lifting method of Andruskiewitsch and
Schneider [AS98] to classify pointed Hopf algebras. We consider the factorization theorem in
this paper to be an important step towards the generalization of the Weyl groupoid to a wider
class of Nichols algebras.

In this paper k is an arbitrary field, and all algebras have k as their base field. The symbol ⊗
refers to tensor product over k. We will write m, Δ, ε and S for the product, coproduct, counit,
and the antipode of a Hopf algebra.

The authors thank the referee for his helpful comments, especially those regarding Proposi-
tion 2.3.

2. Preliminaries

In this section we prove two general results about (braided) bialgebras, for which we did not
find references in the literature.
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Proposition 2.1. Let A = (A,m,Δ) be a bialgebra, B ⊆ A a subalgebra and I ⊆ B ∩ ker(ε)
an ideal of B . Suppose furthermore that

Δ(B) ⊆ B ⊗ B + I ⊗ A, Δ(I) ⊆ B ⊗ I + I ⊗ A. (2.2)

Then the bialgebra structure on A induces a bialgebra structure on B/I .

Proof. Notice first that B/I is an algebra. Let us take Δ̄ :B → A/I ⊗ A/I as Δ̄ = (π ⊗ π)Δi,
for π :A → A/I the projection and i :B → A the inclusion. By using the first formula in (2.2),
one gets that Δ̄(B) ⊆ B/I ⊗ B/I . By using the second formula in (2.2), one gets that Δ̄(I ) = 0.
Then Δ̄ induces a map Δ̃ :B/I → B/I ⊗ B/I . Also, ε induces a map ε̃ :B/I → k. It is clear
that Δ̃ is coassociative and ε̃ is a counit for Δ̃, whence B/I is a coalgebra. It is immediate that ε̃

is an algebra map. We must prove then that Δ̃ is an algebra map. For a, b ∈ B we compute

Δ̃
(
π(a)π(b)

) = Δ̃
(
π(ab)

) = (π ⊗ π)Δ(ab) = (π ⊗ π)(a(1)b(1) ⊗ a(2)b(2))

= π(a(1)b(1)) ⊗ π(a(2)b(2)) = π(a(1))π(b(1)) ⊗ π(a(2)b(2))

= π(a(1))π(b(1)) ⊗ π(a(2))π(b(2)).

In the first equality above we used that π |B :B → B/I is an algebra map, and the fifth one is
obtained from a(1)b(1) ⊗ a(2)b(2) ∈ B ⊗A. The last equality holds by π(a(1))π(b(1))⊗ a(2)b(2) ∈
B/I ⊗ B . �

For the notion of braided Hopf algebras one may consult for example [Tak00].

Proposition 2.3. Let π :R → T be a surjective map of braided N0-graded Hopf algebras (either
in the sense of Takeuchi or in a Yetter–Drinfel’d category) which is an isomorphism in degree 0,
and assume that R, T are finite-dimensional in each degree. Further, suppose that kerπ is a cat-
egorical braided subspace of R, that is c(kerπ ⊗ R) ⊂ R ⊗ kerπ , c(R ⊗ kerπ) ⊂ kerπ ⊗ R.
Then the quotient η(R, t)/η(T , t) of Hilbert series is again a series with nonnegative integer
coefficients.

Proof. Let Rn and Tn, where n ∈ N0, denote the homogeneous subspaces of R and T , re-
spectively, of degree n. Since π is a graded map and an isomorphism in degree 0, the ideal
kerπ is homogeneous and is contained in

⊕∞
n=1 Rn. Moreover, π is an algebra map, and hence

(kerπ)2 ⊂ kerπ . Thus (kerπ)n+1 ⊂ kerπn for all n ∈ N0, where (kerπ)0 := R. Set

R′(i) := (kerπ)i/(kerπ)i+1,

R′
n(i) := (

(kerπ)i ∩ Rn

)
/
(
(kerπ)i+1 ∩ Rn

)
, where i, n ∈ N0.

Since (kerπ)n ⊂ ⊕∞
i=n Ri , one obtains that R and

R′ :=
∞⊕

R′(i), where R′(0) = (kerπ)0/(kerπ)1 = R/(kerπ) � T , (2.4)

i=0
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are isomorphic as graded vector spaces. Here the grading of R′ is induced by the one of R, that
is

R′
n =

n⊕
i=0

R′
n(i).

The algebra structure of R induces two algebra gradings on R′:

R′
mR′

n ⊂ R′
m+n, R′(m)R′(n) ⊂ R′(m + n) for all m,n ∈ N0.

Next we prove that R induces a braided Hopf algebra structure on R′. Let (cR,ΔR,SR) and
(cT ,ΔT ,ST ) denote the triples consisting of the braiding, the coproduct, and the antipode of
R and T , respectively. Let ρn :R → R/(kerπ)n+1, where n ∈ N0, be the canonical projections.
Define

ΔR′,n :R →
n⊕

i=0

ρi(R) ⊗ ρn−i (R)

by setting

ΔR′,n :=
n⊕

i=0

(ρi ⊗ ρn−i )ΔR.

Since kerπ is a coideal of R, that is ΔR(kerπ) ⊂ R ⊗ kerπ + kerπ ⊗ R, one gets

ΔR′,n
(
(kerπ)n+1) = 0,

ΔR′,n
(
(kerπ)n

) ⊂
n⊕

i=0

R′(i) ⊗ R′(n − i).

Thus the family of maps ΔR′,n induces a coproduct ΔR′ on R′ (the coassociativity and compat-
ibility with the counit being obvious) via the definition ΔR′ |R′(n) := ΔR′,n. We will show that
ΔR′ is an algebra homomorphism, but to do so we have to consider first the braiding on R′.

Recall that kerπ is a coideal, and by assumption a categorical braided subspace of R. Hence
by induction on m and n one gets

cR

(
(kerπ)m ⊗ (kerπ)n

) ⊂ (kerπ)n ⊗ (kerπ)m, m,n ∈ N0.

Having this, one shows, with the technique used in the construction of ΔR′ , that cR induces
a braiding cR′ on R′ with the property

cR′
(
R′(m) ⊗ R′(n)

) ⊂ R′(n) ⊗ R′(m), m,n ∈ N0.

Now we conclude that ΔR′ is an algebra map. Indeed, for x ∈ (kerπ)m, y ∈ (kerπ)n one gets
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ΔR′
(
ρm(x)ρn(y)

) = ΔR′,m+n(xy)

=
m+n∑
i=0

(ρi ⊗ ρm+n−i )(m ⊗ m)(id⊗cR ⊗ id)(x(1) ⊗ x(2) ⊗ y(1) ⊗ y(2))

=
m∑

i=0

n∑
j=0

(m ⊗ m)(id⊗cR′ ⊗ id)
(
ρi(x(1)) ⊗ ρm−i (x(2)) ⊗ ρj (y(1)) ⊗ ρn−j (y(2))

)

=
m∑

i=0

n∑
j=0

(
ρi(x(1)) ⊗ ρm−i (x(2))

)(
ρj (y(1)) ⊗ ρn−j (y(2))

)

= ΔR′
(
ρm(x)

)
ΔR′

(
ρn(y)

)
.

Analogously, SR induces an antipode SR′ of R′. This proves that R′ is a graded braided Hopf
algebra.

The fundamental theorem for Hopf modules [Mon93, 1.9.4] implies that a Hopf algebra which
admits a projection onto a Hopf subalgebra is isomorphic (via the multiplication map) to the
tensor product of the right coinvariants and the Hopf subalgebra. The braided version of this
statement holds in our setting: m :R′ coT ⊗ T → R′ is an isomorphism of graded vector spaces
(even as right T -module comodules), where T has its own grading and R′ has the grading in-
duced by the one of R. Indeed, let π0 denote the projection of R′ to T = R′(0) which maps
R′(m) to 0 for all m � 1. Then the map (id⊗π0)ΔR′ is a right coaction of T on R′, and the
map x �→ m(id⊗SR′ ◦ π0)ΔR′(x) is a surjective map from R′ to R′ coT (because its restriction
to R′ coT is the identity). Further, R′ � R′ coT ⊗ T as graded vector spaces, which implies the
statement. �
Remark 2.5. Suppose that π :R → T in the preceding proposition is a surjective map of braided
N0-graded Hopf algebras in a Yetter–Drinfel’d category H0

H0
YD, where H0 is a Hopf algebra with

bijective antipode, and both R and T are equipped with the canonical braiding (or both with the
inverse of the canonical braiding). Then kerπ is an object in the Yetter–Drinfel’d category, too,
and the inclusion is a map in the category. Hence, kerπ is automatically a categorical braided
subspace of R.

Remark 2.6. The subspace R′ coT is a subalgebra of R′. Indeed, this follows from the right
coaction of T on R′ being an algebra map, which, in turn, follows from kerπ being categorical:

(id⊗π0)ΔR′(xy) = (id⊗π0)
(
ΔR′(x)ΔR′(y)

) = (id⊗π0)ΔR′(x) · (id⊗π0)ΔR′(y)

for all x, y ∈ R′.

Remark 2.7. Assume that R and T are graded braided Hopf algebras in a Yetter–Drinfel’d
category H0

H0
YD, where H0 is a Hopf algebra with bijective antipode and the assumptions of

Proposition 2.3 are fulfilled. Then the algebras R′, defined in Eq. (2.4), and R are isomorphic as
graded vector spaces, but not necessarily as braided vector spaces, at least if R is not a semisim-
ple Yetter–Drinfel’d module over H0.
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The assumption that kerπ is a categorical subspace of R is necessary for the definition of the
braided Hopf algebra structure on R′. We want to thank the referee to pointing out this fact. For
illustration we give an example.

Example 2.8. Assume that V = k{x0, x1, x2} is the braided vector space with braiding c, where

c(xi ⊗ xj ) = −x2i−j mod 3 ⊗ xi, i, j = 0,1,2.

Let R be the associated Nichols algebra B(V ) [MS00, Example 6.4]. This is a braided Hopf
algebra with primitive generators x0, x1, x2, and as an algebra one has

R ∼= k〈x0, x1, x2〉/
(
x2

0 , x2
1 , x2

2 , x0x1 + x1x2 + x2x0, x1x0 + x2x1 + x0x2
)
.

Let T = k[x]/(x2) be the braided Hopf algebra with primitive generator x and braiding c, where
c(x ⊗ x) = −x ⊗ x. Then there exists a unique algebra map π :R → T such that

π(x0) = x, π(x1) = 0, π(x2) = 0.

Moreover, π is a surjective map of braided N0-graded Hopf algebras. Then kerπ is the ideal
(x1, x2), but it is not categorical because of the relations

c(R ⊗ kerπ) � c(x1 ⊗ x2) = −x0 ⊗ x1 /∈ kerπ ⊗ R.

In this case c does not induce a braiding on the algebra R′ defined via Eq. (2.4), and R′
does not become a braided Hopf algebra. Nevertheless for this particular example the quotient
η(R, t)/η(T , t) of Hilbert series is still a series with nonnegative integer coefficients, see for
example [Gra00a, Theorem 3.8], [MS00, Corollary 3.3]. The proofs of the latter statements use
a (noncategorical) section of the map R → T instead of requiring that kerπ is categorical.

Following the suggestions of the referee we add two remarks.

Remark 2.9. Suppose that R and T are graded connected cocommutative Hopf algebras over
a field of characteristic zero. By the Cartier–Kostant–Milnor–Moore theorem one knows that R =
U(LR) and T = U(LT ) are (isomorphic to) the universal enveloping algebras of the (graded) Lie
algebras LR and LT of primitive elements in R and T , respectively. The PBW theorem implies
that

kerπ = L0U(LR) = U(LR)L0,

where L0 = LR ∩ kerπ is an ideal of the Lie algebra LR . In this case one has by definition
R′(n) � (Ln

0U(L0)/L
n+1
0 U(L0)) ⊗ U(LR/L0), where Ln

0 has to be interpreted as a subspace of
U(L0) ⊂ U(LR). Note that

⋂
n∈N0

Ln
0U(L0) ⊂ ⋂

n∈N0
(kerπ) = {0}, and hence the freeness of

R′ over R′(0) is equivalent to the isomorphism U(LR) � U(L0) ⊗ U(LR/L0).

Remark 2.10. There are two natural universal graded braided Hopf algebras associated to a
Hopf algebra H0 with bijective antipode and a Yetter–Drinfel’d module V ∈ H0

H0
YD. These are

the tensor Hopf algebra T V and the cotensor Hopf algebra T cV [Nic78]. On the one hand,
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B(V ) is a quotient of T V containing V , and hence generally R′ is not isomorphic to T V as a
graded algebra, because R′ is not generated by V . On the other hand, B(V ) is a braided Hopf
subalgebra of both R′ and T cV . However R′ is not isomorphic to T cV as a graded coalgebra.
Indeed, R′ may contain nonzero primitive elements of degree at least 2, while T cV does not
contain such elements. Therefore the method given in Proposition 2.3 gives a construction of
graded (braided) Hopf algebras which are neither tensor nor cotensor Hopf algebras.

3. Lyndon words

Let A = {1,2, . . . ,d} be a totally ordered set by 1 < 2 < · · · < d. We think of A as an alphabet
and 1, . . . ,d as the letters of A. Let A be the set of nonempty words in this alphabet, and let ∅
denote the empty word. For a word u = a1a2 · · ·ar with ai ∈ A, 1 � i � r , we say that r is
the length of u and we write r = |u|. We consider on A the lexicographic order <. This means
that u < v if and only if v = uu′ for some u′ ∈ A or u = wiu′ and v = wjv′, where i < j and
w,u′, v′ ∈ {∅} ∪ A.

A word u ∈ A is called a Lyndon word if u = u1u2 with u1, u2 ∈ A implies that u < u2. For
example: letters are Lyndon words, ij is a Lyndon word for i < j, 12122 is a Lyndon word, and
1212 is not a Lyndon word. We write L = {u ∈ A | u is a Lyndon word}.

Proposition 3.1. (See [Lot83], Proposition 5.1.3.) A word u is a Lyndon word if and only if u ∈ A

or u = vw with v,w ∈ L and v < w. More precisely, if w is the proper right factor of maximal
length of u = vw ∈ L that belongs to L, then also v ∈ L and v < vw < w.

If u ∈ L, |u| � 2, then the decomposition u = vw in Proposition 3.1 with w of maximal length is
called the Shirshov decomposition of u. We write Шu = (v,w).

Lemma 3.2. Let u,v ∈ L, u < v, |u| � 2, and let Шu = (u1, u2). Then exactly one of the follow-
ing possibilities occurs:

(1) Шuv = (u, v) and u2 � v.
(2) Шuv = (u′

1, u
′′
1u2v) for some words u′

1, u
′′
1 such that u1 = u′

1u
′′
1 and u2 < v (here u′′

1 may be
empty).

Proof. This is equivalent to [Lot83, Proposition 5.1.4]. �
Lemma 3.3. (See [Kha99], Lemma 4.) Let u,v ∈ L, u = u1u2 for u1, u2 ∈ A and suppose that
u2 < v. Then uv < u1v.

We take on L the lexicographic order. Thus, L is a new alphabet containing the original
alphabet A, and following Kharchenko [Kha99] we say that the elements of L are super-letters.
Words in super-letters are called super-words. The length |w| of a super-word w is the sum of
the lengths of its super-letters. A monotonic super-word is a non-increasing word on the set of
super-letters, i.e., a (possibly empty) word v1 · · ·vn such that vi ∈ L and v1 � v2 � · · · � vn.
Let M denote the set of monotonic super-words. In what follows the notation v1 · · ·vn ∈ M will
mean that v1, . . . , vn ∈ L and v1 � · · · � vn. Sometimes we also write v

m1
1 · · ·vmn

n ∈ M , in which
case we mean that v1, . . . , vn ∈ L, v1 > · · · > vn, and m1, . . . ,mn � 1. Monotonic super-words
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are lexicographically ordered on the alphabet of super-letters. Notice that the empty super-word
is the smallest super-word. For a super-letter u, we shall write

L>u = {v ∈ L | v > u}, L�u = {v ∈ L | v � u},
M>u = {v1 · · ·vr ∈ M | r � 1, v1 � · · · � vr > u},
M�u = {v1 · · ·vr ∈ M | r � 1, v1 � · · · � vr � u}. (3.4)

Theorem 3.5. (Lyndon, see [Lot83, Theorem 5.1.5 and Proposition 5.1.6].) A word in A can be
written in a unique way as a monotonic super-word. Moreover, if u = v1 · · ·vn ∈ M then vn is
the smallest right factor of u (smallest with respect to lexicographic order in A).

As an example, the word 1231233122123 is decomposed as a monotonic super-word as

1231233122123 = (1231233)(122123),

and in turn, Ш1231233 = (123,1233).

Lemma 3.6. Let w = w1 · · ·wn be a super-word with wi ∈ L for 1 � i � n. Then the decompo-
sition of w as a monotonic super-word, w = v1 · · ·vm, satisfies the relation v1 · · ·vm � w1 · · ·wn

with respect to the lexicographic order on super-words.

Proof. We proceed by induction on the number of super-letters of w. If w is a super-letter then
we are done. Otherwise w = w1 · · ·wn, where n � 2 and wi ∈ L ∀i. Again, if w1 � w2 � · · · �
wn then we are done. On the other hand, if wi < wi+1 for some i, then w′

i := wiwi+1 ∈ L

by Proposition 3.1, and one has w = w1 · · ·wi−1w
′
iwi+2 · · ·wn with w′

i > wi . Hence the claim
follows from the induction hypothesis. �
Lemma 3.7. (See [Kha99], Lemma 5.) Let w = w1 · · ·wm and v = v1 · · ·vn be monotonic super-
words. Then w < v (with respect to the lexicographic order on M) if and only if w1 · · ·wm <

v1 · · ·vn with respect to the lexicographic order on A.

The following technical lemma will be needed in the proof of Theorem 4.12.

Lemma 3.8. Let w = w1 · · ·wm and v = v1 · · ·vn be nonempty monotonic super-words with
w � v and assume that v1 = · · · = vr > vr+1, where r � n. For all i � m let (w′

i ,w
′′
i ) ∈ M × M

such that either w′
i � wi or w′

i = ∅, w′′
i = wi . Then the pair (w′

1 · · ·w′
m,w′′

1 · · ·w′′
m) satisfies one

of the following relations.

(1) w′
1 · · ·w′

m > vr+1 · · ·vn,
(2) w′′

1 · · ·w′′
m > vr

1 ,
(3) w = v and (w′

1 · · ·w′
m,w′′

1 · · ·w′′
m) = (vr+1 · · ·vn, v

r
1).

Proof. Assume first that w1 > v1. Then either w′
1 > v1 > vr+1 · · ·vn or w′

1 = ∅, w′′
1 = w1 > v1.

In the first case we have relation (1) and in the second one relation (2) is fulfilled. On the other
hand, if w1 � v1 then because of w � v and w is monotonic, one has m � r and wi = v1 for all
i � r . Suppose first that there exists i � r such that w′ �= ∅ and w′ = ∅ for all j < i. In this case
i j
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w′
i � v1 > vr+1 · · ·vn and hence (1) holds. It remains to consider the case w′

i = ∅ for all i � r .
Then one has w′′

1 · · ·w′′
r = vr

1. Therefore, if w′′
i �= ∅ for some i > r then again relation (2) holds.

Otherwise w′
i � wi for all i > r . Then one has either w′

1 · · ·w′
m = w′

r+1 · · ·w′
m > vr+1 · · ·vn,

in which case (1) holds, or m = n, w = v, and w′
i = wi for all i > r . The latter relations im-

ply (3). �
Let H0 be a Hopf algebra with bijective antipode and let V = ⊕d

i=1 Vi be a direct sum of
Yetter–Drinfel’d modules over H0. Let T V be the tensor algebra of V . For simplicity, we will
omit the ⊗ symbol in products of elements of T V . Let . and δ denote the left action and the
left coaction of H0 on T V , respectively. We will use Sweedler notation δ(x) = x(−1) ⊗ x(0) for
x ∈ T V . The algebra T V has a braiding c :T V ⊗ T V → T V ⊗ T V . Note that one has

c(x ⊗ y) = x(−1).y ⊗ x(0), c−1(x ⊗ y) = y(0) ⊗ S−1(y(−1)).x

for all x, y ∈ T V . In particular, equations

c(Vi ⊗ Vj) = Vj ⊗ Vi, i, j ∈ {1, . . . ,d}

hold. We define

[x, y] = xy − mc−1(x ⊗ y), �x, y�= xy − mc(x ⊗ y).

where m is the multiplication in T V .

Definition 3.9. Let a1, . . . , am ∈ A and u = a1 · · ·am ∈ A. We write V u = Va1Va2 · · ·Vam � Va1 ⊗
Va2 ⊗ · · · ⊗ Vam . The elements in V u will be called u-vectors. If xu ∈ V u and u = vw, then
we write xu = xv ⊗ xw ∈ V v ⊗ V w (which is in general a sum of tensors) using the canonical
isomorphism V u � V v ⊗ V w .

We shall inductively define bracket operations [ ] :
⊕

n�0 V ⊗n → T V and � � :
⊕

n�0 V ⊗n →
T V as follows. Let xu be a u-vector.

(1) If u has length 0 or 1, then [xu] = �xu�= xu.
(2) If the word u is a Lyndon word and Шu = (v,w), then [xu] = [[xv], [xw]] and �xu� =

��xv�, �xw�� (see Definition 3.9).
(3) If the word u is decomposed as a monotonic super-word by u = v1 · · ·vr , then [x] = [xv1 ] ·

[xv2] · · · [xvr ] and �x�= �xv1� · �xv2� · · · �xvr �.

Remark 3.10. Recall that the braided antipode ST V of the braided Hopf algebra T V satisfies
ST V (x) = x(−1)S(x(0)), where S is the antipode of T V #H0. Moreover, ST V (xy) = mc(ST V (x)⊗
ST V (y)) = (x(−1).ST V (y))ST V (x(0)). With these formulas it is easy to see that for any u ∈ L and
any u-vector x one has ST V ([x]) = (−1)|u|−1�x�. Therefore most of the following considerations
can be performed without difficulties with � �’s instead of [ ]’s. Even if � �’s seem to be more
natural, we will follow the tradition of Kharchenko [Kha99] with [ ]’s.

Definition 3.11. If u is a Lyndon word and x is a u-vector, then [x] will be called a u-[ ]-letter.
If u is a monotonic super-word and x is a u-vector then [x] will be called a u-[ ]-word. Let
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V [u] = [V u] denote the space of u-[ ]-words. A [ ]-letter ([ ]-word) is a u-[ ]-letter (u-[ ]-word)
for some super-letter (monotonic super-word) u.

Lemma 3.12. Let u be a monotonic super-word. For x, y ∈ T V , let c−1(x ⊗ y) =: ∑
xy ⊗ xy .

Then

(1) if x is a u-vector and h ∈ H0 then one has [h.x] = h.[x] and [x](−1) ⊗[x](0) = x(−1) ⊗[x(0)];
(2) if x is a u-vector and y is a v-vector for a monotonic super-word v, then [x]y ⊗ [x]y =

xy ⊗ [xy] and x[y] ⊗ x[y] = [xy] ⊗ xy ;
(3) for all x, y, z ∈ T V ,

[x, yz] = [x, y]z +
∑

xy
[
xy, z

];
(4) for all x, y, z ∈ T V ,

[[x, y], z] − [
x, [y, z]] =

∑[
x, yz

]
yz −

∑
xy

[
xy, z

]
.

Proof. (1) follows from the fact that the brading is a map of Yetter–Drinfel’d modules. (2)
follows from (1) and the braid relation. (3) and (4) are straightforward calculations using the
definition of [ ] and the braid relation for c−1. �

We prove now a variant of [Kha99, Lemma 6].

Lemma 3.13. Let X,Y be a u-[ ]-letter and a v-[ ]-letter respectively, where u,v ∈ L and u < v.
Then [X,Y ] is a homogeneous linear combination of products of [ ]-letters corresponding to
super-letters in L�uv .

Proof. Let z = uv. If Шz = (u, v), then [X,Y ] is a z-[ ]-letter and we are done. We proceed by
induction on |uv|, since we already know the lemma for the case |u| = |v| = 1.

Let m = |uv| and suppose that the lemma holds for u′, v′ ∈ L, u′ < v′, X ∈ V [u′], Y ∈ V [v′],
where either |u′v′| < m or |u′v′| = m, u′ < u (notice that there are only finitely many Lyndon
words of a given length). As noted above, we may suppose that Шuv �= (u, v). Then, if Шu =
(u1, u2), we must have u2 < v because of Lemma 3.2. Let X = [x] for x ∈ V u, Y = [y] for
y ∈ V v , and let x = xu = xu1 ⊗ xu2 , Xu1 ⊗ Xu2 = [xu1] ⊗ [xu2]. Thanks to Lemma 3.12(4), (2),
we have

[X,Y ] = [[Xu1,Xu2], Y
]

= [
Xu1, [Xu2, Y ]] +

∑[
Xu1,

Xu2 Y
]
(Xu2)

Y −
∑

Xu1 Xu2

[
X

Xu2
u1 , Y

]

= [
Xu1, [Xu2, Y ]] +

∑[
Xu1,

[
xu2 y

]] · [xy
u2

] −
∑[

xu1 xu2

] · [[xxu2
u1

]
, Y

]
. (3.14)

We start by considering the first summand on the right-hand side. By the induction hypothesis,
[Xu2, Y ] is a homogeneous linear combination of products of [ ]-letters corresponding to super-
letters in L�u2v , and the degree of these products is |u2v|. By Lemma 3.12(3), and since u1 <

u2 < u2v, the element [Xu1, [Xu2, Y ]] is a combination of products of [ ]-letters corresponding to
super-letters in L�u2v ⊂ L>uv on one hand, and a bracket [h.Xu1,X

′] on the other hand, where
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h ∈ H0 and X′ is a w-[ ]-letter with w � u2v. By induction hypothesis again, the latter is a linear
combination of products of [ ]-letters corresponding to super-letters in L�u1u2v = L�uv .

We continue with the second and third summands in (3.14). Concerning the u2-[ ]-letters
appearing there, notice that u2 > uv. Indeed, u2 > u1u2 and, since u1u2 is not the beginning
of u2, then we still have u2 > u1u2v = uv. On the other factors, which are brackets between
u1-[ ]-letters and v-[ ]-letters, we can apply the induction hypothesis since |u1v| < |uv| and u1 <

u1u2 < u2 < v. These factors are then linear combinations of products of [ ]-letters corresponding
to super-letters in L�u1v , and u1v > uv by Lemma 3.3. �
Lemma 3.15. Let u ∈ L. Any product of [ ]-letters corresponding to super-letters in L�u is
a linear combination of (monotonic) [ ]-words corresponding to super-words in M�u.

Proof. Let t = v1 · v2 · · ·vn be a super-word, where vi ∈ L�u ∀i. Let x = xt = xv1 · · ·xvn be
a t-vector, where here t is considered as a word on A. We call x[t] := [xv1] · · · [xvn ] a t-[ ]-
vector (notice that the term “t-[ ]-word” is reserved for when t is monotonic). We proceed by
induction. We take on the set of super-words the lexicographic order ≺ given by the order <

on L. Suppose that the result is true for w-[ ]-vectors when |w| < |t | or when |w| = |t | and
w � t . If v1 � v2 � · · · � vn, there is nothing to prove. Otherwise, let i be such that 1 � i < n and
vi < vi+1. Let t ′ = v1 · · ·vi+1vi · · ·vn and t ′′ = v1 · · · (vivi+1) · · ·vn, where the factor (vivi+1)

stands for the Lyndon word vivi+1. Let

x[t ′] := [xv1] ⊗ · · · ⊗ c−1([xvi
] ⊗ [xvi+1 ]

) ⊗ · · · ⊗ [xvn],
x[t ′′] := [xv1 ] ⊗ · · · ⊗ [[xvi

], [xvi+1 ]
] ⊗ · · · ⊗ [xvn].

Notice that x[t ′] is a t ′-[ ]-vector where t ′ is a super-word in the same super-letters as t , and
t ′ � t . Also, by Lemma 3.13, and since vivi+1 > vi , x[t ′′] is a linear combination of w-[ ]-vectors,
where w runs on super-words � t having only super-letters in L�u. The last thing to notice is
that x[t] = x[t ′] + x[t ′′]. Therefore, the induction hypothesis implies the claim. �
Definition 3.16. Let x ∈ T V \ {0}, x = ∑

n xn, where xn ∈ V ⊗n. The greatest n such that xn �= 0
will be called the degree of x. Let m be the degree of x and let xm = ∑

u∈Am
xu, where Am is the

set of words of length m and xu is a u-vector for all u. Let v be the least u (with respect to the
order in Am) such that xu �= 0. Then xv will be called the leading vector of x.

Lemma 3.17. Let x ∈ T V be a nonzero u-vector for a monotonic super-word u. Then x is the
leading vector of [x].

Proof. We prove first the lemma for Lyndon words u by induction on |u|. If |u| = 1, the result
is clear. If Шu = (v,w), then

[x] = [[xv], [xw]] = (
m − mc−1)([xv] ⊗ [xw]).

By the induction hypothesis, [xv][xw] is a sum of products of v′-vectors and w′-vectors, where v′
runs on words � v and w′ runs on words � w. For such v′,w′ we have u = vw � v′w′, whence
[xv][xw] is a sum of u′-vectors with u′ � u. Furthermore, the equality holds if and only if v′ = v

and w′ = w. Thus, by using induction hypothesis, the leading vector of [xv][xw] is xvxw . For the
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term mc−1([xv] ⊗ [xw]) we reason similarly: as u is a Lyndon word, u = vw < w < wv, from
where mc−1([xv] ⊗ [xw]) is a sum of u′-vectors where u′ runs on words � wv > u. Therefore,
such u′-vectors do not contribute to the leading vector of [xvxw].

If u is not a super-letter, then by Theorem 3.5 we have u = v1 · · ·vn ∈ M . By definition
[x] = [xv1] · · · [xvn ], which, by the previous step, is a sum of v′

1 · · ·v′
n-vectors with v′

i � vi ∀i,
and its leading vector is xv1 · · ·xvn = x. �

Recall that M is the set of monotonic super-words.

Corollary 3.18. One has T V = ⊕
u∈M V [u].

Proof. Since letters in A are also super-letters, the spaces V [u] generate T V thanks to
Lemma 3.15. The linear independence of these spaces follows immediately from Lemma 3.17. �
Corollary 3.19. Let u ∈ A and x be a u-vector. Then x − [x] is a linear combination of
w-[ ]-words with w > u.

Proof. This assertion can be proven with the help of bases of
⊕

|v|=|u| V v and
⊕

|v|=|u| V [v]
which are obtained from each other using triangular matrices. Alternatively, Lemmas 3.7
and 3.17 imply that x − [x] is a linear combination of w-vectors with w > u, and proceed by
induction. �

Corollary 3.19 allows us to give a description of products of [ ]-letters, which is different from
the one in Lemma 3.15.

Corollary 3.20. Let n ∈ N, v1, . . . , vn ∈ L and let Xi be a vi -[ ]-letter for all i ∈ {1, . . . , n}. Then
X1 · · ·Xn is a linear combination of w-[ ]-words, where w runs over monotonic super-words
� v′

1 · · ·v′
n′ , and v′

1 · · ·v′
n′ is the decomposition of v1 · · ·vn as a monotonic super-word.

Definition 3.21. Let K be a totally ordered set and let there be vector spaces Wk for each k ∈ K .
We define

⊗>
k∈K Wk to be the direct sum of vector spaces Wk1 ⊗ · · · ⊗ Wkr where k1 > k2 >

· · · > kr .

For a vector space W , we write T +W = ⊕
n�1 W⊗n. Notice that for each u ∈ L, T +V [u] is

a non-unital subalgebra of T +V in the category H0
H0
YD. Further, the Z-grading of T V induces

a Z-grading on its subalgebras T V [u]. In particular, the Hilbert series η(T V [u], t) of T V [u] is
a series in the variable t |u|.

Theorem 3.22. One has

T +V �
>⊗

u∈L

T +V [u].

More precisely, the map

μ :
>⊗

T +V [u] → T +V,
u∈L
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which is the multiplication map in each summand, is an isomorphism in the category H0
H0
YD. In

particular, the Hilbert series of T V is

η(T V, t) =
∏
u∈L

η
(
T V [u], t

)
.

Proof. This is a reformulation of Corollary 3.18. �
4. Hopf algebras generated by a Hopf subalgebra and a vector space

Our aim is now to apply the results of the previous section to arbitrary Hopf algebras. In many
(though not all) cases we will be able to provide some new structure results.

Let H be a Hopf algebra with bijective antipode and a filtration

0 = F−1 ⊂ F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊆ H.

The filtration is a Hopf algebra filtration if

(1) It is a filtration: H = ⋃
n∈N

Fn,
(2) it is an algebra filtration: FnFm ⊆ Fn+m,
(3) it is a coalgebra filtration: Δ(Fn) ⊆ ∑

i+j=n Fi ⊗Fj , and
(4) it behaves well with the antipode: S(Fn) ⊆ Fn.

Notice that in this case F0 is a Hopf subalgebra of H . We will consider Hopf algebras with
a Hopf algebra filtration satisfying a stronger version of condition (2):

Assumption 4.1. FnFm = Fn+m.

A Hopf algebra with a Hopf algebra filtration satisfying Assumption 4.1 can be presented in
the following way.

Suppose that the Hopf algebra H is generated (as an algebra) by a Hopf subalgebra H0 and
a vector space V , such that

ΔV ⊆ V ⊗ H0 + H0 ⊗ V + H0 ⊗ H0, and (4.2)

S(V ) ⊆ KV K. (4.3)

We define F0 = H0, F1 = H0 + H0V H0, and Fn = (F1)
n. Then F∗ is a Hopf algebra filtration

which satisfies Assumption 4.1.
As an important example, assume that H is generated by grouplikes and skew-primitive ele-

ments and take H0 to be the subalgebra generated by the grouplikes and V to be the subspace
generated by skew-primitives.

For n � 0 let Hn = Fn/Fn−1. Let then

grF H =
⊕

Fn/Fn−1 =
⊕

Hn
n�0 n�0
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be the associated graded Hopf algebra. Then we can consider the projection π : grF H → H0 and
the inclusion ι :H0 → grF H , and this allows to write grF H = R#H0 as the smash product of
H0 and the right coinvariants R = {x ∈ grF H | (id⊗π)Δ(x) = x ⊗ 1}. This is now a standard
procedure: the last part is due to Radford [Rad85] and Majid [Maj94], while the first part is
a modification of the one due to Andruskiewitsch and Schneider [AS98].

Also, R is a braided Hopf algebra in H0
H0
YD, and R = ⊕

n�0 Rn, R0 is the base field and R1

is a Yetter–Drinfel’d module which generates R because of Assumption 4.1. We let V := R1 and
we make the following assumption:

Assumption 4.4. V = ⊕d
i=1 Vi is a direct sum of Yetter–Drinfel’d modules over H0.

Remark 4.5. If V is irreducible, the methods in this paper do not yield any information on R.
Otherwise, V has a nontrivial maximal flag V = V1 ⊃ V2 ⊃ · · · ⊃ Vd of Yetter–Drinfel’d sub-
modules over H0 (which is not necessarily a full flag of vector subspaces). Consider on the vector
space Rn the Z-filtration Rn = Rn,n ⊃ Rn,n+1 ⊃ · · ·, where Rn,m = ∑

i1+···+in�m Vi1Vi2 · · ·Vin .
Then

R′ :=
∞⊕

n=0

R′
n, where R′

n =
⊕
m�n

Rn,m/Rn,m+1,

is a graded braided Hopf algebra in the category H0
H0
YD, and all of the following considerations

may be applied to R′ instead of R.

Consider the projection T V → R. We want to study the images under this projection of the
components T +V [u] appearing in Theorem 3.22. We begin by considering the comultiplication
in T V #H0.

We write the left H0-coaction on r ∈ R by δ(r) = r(−1) ⊗ r(0). Recall that the coproduct
in the smash product R#H0 is given by Δ(r#h) = (r(1)#r(2)

(−1)h(1)) ⊗ (r(2)
(0)#h(2)), where

ΔR(r) =: r(1) ⊗ r(2) is the coproduct of the braided Hopf algebra R. This notation applies in
particular for R = T V .

Proposition 4.6. Let X ∈ T V ⊆ T V #H0 be a u-[ ]-letter. Then the coproduct Δ of T V #H0

satisfies

Δ(X) = X ⊗ 1 + X(−1) ⊗ X(0) +
∑

i

(
X′

ihi

) ⊗ X′′
i ,

where X′
i ,X

′′
i ∈ T +V , hi ∈ H0, and each X′

i is a wi -[ ]-word with wi ∈ M>u.

Proof. We proceed by induction on |u|. If u ∈ A, we get X ∈ V and then Δ(X) = X ⊗ 1 +
X(−1) ⊗ X(0), whence we are done. Assume now that |u| � 2, Шu = (v,w) and x is a u-vector.
Then x = xvxw , and we write X = [x], Y = [xv], Z = [xw]. By standard computations,
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Δ(X) = Δ
([Y,Z]) = Δ

(
YZ − Z(0)

(
S−1(Z(−1)).Y

))
= (

Y (1)Y (2)
(−1) ⊗ Y (2)

(0)

) · (Z(1)Z(2)
(−1) ⊗ Z(2)

(0)

)
− (

Z(0)
(1)Z(0)

(2)
(−1) ⊗ Z(0)

(2)
(0)

)
· ((S−1(Z(−1)).Y

(1)
)
S−1(Z(−2))Y

(2)
(−1)Z(−4) ⊗ S−1(Z(−3)).Y

(2)
(0)

)
. (4.7)

Note that Y is a v-[ ]-letter and Z is a w-[ ]-letter. According to the induction hypothesis and
Lemma 3.12(1), for any h ∈ H0, h.Y (1) can be taken to be either ε(h)1, h.Y or a v′-[ ]-word with
v′ ∈ M>v . Similarly, h.Z(1) can be taken to be either ε(h)1, h.Z or a w′-[ ]-word with w′ ∈ M>w ,
and Z(0)

(1) to be either 1, Z(0) or a w′-[ ]-word with w′ ∈ M>w .
We begin by considering the summand

(
Y (1)Y (2)

(−1) ⊗ Y (2)
(0)

) · (Z(1)Z(2)
(−1) ⊗ Z(2)

(0)

)
= Y (1)Y (2)

(−1)Z
(1)Z(2)

(−1) ⊗ Y (2)
(0)Z

(2)
(0)

= Y (1)
(
Y (2)

(−2).Z
(1)

)
Y (2)

(−1)Z
(2)

(−1) ⊗ Y (2)
(0)Z

(2)
(0).

We consider the summands in which Y (1) is a v′-[ ]-word with v′ ∈ M>v . Notice that since these
v′ are shorter than v, they belong to M>vw . Therefore, since Z(1) is either 1 or a t-[ ]-word with
t ∈ M>vw , by Lemma 3.15 these summands satisfy the claim of the proposition. The summands
in which Y (1) = 1 and Z(1) �= 1 also satisfy the claim, because w > u. We are thus left with

Y(−1)Z(−1) ⊗ Y(0)Z(0) + YZ(1)Z(2)
(−1) ⊗ Z(2)

(0). (4.8)

We consider now the other summand of Δ(X). By similar reasons, we are left with

−Y(−1)Z(−2) ⊗ Z(0)

(
S−1(Z(−1)).Y(0)

)
− Z(0)

(1)Z(0)
(2)

(−1)

(
S−1(Z(−1)).Y

)
S−1(Z(−2))Z(−4) ⊗ Z(0)

(2)
(0)

(
S−1(Z(−3)).1

)
= −Y(−1)Z(−2) ⊗ Z(0)

(
S−1(Z(−1)).Y(0)

)
− Z(0)

(1)Z(0)
(2)

(−1)

(
S−1(Z(−1)).Y

) ⊗ Z(0)
(2)

(0)

= −Y(−1)Z(−2) ⊗ Z(0)

(
S−1(Z(−1)).Y(0)

)
− Z(1)

(0)

((
Z(2)

(−2)S
−1(Z(2)

(−3)

)
S−1(Z(1)

(−1)

))
.Y

)
Z(2)

(−1) ⊗ Z(2)
(0)

= −Y(−1)Z(−1) ⊗ mc−1(Y(0) ⊗ Z(0)) − mc−1(Y ⊗ Z(1)
)
Z(2)

(−1) ⊗ Z(2)
(0). (4.9)

Adding (4.8) and (4.9) we get

Y(−1)Z(−1) ⊗ [Y(0),Z(0)] + [
Y,Z(1)

]
Z(2)

(−1) ⊗ Z(2)
(0).

Notice that Y(−1)Z(−1) ⊗ [Y(0),Z(0)] = X(−1) ⊗ X(0). Also, when in the second summand we
put Z(1) = Z, we get X ⊗ 1. Finally, when Z(1) is a w′-[ ]-word with w′ ∈ M>w , by using
Lemmas 3.12(3), 3.13 and 3.15 we obtain terms which satisfy the claim. �



M. Graña, I. Heckenberger / Journal of Algebra 314 (2007) 324–343 339
Corollary 4.10. Let u ∈ L and v ∈ M�u. Let X ∈ T V ⊆ T V #H0 be a v-[ ]-word. Then the
coproduct Δ of T V #H0 satisfies

Δ(X) = X ⊗ 1 + X(−1) ⊗ X(0) +
∑

i

(
X′

ihi

) ⊗ X′′
i ,

where X′
i ,X

′′
i ∈ T +V , hi ∈ H0, and each X′

i is a wi -[ ]-word with wi ∈ M�u.

Proof. This follows at once from Proposition 4.6 and Lemma 3.15. �
We study the structure of R now. For that, we will use the following notation.

Definition 4.11. For u ∈ L, let V [�u] be the subalgebra of T V generated by (
∑

v∈L,v�u V [v]).
Let I[�u] be the ideal of V [�u] generated by (

∑
v∈L,v>u V [v]). We define also V[u] = π(V [u]),

V[�u] = π(V [�u]), V+
[�u] = π(V [�u]) ∩ ker ε, and I[�u] = π(I[�u]), where π :T V → R is the

canonical projection.

The grading on R induces a grading on all of the algebras and ideals defined above. Take
u ∈ L. Notice that the graded algebras V [�u]/I[�u] and V[�u]/I[�u] have only elements in
degrees m|u| where m ∈ N0. Moreover, Lemma 3.15 and Corollary 3.20 imply that V [�u] is the
subspace of T V generated by w-[ ]-words with w ∈ M�u and I[�u] is the subspace of V [�u]
generated by w-[ ]-words with w = w1 · · ·wn ∈ M�u with w1 > u.

Notice that the leading vector of any X ∈ V [�u] \ I[�u] of degree m|u| is a um-vector. Thus,
we can choose for any u ∈ L a graded linear map

ιu :V+
[�u]/I[�u] → T +V [u] =

⊕
m∈N

V [um] ⊂ V [�u]

such that πu ◦ π |T +V [u] ◦ ιu = id, where π :T V → R and πu :V[�u] → V[�u]/I[�u] are the
canonical maps.

Recall the notion of
⊗> form Definition 3.21.

Theorem 4.12. The map φ :
⊗>

u∈L V+
[�u]/I[�u] → R+ defined by

φ(Xu1 ⊗ · · · ⊗ Xun) = π
(
ιu1(Xu1) · · · ιun(Xun)

)
, (4.13)

where u1, . . . , un ∈ L, u1 > · · · > un, and Xui
∈ V+

[�ui ]/I[�ui ] for all i, is an isomorphism of
graded vector spaces.

To prove the theorem we will use the following lemma.

Lemma 4.14. Let u = u
n1
1 · · ·unr

r ∈ M , and let Xi ∈ V [uni
i ] for all i. Take Yi = πui

(π(Xi)) ∈
V+

[�ui ]/I[�ui ]. Then

X1 · · ·Xr − ιu1(Y1) · · · ιur (Yr ) ∈ kerπ +
∑
w>u
w∈M

V [w].
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Proof. Since πui
π(Xi − ιui

(Yi)) = 0, we have Xi − ιui
(Yi) ∈ kerπ + I[�ui ]. We then consider

Z = X1 · · ·Xr − ιu1(Y1) · · · ιur (Yr)

=
r∑

j=1

X1 · · ·Xj−1
(
Xj − ιuj

(Yj )
)
ιuj+1(Yj+1) · · · ιur (Yr )

∈
r∑

j=1

V [un1
1 ] · · ·V [unj−1

j−1 ]I[�uj ]V [unj+1
j+1 ] · · ·V [unr

r ] + kerπ.

As mentioned above the theorem, I[�uj ] consists of sums of w-[ ]-words where w runs on
monotonic super-words > u

nj

j . Thus, by Corollary 3.20 and Lemma 3.6, Z is a sum of
w-[ ]-words, where w runs on super-words > u. �
Proof of Theorem 4.12. Since the set of words of a given length is finite, the surjectivity of φ

follows easily from the previous lemma.
We now prove injectivity of φ. To do so define φ′ :

⊗>
u∈L V+

[�u]/I[�u] → T +V by

φ′(Xu1 ⊗ · · · ⊗ Xun) = ιu1(Xu1) · · · ιun(Xun),

where u1, . . . , un ∈ L, u1 > · · · > un, and Xui
∈ V+

[�ui ]/I[�ui ] for all i. Assume then that there
exists a smallest integer m such that φ is not injective in degree m. For all u ∈ L let Bu = {bu,i |
i ∈ Iu} be a homogeneous basis of V+

[�u]/I[�u], where Iu is an appropriate index set, and let
Xu,i := ιu(bu,i) for all u ∈ L, i ∈ Iu.

Suppose that there exists a nonempty finite subset M ′ of M with |w| = m for w ∈ M ′,
and for each w = w

n1
1 · · ·wnr

r ∈ M ′ there exist nonzero elements bw ∈ V+
[�w1]/I[�w1] ⊗ · · · ⊗

V+
[�wr ]/I[�wr ] such that φ′(

∑
w∈M ′ bw) ∈ kerπ . Let u = u

m1
1 · · ·ums

s , where u1 > · · · > us , be
the minimal element of M ′, and write bu := ∑

i1,...,is
λi1,...,is bu1,i1 ⊗· · ·⊗bus,is with λi1,...,is ∈ k.

We consider T V as a subalgebra of T V #H0, and then we have

Δ

(
φ′

( ∑
w∈M ′

bw

))
=:

∑
i

Z′
i ⊗ Z′′

i ∈ (kerπ#H0) ⊗ T V + (T V #H0) ⊗ kerπ.

Therefore,

∑
i

S−1(Z′′
i (−1)

)
Z′

i ⊗ Z′′
i (0) ∈ kerπ ⊗ T V + T V ⊗ kerπ. (4.15)

We apply Proposition 4.6 to each [ ]-letter in φ′(
∑

w∈M ′ bw), and we use Lemma 3.8 to obtain
a description of the tensor factors of (4.15). Afterwards, we apply Corollary 3.20 and Lemma 3.6
to rearrange the tensor factors as sums of [ ]-words. This gives
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∑
i

S−1(Z′′
i (−1)

)
Z′

i ⊗ Z′′
i (0)

∈
∑

i1,...,is

λi1,...,is S
−1(Xu1,i1 (−1))Xu1,i1 (−2)Xu2,i2 · · ·Xus,is ⊗ Xu1,i1 (0)

+
∑

w′,w′′∈M

w′>u
m2
2 ···ums

s or w′′>u
m1
1

V [w′] ⊗ V [w′′].

By repeatedly using Lemma 4.14 and since φ′(
∑

w∈M ′ bw) ∈ kerπ , we get

∑
i

S−1(Z′′
i (−1)

)
Z′

i ⊗ Z′′
i (0) ∈

∑
i1,...,is

λi1,...,is φ
′(bu2,i2) · · ·φ′(bus,is ) ⊗ φ′(bu1,i1)

+
∑

w′,w′′∈M, |w′|,|w′′|<|u|,
w′>u

m2
2 ···ums

s or w′′>u
m1
1

(
Imφ′ ∩ V [w′]) ⊗ (

Imφ′ ∩ V [w′′])

+ kerπ ⊗ T V + T V ⊗ kerπ.

Therefore, (4.15) shows that

∑
i1,...,is

λi1,...,is φ
′(bu2,i2 · · ·bus,is ) ⊗ φ′(bu1,i1)

∈
∑

w′,w′′∈M, |w′|,|w′′|<|u|,
w′>u

m2
2 ···ums

s or w′′>u
m1
1

(
Imφ′ ∩ V [w′]) ⊗ (

Imφ′ ∩ V [w′′])

+ kerπ ⊗ T V + T V ⊗ kerπ. (4.16)

By the assumption on m, π ◦ φ′ = φ is injective in degrees < m and hence the sums

(
kerπ ∩ V ⊗n

) +
( ⊕

w′∈M, |w′|=n,

w′>u
m2
2 ···ums

s

Imφ′ ∩ V [w′]
)

+ (
Imφ′ ∩ V [um2

2 ···ums
s ])

(
kerπ ∩ V ⊗n

) +
( ⊕

w′′∈M, |w′′|=n,

w′′>u
m1
1

Imφ′ ∩ V [w′′]
)

+ (
Imφ′ ∩ V [um1

1 ])

are direct in T V whenever 1 � n < m. Thus (4.16) implies that λi1,...,is = 0 for all i1, . . . , is ,
which contradicts to the choice of bu. �
Corollary 4.17. The Hilbert series of R factors as

η(R, t) =
∏
u∈L

η(V[�u]/I[�u], t).



342 M. Graña, I. Heckenberger / Journal of Algebra 314 (2007) 324–343
The importance of Corollary 4.17 becomes clearer with the following theorem.

Theorem 4.18. For each u ∈ L, the algebra V[�u]/I[�u]#H0 is a |u|Z-graded Hopf algebra,
where the grading is induced by that of R#H0. Equivalently, V[�u]/I[�u] is a |u|Z-graded

braided Hopf algebra in H0
H0
YD. Moreover, V[�u]/I[�u] is generated by V[u]/(I[�u] ∩ V[u]) and

it projects onto the Nichols algebra B(V[u]/(I[�u] ∩ V[u])). The quotient

η(V[�u]/I[�u], t)/η
(
B

(
V[u]/(I[�u] ∩ V[u])

)
, t |u|)

is a power series with nonnegative integer coefficients.

Proof. Since V[�u]/I[�u] is graded and its degree 0 part is k, in order to show the first state-
ment it is sufficient to prove that V[�u]/I[�u]#H0 is a bialgebra (see [Tak71]). This follows
from Proposition 2.1, by taking A = R#H0, B = V[�u], and I = I[�u]. It remains to show that
Eq. (2.2) hold in this case. Indeed, it suffices to prove this for generators of B and I , and [ ]-letters
satisfy (2.2) thanks to Proposition 4.6.

By the definition of V[�u] and I[�u], V[�u]/I[�u] is generated as an algebra by the
space V[u]/(I[�u] ∩ V[u]). Further, V[�u]/I[�u] can be considered as the quotient of the ten-
sor algebra T (V[u]/(I[�u] ∩ V[u])) by a graded Hopf ideal consisting of elements of de-
gree � 2. Since B(V[u]/(I[�u] ∩ V[u])) is the quotient of T (V[u]/(I[�u] ∩ V[u])) by the
maximal Hopf ideal consisting of elements of degree � 2, there exists a natural projection
V[�u]/I[�u] → B(V[u]/(I[�u] ∩ V[u])). The last statement follows from Proposition 2.3 (see
also Remark 2.5). �
Remark 4.19. In Theorem 4.18 it is necessary to put t |u| as the variable of the Hilbert series
of the Nichols algebra, since in B(V[u]/(I[�u] ∩ V[u])) the elements of V[u]/(I[�u] ∩ V[u]) are
considered to be in degree 1.

Open Problems 4.20.

(1) Assume that R is a Nichols algebra. Are the graded Hopf algebras V[�u]/I[�u] appearing
in Theorem 4.18 again Nichols algebras? This is true in the case where char k = 0, H0 is
the group algebra of an abelian group, and R is finite-dimensional, by Kharchenko’s PBW
theorem. More generally, if R has a finite number of PBW generators, the statement follows
by using the Weyl groupoid.

(2) Generalize Theorems 4.12 and 4.18 to a more general setting which covers also Ufer’s PBW
basis.

(3) Is it possible to generalize results of this paper to arbitrary (say finite-dimensional) non-
semisimple Hopf algebras?
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