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Abstract

Let k be a field and let H be a rigid braided Hopf k-algebra. In this paper we continue the study of
the theory of braided Hopf crossed products began in [J.A. Guccione, J.J. Guccione, Theory of braided
Hopf crossed products, J. Algebra 261 (2003) 54–101]. First we show that to have an H -braided comodule
algebra is the same that to have an H †-braided module algebra, where H † is a variant of H∗, and then we
study the maps [ , ] and ( , ), that appear in the Morita context introduced in the above cited paper.
© 2006 Published by Elsevier Inc.
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0. Introduction

Let k be a field, H a finite-dimensional Hopf k-algebra and H ∗ the dual Hopf algebra of H .
It is well known that to have a right H -comodule is “the same” that to have a left H ∗-module.
A similar duality exists between the notions of right H -comodule algebra and left H ∗-module al-
gebra. More generality, these duality results are also satisfied by rigid Hopf algebras in a braided
category (see, for instance, [T2, Proposition 2.7]). The main purpose of this paper is to extend
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them to the context introduced in [G-G], and to show that most of the results that appears in
[C-F-M,C-F], remain valid in this setting.

Let H be a braided Hopf k-algebra. Recall from [G-G] that a left H -braided space (V , s) is a
k-vector space V together with a bijective map s :H ⊗ V → V ⊗ H , which is compatible with
the operations of H and satisfies

(s ⊗ H)◦(H ⊗ s)◦(c ⊗ V ) = (V ⊗ c)◦(s ⊗ H)◦(H ⊗ s),

where c is the braid of H (compatibility of s with c). When V is replaced by a k-algebra A and
s is also compatible with the operations of A we say that (A, s) is a left H -braided algebra and s

is a left transposition on H on A. Assume that H is rigid and let H ∗ be the dual of H . Following
V. Lyubashenko, given a bijective map s :H ⊗V → V ⊗H we define a map (s−1)� :H ∗ ⊗V →
V ⊗ H ∗ by

(
s−1)� = (

evH ⊗ V ⊗ H ∗)◦
(
H ∗ ⊗ s−1 ⊗ H ∗)◦

(
H ∗ ⊗ V ⊗ coevH

)
,

where evH :H ∗ ⊗ H → k and coevH : k → H ⊗ H ∗ are the evaluation and coevaluation maps.
Then, we show that (V , s) is a left H -braided space if and only if (V , (s−1)�) is a left H ∗-braided
space. Similarly, we show that if A is a k-algebra, then s :H ⊗ A → A ⊗ H is a transposition if
and only if (s−1)� :H ∗ ⊗ A → A ⊗ H ∗ is. Let (V , s) be a left H -braided space and let (A, s) be
a left H -braided algebra. Recall from [G-G] that:

• (V , s) is a left H -module if V is a left H -module in the standard sense and the action
ρ :H ⊗ V → V satisfies s ◦(H ⊗ ρ) = (ρ ⊗ H)◦(H ⊗ s)◦(c ⊗ V ).

• (V , s) is a right H -comodule if V is a right H -comodule in the standard sense and the
coaction ν :V → V ⊗ H satisfies (ν ⊗ H)◦s = (V ⊗ c)◦(s ⊗ H)◦(H ⊗ ν).

• (A, s) is a left H -module algebra if (A, s) is a left H -module and the action ρ :H ⊗ A → A

satisfies:
(a) ρ(h ⊗ 1) = ε(h)1,
(b) ρ ◦(H ⊗ μ) = μ◦(ρ ⊗ ρ)◦(H ⊗ s ⊗ A)◦(Δ ⊗ A ⊗ A).

• (A, s) is a right H -comodule algebra if (A, s) is a right H -comodule and the coaction
ν :A → A ⊗ H satisfies:
(a) ν(1) = 1 ⊗ 1,
(b) ν ◦μ = (μ ⊗ μ)◦(A ⊗ s ⊗ A)◦(ν ⊗ ν).

Assume that H is rigid and let H † = H ∗op cop op cop. Given a map ν :V → V ⊗ H we define a
map ρν :H † ⊗ V → V by

ρν := (V ⊗ evH )◦
((

s−1)� ⊗ H
)

◦
(
H † ⊗ ν

)
.

We show that (V , s) is a right H -comodule via ν if and only if (V , (s−1)�) is a left H †-module
via ρν . Furthermore we show that if we have a left H -braided algebra (A, s) instead of a left H -
braided space (V , s), then (A, s) is a right H -comodule algebra via ν if and only if (V , (s−1)�)

is a left H †-module algebra via ρν . Note that this does not work if we use H ∗ instead H †, as was
pointed by Takeuchi in [T2, Proposition 2.7].
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Let H be a braided Hopf algebra and (A, s) a left H -module algebra. There are two associative
k-algebras associated with (A, s). The ring of invariants

HA = {
a ∈ A: h · a = ε(h)a

}
and the smash product A # H , which is the vector space A ⊗ H , endowed with the product

(a # h)(b # l) =
∑

i

ah(1) · bi # hil,

where
∑

i bi ⊗hi = s(h⊗ b) and, as usual, a # h denotes a ⊗h, etcetera. Recall from [G-G] that
if H is rigid, then A has a structure of (HA,A # H)-bimodule and a structure of (A # H,HA)-
bimodule, such that

[ , ] :N ⊗HA M → A # H, given by [a, b] = aT b,

( , ) :M ⊗A#H N → HA, given by (a, b) = T · (ab),

is a Morita context relating HA and A # H , where T ∈ H † is a fixed nonzero left integral, M =
HAAA#H and N = A#H AHA.

Using the results mentioned above we establish conditions for any or both of the maps [ , ]
and ( , ) be surjective and we give some applications. In particular we generalize Theorems 1.2
and 1.2′ of [C-F-M] and Theorems 1.8, 1.11 and 1.15 of [C-F].

1. Preliminaries

In this article we work in the category of vector spaces over a field k. Then we assume im-
plicitly that all the maps are k-linear and all the algebras and coalgebras are over k. The tensor
product over k is denoted by ⊗, without any subscript, and the category of k-vector spaces is
denoted by Vect . Given a vector space V and n � 1, we let V n denote the n-fold tensor power
V ⊗ · · · ⊗ V . Given vector spaces U,V,W and a map f :V → W we write U ⊗ f for idU ⊗ f

and f ⊗ U for f ⊗ idU . We assume that the algebras are associative unitary and the coalge-
bras are coassociative counitary. Given an algebra A and a coalgebra C, we let μ :A ⊗ A → A,
η : k → A, Δ :C → C ⊗C and ε :C → k denote the multiplication, the unit, the comultiplication
and the counit, respectively, specified with a subscript if necessary.

Some of the results of this paper are valid in the context of monoidal categories. In fact we use
the nowadays well-known graphic calculus for monoidal and braided categories. As usual, mor-
phisms will be composed from up to down and tensor products will be represented by horizontal
concatenation in the corresponding order. The identity map of a vector space will be represented
by a vertical line. Given an algebra A, the diagrams

, ◦ and

stand for the multiplication map, the unit and the action of A on a left A-module, respectively.
Given a coalgebra C, the comultiplication, the counit and the coaction of C on a right C-comod-
ule will be represented by the diagrams

, ◦ and ,
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respectively. The maps c and s, which appear in Definition 1.1 and at the beginning of Section 2,
will be represented by the diagrams

and
,

respectively. The inverse maps of c and s will be represented by

and
.

Finally, any other map g :V → W will be geometrically represented by the diagram

g .

Let V , W be vector spaces and let c :V ⊗ W → W ⊗ V be a map. Recall that:

• If V is an algebra, then c is compatible with the algebra structure of V if c◦(η⊗W) = W ⊗η

and c◦(μ ⊗ W) = (W ⊗ μ)◦(c ⊗ V )◦(V ⊗ c).
• If V is a coalgebra, then c is compatible with the coalgebra structure of V if (W ⊗ ε)◦c =

ε ⊗ W and (W ⊗ Δ)◦c = (c ⊗ V )◦(V ⊗ c)◦(Δ ⊗ W).

Of course, there are similar compatibilities when W is an algebra or a coalgebra.

1.1. Braided bialgebras and braided Hopf algebras

Below we recall briefly the concepts of braided bialgebra and braided Hopf algebra following
the presentation given in [T1]. For a study of braided Hopf algebras we refer to [T1,T2,L1,F-M-
S,A-S,D,So,B-K-L-T].

Definition 1.1. A braided bialgebra is a vector space H endowed with an algebra structure, a
coalgebra structure and a braiding operator c ∈ Autk(H 2) (called the braid of H ), such that c is
compatible with the algebra and coalgebra structures of H , Δ◦μ = (μ⊗μ)◦(H ⊗c⊗H)◦(Δ⊗Δ),
η is a coalgebra morphism and ε is an algebra morphism. Furthermore, if there exists a map
S :H → H , which is the inverse of the identity map for the convolution product, then we say that
H is a braided Hopf algebra and we call S the antipode of H .

Usually H denotes a braided bialgebra, understanding the structure maps, and c denotes its
braid. If necessary, we will use notations as cH , μH , et cetera.

Remark 1.2. Assume that H is an algebra and a coalgebra and c ∈ Autk(H 2) is a solution of
the braiding equation, which is compatible with the algebra and coalgebra structures of H . Let
H ⊗c H be the algebra with underlying vector space H ⊗ H and multiplication map given by
μH⊗cH := (μ ⊗ μ)◦(H ⊗ c ⊗ H). It is easy to see that H is a braided bialgebra with braid c iff
Δ :H → H ⊗c H and ε :H → k are morphisms of algebras.

Definition 1.3. Let H and L be braided bialgebras. A map g :H → L is a morphism of braided
bialgebras if it is a morphism of algebras, a morphism of coalgebras and c◦(g ⊗ g) = (g ⊗ g)◦c.
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Let H and L be braided Hopf algebras. It is well known that if g :H → L is a morphism of
braided bialgebras, then g◦SH = SL◦g.

Remark 1.4. Let H be a braided bialgebra. A direct computation shows that Ĥ = (H,μ◦τ, η,

τ ◦Δ,ε), where τ :H ⊗H → H ⊗H denotes the flip, is a braided bialgebra, with braid ĉ := τ ◦c◦τ .
Note that if H is a braided Hopf algebra with antipode S, then Ĥ also is.

Remark 1.5. If H is a braided bialgebra, then H
op
c := (H,μ◦c−1, η,Δ, ε) and H

cop
c := (H,μ,η,

c−1◦Δ,ε) are braided bialgebras, with braid c−1. By combining these constructions we obtain the
braided bialgebras H

op cop
c := (H,μ◦c−1, η, c◦Δ,ε) and H

cop op
c := (H,μ◦c, η, c−1 ◦Δ,ε), with

braid c. Furthermore, if S is an antipode for H , then S is also an antipode for H
op cop
c and H

cop op
c ,

and if S is bijective, then S−1 is an antipode for H
op
c and H

cop
c . For a proof of these facts see

[A-G, Proposition 2.2.4].

Let H be a braided Hopf algebra. The antipode S of H is a morphism of braided Hopf algebras
from H

op cop
c to H , and from H to H

cop op
c . Furthermore, (S ⊗H)◦c = c◦(H ⊗S) and (H ⊗S)◦c =

c◦(S ⊗ H) (compatibility of S with c).

1.2. Rigid braided bialgebras

In this subsection we recall the definition and some properties of rigid braided bialgebras and
Hopf algebras, that we will need later.

Let V and W be vector spaces. Assume that W is finite-dimensional. Let evW :W ∗ ⊗ W → k

be the evaluation map and let coevW : k → W ⊗ W ∗ be the coevaluation map. For each map
T :V ⊗ W → W ⊗ V , Lyubashenko [L2] has introduced the map

T � :W ∗ ⊗ V → V ⊗ W ∗,

defined by T � := (evW ⊗ V ⊗ W ∗)◦(W ∗ ⊗ T ⊗ W ∗)◦(W ∗ ⊗ V ⊗ coevW).

Definition 1.6. A finite-dimensional braided bialgebra H is called rigid if the map c� :H ∗⊗H →
H ⊗ H ∗ is bijective. In this case (c−1)� :H ∗ ⊗ H → H ⊗ H ∗ is also a bijective map.

For each rigid braided bialgebra H , let cH ∗H := (c−1)�, cHH ∗ := (c�)−1 and cH ∗ := c��.

Theorem 1.7. [T1, Theorem 5.7] Let H be a rigid braided bialgebra. There exists a Hopf alge-
bra L, with bijective antipode, and a braided bialgebra H in the Yetter–Drinfeld category YDL

L ,
such that:

(1) (F (H),F (μH),F (ηH),F (ΔH),F (εH)) = (H,μH ,ηH ,ΔH , εH ), where F is the forgetful
functor from YDL

L to Vect .
(2) If c is the braid of YDL

L , then F(cHH) = cH , F(cHH∗) = cHH ∗ , F(cH∗H) = cH ∗H and
F(cH∗H∗) = cH ∗ .

(3) F(evM) = evF(M) and F(coevM) = coevF(M) for each rigid object M ∈ YDL
L , where

evM :M∗ ⊗ M → k and coevM : k → M ⊗ M∗ are the evaluation and coevaluation maps
of M .
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Furthermore, if H is a braided Hopf algebra, we can take H as a Hopf algebra in YDL
L . In this

case, we have F(SH) = SH .

As was pointed in [T2, Section 1], each map f :V ⊗ W → 1, in a braided tensor category C
with initial object 1, satisfies

(U ⊗ f )◦(cV U ⊗ W) = (f ⊗ U)◦
(
V ⊗ c−1

WU

)
and

(U ⊗ f )◦
(
c−1
UV ⊗ W

) = (f ⊗ U)◦(V ⊗ cUW ),

for all object U ∈ C. Similarly, each map g : 1 → V ⊗ W satisfies

(cUV ⊗ W)◦(U ⊗ g) = (
V ⊗ c−1

UW

)
◦(g ⊗ U) and(

c−1
V U ⊗ W

)
◦(U ⊗ g) = (V ⊗ cWU)◦(g ⊗ U).

Let H be a rigid braided bialgebra. Thanks to Theorem 1.7 this remark applies to the maps evH

and coevH . More importantly, as was noted in [T1, Section 6], this theorem allows to reformulate
all the known results about rigid bialgebras in a Yetter–Drinfeld category as results about rigid
braided bialgebras. Next, we recall those ones that we will need later.

Theorem 1.8. [T2, Theorem 4.1] The antipode of a rigid braided Hopf algebra is bijective.

Definition 1.9. Let H be a rigid braided Hopf algebra. An element t ∈ H is a left integral if
ht = ε(h)t , for all h ∈ H , and it is a right integral if th = ε(h)t , for all h ∈ H . We let

∫ l

H
denote

the set of left integrals and we let
∫ r

H
denote the set of right integrals.

Theorem 1.10. ([L2, Theorem 1.6], [F-M-S, Corollary 5.8], [T2, Theorem 4.6], [D, Theorem 3])
The sets

∫ l

H
and

∫ r

H
are one-dimensional vector subspaces of H .

Theorem 1.11. [T1, Section 7] The sets
∫ l

H
and

∫ r

H
satisfy c(

∫ l

H
⊗H) = H ⊗ ∫ l

H
, c(H ⊗ ∫ l

H
) =∫ l

H
⊗H , c(

∫ r

H
⊗H) = H ⊗ ∫ r

H
and c(H ⊗ ∫ r

H
) = ∫ r

H
⊗H .

Corollary 1.12. Let H be a rigid braided Hopf algebra. There exist unique isomorphisms of
braided Hopf algebras

f l
H :H → H and f r

H :H → H,

such that c(h ⊗ t) = t ⊗ f l
H (h) and c(u ⊗ h) = f r

H (h) ⊗ u, for all t ∈ ∫ l

H
\{0}, u ∈ ∫ r

H
\{0} and

h ∈ H .

Corollary 1.13. Let t ∈ ∫ l

H
. Since S(t)S(f l

H (h)) = μ◦(S ⊗ S)◦c(h ⊗ t) = S(ht) = ε(h)S(t) =
ε(S(f l

H (h)))S(t), we have S(
∫ l

H
) = ∫ r

H
. In a similar way it can be proven that S(

∫ r

H
) = ∫ l

H
,∫ l

H
= ∫ r

H
op
c

and
∫ r

H
= ∫ l

H
op
c

.
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Remark 1.14. Let t ∈ ∫ l

H
\{0}, u ∈ ∫ r

H
\{0} and h ∈ H . From the fact that c and S are compatible,

S(
∫ l

H
) = ∫ r

H
and S(

∫ r

H
) = ∫ l

H
, it follows that c(t ⊗ h) = f r

H (h) ⊗ t and c(h ⊗ u) = u ⊗ f l
H (h).

Using this it is easy to see that there exists q ∈ k \ {0} such that c(t ⊗ t) = qt ⊗ t and c(u ⊗ u) =
qu ⊗ u.

Let H be a rigid braided Hopf algebra and let t be a nonzero left integral of H . There is
an algebra map α :H → k such that th = α(h)t , for all h ∈ H . This map is called the modular
function of H . From Corollary 1.13 and Remark 1.14 it follows that if u is a nonzero right
integral, then hu = α(S(f l

H (h)))u.

Theorem 1.15. [T1, Section 7] We have (α ⊗ H)◦c = H ⊗ α and (H ⊗ α)◦c = α ⊗ H .

Theorem 1.16 (Maschke’s Theorem). A rigid braided Hopf algebra H is semisimple iff there
exists t ∈ ∫ l

H
, such that ε(t) �= 0.

Using this theorem it is easy to see that if H is semisimple, then
∫ l

H
= ∫ r

H
and the maps f r

H

and f l
H of Corollary 1.12 are the identity maps.

Theorem 1.17. [T2, Theorem 2.16] If H is a rigid braided bialgebra, then H ∗ is also a rigid
braided bialgebra, with braid cH ∗ = (cH )�� and multiplication, unit, comultiplication and counit
given by,

μH ∗ := (
evH ⊗ H ∗)◦

(
H ∗ ⊗ evH ⊗ H ⊗ H ∗)◦

(
H ∗⊗2 ⊗ ΔH ⊗ H ∗)◦(cH ∗ ⊗ coevH ),

ηH ∗(λ) := λ · εH for all λ ∈ k,

ΔH ∗ := (
evH ⊗ c−1

H ∗
)

◦
(
H ∗ ⊗ μH ⊗ H ∗⊗2)◦

(
H ∗ ⊗ H ⊗ coevH ⊗ H ∗)◦

(
H ∗ ⊗ coevH

)
,

εH ∗(ϕ) := ϕ(1) for all ϕ ∈ H ∗.

Furthermore, if H is a braided Hopf algebra, then so is H ∗, with antipode SH ∗(ϕ) := ϕ◦SH .
Finally, the correspondence H 	→ H ∗ is functorial in an evidence sense.

Remark 1.18. For each rigid braided bialgebra H , the canonical bijection H → H ∗∗ is a bial-
gebra isomorphism (in the sense of Definition 1.3, but not as bialgebras in a Yetter–Drinfeld
category YDL

L , since i is not compatible with the actions of L on H and H ∗∗).

Notation 1.19. For each rigid braided bialgebra H , we write H † := (H ∗)op cop op cop. Note that
the multiplication and the comultiplication of H † are described by interchanging c and c−1 in
Theorem 1.17. We will write cH †H := cH ∗H , cHH † := cHH ∗ and cH † := cH ∗ . It is immediate
that H †† = H ∗∗ and that, if c is involutive, then H † = H ∗. Finally, when H is a braided Hopf
algebra, then S2 :H † → H ∗ is an isomorphism of braided Hopf algebras and, by Corollary 1.13,∫ l

H † = ∫ l

H ∗ and
∫ r

H † = ∫ r

H ∗ .

Throughout this work ϕ ↼ h and h ⇀ ϕ denote the right and left standard actions of H

on H †, given by (ϕ ↼ h)(l) = ϕ(hl) and (h ⇀ ϕ)(l) = ϕ(lh), respectively.
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Proposition 1.20. [D, Theorem 3b] Let H be a rigid braided Hopf algebra and let φ be a nonzero
left or right integral of H †. The map ϑ :H → H †, defined by ϑ(h) := φ ↼ h, is a right H -
module isomorphism. Similarly the map ϑ ′ :H → H †, defined by ϑ ′(h) := h ⇀ φ, is a left H -
module isomorphism.

Corollary 1.21. Given a left or right nonzero integral φ of H † there exist t ∈ ∫ l

H
and u ∈ ∫ r

H

such that t ⇀ φ = ε and φ ↼ u = ε. Note that this is equivalent to say that φ(t) = φ(u) = 1.

Remark 1.22. Let H be a rigid braided bialgebra. Then H † acts on the left on H via ϕ ⇀ h :=∑
i h(1)iϕ(h(2)i ), where

∑
i h(2)i ⊗h(1)i = c−1(h(1) ⊗h(2)). Similarly H † acts on the right on H

via h ↼ ϕ := ∑
i ϕ(h(1)i )h(2)i . Composing these actions with the canonical bijection H → H ††

we recover the standard left and right actions of H † on H ††. Assume that H is a rigid braided
Hopf algebra. Hence, by Corollary 1.21, for each left or right nonzero integral l of H there exist
T ∈ ∫ l

H † and U ∈ ∫ r

H † such that T ⇀ l = 1 and l ↼ U = 1. Note that this is equivalent to say that
T (l) = U(l) = 1. Since (H

cop
c )† = (H ∗)op, applying this result to H

cop
c and taking into account

Corollary 1.21 and Notation 1.19, we obtain that there exist T ′ ∈ ∫ l

H † and U ′ ∈ ∫ r

H † such that
l(1)T

′(l(2)) = 1 and U ′(l(1))l(2) = 1. Since T ′(l) = 1 = T (l) and U ′(l) = 1 = U(l), we have that
T ′ = T and U ′ = U .

Remark 1.23. Let H be a rigid braided Hopf algebra and let α be the modular function. For h ∈
H we write hα := α ⇀ h. So, hα = ∑

i h(1)iα(h(2)i ), where
∑

i h(2)i ⊗h(1)i = c−1(h(1) ⊗h(2)).
From Theorem 1.15 it follows easily that hα = h(1)α(h(2)) and that the map h 	→ hα is an algebra
automorphism.

Let t ∈ ∫ l

H
be a nonzero left integral, α the modular function and q ∈ k such that c(t ⊗ t) =

qt ⊗ t . By [G-G, Lemma 8.3] we know that S(t) = qt(1)α(t(2)). Applying this result to H
cop
c we

obtain S−1(t) = q−1 ∑
i α(t(1)i )t(2)i , where

∑
i t(2)i ⊗ t(1)i = c−1(t(1) ⊗ t(2)). We will use this

formula in the proof of the following proposition.

Proposition 1.24. Let H be a rigid braided Hopf algebra. If T ∈ ∫ l

H † and t ∈ ∫ l

H
satisfy t ⇀

T = ε, then T ↼ t = α, T ↼ S−1(t) = q−1ε, T ⇀ t = 1 and T ⇀ S−1(t) = q−11.

Proof. For each h ∈ H we have (T ↼ t)(h) = T (th) = α(h)T (t) = α(h). So, the first
formula holds. Let us prove the third one. For h ∈ H , let c−1(Δ(h)) = ∑

i h(2)i ⊗ h(1)i .
Since

∑
i ϕ(h(1)i )T (h(2)i ) = (ϕT )(h) = ϕ(1)T (h), where ϕT is the product in H †, we have∑

i h(1)iT (h(2)i ) = T (h)1. Thus T ⇀ t = T (t)1 = 1. Next we prove the second and fourth
equalities. By the discussion preceding this proposition, T (S−1(t)) = q−1 ∑

i α(t(1)i )T (t(2)i ) =
q−1(αT )(t) = T (S−1(t)) = q−1α(1)T (t) = q−1. Hence,(

T ↼ S−1(t)
)
(h) = T

(
S−1(t)h

) = T
(
S−1(t)

)
ε(h) = q−1ε(h)

for all h ∈ H , and

ϕ
(
T ⇀ S−1(t)

) =
∑

i

ϕ
(
S−1(t)(1)i

)
T

(
S−1(t)(2)i

)
= (ϕT )

(
S−1(t)

) = ϕ(1)T
(
S−1(t)

) = q−1ϕ(1)
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for all ϕ ∈ H †. From these facts it follows immediately that T ↼ S−1(t) = q−1ε and T ⇀

S−1(t) = q−11. �
Let H be a rigid braided Hopf algebra and φ a nonzero left or right integral of H †. Given a

map φ :H → H we let φ∗ denote the transpose of φ. Let f̃ l
H :H → H and f̃ r

H :H → H be the
automorphisms of H defined by f l

H † := (f̃ l
H )∗ and f r

H † := (f̃ r
H )∗. Using that

c−1
HH † = (

H ⊗ H † ⊗ evH

)
◦(H ⊗ cH † ⊗ H)◦

(
coevH ⊗ H † ⊗ H

)
,

cH †H = (
H ⊗ H † ⊗ evH

)
◦
(
H ⊗ c−1

H † ⊗ H
)

◦
(
coevH ⊗ H † ⊗ H

)
,

we easily obtain that cHH †(h ⊗ φ) = φ ⊗ (f̃ l
H )−1(h) and cH †H (φ ⊗ h) = (f̃ r

H )−1(h) ⊗ φ.

2. Transpositions

Let H be a braided bialgebra. We recall from [G-G] that a left H -braided space (V , s) is a
vector space V endowed with a bijective map s :H ⊗ V → V ⊗ H , which is compatible with
the bialgebra structure of H and satisfies (s ⊗ H)◦(H ⊗ s)◦(c ⊗ V ) = (V ⊗ c)◦(s ⊗ H)◦(H ⊗ s)

(compatibility of s with the braid). Actually in the definition given in [G-G] is not required
that s be bijective, but here we add this condition, since it is necessary to prove most of the
properties. When H is a braided Hopf algebra it is also true that s ◦(S ⊗ V ) = (V ⊗ S)◦s, as was
shown in [D-G-G, Section 1]. It is easy to check that (V , s) is a left H -braided space iff (V , s)

is a left H
op
c -braided space and that this happens iff (V , s) is a left H

cop
c -braided space. A map

g :V → V ′ is said to be an homomorphism of left H -braided spaces, from (V , s) to (V ′, s′), if
(g ⊗ H)◦s = s′◦(H ⊗ g).

The notion of right H -braided space can be introduced in a similar way. We leave the details
to the reader.

Let H be a braided bialgebra, V a vector space and s :H ⊗ V → V ⊗ H a bijective map. It is
easy to check that (V , s) is a left H -braided space iff (V , s−1) is a right H -braided space.

Let H be a rigid braided bialgebra and let (V , s) be a left H -braided space. From the definition
of (s−1)� it follows immediately that

H∗ V H

=
H∗ V H

and
H V H∗

=
H V H∗

, where = (
s−1

)� and = s−1.

For each result about left H -braided spaces there is an analogous result about right H -
braided spaces. The same is valid for the notions of transposition, H -module, H -module algebra,
H -comodule and H -comodule algebra that we will consider later. In general we will announce
the left version for H -braided spaces, transpositions and modules and the right version for co-
modules, and we leave the other ones to the reader.

Let H be a rigid braided bialgebra, V a vector space and s :H ∗ ⊗ V → V ⊗ H ∗ a bijective
map. We define the map �(s−1) :H ⊗ V → V ⊗ H , by

�
(
s−1) := (evH ◦cHH ∗ ⊗ V ⊗ H)◦

(
H ⊗ s−1 ⊗ H

)
◦
(
H ⊗ V ⊗ c−1∗ ◦coevH

)
.
H H
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A direct computation shows that

H∗

=
H∗

= idH ∗ and

H

=
H

= idH .

Using this and the definition of �(s−1) it is easy to check that

H V H∗
=

H V H∗

and

H∗ V H

=
H∗ V H

, where = �
(
s−1

)
and = s−1.

Lemma 2.1. Let H be a rigid braided bialgebra. For each left H -braided space (V , s), we have

(
V ⊗ c−1

HH ∗
)

◦
((

s−1)� ⊗ H
)

◦
(
H ∗ ⊗ s

) = (
s ⊗ H ∗)◦

(
H ⊗ (

s−1)�)
◦
(
c−1
HH ∗ ⊗ V

)
,

(V ⊗ cH ∗H )◦
((

s−1)� ⊗ H
)

◦
(
H ∗ ⊗ s

) = (
s ⊗ H ∗)◦

(
H ⊗ (

s−1)�)
◦(cH ∗H ⊗ V ).

Proof. By basic properties of the evaluation and coevaluation maps and the fact that (V , s) is a
left H -braided space, we have

H∗ H V

=
H∗ H V

=
H∗ H V

=
H∗ H V

=
H∗ H V

=
H∗ H V

,

which proves the first equality. The second one can be checked in a similar way. �
Lemma 2.2. Let H be a rigid braided bialgebra. For each left H ∗-braided space (V , s), we have

(
V ⊗ c−1

H ∗H
)

◦
(
�
(
s−1) ⊗ H ∗)◦(H ⊗ s) = (s ⊗ H)◦

(
H ∗ ⊗ �

(
s−1))◦

(
c−1
H ∗H ⊗ V

)
,

(V ⊗ cHH ∗)◦
(
�
(
s−1) ⊗ H ∗)◦(H ⊗ s) = (s ⊗ H)◦

(
H ∗ ⊗ �

(
s−1))◦(cHH ∗ ⊗ V ).

Proof. The first equality can be proven by replacing H ∗ by H , H by H ∗,

by and by

in the diagrams used in the proof of Lemma 2.1. The second one is similar. �
Proposition 2.3. Let H be a rigid braided bialgebra. The following assertions hold:

(1) If (V , s) is a left H -braided space, then (V , (s−1)�) is a left H ∗-braided space.
(2) If (V , s) is a left H ∗-braided space, then (V , �(s−1)) is a left H -braided space.
(3) The above constructions are inverse one of each other.
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Proof. (1): Using the definition of ηH ∗ and the fact that s−1 is compatible with εH it is easy
to check diagrammatically that (s−1)� is compatible with ηH ∗ . We left the details to the reader.
Similarly, (s−1)� is compatible with εH ∗ . Next, we check the other compatibilities and that (s−1)�

is bijective.
Compatibility of (s−1)� with μH ∗ : Since (H ⊗ s−1)◦(s−1 ⊗ H)◦(V ⊗ Δ) = (Δ ⊗ V )◦s−1 and

(c ⊗ V )◦(H ⊗ s−1)◦(s−1 ⊗ H) = (H ⊗ s−1)◦(s−1 ⊗ H)◦(V ⊗ c), we have

H∗ H∗ V

=
H∗ H∗ V

=
H∗ H∗ V

=

H∗ H∗ V

=

H∗ H∗ V

=

H∗ H∗ V

=
H∗ H∗ V

=
H∗ H∗ V

.

Compatibility of (s−1)� with ΔH ∗ : This can be checked dualizing the proof that (s−1)� es com-
patible con μH ∗ .

Compatibility of (s−1)� with cH∗: We have

H∗ H∗ V

=
H∗ H∗ V

=

H∗ H∗ V

=

H∗ H∗ V

=
H∗ H∗ V

.

(s−1)� is bijective: By the discussion at the beginning of this section, basic properties of the
evaluation and coevaluation maps and Lemma 2.1,

V H∗

=

V H∗

=

V H∗

=
V H∗

= idV ⊗H ∗ .

A similar argument shows that (s−1)� is left invertible.
(2): Using the definition of εH ∗ , that η is compatible with cHH ∗ , and that εH ∗ is compatible

with s−1 and c−1
H ∗H , it is easy to check diagrammatically that �(s−1) is compatible with ηH . We

leave the details to the reader. Similarly, �(s−1) is compatible with εH . Next, we check the other
compatibilities and that �(s−1) is bijective.
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Compatibility of �(s−1) with μH : By the compatibility of c−1
HH ∗ with μH and the definition

of ΔH ∗ ,

= = = .

Using this fact, the definitions of �(s−1) and ΔH ∗ , and the compatibility of c−1
H ∗ ◦ΔH ∗ with c−1

HH ∗
and s−1, we obtain

H H V

=

H H V

=

H H V

=

H H V

=

H H V

=

H H V

=

H H V

=

H H V

=
H HV

.

Compatibility of �(s−1) with ΔH : This can be checked dualizing the proof that �(s−1) is
compatible con μH .

Compatibility of �(s−1) with cH : By the compatibility of s−1 with cH ∗ , we have

H H V

=

H H V

=

H H V

=

H H V

=

H H V

=
H H V

.
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�(s−1) is bijective: By the discussion before Lemma 2.1, basic properties of the evaluation and
coevaluation maps and Lemma 2.2,

V H

=

V H

=
V H

=

V H

=

V H

= idV ⊗H .

A similar argument shows that �(s−1) is left invertible.
(3): Left to the reader (use the formulas for the inverse of (s−1)� and �(s−1) obtained in the

proofs of items (1) and (2), respectively). �
Remark 2.4. Let H be a rigid braided bialgebra and (V , s) a left H -braided space. In the proof
of item (1) of Proposition 2.3, it was shown that(

H ∗ ⊗ V ⊗ evH ◦cHH ∗
)

◦
(
H ∗ ⊗ s ⊗ H ∗)◦

(
c−1
H ∗H ◦coevH ⊗ V ⊗ H ∗)

is the compositional inverse of (s−1)�. Applying this result with H replaced by H op, we obtain
that (

H ∗ ⊗ V ⊗ evH ◦c−1
H ∗H

)
◦
(
H ∗ ⊗ s ⊗ H ∗)◦

(
cHH ∗ ◦coevH ⊗ V ⊗ H ∗)

is also the inverse of (s−1)�. So, both maps coincide. In a similar way, we can check that if (V , s)

is a left H ∗-braided space, then

�
(
s−1) = (

evH ◦c−1
H ∗H ⊗ V ⊗ H

)
◦
(
H ⊗ s−1 ⊗ H

)
◦(H ⊗ V ⊗ cHH ∗ ◦coevH ).

Using the last equality of the Remark 2.4, and arguing as in the discussion above Lemma 2.1,
it is easy to check that

H V H∗
=

H V H∗

and

H∗ V H

=
H∗ V H

, where = �
(
s−1

)
and = s−1.

Definition 2.5. [G-G] Let H be a braided bialgebra and A an algebra. A left transposition of H

on A is a map s :H ⊗ A → A ⊗ H , satisfying

(1) (A, s) is a left H -braided space,
(2) s is compatible with the algebra structure of A.

Note that by condition (1) s is bijective, which was not required in the definition given in
[G-G]. It is immediate that s is a left transposition of H on A iff it is a left transposition of H

op
c

on A and that this happens iff s is a left transposition of H
cop
c on A.

Definition 2.6. Let H be a braided bialgebra and A an algebra. A right transposition of H on A

is a map s :A ⊗ H → H ⊗ A, satisfying
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(1) (A, s) is a right H -braided space,
(2) s is compatible with the algebra structure of A.

As for left transpositions, to have a right transposition of H on A is the same that to have a
right transposition of H

op
c on A and this is equivalent to have a right transposition of H

cop
c on A.

Let H be a braided bialgebra, A an algebra and s :H ⊗ A → A ⊗ H a bijective map. It is
immediate that s is an left transposition of H on A iff s−1 is a right transposition of H on A.

A pair (A, s) consisting of an algebra A and a left transposition of H on A will be called a
left H -braided algebra. Similarly, if s is a right transposition, then (A, s) will be called a right
H -braided algebra.

Proposition 2.7. Let H be a rigid braided bialgebra and let A be an algebra. The following facts
hold:

(1) If s :H ⊗ A → A ⊗ H is a left transposition, then (s−1)� :H ∗ ⊗ A → A ⊗ H ∗ is so too.
(2) If s :H ∗ ⊗ A → A ⊗ H ∗ is a left transposition, then �(s−1) :H ⊗ A → A ⊗ H is so too.

Proof. We prove the first assertion and we leave the second one to the reader. By Proposition 2.3
we only must check that (s−1)� is compatible with the algebra structure of A. It is easy to check
that (s−1)� is compatible with ηA. Let us see that it is compatible with μA. Since (H ⊗μ)◦(s−1 ⊗
A)◦(A ⊗ s−1) = s−1 ◦(μ ⊗ H),

H∗ A A

=
H∗ A A

=
H∗ A A

=
H∗ A A

=
H∗ A A

,

as desired. �
Theorem 2.8. [G-G, Theorem 4.3.1] Let H be a rigid braided Hopf algebra, A an algebra and
s a left transposition of H on A. There is a unique automorphism of algebras gs :A → A, such
that s(t ⊗a) = gs(a)⊗ t for all left or right integral t ∈ H . Furthermore, we have s ◦(f r

H ⊗gs) =
(gs ⊗ f r

H )◦s and s ◦(f l
H ⊗ g−1

s ) = (g−1
s ⊗ f l

H )◦s, where f r
H and f l

H are the maps introduced in
Corollary 1.12.

Proposition 2.9. [G-G, Proposition 4.17] Let H be a rigid braided Hopf algebra, α :H → k

the modular function, A an algebra and s :H ⊗ A → A ⊗ H a bijective transposition. Then,
(A ⊗ α)◦s = α ⊗ A.

Lemma 2.10. Let H be a braided bialgebra and (V , s) a left H -braided space. The following
equality holds:

(
s−1 ⊗ H

)
◦
(
V ⊗ c−1)◦(V ⊗ ΔH )◦s = (H ⊗ s)◦

(
c−1 ⊗ V

)
◦(ΔH ⊗ V ).
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Proof. Since (V ⊗ c−1)◦(s ⊗ H)◦(H ⊗ s) = (s ⊗ H)◦(H ⊗ s)◦(c−1 ⊗ V ), we have

H V

=

H V

=
H V

,

as desired. �
Proposition 2.11. Let H be a rigid braided Hopf algebra, s :H ⊗A → A⊗H a left transposition
and θ :H † → H the map defined by θ(ϕ) = ϕ ⇀ t , where t is a nonzero left integral of H . Then,
(A ⊗ θ)◦(s−1)� = s ◦(θ ⊗ g−1

s ).

Proof. By definition

(A ⊗ θ) ◦ (
s−1

)� =
H† A kt

=
H† A kt

.

Using this fact, Lemma 2.10 and Theorem 2.8, we obtain

s ◦ (θ ⊗ A) =
H† kt A

=
H† A kt

gs

= (A ⊗ θ) ◦ (
s−1

)� ◦ (
H† ⊗ gs

)
,

as we want. �
Corollary 2.12. Let H be a rigid braided Hopf algebra and s :H ⊗ A → A ⊗ H a left transpo-
sition. Then g(s−1)� = g−1

s .

Proof. Let T ∈ ∫ l

H † such that θ(T ) = 1. By Proposition 2.11,

g(s−1)� (a) ⊗ 1 = (A ⊗ θ)◦
(
s−1)�

(T ⊗ a) = s◦
(
θ ⊗ g−1

s

)
(T ⊗ a) = g−1

s (a) ⊗ 1,

as we want. �
Remark 2.13. Let f̃ r

H be as in the discussion at the end of Section 1. By the comments at the
end of Section 1, we know that f̃ r

H = f r
H . Consequently, if f r

H = id, then f r
H † = id. Similarly,

f̃ l
H = f l

H and if f l
H = id, then f l

H † = id.

3. Modules and comodules

Let H be a braided bialgebra. In this section we recall from [G-G] the notions of left H -
braided module and right H -braided comodule and we establish a relation between these con-
cepts.
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Definition 3.1. [G-G] Let (V , s) be a left H -braided space.

(1) We say that (V , s) is a left H -module or V is a left H -braided module if V is a left
H -module in the standard sense and the action ρ :H ⊗ V → V satisfies s ◦(H ⊗ ρ) =
(ρ ⊗ H)◦(H ⊗ s)◦(c ⊗ V ).

(2) We say that (V , s) is a right H -comodule or V is a right H -braided comodule if V is a right
H -comodule in the standard sense and the coaction ν :V → V ⊗ H satisfies (ν ⊗ H)◦s =
(V ⊗ c)◦(s ⊗ H)◦(H ⊗ ν).

A map f : (V , s) → (V ′, s′) is a morphism of left H -modules if it is morphism of left H -
braided spaces and f ◦ρ = ρ′◦(H ⊗f ), where ρ and ρ′ are the actions of H on (V , s) and (V ′, s′),
respectively. The definition of morphism of right H -comodules is similar.

Let (V , s) be a right H -braided space. The concepts of right action of H on (V , s) and left
coaction of H on (V , s) can be introduced in a similar way. We leave the details to the reader.
Next, we establish a relation between these last notions and the ones introduced in Definition 3.1.

Proposition 3.2. Let H be a braided bialgebra and (V , s) a left H -braided space. Then (V , s)

is a left H -module via ρ iff (V , s−1) is a right H
op
c -module via ρ ◦s−1. Similarly, (V , s) is a right

H -comodule via ν iff (V , s−1) is a left H
cop
c -comodule via s−1 ◦ν.

Proof. Left to the reader. �
Let H be a rigid braided bialgebra and let (V , s) be a left H -braided space. Given a map

ν :V → V ⊗ H , we define a map ρν :H † ⊗ V → V by

ρν := (V ⊗ evH )◦
((

s−1)� ⊗ H
)

◦
(
H † ⊗ ν

)
.

Conversely, given a map ρ :H † ⊗ V → V , we define νρ :V → V ⊗ H by

νρ := s◦(H ⊗ ρ)◦(coevH ⊗ V ).

It is easy to check that these constructions are inverse one of each other.
Let H be a rigid braided bialgebra and let H † be as in Notation 1.19. By Proposition 2.3 and

the discussion at the beginning of Section 2, we know that (V , s) is a left H -braided space iff
(V , (s−1)�) is a left H †-braided space.

Lemma 3.3. Let H be a rigid braided bialgebra and let (V , s) be a left H -braided space. Then,
each left H †-module structure on (V , (s−1)�), satisfies

(H ⊗ ρ ⊗ H)◦(coevH ⊗ s) = (H ⊗ s)◦(c ⊗ ρ)◦(H ⊗ coevH ⊗ V ),

where ρ :H † ⊗ V → V is the action of H † on V .
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Proof. By the definitions of (s−1)� and cH † , the fact that (V , (s−1)�) is a left H †-module and
basic properties of the evaluation and coevaluation maps, we have

H† H† V

=
H† H† V

=
H† H† V

=
H† H† V

=

H† H† V

.

From this it follows that

V H

=
V H

,

which clearly implies our assertion. �
Lemma 3.4. Let H be a rigid braided bialgebra. If (V , s) is a right H -comodule, then

(
ν ⊗ H †)◦

(
s−1)� = (V ⊗ cH †H )◦

((
s−1)� ⊗ H

)
◦
(
H † ⊗ ν

)
,

where ν is the coaction of (V , s).

Proof. Since ν is a map of H -braided spaces, we have

V H H†

=
V H H†

=
V H H†

=
V H H†

=
V H H†

,

where the first equality follows from the definition of (s−1)�. �
Theorem 3.5. Let H be a rigid braided bialgebra and (V , s) a left H -braided space. Then (V , s)

is a right H -comodule via ν iff (V , (s−1)�) is a left H †-module via ρν .

Proof. (⇒): Since (V , (s−1)�) is a left H †-braided space and ν is a coaction, we have

ρν(ε ⊗ v) = (V ⊗ evH )◦
((

s−1)� ⊗ H
)

◦
(
H † ⊗ ν

)
(ε ⊗ v) = ε(v(1))v(0) = v,

for all v ∈ V . Hence, ρν is unitary. By Lemma 3.4, the fact that (V , ν) is a right H -comodule, the
discussion following Theorem 1.7, the compatibility of s with c, the discussion at the beginning
of Section 2, and the compatibility of s with Δ, we have
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ρν ◦ (
H † ⊗ ρν

) =
H† H† V

=
H† H† V

=
H† H† V

=

H† H† V

=

H† H† V

=

H† H† V

=
H† H†

=
H† H†

= ρν ◦ (μH † ⊗ V ),

which shows that ρν is associative. It remains to check that (s−1)�◦(H † ⊗ ρV ) =
(ρV ⊗ H †)◦(H † ⊗ (s−1)�)◦(cH † ⊗ V ). But, by the compatibility of (s−1)� with cH † , the dis-
cussion following Theorem 1.7 and Lemma 3.4, we have

H† H† V

=
H† H† V

=
H† H† V

=
H† H† V

=
H† H† V

=
H† H† V

,

as desired.
(⇐): Let v ∈ V . Since s is compatible with ε and ρν is unitary, we have

(V ⊗ ε)◦ν(v) = (V ⊗ ε)◦s◦(H ⊗ ρν)◦(coevH ⊗ V )(v)

= (ε ⊗ V )◦(H ⊗ ρν)◦(coevH ⊗ V )(v)

= ρν(ε ⊗ v)

= v,

where the first equality follows from the discussion following Proposition 3.2. Hence, ν is couni-
tary. By Lemma 3.3, the fact that (V , s) is a left H †-module, the definition of the multiplication
in H †, basic properties of the evaluation and coevaluation maps, the relation between ρν and ν,
the compatibility of s with Δ and the discussion at the beginning of Section 2, we have

ρν ◦ (
H † ⊗ ρν

) =

V H H

=

V H H

=

V H H

=

V H H

=
V H H

=
V H H

=
V H H

= =
V H H

,

V H H



M. Da Rocha et al. / Journal of Algebra 307 (2007) 727–768 745
which shows that ν is coassociative. It remains to check that

(ν ⊗ H)◦s = (V ⊗ c)◦(s ⊗ H)◦(H ⊗ ν).

But, by the relation between ρν and ν, the compatibility of s with c and Lemma 3.3, we have

V H H

=

V H H

=

V H H

=
V H H

=
V H H

,

as we want. �
4. Module algebras and comodule algebras

Let H be a braided bialgebra. In this section we introduce the notions of left H -module
algebra and right H -comodule algebra and we study the relation between these concepts.

Definition 4.1. [G-G] Let (A, s) be a left H -braided algebra.

(1) We say that (A, s) is a left H -module algebra if (A, s) is a left H -module and the action
ρ :H ⊗ A → A satisfies:
(a) ρ(h ⊗ 1) = ε(h)1,
(b) ρ ◦(H ⊗ μ) = μ◦(ρ ⊗ ρ)◦(H ⊗ s ⊗ A)◦(Δ ⊗ A ⊗ A).

(2) We say that (A, s) is a right H -comodule algebra if (A, s) is a right H -comodule and the
coaction ν :A → A ⊗ H satisfies:
(a) ν(1) = 1 ⊗ 1,
(b) ν ◦μ = (μ ⊗ μ)◦(A ⊗ s ⊗ A)◦(ν ⊗ ν).

Items (1) and (2) of the above definition can be expressed saying that ρ and ν are compatible
with the algebra structure of A.

A map f : (A, s) → (A′, s′) is a morphism of left H -module algebras if it is morphism of
left H -modules and a morphism of algebras. The definition of morphism of right H -comodule
algebras is similar.

Let A be a k-algebra and s :A ⊗ H → H ⊗ A a right transposition. The notion of right H -
module algebra structure and left H -comodule algebra structure on (A, s) can be introduced in
a similar way. We leave the details to the reader. Next, we establish a relation between these
notions and the ones introduced in Definition 4.1.

Proposition 4.2. Let H be a braided bialgebra and let (A, s) be a left H -braided algebra. Then
(A, s) is a left H -module algebra via ρ :H ⊗ A → A iff (A, s−1) is a right H

op
c -module algebra

via ρ ◦s−1. Similarly, (A, s) is a right H -comodule algebra via ν iff (A, s−1) is a right H
cop
c -

comodule algebra via s−1 ◦ν.

Proof. From Proposition 3.2 and the discussion following Definition 2.6 it follows immediately
that in order to check the first assertion it suffices to show that ρ satisfies conditions (a) and (b)
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of item (1) of Definition 4.1 iff ρ ◦s−1 satisfies the analogous conditions. We leave this task to the
reader. The second assertion can be checked similarly. �
Lemma 4.3. Let H be a rigid braided bialgebra and let (V , s) be a left H -braided space. If
(V , (s−1)�) is a left H †-module, then

s−1◦(ρ ⊗ H) = (H ⊗ ρ)◦
(
c−1
HH † ⊗ V

)
◦
(
H † ⊗ s−1),

where ρ denotes the action of H † on V .

Proof. By Lemma 3.3, the discussion following Theorem 1.7, and basic properties of the evalu-
ation and coevaluation maps

H† H V

=
H† H V

=
H† H V

=
H† H V

.

The assertion follows immediately from this equality. �
Theorem 4.4. Let H be a rigid braided bialgebra and let (A, s) be a left H -braided algebra.
Then (A, s) is a right H -comodule algebra via ν iff (A, (s−1)�) is a left H †-module algebra
via ρν .

Proof. (⇒): By Proposition 2.7 and Theorem 3.5 it suffices to check that ρν(ϕ ⊗ 1) = ϕ(1)1
for all ϕ ∈ H † and ρν ◦(H † ⊗ μ) = μ◦(ρν ⊗ ρν)◦(H † ⊗ (s−1)� ⊗ A)◦(ΔH † ⊗ A ⊗ A). The first
assertion is immediate. Let us consider the second one. By the definitions of ΔH † and ρν , the
discussion following Theorem 1.7, the discussion at the beginning of Section 2, the compatibility
of s with μH , μA and c, the fact that (V , s) is a right H -comodule via ν and ν ◦μ = (μ⊗μ)◦(A⊗
s ⊗ A)◦(ν ⊗ ν), we have

H† A A

=

H† A A

=
H† A A

=

H† A A

=

H† A A

=

H† A A

=

H† A A

=

H† A A

=

H† A A

=

H† A A
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=
H† A A

=
H† A A

= H† A A ,

as desired.
(⇐): We must check that ν(1) = 1 ⊗ 1 and ν ◦μ = (μ ⊗ μ)◦(A ⊗ s ⊗ H)◦(ν ⊗ ν). The first

assertion is immediate. Let us consider the second one. By the relation between ν and ρν , the
facts that (A, (s−1)�) is a left H †-module algebra and s is a left transposition, the definition
of ΔH † , the discussion following Theorem 1.7, the discussion at the beginning of Section 2, and
Lemma 4.3, we have

A A

=
A A

=

A A

=

A A

=

A A

=

A A

=

A A

=

A A

=
A A

,

as we want. �
5. H -invariants

Let H be a braided bialgebra and let V be a standard left (right) H -module. Recall that an
element v of V is H -invariant if h · v = ε(h)v (v · h = ε(h)v) for all h ∈ H . We let HV (V H )
denote the set of H -invariants of V . Note that this is not the notation used in [G-G], where the
set of invariants of a left action is denoted V H .

Proposition 5.1. Let (V , s) be a left H -module and let χ :H ⊗ V → V ⊗ H be the map χ :=
(ρ ⊗ H)◦(H ⊗ s)◦(Δ ⊗ V ). Then, an element v ∈ V is H -invariant iff χ(h ⊗ v) = s(h ⊗ v) for
all h ∈ H .

Proof. For (V , s) a left H -module algebra this is [G-G, Proposition 7.2]. The same proof works
for left H -modules. �
Proposition 5.2. s(H ⊗ HV ) ⊆ HV ⊗ H for each left H -module (V , s).

Proof. For (V , s) a left H -module algebra this is [G-G, Proposition 7.4]. Se same proof works
for left H -modules. �

Let V be a standard right (left) H -comodule with coaction ν. Recall that an element v of V is
H -coinvariant if ν(v) = v⊗1 (ν(v) = 1⊗v). We let V coH (coHV ) denote the set of H -coinvariant
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elements of V under a right (left) action. In [G-G, Remark 5.1] it was note that if (V , s) is a right
H -comodule, then V coH is stable under s (that is, s(H ⊗ V coH) ⊆ V coH ⊗ H ). Assume that H is
a rigid braided bialgebra. By Theorem 3.5, we know that if (V , s) is a right H -comodule, then
(V , (s−1)�) is a left H †-module.

Proposition 5.3. It is true that V coH = H †
V .

Proof. Let v ∈ V coH. Since (s−1)� is compatible with εH † ,

ϕ · v = (V ⊗ evH )◦
((

s−1)� ⊗ H
)
(ϕ ⊗ v ⊗ 1) = (V ⊗ εH †)

((
s−1)�

(ϕ ⊗ v)
) = ϕ(1)v,

for all ϕ ∈ H †. So, v ∈ H †
V . Conversely, if v ∈ H †

V , then by the discussion following Proposi-
tion 3.2 and the compatibility of s with 1, we have

ν(v) = s

(
n∑

i=1

hi ⊗ h∗
i · v

)
= s

(
n∑

i=1

hih
∗
i (1) ⊗ v

)
= s(1 ⊗ v) = v ⊗ 1,

where ν is the coaction of V and (hi, h
∗
i )1�i�n are dual basis of H . �

The following theorem was communicated to us by the referee of [G-G].

Theorem 5.4. Let (V , s) be a left H -module. If H be a rigid braided bialgebra, then
s(H ⊗ HV ) = HV ⊗ H .

Proof. Consider s as a map from H †† ⊗ V to V ⊗ H †† and (V , s) as a left H ††-module. By
Theorem 3.5 (V , �(s−1)) is a right H †-comodule. Let ν :V → V ⊗ H † denote the corresponding
coaction. By Proposition 5.3, HV = V coH†

. Let ζ :V → V ⊗ H † be the map defined by ζ(v) =
ν(v)− v ⊗ ε. Let s| :H ⊗ HV → HV ⊗H be the map induced by s and let s′ :H ⊗ (V ⊗H †) →
(V ⊗ H †) ⊗ H be the map s′ = (V ⊗ cHH †)◦(s ⊗ H †). Since the commutative diagram

0 H ⊗ HV

s|

H ⊗ V
H⊗ζ

s

H ⊗ (V ⊗ H †)

s′

0 HV ⊗ H H ⊗ V
ζ⊗H

(V ⊗ H †) ⊗ H

has exact rows and s and s′ are isomorphisms, s| is also. �
By this theorem, (HV, s|) is an H -braided space. Furthermore, by [G-G, Proposition 7.3], if

(A, s) is a left H -module algebra, then s| :H ⊗ HA → HA ⊗ H is a transposition.
Recall that, by Proposition 3.2, if (V , s) is a left H -module, then (V , s−1) is a right H

op
c -

module. The following result is used without mention in the proof of [G-G, Proposition 8.1].

Proposition 5.5. Suppose that (V , s) is a left H -module. Then HV = V H
op
c .

Proof. Left to the reader. �
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Proposition 5.6. Let H be a rigid Hopf algebra and (A, s) a left H -module algebra. The auto-
morphism gs :A → A of Theorem 2.8 satisfies gs(

HA) = HA.

Proof. By Theorem 2.8 and the discussion preceding Proposition 2.7, we know that the map
s : kt ⊗ A → A ⊗ kt is bijective. Hence, by Theorem 5.4, the map s : kt ⊗ HA → HA ⊗ kt is also.
The proposition follows immediately from this fact. �
6. Smash products

Let H be a braided bialgebra. By [G-G, Theorem 6.3 and Proposition 6.5], we know that
if (A, s) is a left H -module algebra, then the map χ :H ⊗ A → A ⊗ H , defined by χ :=
(ρ ⊗ H)◦(H ⊗ s)◦(Δ ⊗ A), is compatible with the algebra structures of A and H . Hence, as
was shown in [C-S-V], the tensor product A ⊗ H is an algebra A ⊗χ H , with multiplication
μA⊗χH := (μA ⊗ μH )◦(A ⊗ χ ⊗ H). This algebra is called the smash product of A with H

associated with (s, ρ), and it is also denoted A # H . We frequently identify A and H with the
subsets A ⊗ 1 and 1 ⊗ H of A # H , respectively. Consequently, we sometimes write ah instead
of a # h.

It is easy to check that A is an (A # H,HA)-bimodule via the regular right action and the left
action

(a # h) · b = a(h · b). (1)

Furthermore, arguing as in the proof of [G-G, Proposition 8.1] it can be shown that if H is a
braided Hopf algebra with bijective antipode S, then A is an (AH ,A # H)-bimodule via the
regular left action and the right action

b · (a # h) =
∑

i

S−1(hi) · (ba)i, (2)

where
∑

i hi ⊗ (ba)i = s−1(ba ⊗ h) and AH is the set of invariants of A under the right action
of H obtained by restriction of (2).

Let H be a braided Hopf algebra with bijective antipode S. We just note that if (A, s) is
left H -module algebra via ρ :H ⊗ A → A, then (A, s−1) is a right H cop-module algebra via
ρ ◦s−1 ◦(A ⊗ S−1). By Proposition 5.5 we know that AH = HA. To unify expressions, from now
on we always will write HA to denote this set of invariants.

The next results generalize Lemmas 0.3 and 0.6 of [C-F-M], and their proof are closed to the
ones given in that paper.

Proposition 6.1. Let H be a braided bialgebra and let (A, s) be a left H -module algebra. The
following assertions hold:

(1) HA  End(A#H A)op, where we consider A as a left A # H -module as in (1).
(2) If H is a braided Hopf algebra with bijective antipode, then HAEnd(AA#H ), where A is

considered as a right A # H -module as in (2).

Proof. We prove the second assertion because the first one is easier. Let La :A → A denote the
left multiplication by a. Is is clear that the map a 	→ La , from HA to End(AA#H ), is well de-
fined and injective. We claim that it is surjective. Let f ∈ End(AA#H ). Since, f (a) = f (1 · a) =
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f (1) · a, for each a ∈ A, in order to check the claim it suffices to show that f (1) ∈ HA. This fol-
lows from the above discussion and the fact that f (1) ·h = f (1 ·h) = f (S−1(h) ·1) = ε(h)f (1),
for all h ∈ H . �
Proposition 6.2. Let H be braided bialgebra and let (A, s) be a left H -module algebra. Consider
A as a left A # H -module via the action (a). For each left A # H -module M and each m0 ∈ HM ,
the map Ψ :A → M , defined by Ψ (a) := a · m0, is a left A # H -homomorphism. Furthermore, if
a ∈ HA, then a · m0 ∈ HM .

Proof. Let a, b ∈ A and h ∈ H . Since m0 is invariant and s is compatible with ε,

(b # h) · Ψ (a) = (b # h) · (a · m0)

= (
(b # h)(a # 1)

) · m0

=
∑

i

b(h(1) · ai # h(2)i ) · m0

=
∑

i

b(h(1) · ai)ε(h(2)i ) · m0

=
∑

i

b(h · a) · m0

= Ψ
(
(b # h) · a)

,

where
∑

i h(1) ⊗ ai ⊗ h(2)i = (H ⊗ s)◦(Δ ⊗ A)(h ⊗ a). The last assertion can be easily
checked. �
Proposition 6.3. Let H be braided Hopf algebra with bijective antipode S and (A, s) a left
H -module algebra. Consider A as a right A # H -module via the action (b). For each right
A # H -module M and each m0 ∈ MH , the map Ψ ′ :A → M , defined by Ψ ′(a) := m0 · a, is a
right A # H -homomorphism. Furthermore, if a ∈ HA, then m0 · a ∈ MH .

Proof. Let a, b ∈ A and h ∈ H . By the proof of [G-G, Proposition 6.9],

ab # h =
∑
ij

(1 # hi(2)j
)
(
S−1(hi (1)j

) · (ab)i # 1
)
,

where
∑

ij hi (2)j
⊗ S−1(hi (1)j

) · (ab)i = (H ⊗ ρ ◦(S−1 ⊗ A))◦(c−1 ◦Δ ⊗ A)◦s−1(ab ⊗ h). Using

this, the fact that m0 ∈ MH and the compatibility of c−1 with ε, we obtain

Ψ ′(a) · (b # h) = (m0 · a) · (b # h)

= m0 · (ab # h)

= m0 ·
(∑

(1 # hi(2)j
)
(
S−1(hi (1)j

) · (ab)i # 1
))
ij
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= m0 ·
(∑

ij

ε(hi (2)j
)
(
S−1(hi (1)j

) · (ab)i # 1
))

= m0 · (S−1(hi) · (ab)i # 1
)

= Ψ ′(a · (b # h)
)
,

as we want. The last assertion can be easily checked. �
Proposition 6.4. Let H be a rigid braided Hopf algebra and (A, s) a left H -module algebra. Let
t be a nonzero left or right integral of H . Then AtA is an ideal of A # H .

Proof. For left integrals t this result is [G-G, Proposition 7.8]. For right integrals t the assertion
can be check in a similar way. We leave the details to the reader. �

Let H be a rigid braided Hopf algebra, (A, s) a left H -module algebra and A # H the smash
product constructed from these data. Consider H ⊗A and A#H as left H -modules via the actions
l · (h ⊗ a) := lh ⊗ a and l · (ah) := lah, respectively. Let t be a nonzero left integral of H . We
assert that H(A # H) = tA. In fact, in [G-G, Proposition 6.9] it was proved that the H -linear
map θ :H ⊗ A → A # H given by θ(h ⊗ a) = ha is bijective. So, H(A # H) = θ(H(H ⊗ A)) =
θ(t ⊗ A) = tA.

Proposition 6.5. Let H be a rigid braided Hopf algebra, α the modular function of H and (A, s)

a left H -module algebra. The map (−)α :A # H → A # H , defined by (a # h)α = a # hα , where
hα is the map introduced in Remark 1.23, is an automorphism of algebras.

Proof. Clearly (−)α is bijective and (1 # 1)α = 1 # 1. For h ∈ H and b ∈ A let s(h ⊗ b) =∑
i bi ⊗ hi . Then

(
(a # h)(b # l)

)α =
∑

i

(
a(h(1) · bi) # h(2)i l

)α

=
∑

i

a(h(1) · bi) # (h(2)i l)
α

=
∑

i

a(h(1) · bi) # (h(2)i )
αlα

=
∑

i

a(h(1) · bi) # h(2)i (1)
α(h(2)i (2)

)lα

=
∑

i

a(h(1) · bi) # h(2)iα(h(3))l
α

= (a # h)α(b # l)α,

where the third and fourth equality follow from Remark 1.23 and the last one from the compati-
bility of s with the comultiplication and Proposition 2.9. �
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7. Galois extensions

Let H be a braided bialgebra and let (A, s) be a right H -comodule algebra. Let ν denote the
coaction of A. Recall from [G-G, Section 10] that (AcoH ↪→ A, s) is called a right H -extension
of AcoH, and that such an H -extension is said to be H -Galois if the map βA :A ⊗AcoH A →
A ⊗ H , defined by βA(a ⊗ b) = (a ⊗ 1)ν(b), is bijective. Furthermore, by Theorem 4.4 and
Proposition 5.3, if H is rigid, then (A, (s−1)�) is a left H †-module algebra and H †

A = AcoH.
Remark 7.1 and Theorem 7.2 below generalize results of [K-T]. In the proof of the second

one we follow closely an argument of Schneider [Sch].

Remark 7.1. Let H be a braided Hopf algebra with bijective antipode S and let (A, s) be a right
H -comodule algebra. Let

β ′
A :A ⊗AcoH A → A ⊗ H and Φ :A ⊗ H → A ⊗ H

be the maps defined by β ′
A := (μA ⊗ H)◦(A ⊗ s)◦(νA ⊗ A) and Φ := (A ⊗ μH )◦(νA ⊗ S). Then,

the following facts hold:

(1) Φ is bijective, with inverse Φ−1 = (A ⊗ μH )◦(A ⊗ c−1)◦(νA ⊗ S−1).
(2) Φ ◦βA = β ′

A. Consequently, βA is injective (surjective) if and only if β ′
A is.

Theorem 7.2. Let H be a rigid braided Hopf algebra and (A, s) a right H -comodule algebra
such that the Galois map βA is surjective. Let T ∈ H † be a nonzero left integral. Then:

(1) There exist elements a1, . . . , an, b1, . . . , bn ∈ A such that (x 	→ T · (bix), ai) is a projective
basis of A as a right H †

A-module.
(2) βA is injective, and so bijective.

Proof. (1): By Corollary 1.21 there exists a right integral u ∈ H , such that T (uh) = ε(h), for
all h ∈ H . Since βA :A ⊗H†

A
A → A ⊗ H is surjective and g(s−1)� :A → A is an algebra auto-

morphism, there exists
∑

i ai ⊗ bi ∈ A ⊗H†
A

A, such that

∑
i

aig(s−1)� (bi (0)) ⊗ bi(1) = 1 ⊗ u. (3)

By Theorem 4.4, the definition of ρν , Lemma 3.4 and the compatibility of ΔH † with (s−1)�,

H† A A

=
H† A A

=
H† A A

=
H† A A

=

H† A A

. (4)

Let T(1) ⊗ T(2) = ΔH †(T ) and∑
bi(0) ⊗ T(1) ⊗ bi(1)j

⊗ T(2)j = bi(0) ⊗ T(1) ⊗ cH †H (T(2) ⊗ bi(1)).
j
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Let φi :A → H †
A denote the right H †

A-linear map defined by φi(a) = T · (bia). Using (4) and
that (s−1)�(T ⊗ b) = g(s−1)� (b) ⊗ T , we obtain∑

i

aiφi(a) =
∑

i

aiT · (bia) =
∑

i

aig(s−1)� (bi (0))〈T(1), bi (1)j
〉(T(2)j · a). (5)

Now, from Remark 1.14 it follows easily that cH †H (ϕ ⊗ u) = u ⊗ ϕ◦(f l
H )−1 for all ϕ ∈ H †.

Using this fact, (3) and (5) we obtain∑
i

aiφi(a) = 〈T(1), u〉(T(2)◦
(
f l

H

)−1) · a.

Since, by the definition of ΔH † and Remark 1.14,

〈T(1), u〉〈T(2),
(
f l

H

)−1
(h)

〉 = 〈
T ,μ◦c

((
f l

H

)−1
(h) ⊗ u

)〉 = 〈T ,uh〉 = ε(h),

for all h ∈ H , we have
∑

i aiφi(a) = ε · a = a, as we want.
(2): By Remark 7.1 it suffices to show that β ′

A is injective. To simplify notations we set
B = AcoH. Let ∑

j

uj ⊗B vj ∈ ker
(
β ′

A

)
, so that

∑
j

uj (0)
vj i

⊗ uj (1)i
= 0,

where
∑

j uj (0)
⊗ vj i

⊗ uj (1)i
= ∑

j uj (0)
⊗ s(uj (1)

⊗ vj ). Let

χ = (
ρν ⊗ H †)◦

(
H † ⊗ (

s−1)�)
◦(ΔH † ⊗ A) and x =

∑
ij

ai ⊗ T ⊗ bi ⊗ uj ⊗B vj .

We have∑
uj ⊗B vj = (μA ⊗ A)◦(A ⊗ ρν ⊗B A)◦

(
A ⊗ H † ⊗ μA ⊗B A

)
(x)

= (A ⊗B μA)◦(A ⊗ ρν ⊗B A)◦
(
A ⊗ H † ⊗ μA ⊗B A

)
(x)

= (A ⊗B μA)◦(A ⊗ A ⊗ μA)◦(A ⊗ A ⊗ ρν ⊗ A)◦(A ⊗ χ ⊗ A ⊗ A)(x)

= (A ⊗B μA ⊗ evH )◦
(
A ⊗ A ⊗ (

s−1)� ⊗ H
)

◦
(
A ⊗ χ ⊗ β ′

A

)
(x) = 0,

where the first equality follows from item (1), the second one from Proposition 5.3, the third one
from the fact that A is a left H †-module algebra and the last one from the fact that

H† A A

=
H† A A

=
H† A A

=
H† A A

.

Thus β ′
A is injective. �
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Lemma 7.3. Let H be a rigid braided bialgebra and s :H ⊗ A → A ⊗ H a left transposition.
Then, (

A ⊗ evH ⊗ H †)◦
((

s−1)� ⊗ cH †H

)
◦
(
H † ⊗ (

s−1)� ⊗ H
)

◦
((

H †)⊗2 ⊗ s
)

= (
evH ⊗ (

s−1)�)
◦
(
H † ⊗ cH †H ⊗ A

)
.

Proof. By the discussion following Theorem 1.7, the discussion at the beginning of Section 2
and the compatibility of (s−1)� with cH † ,

H† H† H A

=
H† H† H A

=
H† H† H A

=
H† H† H A

=
H† H† H A

,

as we assert. �
Theorems 7.4 and 7.5 below generalize Theorems 1.2 and 1.2′ of [C-F-M] and their proofs

are very close to the ones given in that paper.

Theorem 7.4. Let H be a rigid braided Hopf algebra and let (A, s) be a right H -comodule
algebra. Consider A as an (A # H †, H †

A)-bimodule via the actions defined at the beginning of
Section 6. Let gs :A → A be the automorphism of algebras introduced in Theorem 2.8. Let us
gA denote A endowed with the left A-module structure given by a · b = gs(a)b. The following
assertions are equivalent:

(1) (H
†
A ↪→ A, s) is H -Galois.

(2) (a) The map π :A # H † → End(AH†
A
), defined by π(a # ϕ)(b) := (a # ϕ) · b, is an algebra

isomorphism.
(b) A is a finitely generated projective right H †

A-module.
(3) A is a left A # H †-generator.
(4) If 0 �= T ∈ ∫ l

H † , then the map [ , ] :A ⊗H†
A

gA → A # H † given by [a, b] = aT b is surjective.

(5) For any left A # H †-module M , the map FM :A ⊗H†
A

H †
M → M defined by FM(a ⊗ m) =

a · m is a left A # H †-module isomorphism, where A ⊗H†
A

H †
M has the A # H †-module

structure

(a # ϕ) · (b ⊗ m) = π(a # ϕ)(b) ⊗ m.

Proof. (2) ⇔ (3): As in the classical setting it follows from a well-known theorem of Morita
[Fa, 4.1.3].

(1) ⇔ (4): Let ϑ :H → H † be the map defined by

ϑ(h) = (
evH ⊗ H †)◦

(
H † ⊗ cH †H

)
◦
(
ΔH †(T ) ⊗ h

)
.

A direct computation shows that ϑ(h)(l) = T (hl) for all h, l ∈ H . Hence, by [D, Theorem 3.b],
we know that ϑ is a bijective map. Since g(s−1)� is also bijective, to prove that (1) ⇔ (4) it
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suffices to show that (g(s−1)� ⊗ ϑ)◦βA = [ , ]◦(g(s−1)� ⊗H†
A

A). Let g = g(s−1)� and g′ = gs . By
the definition of ϑ , the discussion following Proposition 3.2, the definition of g, the fact that g is
an algebra map, the compatibility of (s−1)� with ΔH † , Corollary 2.12, Lemma 7.3, the fact that
(A, (s−1)�) is a left H †-module and basic properties of the evaluation and coevaluation maps,
we have

A A

g′

ϑ

g

=

A A

g′ kT

g

=

A A

g′
kT

g′

g

=

A A

kT

=
A kT A

=

A kT A

=
A kT A

= [ , ],

as desired.
(4) ⇒ (3): By hypothesis there exist x1, . . . , xs, y1, . . . , ys ∈ A such that 1#ε = ∑

i xiT yi . By
this fact, Proposition 6.2 and the discussion following Proposition 6.4, the map f :A(s) → A#H †

given by f (a1, . . . , as) = ∑
i aiT yi is A # H †-linear and surjective. Hence A is a left A # H †-

generator.
(5) ⇒ (4): By the discussion following Proposition 6.4, H †

(A # H †) = T A. The assertion
follows immediately from this fact.

(2) ⇒ (4): By Proposition 6.4 it suffices to prove that 1 # ε ∈ AT A. This can be checked as
in [C-F-M].

(4) ⇒ (5): The proof given in [C-F-M] works in our setting. �
Theorem 7.5. Let H be a rigid braided Hopf algebra and let (A, s) be a right H -comodule
algebra. Consider A as an (H

†
A,A # H †)-bimodule via the actions defined at the beginning of

Section 6. Let gA be as in Theorem 7.4. The following assertions are equivalent:

(1) (H
†
A ↪→ A, s) is H -Galois.

(2) (a) The map π ′ :A#H † → End(H†
A
A)op, defined by π ′(a #ϕ)(b) := b · (a #ϕ), is an algebra

isomorphism.
(b) A is a finitely generated projective left H †

A-module.
(3) A is a right A # H †-generator.
(4) If 0 �= U ∈ ∫ r

H † , then the map [ , ]′ :A⊗H†
A

gA → A#H † given by [a, b]′ = aUb is surjective.

(5) For any right A#H †-module M , the map GM :MH † ⊗H†
A

A → M , defined by GM(m⊗a) =
m · a, is a right A # H †-module isomorphism, where MH † ⊗H†

A
A has the A # H †-module

structure

(m ⊗ b) · (a # ϕ) = m ⊗ π ′(a # ϕ)(b).
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Proof. (2) ⇔ (3): Is the same as Theorem 7.4.
(1) ⇔ (4): Mimic the argument given in the proof of Theorem 7.4, replacing T by U .
(4) ⇒ (3): By hypothesis there exist x1, . . . , xs, y1, . . . , ys ∈ A such that 1 # ε = ∑

i xiUyi .

By this, the fact that (A#H †)H
† = AU and Proposition 6.3, the map f :A(s) → A#H † given by

f (a1, . . . , as) = ∑
i aiUyi is A # H †-linear and surjective. Hence A is a right A # H †-generator.

(5) ⇒ (4): This follows immediately from the fact that (A # H †)H
† = AU .

(2) ⇒ (4): By Proposition 6.4 it suffices to prove that 1 # ε ∈ AUA. This can be checked as
in [C-F-M].

(4) ⇒ (5): The proof given in [C-F-M] works in our setting. �
Corollary 7.6. Let H be a rigid braided Hopf algebra, (A, s) a right H -comodule algebra
and T ∈ ∫ l

H † \{0}. Let gA be as in Theorem 7.4. If (H
†
A ↪→ A, s) is H -Galois, then the map

π : gA → Hom(AH†
A
,H †

AH†
A
), defined by π(a)(b) = T · (ab), is an isomorphism of (H

†
A,A)-

bimodules.

Proof. It is clear that π is right A-linear. Let c ∈ H †
A. We have

π(c · a)(b) = π
(
gs(c)a

)
(b) = T · (gs(c)ab

) = cT · (ab),

where the last equality follows from Corollary 2.12 and the fact that, by Proposition 5.6, we know
that gs(c) ∈ H †

A. This shows that π is left H †
A-linear. Let us prove that it is bijective. Consider

A # H † and End(AH†
A
) as left H †-modules via ϕ · (aψ) = ϕaψ and (ϕ · f )(a) = ϕ · f (a). The

map π :A # H † → End(AH†
A
), introduced in Theorem 7.4, is H †-linear. It is immediate that

Hom(AH†
A
,H †

AH†
A
) is the set of invariants of End(AH†

A
). Hence, by the discussion following

Proposition 6.4, the map π restricts to a bijective map from T A to Hom(AH†
A
,H †

AH†
A
). The

assertion follows immediately from this fact. �
Corollary 7.7. Let H be a rigid braided Hopf algebra, (A, s) a right H -comodule algebra
and U ∈ ∫ r

H † \{0}. Consider A as a right A # H †-module as in Theorem 7.5. Let Ag denote
A endowed with the right A-module structure given by b ·a = bg(s−1)� (a), where g(s−1)� :A → A

is the automorphism of algebras introduced in Theorem 2.8. If (H
†
A ↪→ A, s) is H -Galois, then

the map π ′ :Ag → Hom(H†
A
A, H†

A
H †

A), defined by π ′(a)(b) = (ba) · U , is an isomorphism of

(A,H †
A)-bimodules.

Proof. It is clear that π ′ is left A-linear and we leave to the reader the task to check that it is
right H †

A-linear. Let us prove that it is bijective. Consider A # H † and End(H†
A
A)op as right H †-

modules via (aψ) · ϕ = aψϕ and (f · ϕ)(a) = f (a) · ϕ. The map π ′ :A # H † → End(H†
A
A)op,

introduced in Theorem 7.5, is H †-linear. It is immediate that AU and Hom(H†
A
A, H†

A
H †

A) are

the sets of invariants of A # H † and End(H†
A
A)op, respectively. Hence, the map π ′ restricts to a

bijective map from AU to Hom(H†
A
A, H†

A
H †

A). This implies that π ′ is also bijective. �
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8. Existence of elements of trace 1

Let H be a rigid braided Hopf algebra and (A, s) a right H -comodule algebra. Recall from
Corollary 2.12 that g−1

(s−1)�
= gs . In [G-G, Section 8] it was shown that A is a left H †

A-module

via a � b := gs(a)b and a right A # H †-module via b ← (a # ϕ) = ∑
i S

−1((ϕα)i) · (ba)i , where
α :H † → k is the modular function and

∑
i (ϕ

α)i ⊗ (ba)i = ((s−1)�)−1(ba ⊗ ϕα). Furthermore,

A is an (H
†
A,A # H †)-bimodule. Consider the bimodules

M = H†
A
AA#H † and N = A#H †AH†

A
,

where the actions on N are the ones introduced in Section 6. In [G-G, Theorem 8.4] it was proved
that the maps

[ , ] :N ⊗H†
A

M → A # H †, given by [a, b] = aT b,

( , ) :M ⊗A#H † N → H †
A, given by (a, b) = T · (ab),

in which T �= 0 is a left integral of H †, give a Morita context for H †
A and A # H †. The purpose

of this section is to study the implications of the surjectivity of the map ( , ). Proposition 8.1
generalizes item (1) of Proposition 2.5 of [C-F-M] and Propositions 8.2, 8.4 and 8.9 generalize
Propositions 1.4, 1.5 and 1.7 of [C-F], respectively. We prove neither the first one, the second
one nor the fourth one, because the proofs given there work in our context. Before beginning
we recall that an element c of A is called a trace 1 element of A if T · c = 1. It is clear that the
existence of a trace 1 element is equivalent to the surjectivity of ( , ).

Proposition 8.1. The map ( , ) is surjective if and only if there exists x ∈ A # H † such that
T xT = T .

Proposition 8.2. Let V be a left H †
A-module. Consider A ⊗H†

A
V as a left H †-module

via ϕ · (a ⊗ v) = ϕ · a ⊗ v. If ( , ) is surjective, then the map iV :V → A ⊗H†
A

V , defined by

iV (v) = 1 ⊗ v, is injective and its image is H †
(A ⊗H†

A
V ).

Definition 8.3. A total integral is a right H -colinear map g :H → A such that g(1) = 1.

Proposition 8.4. The following facts hold:

(1) The map ( , ) is surjective if and only if there is a total integral g :H → A.
(2) There exists c ∈ A such that T · c = 1 and ca = gs(a)c, for all a ∈ H †

A if and only if there
exists a total integral g :H → A satisfying μA◦(g ⊗ H †

A) = μA◦(A ⊗ g)◦s|H⊗H†
A

.

Proof. (1): If ( , ) is surjective, then there exists c ∈ A such that T · c = 1. Define g(h) =
θ−1(h) · c, where θ :H † → H is the bijection given by θ(ϕ) = ϕ ⇀ t . It is immediate that g

is H †-linear and that g(1) = θ−1(1) · c = T · c = 1. Conversely, if g :H → A is a total integral,
then, by Proposition 1.24, T · g(t) = g(T ⇀ t) = g(1) = 1.
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(2): Let h ∈ H and a ∈ H †
A. If c ∈ A satisfies the hypothesis of item (2), then

g(h)a = (
θ−1(h) · c)a = θ−1(h) · (ca) = θ−1(h) · (gs(a)c

) =
∑

i

gs(a)i
(
θ−1(h)i · c),

where
∑

i gs(a)i ⊗ θ−1(h)i = (s−1)�(θ−1(h) ⊗ gs(a)) and the last equality follows from Propo-
sition 5.6. So, by Proposition 2.11,

g(h)a = μA◦(A ⊗ g)◦s(h ⊗ a). (6)

Conversely, if g satisfies (6), then c = g(t) satisfies ca = μA◦(A ⊗ g)◦s(t ⊗ a) = gs(a)g(t) =
gs(a)c, for all a ∈ H †

A. �
Now we recall the notion of trace ideal. For any ring R and any right R-module M we let

T (M) denote the image of the evaluation map Hom(MR,RR) ⊗ M → R. It is easy to see that
T (M) is a two sided ideal of R. It is well known that T (M) = R if and only if M is a generator
of the category of right R-modules. Also, if R is a subring of a ring S, then T (S) = R if and
only if R is a right R-summand of S [Fa, 3.26 and 3.27]. Of course, similar results are valid for
left R-modules.

The following result generalizes [K-T, Proposition 1.9] and [C-F-M, Theorem 2.2]. Our proof
follows closely the ones given in those papers.

Proposition 8.5. Let T̂ :A → H †
A and Û :A → H †

A denote the trace maps defined by T̂ (a) =
T · a and Û (a) = a · U , where U = S(T ). Assume that (H

†
A ↪→ A, s) is right H -Galois and

consider A as a (A # H †, H †
A)-bimodule and a (H

†
A,A # H †)-bimodule via the actions given in

Section 6. The following facts are equivalent:

(1) T̂ is surjective.
(2) T (AH†

A
) = H †

A.

(3) H †
A is a right direct H †

A-summand of A.
(4) A is a generator of the category of right H †

A-modules.
(5) A is a finitely generated projective left A # H †-module.
(6) Û is surjective.
(7) T (H†

A
A) = H †

A.

(8) H †
A is a left direct H †

A-summand of A.
(9) A is a generator of the category of left H †

A-modules.
(10) A is a finitely generated projective right A # H †-module.

Furthermore any of these conditions implies that A # H † and H †
A are Morita equivalent.

Proof. From Corollary 7.6, it follows easily that T (AH†
A
) = T · A. Hence, (1) ⇔ (2). That

(2) ⇔ (3) ⇔ (4) follow from the discussion above this proposition. Now (4) ⇔ (5) follows from
Morita’s Theorem [Fa, 4.1.3], since H †

A  End(A#H †A)op by Proposition 6.1 and A # H † 
End(AH†

A
) by Theorem 7.4(2). Finally, (4) and Theorem 7.4(2) say that A is a right H †

A-

progenerator and A # H †  End(AH† ), which imply that A # H † and H †
A are Morita equivalent
A
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[Fa, 4.29]. Alternatively we can use Corollary 8.5 of [G-G]. The equivalence of (6), (7), (8),
(9) and (10) can be proven in a similar way. We end the proof by noting that (1) ⇔ (6), since
Û (a) = a · U = T · gs(a) = T̂ (gs(a)). �
Remark 8.6. Note that the hypothesis that (H

†
A ↪→ A, s) is right H -Galois is not necessary to

prove (1) ⇒ (2) ⇔ (3) ⇔ (4) ⇔ (5), (6) ⇒ (7) ⇔ (8) ⇔ (9) ⇔ (10) and (1) ⇔ (6).

Remark 8.7. Let π :A#H † → End(AH†
A
) be the morphism introduced in Theorem 7.4. Arguing

as in [C-F, Proposition 1.6] it can be proven that:

(1) if T · c = 1, then π(T c) is a right H †
A-linear projection of A on H †

A.
(2) Assume that (H

†
A ↪→ A, s) is right H -Galois. By Theorem 7.4, the map π is bijective and

[ , ] is surjective. If x1, . . . , xr , y1, . . . , yr ∈ A satisfy
∑r

i=1[xi, yi] = 1 and p ∈ End(AH†
A
) is

a projection of A onto H †
A, then c = ∑r

i=1 gs(e · xi)yi , where e = π−1(p), satisfy T · c = 1.

(3) If T · c = 1 and ca = gs(a)c for all a ∈ H †
A, then H †

A is a direct H †
A-bimodule summand

of A.
(4) If (H

†
A ↪→ A, s) is right H -Galois and H †

A is a direct H †
A-bimodule summand of A, then A

has a trace 1 element c, such that ca = gs(a)c for all a ∈ H †
A.

Corollary 8.8. Let H be a rigid braided Hopf algebra and let (A, s) be a right comodule algebra.
If H † is semisimple, then H †

A is an H †
A-bimodule direct summand of A.

Proof. Let T ∈ ∫ l

H † such that ε(T ) = 1. By Corollary 2.12 and [G-G, Remark 4.16], we know
that gs = id and so c = 1 satisfies the condition of item (3) of Remark 8.7. �

The following result generalizes items (1) and (3) of Remark 8.7.

Proposition 8.9. Let B be a k-algebra and let M be a (A # H †,B)-bimodule.

(1) If there exists an element c of A of trace 1, then H †
M is a right B-direct summand of M .

(2) If there exists an element c of A of trace 1, such that ca = gs(a)c for all a ∈ H †
A, then H †

M

is a (H
†
A,B)-direct summand of M .

Recall that a ring A has invariant basis number if in each free A-module M each pair of
basis of M has equal cardinality. Given such a ring and a free left A-module M , we let [M : A]l
denote the dimension of M as a left A-module. Similarly if M is a free right A-module, then
[M : A]r denotes the dimension of M as a right A-module. The following result generalizes
Corollary 8.3.5 of [M] and its proof is similar to the one given there.

Corollary 8.10. Let H be a rigid braided Hopf algebra and (A, s) a right H -comodule algebra.
The following assertions hold:

(1) If A # H † is simple, then (H
†
A ↪→ A, s) is H -Galois.

(2) A # H † is simple and any of the conditions in Proposition 8.5 is valid if and only if
(H

†
A ↪→ A, s) is H -Galois and H †

A is simple.
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(3) A # H † is simple Artinian if and only if H †
A is, A is a free left and right H †

A-module of rank
n = dimH and A # H †  Mn(

H †
A).

Proof. (1): From Proposition 6.4 we know that [A,A] = AT A is a two sided ideal of A # H †.
So, if A # H † is simple, then A # H † = [A,A] and by Theorem 7.4, (H

†
A ↪→ A, s) is H -Galois.

(2): Assume that A # H † is simple and any of the conditions in Proposition 8.5 is valid. Then,
by item (1), the extension (H

†
A ↪→ A, s) is H -Galois. Hence Proposition 8.5 implies that A # H †

and H †
A are Morita equivalent and so H †

A is simple. Conversely, assume that (H
†
A ↪→ A, s) is

H -Galois and H †
A is simple. By the equivalence between items (1) and (2) of Theorem 7.4, the

map T̂ :A → H †
A is nonzero, and since its image is a two sided ideal of H †

A, it is surjective.
Hence, again by Proposition 8.5, A # H † and H †

A are Morita equivalent and so A # H † is simple.
(3): Assume that A # H † is simple Artinian. Then, it is von Neumann regular, and thus there

exists x ∈ A # H † such that T = T xT . By Proposition 8.2 the map T̂ :A → H †
A is surjective.

Then, by Proposition 8.5, A # H † and H †
A are Morita equivalent, and so, H †

A is Artinian semi-
simple. It then follows by the lemma of Artin–Whaples that A is a free left H †

A-module, say of
rank m. Now, by Theorem 7.4, A # H †  End(AH†

A
)  Mm(H

†
A). But then

m2 = [
A # H † : H †

A
]
l
= [

A # H † : A]
l

[
A : H †

A
]
l
= nm.

Thus m = n. Similarly A is a free right H †
A-module of rank n. The converse is trivial. �

Theorem 8.11. Let H be a rigid braided Hopf algebra and let (D, s) be a right H -comodule
algebra, where D is a division ring. Then the following facts are equivalent:

(1) (H
†
D ↪→ D,s) is H -Galois.

(2) [D : H †
D]r = dimH .

(3) [D : H †
D]l = dimH .

(4) D # H † is simple.
(5) D is a faithful right D # H †-module.
(6) D is a faithful left D # H †-module.

Proof. Arguing as in [M, Theorem 8.3.7] we can see that (1) ⇒ (5), (1) ⇒ (6), (5) ⇒ (4),
(6) ⇒ (4), (2) ⇒ (1) and (3) ⇒ (1). Corollary 8.10 implies that (4) ⇒ (1), (1) ⇒ (2) and
(1) ⇒ (3). �
Example 8.12. Let H be the algebra k[X]/〈X2〉, endowed with the braided Hopf algebra struc-
ture given by Δ(X) = 1⊗X +X ⊗1 and c(X ⊗X) = −X ⊗X. It is easy to check that H †  H .
In fact if ε, ξX is the dual basis of 1,X, then the map 1 	→ ε, X 	→ ξX is an isomorphism. In
[D-G-G, Example 2.4] it was shown that if

(1) α :A → A is an automorphism,
(2) δ :A → A is an α-derivation,
(3) δ◦α + α◦δ = 0,
(4) δ2 = 0,
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then the formulas s(ξX ⊗ a) = α(a) ⊗ ξX and ρ(ξX ⊗ a) = δ(a), define a transposition s :H † ⊗
A → A ⊗ H † and a s-action ρ :H † ⊗ A → A. By Proposition 2.7 the map �(s−1) :H ⊗ A →
A ⊗ H , defined at the beginning of Section 2, is a transposition, and, by Theorem 4.4, we know
that (A, �(s−1)) is a right H -comodule algebra via the map νρ :A → A ⊗ H , introduced below
Proposition 3.2. A direct computation shows that �(s−1)(X ⊗ a) = α−1(a) ⊗ X and νρ(a) =
a ⊗ 1 +α−1◦δ(a)⊗X. The following concrete examples satisfy the hypothesis of Theorem 8.11.

(1) k = Q, A = Q(
√

2), α(a + b
√

2) = a − b
√

2 and δ(a + b
√

2) = b.
(2) A the field of Laurent series

∑
aiY

i with coefficients in k, α(
∑

aiY
i) = ∑

(−1)iaiY
i and

δ(
∑

aiY
i) = ∑

a2i+1Y
2i .

In fact, in the former H †
A = Q and then [A : H †

A]r = 2 = dimH , and, in the second one H †
A =

{∑i a2iY
2i} and then [A : H †

A]r = 2 = dimH .

From now on, given a left braided space (V , s), we let s̃ denote (((s−1)�)−1)�.
Let H be a rigid braided bialgebra and let (A, s) be a right H -comodule algebra. Then,

(A, (s−1)�) is a left H †-module algebra. Let us consider the smash product A # H † and let

s̆ = (A⊗cH †)◦((s−1)�⊗H †). Note that with the notations of [G-G, Proposition 10.3], s̆ = (̂s−1)�.
By [G-G, Proposition 10.4] we know that (A # H †, s̆) is a right H †-comodule algebra via
νΔ := A ⊗ ΔH † . Then, by Theorem 4.4, (A # H †, (s̆−1)�) is a left H ††-module algebra via ρνΔ .
We let Ψ ∗ (a # ϕ) denote ρνΔ(Ψ ⊗ a # ϕ).

Let H be a rigid braided Hopf algebra. Given a nonzero left integral T ∈ H † we let T denote
from now on the unique left integral of H †† such that T (T ) = 1. Note that T = t∗∗, where t is
the left integral of H satisfying T (t) = 1.

Proposition 8.13. The following assertions hold:

(1) (s̆−1)� = (A ⊗ cH ††H †)◦( s̃ ⊗ H †).
(2) T ∗ T = ε.

Proof. (1): A direct computation shows that if (V , sV ) and (W, sW ) are left H †-braided spaces,
then (

s−1
V ⊗W

)� = (
V ⊗ (

s−1
W

)�)
◦
((

s−1
V

)� ⊗ W
)
.

Using this we immediately see that(
s̆−1)� = (

A ⊗ (
c−1
H †

)�)
◦
(̃
s ⊗ H †) = (A ⊗ cH ††H †)◦

(̃
s ⊗ H †).

(2): Let Ψ ∈ H †† and ϕ ∈ H †. We have

Ψ ∗ (1 # ϕ) =

Ψ ϕ

=
Ψ ϕ

=
Ψ ϕ

.

Using this and that T and T are left integrals satisfying T (T ) = 1, we obtain T ∗ T = ε. �
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The next remark is an adaptation of [C-F, Remark 0.13].

Remark 8.14. Let (H
†
A ↪→ A, s) be a right H -Galois extension. By Theorem 7.4 there exists∑

i xi ⊗ yi ∈ A ⊗H†
A

gA such that
∑

i[xi, yi] = 1. Then, for all a ∈ A,

a =
∑

i

[xi, yi] · a =
∑

i

xi(yi, a) =
∑

i

xiT · (yia)

and

a = a ←
∑

i

[xi, yi] =
∑

i

(a, xi) � yi =
∑

i

gs

(
T · (axi)

)
yi =

∑
i

q−1(T · gs(axi)
)
yi,

where q ∈ k is such that cH †(T ⊗T ) = qT ⊗T and the last equality can be easily checked using
Corollary 2.12 and Lemma 8.2 of [G-G]. In particular, 1 = ∑

i xi(T ·yi) = ∑
i q

−1(T ·gs(xi))yi .
Furthermore, surjectivity of [ , ] implies its injectivity by the Morita theorems. Thus,

(1) If
∑

i ui ⊗ vi ∈ A ⊗H†
A

gA satisfies
∑

i[ui, vi]a = gs(a)
∑

i[ui, vi] for all a ∈ A, then∑
i

gs(a)ui ⊗ vi =
∑

i

ui ⊗ via for all a ∈ A.

(2) If
∑

i ui ⊗ vi ∈ A ⊗H†
A

gA is such that
∑

i[ui, vi] ∈ CA#H †(A) (the centralizer of A in

A # H †), then ∑
i

aui ⊗ vi =
∑

i

ui ⊗ via for all a ∈ A.

The following result generalizes Theorem 1.8 of [C-F] and its proof follows closely the one
given there.

Theorem 8.15. Let H be a rigid Hopf algebra and let (A, s) be a right H -comodule algebra.
Assume that (H

†
A ↪→ A, s) is a Galois extension. The following conditions are equivalent:

(1) A/H †
A is separable.

(2) There exists w ∈ A # H † such that T ∗ w = 1 and wa = g−1
s (a)w for all a ∈ A.

(3) A is a direct summand of A # H † as an A-bimodule.
(4) Let

∑
i∈I xi ⊗ yi ∈ A ⊗H†

A
gA such that

∑
i∈I [xi, yi] = 1. There exists c ∈ A such that∑

i∈I xicyi = 1 and ac = cgs(a) for all a ∈ H †
A.

Proof. (1) ⇒ (2): Let
∑

j∈J aj ⊗ bj be an idempotent of separability of A/H †
A. Let w =∑

j∈J g−1
s (aj )T bj ∈ A#H †, where gs is as in Theorem 2.8. Corollary 2.12 implies that gs = g s̃ .

Using this fact, that A = H ††
(A # H †) and Proposition 8.13, we obtain

T ∗ w =
∑

aj (T ∗ T )bj =
∑

ajbj = 1.
j∈J j∈J
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Furthermore,

wa =
∑
j∈J

g−1
s (aj )T bja =

∑
j∈J

g−1
s (aaj )T bj = g−1

s (a)w,

for all a ∈ A, since
∑

j∈J aj ⊗ bja = ∑
j∈J aaj ⊗ bj .

(2) ⇒ (1): Since gs and [ , ] are bijective maps, there exists
∑

i∈I ui ⊗ vi ∈ A ⊗H†
A

gA, such

that
∑

i∈I [g−1
s (ui), vi] = w. Furthermore, since∑

i∈I

[
g−1

s (aui), vi

] = g−1
s (a)w = wa =

∑
i∈I

[
g−1

s (ui), via
]
,

we have ∑
i∈I

aui ⊗ vi =
∑
i∈I

ui ⊗ via.

Finally,
∑

i∈I uivi = ∑
i∈I uiT ∗ T vi = T ∗ (

∑
i∈I g−1

s (ui)T vi) = T ∗ w.
(2) ⇔ (3): This follows immediately from Corollary 2.12 and item (3) of Remark 8.7 applied

to the left H ††-module algebra A # H †.
(1) ⇒ (4): Let

∑
ai ⊗ bi ∈ A ⊗H†

A
A be a separability idempotent for A/H †

A, and set c =∑
j q−1ajT · gs(bj ), where q ∈ k is such that cH †(T ⊗ T ) = qT ⊗ T . By Remark 8.14,∑

i

xicyi =
∑
ij

q−1xiajT · gs(bj )yi =
∑
ij

q−1ajT · gs(bj xi)yi =
∑
j

aj bj = 1,

where the second equality follows from the fact that
∑

j xiaj ⊗bj = ∑
j aj ⊗bjxi . Furthermore,

using that
∑

ai ⊗ bi is a separability idempotent and Proposition 5.6, we see that

ac =
∑
j

q−1aajT · gs(bj ) =
∑
j

q−1ajT · gs(bj a)
∑
j

q−1ajT · gs(bj )gs(a) = cgs(a)

for all a ∈ H †
A.

(4) ⇒ (1): Since ac = cgs(a) for all a ∈ H †
A, the map Υ :A ⊗H†

A
gA → A ⊗H†

A
A, given

by Υ (x ⊗ y) = xc ⊗ y, is well defined. Let
∑

i ai ⊗ bi = ∑
i xic ⊗ yi = Υ (

∑
i xi ⊗ yi). By

item (2) of Remark 8.14, the equality
∑

i aai ⊗ bi = ∑
i ai ⊗ bia is satisfied for all a ∈ A, and

by hypothesis,
∑

aibi = ∑
i xicyi = 1. �

Corollary 8.16. Let H be a semisimple braided Hopf algebra. Let t be a left integral of H such
that ε(t) = 1. Let A#f H be a braided Hopf crossed product in the sense of [G-G, Definition 9.4].
If f is invertible, then A #f H is a separable extension of A.

Proof. Let s be the transposition of H on A. By [G-G, Theorem 10.6] we know that (A ↪→
A #f H, ŝ) is a right Galois extension. Then, by Theorem 8.15, the comment following Theo-
rem 1.16, and [G-G, Remark 4.16] we must pick a w ∈ (A #f H) # H † such that bw = wb for
all b ∈ A #f H and T � w = 1. But an easy computation shows that w = 1 # 1 # ε satisfies these
conditions. �
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The following result generalizes a theorem due to Doi.

Corollary 8.17. Let H be a semisimple braided Hopf algebra and let (A, s) be a right H -comod-
ule algebra. Let t be a left integral of H such that ε(t) = 1. If (H

†
A ↪→ A, s) is a Galois extension,

then A/H †
A is separable.

Proof. Letting w = 1 # ε, condition (2) of Theorem 8.15 is satisfied. �
Note that Corollary 8.16 is a particular case of Corollary 8.17.
Recall that a braided bialgebra H is cocommutative if cH is involutive and cH ◦ΔH = cH . The

following result generalizes Theorem 1.11 of [C-F].

Theorem 8.18. Let H be a cocommutative rigid braided Hopf algebra with braid c and let
s :H ⊗ A → A ⊗ H be a transposition. Let A #f H be a braided Hopf crossed product in the
sense of [G-G, Definition 9.4]. If there exists a left integral t of H and an element c of A such
that:

(1) t · c = 1,
(2) c(t ⊗ h) = h ⊗ t for all h ∈ H ,
(3) s(h ⊗ c) = c ⊗ h for all h ∈ H ,
(4) s(t ⊗ a) = a ⊗ t for all a ∈ A,

then, A #f H is a separable extension of A.

Proof. By [G-G, Theorem 10.6] we know that (A ↪→ A #f H, ŝ ) is a right H -Galois extension
with transposition ŝ = (A ⊗ c)◦(s ⊗ H) and coaction ν = A ⊗ Δ. Let γ :H → A #f H be the
map defined by γ (h) = 1 #f h and let γ −1 be the convolution inverse of γ . Let

w = (
γ −1(u(1)) # T

)
(c #f u(2) # ε),

where u = S(t) and T is a left integral of H † satisfying T (t) = 1. By Theorem 8.15 (applied to
(A ↪→ A #f H)) we must see that

T ∗ w = 1 #f 1 # ε and w(a #f l) = (a #f l)w,

for all a ∈ A and l ∈ H . Let ˜̂s :H †† ⊗ (A #f H) → (A #f H) ⊗ H †† be as in the discussion
preceding Proposition 8.13. By Corollary 2.12, we know that g˜̂s = g ŝ = id. So,

T ∗ w = (
γ −1(u(1)) # ε

)(
T ∗ (1 #f 1 # T )

)
(c #f u(2) # ε)

= (
γ −1(u(1)) # ε

)
(c #f u(2) # ε)

= (
γ −1(u(1)) # ε

)
(1 #f u(2) # ε)

(
S(u(3)) · c #f 1 # ε

)
= S(u) · c #f 1 # ε

= 1 #f 1 # ε,
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where the second equality follows from item (2) of Proposition 8.13 and the third one from the
hypothesis and the fact that, since H is cocommutative,

(H ⊗ c)◦(Δ ⊗ S)◦Δ = (H ⊗ S ⊗ H)◦(H ⊗ c)◦(H ⊗ Δ)◦Δ = (H ⊗ S ⊗ H)◦(H ⊗ Δ)◦Δ.

By the bijectivity of [ , ] :A #f H ⊗A A #f H → A #f H # H †, in order to check that w(a #f l) =
(a #f l)w, it suffices to show that for each z ∈ A # H ,

z
(
γ −1(u(1))

) ⊗A cγ (u(2)) = γ −1(u(1)) ⊗A cγ (u(2))z.

First let z = a ∈ A. For h ∈ H and b ∈ A, write
∑

i bi ⊗ hi = s(h ⊗ b). Since h · b =∑
i γ (h(1))(bi #f 1)γ −1(h(2)i ),

γ −1(u(1)) ⊗A cγ (u(2))a =
∑
ij

γ −1(u(1)) ⊗A cγ (u(2))aij γ
−1(u(3)j )γ (u(4)i )

=
∑
ij

γ −1(u(1))γ (u(2))aij γ
−1(u(3)j ) ⊗A cγ (u(4)i )

=
∑
ij

aij γ
−1(u(1)j ) ⊗A cγ (u(2)i )

= aγ −1(u(1)) ⊗A cγ (u(2)).

Now, let z = 1 # l. For h,h′ ∈ H , write
∑

i h
′
i ⊗ hi = c(h ⊗ h′). Since f (h,h′) = ∑

i γ (h(1))×
γ (h′

(1)i
)γ −1(h(2)i h

′
(2)),

γ −1(u(1)) ⊗A cγ (u(2))z =
∑

i

γ −1(u(1)) ⊗A cf (u(2), l(1)i )γ (u(3)i l(2))

=
∑

i

γ −1(u(1))f (u(2), l(1)i ) ⊗A cγ (u(3)i l(2))

=
∑
ij

γ (l(1)ij )γ
−1(u(1)j l(2)) ⊗A cγ (u(2)i l(2))

= zγ −1(u(1)) ⊗A cγ (u(2)).

This finishes the proof. �
Corollary 8.19. Under the hypothesis of Theorem 8.18, if A is semisimple Artinian, so is A#f H .

Lemma 8.20. Let H be a rigid braided Hopf algebra and let H ′ a be a braided Hopf subalgebra

of H . Let t ′ ∈ H ′ \ {0} be a left integral. If H † is semisimple, then there exist T ∈ ∫ H †

l
such that

T ⇀ t ′ = 1.

Proof. The proof of [C-F, Proposition 1.14] works in our setting. �
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Theorem 8.21. Let H be a semisimple braided Hopf algebra and let H †′ ⊆ H † be a braided Hopf

subalgebra of H †. Let T ′ ∈ ∫ H †′
l

\{0} and T ∈ ∫ H †

l
\{0}. Assume that there exist ϕ,ψ ∈ H † such

that T = T ′ϕ = ψT ′. If (A, s) is a Galois right H -comodule algebra with a trace 1 element and

(s−1)�(H †′ ⊗ A) ⊆ A ⊗ H †′
, then H †′

A/H †
A is separable.

Proof. We follow closely the proof of [C-F, Theorem 1.15]. Let
∑

i xi ⊗ yi ∈ A ⊗H†
A

A such
that

∑
i[xi, yi] = 1 and let c ∈ A be an element of trace one. We claim that

∑
i T

′ · xi ⊗H†
A

T ′ ·
(yi(ϕ · c)) is a separability idempotent for H ′

A/H †
A. By Lemma 8.20 we know that there exists a

left integral T of H †† such that T ∗ T ′ = ε. We have∑
i

(T ′ · xi)yi = T ∗
∑

i

(T ′ · xi)T yi = T ∗
∑

i

T ′xiT yi = T ∗ T ′ = ε,

and so,∑
i

(T ′ · xi)
(
T ′ · (yi(ϕ · c))) = T ′ ·

∑
i

(T ′ · xi)
(
yi(ϕ · c)) = T ′ · (ϕ · c) = (T ′ϕ) · c = T · c = 1.

To finish the proof it remains to check that∑
i

wT ′ · xi ⊗H†
A

T ′ · (yi(ϕ · c)) =
∑

i

T ′ · xi ⊗H†
A

T ′ · (yi(ϕ · c))w (7)

for all w ∈ H ′
A. To prove (7) we will use that, for all w ∈ H †′

A,

(1)
∑

i (T
′ · xi)T (yi(ϕ · c)w) = w,

(2)
∑

i (T · (wxi))T
′(yi(ϕ · c)) = w,

(3) T · (yj (ϕ · c)T ′ · (wxi)) = T · (T ′ · (yj (ϕ · c)w)xi).

The proof of (1) is similar to the proof of (2) but easier. Let us see (2). First note that there exists
a quotient braided Hopf algebra H ′ of H such that H †′  H

′†. Since H is semisimple, the map gs

introduced in Theorem 2.8 is the identity map. By Corollary 2.12 we also have g(s−1)� = id and so
(s−1)�(T ⊗a) = a ⊗T for all a ∈ A. Similarly, since H ′ is semisimple, (s−1)�(T ′ ⊗a) = a ⊗T ′
for all a ∈ A. Furthermore, from Remark 2.13 it follows that cH †(T ⊗ T ) = T ⊗ T and so,
Remark 8.14 implies that a = ∑

i xiT · (yia) = ∑
i (T · (axi))yi , for all a ∈ A. Using all these

facts we obtain that∑
i

(
T · (wxi)

)
T ′(yi(ϕ · c)) = T ′ ·

∑
i

(
T · (wxi)

)
yi(ϕ · c) = T ′ · (w(ϕ · c))

= wT ′ · (ϕ · c) = w(T ′ϕ) · c = wT · c = w.

Let us see (3): We have

T · (yj (ϕ · c)T ′ · (wxi)
) = T · (yj (ϕ · c)w(T ′ · xi)

)
= ψ · (T ′ · (yj (ϕ · c)w)

(T ′ · xi)
)
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= T · (T ′ · (yj (ϕ · c)w)
xi

)
.

The proof of (7) now can be finished as in [C-F, Theorem 1.15]. �
Let G be a finite group. The k[G]-module algebra structures were described in [G-G, Theo-

rem 4.14 and Example 9.8]. The following result generalizes [H-S, Proposition 3.4].

Corollary 8.22. Let (A, s) be a k[G]-module algebra. If A has an element of trace 1, then, for
each subgroup G′ < G, the extension G′

A/GA is separable.

Proof. The proof given in [C-F, Corollary 1.18] works in our setting. �
Corollary 8.23. Let H be a semisimple braided Hopf algebra and let H †′ ⊆ H † be a braided

Hopf subalgebra of H †. Let T ′ ∈ ∫ H †′
l

\{0} and T ∈ ∫ H †

l
\{0}. Assume that H † is also semisim-

ple, that T (1) = 1 and that there exists ϕ ∈ H † such that T = T ′ϕ. If (A, s) is a Galois right

H -comodule algebra and (s−1)�(H †′ ⊗ A) ⊆ A ⊗ H †′
, then H †′

A/H †
A is separable.

Proof. The element c = 1 is a trace 1 element since ε(T ) = T (1) = 1 and ε(T ′) �= 0, since
1 = ε(T ) = ε(T ′)ε(ϕ). Since T = S(T ) = S(ϕ)S(T ′) = S(ϕ)T ′ we are in the hypothesis of
Theorem 8.21 and so the result follows from that theorem. �
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