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Abstract

Let k be a field and let H be a rigid braided Hopf k-algebra. In this paper we continue the study of
the theory of braided Hopf crossed products began in [J.A. Guccione, J.J. Guccione, Theory of braided
Hopf crossed products, J. Algebra 261 (2003) 54—101]. First we show that to have an H-braided comodule
algebra is the same that to have an H T-braided module algebra, where H T is a variant of H*, and then we
study the maps [, ] and (, ), that appear in the Morita context introduced in the above cited paper.
© 2006 Published by Elsevier Inc.
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0. Introduction

Let k be a field, H a finite-dimensional Hopf k-algebra and H* the dual Hopf algebra of H.
It is well known that to have a right H-comodule is “the same” that to have a left H*-module.
A similar duality exists between the notions of right H-comodule algebra and left H*-module al-
gebra. More generality, these duality results are also satisfied by rigid Hopf algebras in a braided
category (see, for instance, [T2, Proposition 2.7]). The main purpose of this paper is to extend
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them to the context introduced in [G-G], and to show that most of the results that appears in
[C-F-M,C-F], remain valid in this setting.

Let H be a braided Hopf k-algebra. Recall from [G-G] that a left H-braided space (V,s) is a
k-vector space V together with a bijective map s: H ® V — V ® H, which is compatible with
the operations of H and satisfies

CRH)NYH®s)(CcRV)=(VRc)sQH)(H®s),

where c is the braid of H (compatibility of s with ¢). When V is replaced by a k-algebra A and
s is also compatible with the operations of A we say that (A, s) is a left H-braided algebra and s
is a left transposition on H on A. Assume that H is rigid and let H* be the dual of H. Following
V. Lyubashenko, given a bijective maps: H® V — V ® H we defineamap (s" 1)’ : H*®@V —
V ® H* by

(s—l)b =(evu @V H*)-(H*®s™' ® H*)-(H* ® V ® coevy),

where evy : H* @ H — k and coevy :k — H ® H* are the evaluation and coevaluation maps.
Then, we show that (V, s) is a left H-braided space if and only if (V, (s~1)") is a left H*-braided
space. Similarly, we show that if A is a k-algebra, then s : H ® A — A ® H is a transposition if
and only if (s7)*: H*® A - A® H* is. Let (V, s) be a left H-braided space and let (A, s) be
a left H-braided algebra. Recall from [G-G] that:

e (V,s5) is a left H-module if V is a left H-module in the standard sense and the action
p:HQ®V — V satisfies s:(H Q@ p) = (p Q@ H)-(H ® s):(c®@ V).

e (V,s) is a right H-comodule if V is a right H-comodule in the standard sense and the
coactionv:V — V ® H satisfies (v ® H):s = (V ® ¢):(s ® H)-(H Q v).

e (A,s)is aleft H-module algebra if (A, s) is a left H-module and the action p: H @ A - A
satisfies:
@ ph®1)=e)l,
b)) p(HOu) =p(p@p)(HRsQ@A)(AR AR A).

e (A,s) is a right H-comodule algebra if (A, s) is a right H-comodule and the coaction
v:A— AQ® H satisfies:
@v(h)=1x1,
®) vu=(u@u)>(A®s®A)( V).

Assume that H is rigid and let H = H*OPC%PoPC%P Given a map v:V — V ® H we define a
map p,: H' @ V — V by

poi=(V@evi)((s~!) @ H)-(H ® ).

We show that (V, s) is a right H-comodule via v if and only if (V, (s~ H") is a left HT-module
via p,. Furthermore we show that if we have a left H-braided algebra (A, s) instead of a left H-
braided space (V, s), then (A, s) is a right H-comodule algebra via v if and only if (V, (s7hHP)
is a left H-module algebra via p,. Note that this does not work if we use H* instead H T as was
pointed by Takeuchi in [T2, Proposition 2.7].
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Let H be a braided Hopf algebra and (A, s) aleft H-module algebra. There are two associative
k-algebras associated with (A, s). The ring of invariants

HA=lae A: h-a=e(h)a)
and the smash product A # H, which is the vector space A ® H, endowed with the product

(@#h)(b#1) = ahq-bi #hl,
i

where Zi b; ® h; = s(h ® b) and, as usual, a # h denotes a ® h, etcetera. Recall from [G-G] that
if H is rigid, then A has a structure of (PA, A # H)-bimodule and a structure of (A # H, 7A)-
bimodule, such that

[,1:NQus M — A#H, givenby[a,b]=aTb,
(,):M®uuny N — HA,  givenby (a,b) =T - (ab),

is a Morita context relating “A and A # H, where T € H' is a fixed nonzero left integral, M =
HAAasg and N = p4y Any.

Using the results mentioned above we establish conditions for any or both of the maps [, ]
and (,) be surjective and we give some applications. In particular we generalize Theorems 1.2
and 1.2" of [C-F-M] and Theorems 1.8, 1.11 and 1.15 of [C-F].

1. Preliminaries

In this article we work in the category of vector spaces over a field k. Then we assume im-
plicitly that all the maps are k-linear and all the algebras and coalgebras are over k. The tensor
product over k is denoted by ®, without any subscript, and the category of k-vector spaces is
denoted by Vect. Given a vector space V and n > 1, we let V" denote the n-fold tensor power
V®---® V. Given vector spaces U, V, W andamap f:V — W we write U Q f foridy ® f
and f ® U for f ® idy. We assume that the algebras are associative unitary and the coalge-
bras are coassociative counitary. Given an algebra A and a coalgebra C, welet u: A Q@ A — A,
n:k— A, A:C - C®C and € : C — k denote the multiplication, the unit, the comultiplication
and the counit, respectively, specified with a subscript if necessary.

Some of the results of this paper are valid in the context of monoidal categories. In fact we use
the nowadays well-known graphic calculus for monoidal and braided categories. As usual, mor-
phisms will be composed from up to down and tensor products will be represented by horizontal
concatenation in the corresponding order. The identity map of a vector space will be represented
by a vertical line. Given an algebra A, the diagrams

Yoo 7 and \—{

stand for the multiplication map, the unit and the action of A on a left A-module, respectively.
Given a coalgebra C, the comultiplication, the counit and the coaction of C on a right C-comod-
ule will be represented by the diagrams

A | and >
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respectively. The maps ¢ and s, which appear in Definition 1.1 and at the beginning of Section 2,
will be represented by the diagrams

A and X

respectively. The inverse maps of ¢ and s will be represented by

X and X

Finally, any other map g: V — W will be geometrically represented by the diagram

Let V, W be vector spaces and letc: V ® W — W ® V be a map. Recall that:

e If V is an algebra, then c is compatible with the algebra structure of V if cc(n @ W) =W @1
and (U W)=(WQ u)(c®V)(VR®ec).

e If V is a coalgebra, then ¢ is compatible with the coalgebra structure of V if (W ® €)-c =
e@Wand (WR A)c=(cQRV)(V®c)(ARQW).

Of course, there are similar compatibilities when W is an algebra or a coalgebra.
1.1. Braided bialgebras and braided Hopf algebras

Below we recall briefly the concepts of braided bialgebra and braided Hopf algebra following
the presentation given in [T1]. For a study of braided Hopf algebras we refer to [T1,T2,L.1,F-M-
S,A-S,D,So,B-K-L-T].

Definition 1.1. A braided bialgebra is a vector space H endowed with an algebra structure, a
coalgebra structure and a braiding operator ¢ € Auty (H 2y (called the braid of H), such that c is
compatible with the algebra and coalgebra structures of H, Ay = (U Q) (HRcQ H) (AR A),
n is a coalgebra morphism and € is an algebra morphism. Furthermore, if there exists a map
S:H — H, which is the inverse of the identity map for the convolution product, then we say that
H is a braided Hopf algebra and we call S the antipode of H.

Usually H denotes a braided bialgebra, understanding the structure maps, and ¢ denotes its
braid. If necessary, we will use notations as cg, (g, et cetera.

Remark 1.2. Assume that H is an algebra and a coalgebra and ¢ € Auty(H 2) is a solution of
the braiding equation, which is compatible with the algebra and coalgebra structures of H. Let
H ®. H be the algebra with underlying vector space H ® H and multiplication map given by
MWHe H = (1 ® u)-(H ® c ® H). Itis easy to see that H is a braided bialgebra with braid ¢ iff
A:H — H ®. H and € : H — k are morphisms of algebras.

Definition 1.3. Let H and L be braided bialgebras. A map g: H — L is a morphism of braided
bialgebras if it is a morphism of algebras, a morphism of coalgebras and c-(g ® g) = (g ® g)-c.
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Let H and L be braided Hopf algebras. It is well known that if g: H — L is a morphism of
braided bialgebras, then g-Sg = Sy-g.

Remark 1.4. Let H be a braided bialgebra. A direct computation shows that H= (H, pt,n,
T-A, €), where T: H® H — H ® H denotes the flip, is a braided bialgebra, with braid ¢ := t-c-t.
Note that if H is a braided Hopf algebra with antipode S, then H also is.

Remark 1.5. If H is a braided bialgebra, then HcOp = (H, ,wc’l, n, A, €) and Hf°p =(H,u,n,
¢~ 1A, €) are braided bialgebras, with braid ¢ ~!. By combining these constructions we obtain the
braided bialgebras prwp = (H, Mac_l, n,c A, €) and HfOpOp = (H, pec,n, c LA, €), with
braid c. Furthermore, if S is an antipode for H, then S is also an antipode for Hc0 PCOP and Hf opop
and if S is bijective, then S~! is an antipode for H>® and HS°°. For a proof of these facts see
[A-G, Proposition 2.2.4].

Let H be a braided Hopf algebra. The antipode S of H is a morphism of braided Hopf algebras
from H PP to H, and from H to H°P°P. Furthermore, (SQ H):c = c:(H® S) and (H ® §)-c =
c(S ® H) (compatibility of S with c).

1.2. Rigid braided bialgebras

In this subsection we recall the definition and some properties of rigid braided bialgebras and
Hopf algebras, that we will need later.

Let V and W be vector spaces. Assume that W is finite-dimensional. Let evyy : W* Q@ W — k
be the evaluation map and let coevy :k — W ® W* be the coevaluation map. For each map
T:V®W — W Q® YV, Lyubashenko [L2] has introduced the map

T W@V —>VeW,
defined by 7% := (eviy @ V@ W*)«(W* @ T @ W*)-(W* ® V ® coevy).

Definition 1.6. A finite-dimensional braided bialgebra H is called rigid if the map ¢”: H* @ H —
H ® H* is bijective. In this case (c~')": H* ® H — H ® H* is also a bijective map.

For each rigid braided bialgebra H, let cy+p := (™D, ey = (! and ey 1= .

Theorem 1.7. [T1, Theorem 5.7] Let H be a rigid braided bialgebra. There exists a Hopf alge-
bra L, with bijective antipode, and a braided bialgebra $) in the Yetter—Drinfeld category YD,
such that:

(1) (F(9), F(ng), F(ng), F(Ag), F(ep)) = (H, uy,NH, Au, €n), where F is the forgetful
functor from ny to Vect.

(2) [f ¢ is the braid Of yDL, then F(Cy)yj) = CH, F(Cgﬁ*) = CHH*, F(Cﬁ*g) = cy+y and
F(cgrg+) =cpx.

(3) F(evy) = evpm and F(coevy) = coevr(y for each rigid object M € YDE, where
evy :M* ® M — k and coevy:k — M @ M™* are the evaluation and coevaluation maps
of M.
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Furthermore, if H is a braided Hopf algebra, we can take $) as a Hopf algebra in yD,f . In this
case, we have F(Sg) = SH.

As was pointed in [T2, Section 1], each map f:V ® W — 1, in a braided tensor category C
with initial object 1, satisfies
(U@ levu ® W)= (f ® UMV ®cyy) and
U Mgy ®W)=(f @ U)(V @ cuw),

for all object U € C. Similarly, each map g:1 — V ® W satisfies

(cuy @W)(U®g)=(V®cpy)(g®U) and

(cyy @ W)U ®g)=(V ®cwu) (g ®U).
Let H be a rigid braided bialgebra. Thanks to Theorem 1.7 this remark applies to the maps evy
and coevy . More importantly, as was noted in [T1, Section 6], this theorem allows to reformulate

all the known results about rigid bialgebras in a Yetter—Drinfeld category as results about rigid
braided bialgebras. Next, we recall those ones that we will need later.

Theorem 1.8. [T2, Theorem 4.1] The antipode of a rigid braided Hopf algebra is bijective.

Definition 1.9. Let H be a rigid braided Hopf algebra. An element ¢ € H is a left integral if
ht =e(h)t, forall h € H, and it is a right integral if th = e (h)t, for all h € H. We let f;l denote
the set of left integrals and we let || 1:( denote the set of right integrals.

Theorem 1.10. ([L2, Theorem 1.6], [F-M-S, Corollary 5.8], [T2, Theorem 4.6], [D, Theorem 3])
The sets |, ;_1 and |, I:, are one-dimensional vector subspaces of H.

Theorem 1.11. [T1, Section 7] The sets f;, and [y, satisfy c(f,li QH)=H® f;, c(H® f;,) =
[y ®H, c([;; ®H)=H® [}, and c(H ® [}) = [}, ®H.

Corollary 1.12. Let H be a rigid braided Hopf algebra. There exist unique isomorphisms of
braided Hopf algebras

fL:H—H and fi;:H—H,

such that C(h®t)=t®f£,(h) and c(u ® h) = ff;(h) ®u,f0rallt€fll_1 \{0}, u Ef;[ \{0} and
heH.

Corollary 1.13. Let t € [1,. Since S(t)S(f},(h)) = (S ® S)-c(h ® 1) = S(ht) = e(h)S(t) =

e(S(f;{(h)))S(t), we have S(fll{) = f[ri In a similar way it can be proven that S(f;l) = fll{
[ r r [

Ju= ij?p and [, = fop'
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Remark 1.14. Let t € f;[ \{0}, u € [;;\{0} and h € H. From the fact that c and S are compatible,
S} = [r, and S(f1,) = [}, it follows that ¢(r ® h) = f;(h) ® t and c(h @ u) = u & fL,(h).
Using this it is easy to see that there exists g € k' \ {0} suchthat c(t ® 1) =gt @ and c(u Q u) =
qu @ u.

Let H be a rigid braided Hopf algebra and let ¢ be a nonzero left integral of H. There is
an algebra map o : H — k such that th = a(h)t, for all h € H. This map is called the modular
function of H. From Corollary 1.13 and Remark 1.14 it follows that if u is a nonzero right
integral, then hu = a(S(fL, (h)))u.

Theorem 1.15. [T1, Section 7] We have (¢ @ H).c=H Q o and (H Q a).c =a ® H.

Theorem 1.16 (Maschke’s Theorem). A rigid braided Hopf algebra H is semisimple iff there
exists t € ffll such that €(t) # 0.

Using this theorem it is easy to see that if H is semisimple, then |’ ;1 =/ ;I and the maps f};
and f }1 of Corollary 1.12 are the identity maps.

Theorem 1.17. [T2, Theorem 2.16] If H is a rigid braided bialgebra, then H* is also a rigid
braided bialgebra, with braid cy+ = (cy)" and multiplication, unit, comultiplication and counit
given by,

pas = (evy ® H*)-(H* @ evy ® H ® H*)-(H*®* ® Ay ® H*)-(cy» ® coevy),
ngx(A):=XA-eyg forallh ek,

Ape = (eviy ® ¢ )(H* ® ppp ® H*?)-(H* ® H ® coevyy @ H*)-(H* ® coevyy),
eg+(p) ;=) forall p € H*.

Furthermore, if H is a braided Hopf algebra, then so is H*, with antipode Sg+(¢) := ¢-Sg.
Finally, the correspondence H — H* is functorial in an evidence sense.

Remark 1.18. For each rigid braided bialgebra H, the canonical bijection H — H** is a bial-
gebra isomorphism (in the sense of Definition 1.3, but not as bialgebras in a Yetter—Drinfeld
category VDL, since i is not compatible with the actions of L on H and H**).

Notation 1.19. For each rigid braided bialgebra H, we write H' := (H*)°P°Po%%P Note that
the multiplication and the comultiplication of H' are described by interchanging ¢ and ¢~! in
Theorem 1.17. We will write cy+y = cu*n, cyyt := cam* and cy+ := cy+. It is immediate
that H™T = H** and that, if ¢ is involutive, then H = H*. Finally, when H is a braided Hopf
algebra, then $2: H' — H* is an isomorphism of braided Hopf algebras and, by Corollary 1.13,

] !
St = [y and [ = [

Throughout this work ¢ < h and h — ¢ denote the right and left standard actions of H
on H, given by (¢ <= h)(I) = ¢(hl) and (h — ¢)(I) = ¢(lh), respectively.
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Proposition 1.20. [D, Theorem 3b] Let H be a rigid braided Hopf algebra and let ¢ be a nonzero
left or right integral of H'. The map 9 :H — HT, defined by 9 (h) := ¢ — h, is a right H-
module isomorphism. Similarly the map ¥’ : H — H', defined by ©'(h) :==h — ¢, is a left H-
module isomorphism.

Corollary 1.21. Given a left or right nonzero integral ¢ of H' there exist t € fllf and u € f;{
such that t —~ ¢ = € and ¢ — u = €. Note that this is equivalent to say that ¢(t) = ¢ (u) = 1.

Remark 1.22. Let H be a rigid braided bialgebra. Then H acts on the left on H via ¢ — h :=
> hy;e(h@);), where 3 hay, ® hqry; = ¢~ (1) ® h(2)). Similarly H acts on the right on H
viah < ¢ =Y, ¢(h();)h(2);. Composing these actions with the canonical bijection H — H'7
we recover the standard left and right actions of H™ on H'". Assume that H is a rigid braided
Hopf algebra. Hence, by Corollary 1.21, for each left or right nonzero integral [ of H there exist
T e f;ﬁ and U € [y suchthat T — [ =1and/ < U = 1. Note that this is equivalent to say that
T()=U() = 1. Since (H ®)" = (H*)°P, applying this result to HZ and taking into account
Corollary 1.21 and Notation 1.19, we obtain that there exist 7’ € |, Ilﬂ and U’ € [ ;IT such that
IyT'(lp)) =1 and U'(I(1))lpy = 1. Since T'(1) =1 =T(!) and U’'(l) = 1 = U(l), we have that
T'"=TandU' =U.

Remark 1.23. Let H be arigid braided Hopf algebra and let o be the modular function. For /& €
H we write h* :=a — h. S0, h% =Y, h();a(h2);), where " ha), ® h(1y; = ¢ (ha) ® h()).
From Theorem 1.15 it follows easily that A% = h(1ya(h(2)) and that the map 4 — h“* is an algebra
automorphism.

Lett e f Il{ be a nonzero left integral, & the modular function and g € k such that c(t ® 1) =
qt ®t. By [G-G, Lemma 8.3] we know that S(1) = gt(1)a(¢2)). Applying this result to H® we
obtain S_l(l‘) = q_l Zi Ot(t(l)i)t(z)i, where Zi 12); ® Ly = C_l(l(l) ® t(z)). We will use this
formula in the proof of the following proposition.

Proposition 1.24. Let H be a rigid braided Hopf algebra. If T € fll_ﬁ and t € f]li satisfy t —
T=c¢ thenT —t=a, TS ' (t)=qg e, T—~t=1andT — S~ (1) =¢~ 1.

Proof. For each h € H we have (T < t)(h) = T(th) = a(h)T(t) = a(h). So, the first
formula holds. Let us prove the third one. For h € H, let clAm) = Zih(z)i ® hqy;-
Since ), ohayT (h);) = (T)(h) = ¢(1)T (h), where ¢T is the product in HY, we have
Y ih);T(he);) =T()1. Thus T — ¢ =T(t)] = 1. Next we prove the second and fourth
equalities. By the discussion preceding this proposition, 7 (S “11) = q_l > alta DT (t);) =
g "D =TS™'1)=q'a(DT (1) =q " Hence,

(T —=S7' )W) =T (ST (Oh) =T(S7'®))e(h) =g e(h)

forall h € H, and
o(T = s7'(1) Zw "Ow)T (57 0e)y)

=@D)(S7'0) =eMT(S7'1) =q""p(1)
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1

for all ¢ € H'. From these facts it follows immediately that 7 < S~!(#) = ¢~ 'e and T —

sT'ty=¢"1. O

Let H be a rigid braided Hopf algebra and ¢ a nonzero left or right integral of HT. Given a
map ¢: H — H we let ¢* denote the transpose of ¢. Let fH H — H and fH H — H be the

automorphisms of H defined by f;{ = (f H)* and f;ﬁ = (fH)*. Using that

¢ H®H' ®evy)(H®cy: ® H)-(coevy ® H' ® H),

HH"_(

cyp=(H®H @evy)(H®c,} ® H)(coevy ® H' ® H),

we easily obtain that ¢y i (h ® ) = ¢ ® (f 1)~ (k) and cyi (¢ @ h) = (Fi) ™' (h) ® .
2. Transpositions

Let H be a braided bialgebra. We recall from [G-G] that a left H-braided space (V,s) is a
vector space V endowed with a bijective map s: H ® V — V ® H, which is compatible with
the bialgebra structure of H and satisfies (s ® H):(H ® s):(c® V) =(V Q) (s ® H)(H ® 5)
(compatibility of s with the braid). Actually in the definition given in [G-G] is not required
that s be bijective, but here we add this condition, since it is necessary to prove most of the
properties. When H is a braided Hopf algebra it is also true that s«(S® V) = (V ® S)-s, as was
shown in [D-G-G, Section 1]. It is easy to check that (V, s) is a left H-braided space iff (V, s)
is a left H °-braided space and that this happens iff (V,s) is a left H.°"-braided space. A map
g:V — V' is said to be an homomorphism of left H-braided spaces, from (V,s) to (V’,s"), if
(g® H)s=s"(H®g).

The notion of right H-braided space can be introduced in a similar way. We leave the details
to the reader.

Let H be a braided bialgebra, V a vector space ands: H ® V — V ® H a bijective map. It is
easy to check that (V, s) is a left H-braided space iff (V, s~!) is a right H-braided space.

Let H be arigid braided bialgebra and let (V, s) be a left H-braided space. From the definition
of (s~1)” it follows immediately that

AI=D0 w [= mee= )

For each result about left H-braided spaces there is an analogous result about right H-
braided spaces. The same is valid for the notions of transposition, H-module, H-module algebra,
H-comodule and H-comodule algebra that we will consider later. In general we will announce
the left version for H-braided spaces, transpositions and modules and the right version for co-
modules, and we leave the other ones to the reader.

Let H be a rigid braided bialgebra, V a vector space and s: H* ® V — V ® H™* a bijective
map. We define the map "(s™1): H® V — V ® H, by

"(s7") = (evacnn @V @ H)(H®s ™' @ H)-(H ® V ® ¢} ycoevyy).
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A direct computation shows that

RS e e 1515

Using this and the definition of s it is easy to check that

H\VH* HV?]*
Ul 2L et s
e A T N Al Ve Mt ”

Lemma 2.1. Let H be a rigid braided bialgebra. For each left H-braided space (V,s), we have
(V@ chp) (') @ H)(H* ®5) = (s @ H')-(H & (') ) (cirp- ® V),
V@ enm(s™) ® HY (1 ©5) = (s H)(H & (7)) cr-n © V).

Proof. By basic properties of the evaluation and coevaluation maps and the fact that (V, s) is a
left H-braided space, we have

which proves the first equality. The second one can be checked in a similar way. O

Lemma 2.2. Let H be a rigid braided bialgebra. For each left H*-braided space (V, s), we have
(V@ ciy) (™) @ H)(H®s5) = (s @ H)y(H* ®"(s™"))(cipryy ® V).
(V@cuu)((s7) @ H*)(H®s) = (s ® H)-(H*®"(s™"))(cn+ ® V).

Proof. The first equality can be proven by replacing H* by H, H by H*,

ﬁbyQ and UbYé

in the diagrams used in the proof of Lemma 2.1. The second one is similar. O
Proposition 2.3. Let H be a rigid braided bialgebra. The following assertions hold:
(1) If (V,s) is a left H-braided space, then (V, s HY)isa left H*-braided space.

2) If (V,s) is a left H*-braided space, then (V, s~ isa left H-braided space.
(3) The above constructions are inverse one of each other.
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Proof. (1): Using the definition of g+ and the fact that s~! is compatible with ey it is easy
to check diagrammatically that (s~!)* is compatible with 5z+. We left the details to the reader.
Similarly, (s~!)” is compatible with €z+. Next, we check the other compatibilities and that (s ~1)”
is bijective.

Compatibility of (s~)" with py+: Since (H @ s~ )«(s ' @ H)-(V® A) = (A® V):s~! and
(Cc®V)»Hs D '®H)=(H®s (s ® H)(V ®c), we have

Compatibility of (s~!)* with Ag«: This can be checked dualizing the proof that (s~1)" es com-
patible con 1 g=.
Compatibility of (s~!)* with cg4: We have

SRR IR

(s~1)" is bijective: By the discussion at the beginning of this section, basic properties of the
evaluation and coevaluation maps and Lemma 2.1,

A similar argument shows that (s ~!)” is left invertible.
(2): Using the definition of e+, that n is compatible with ¢y g+, and that e+ is compatible
with s~! and czll* - it is easy to check diagrammatically that °(s~1) is compatible with 7. We

leave the details to the reader. Similarly, "(s~!) is compatible with €. Next, we check the other
compatibilities and that °(s 1) is bijective.
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Compatibility of °(s~') with uy: By the compatibility of c;IIH* with pg and the definition

oyt

Using this fact, the definitions of b(s~1) and A+, and the compatibility of c;{LoA g+ with c;I]H*
and s—!, we obtain

ol e

1o LSS ﬁ g

N

Compatibility of *(s~!) with Ag: This can be checked dualizing the proof that "(s~!) is
compatible con g .
Compatibility of °(s~') with c¢z7: By the compatibility of s~! with ¢+, we have

sl
i

¢
S
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°(s~1) is bijective: By the discussion before Lemma 2.1, basic properties of the evaluation and
coevaluation maps and Lemma 2.2,

- @3 R 15 o

A similar argument shows that b(s—1) is left invertible.
(3): Left to the reader (use the formulas for the inverse of (s~!)” and "(s~!) obtained in the
proofs of items (1) and (2), respectively). O

Remark 2.4. Let H be a rigid braided bialgebra and (V, s) a left H-braided space. In the proof
of item (1) of Proposition 2.3, it was shown that

(H*®V ®evycyp+)(H* ®s @ H*)- (CH*H -coevy ® V ® H*)

is the compositional inverse of (s~!)”. Applying this result with H replaced by H°P, we obtain
that

(H*®V ®@evy-cyiy)(H* ®s ® H*)-(cyu+-coevy ® V@ H*)
is also the inverse of (s—1)". So, both maps coincide. In a similar way, we can check that if (V, s)
is a left H*-braided space, then

"(s71) = (evicyiy ® VR H)-(H®s™' @ H)-(H® V & cy yw-coevy).

Using the last equality of the Remark 2.4, and arguing as in the discussion above Lemma 2.1,
it is easy to check that

\@J _ %’ and ?\) _ @ © where 5 ="(s~1) and 3¢ — 51
*V\H H4VH

Definition 2.5. [G-G] Let H be a braided bialgebra and A an algebra. A left transposition of H
onAisamaps: H ® A — A® H, satisfying

(1) (A,s)is aleft H-braided space,
(2) s is compatible with the algebra structure of A.

Note that by condition (1) s is bijective, which was not required in the definition given in
[G-G]. It is immediate that s is a left transposition of H on A iff it is a left transposition of H:"
on A and that this happens iff s is a left transposition of H:>" on A.

Definition 2.6. Let H be a braided bialgebra and A an algebra. A right transposition of H on A
isamaps:A® H — H ® A, satisfying
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(1) (A,s)is aright H-braided space,
(2) s is compatible with the algebra structure of A.

As for left transpositions, to have a right transposition of H on A is the same that to have a
right transposition of Hs" on A and this is equivalent to have a right transposition of H:"" on A.

Let H be a braided bialgebra, A an algebra and s: H ® A — A ® H a bijective map. It is
immediate that s is an left transposition of H on A iff s~! is a right transposition of H on A.

A pair (A, s) consisting of an algebra A and a left transposition of H on A will be called a
left H-braided algebra. Similarly, if s is a right transposition, then (A, s) will be called a right
H-braided algebra.

Proposition 2.7. Let H be a rigid braided bialgebra and let A be an algebra. The following facts
hold:

(1) Ifs:HQ® A— AQ H is a left transposition, then (s~ ")’ : H* @ A — A ® H* is so too.
() Ifs:H*® A— A® H* is a left transposition, then "(s™'): HQ A — A ® H is so too.

Proof. We prove the first assertion and we leave the second one to the reader. By Proposition 2.3
we only must check that (s~!)" is compatible with the algebra structure of A. It is easy to check
that (s ~!) is compatible with 4. Let us see that it is compatible with 11 4. Since (H ® w(s~'®
AA®sH=s""(ueH),

=T3[40

Theorem 2.8. [G-G, Theorem 4.3.1] Let H be a rigid braided Hopf algebra, A an algebra and
s a left transposition of H on A. There is a unique automorphism of algebras g;: A — A, such
that s(t @ a) = gs(a) @1 for all left or right integral t € H. Furthermore, we have s-(f1; ® gs) =
(g5 ® fy)s and sE(ffL, ® gs_l) = (gx_1 & f,li)ﬂs, where f;, and f}i are the maps introduced in
Corollary 1.12.

Proposition 2.9. [G-G, Proposition 4.17] Let H be a rigid braided Hopf algebra, a: H — k
the modular function, A an algebra and s :H @ A — A ® H a bijective transposition. Then,
AQa)s=a® A.

Lemma 2.10. Let H be a braided bialgebra and (V,s) a left H-braided space. The following
equality holds:

T'®H)(VRcT) (Ve An)s=H®s) (' ®V)(Ag®V).
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Proof. Since (V®c (s @ H)(H®s)= (s ® H)(H ® s)(c"! ® V), we have
"4
ﬁv f\ é V
/% (1 )\

Proposition 2.11. Let H be a rigid braided Hopf algebra, s : H® A — A® H a left transposition
and 0 : H™ — H the map defined by 6(p) = ¢ — t, where t is a nonzero left integral of H. Then,
(A®O)(™) =50 ®g ™.

(A®6)o(s!) = T}\qg B &% |

Using this fact, Lemma 2.10 and Theorem 2.8, we obtain

d t A Tﬁ\‘ A
\

as we want. O

as desired. O

Proof. By definition

Corollary 2.12. Let H be a rigid braided Hopf algebra and s: H ® A — A ® H a left transpo-
sition. Then g1y = gl

Proof. LetT € fllﬂ such that 6(7') = 1. By Proposition 2.11,
—1\b — —
8s-1y@®1=(AR0)(s7) ) T®a)=s0¢; T ®a)=g;' (@1,
as we want. 0O

Remark 2.13. Let f  be as in the discussion at the end of Section 1. By the comments at the
end of Section 1, we know that f;, = f};. Consequently, if f;, =id, then f] . =id. Similarly,
fhy = fl andif f}, =id, then f! . =id.

3. Modules and comodules
Let H be a braided bialgebra. In this section we recall from [G-G] the notions of left H-

braided module and right H-braided comodule and we establish a relation between these con-
cepts.
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Definition 3.1. [G-G] Let (V, s) be a left H-braided space.

(1) We say that (V,s) is a left H-module or V 1is a left H-braided module if V is a left
H-module in the standard sense and the action p: H ® V — V satisfies s:(H ® p) =
(p® H)-(H®s)(c®V).

(2) We say that (V, s) is a right H-comodule or V is aright H-braided comodule if V is a right
H-comodule in the standard sense and the coaction v:V — V ® H satisfies (v @ H)-s =
(V®c)(s® H)-(H® V).

A map f:(V,s) — (V',s") is a morphism of left H-modules if it is morphism of left H-

braided spaces and f-p = p’-(H ® f), where p and p’ are the actions of H on (V, s) and (V’, s"),
respectively. The definition of morphism of right H-comodules is similar.

Let (V,s) be a right H-braided space. The concepts of right action of H on (V,s) and left
coaction of H on (V,s) can be introduced in a similar way. We leave the details to the reader.
Next, we establish a relation between these last notions and the ones introduced in Definition 3.1.

Proposition 3.2. Let H be a braided bialgebra and (V, s) a left H-braided space. Then (V,s)

is a left H-module via p iff (V,s~") is a right H®-module via p-s~". Similarly, (V,s) is a right

H-comodule via v iff (V, s Disa left HZ®-comodule via s~ 1ov.

Proof. Left to the reader. O

Let H be a rigid braided bialgebra and let (V,s) be a left H-braided space. Given a map
v:V — V®H, wedefineamap p,: H ® V — V by

py =V @evp)((s™') ® H)-(H @v).
Conversely, given amap p: H' ® V — V, we define v,:V—=V®Hby
vy :=s-(H ® p)-(coevyg ® V).

It is easy to check that these constructions are inverse one of each other.

Let H be a rigid braided bialgebra and let H' be as in Notation 1.19. By Proposition 2.3 and
the discussion at the beginning of Section 2, we know that (V, s) is a left H-braided space iff
(V, (s71?) is a left H-braided space.

Lemma 3.3. Let H be a rigid braided bialgebra and let (V, s) be a left H-braided space. Then,
each left H'-module structure on (V, (s~ ")"), satisfies

(H®p® H)(coevy @)= (H ®5)(c® p)(H ®coevy ® V),

where p: H' @ V — V is the action of H on V.
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Proof. By the definitions of (s~H" and ¢ m+ the fact that (V, (s~ 1) is a left H-module and
basic properties of the evaluation and coevaluation maps, we have

From this it follows that

which clearly implies our assertion. 0O

Lemma 3.4. Let H be a rigid braided bialgebra. If (V, s) is a right H-comodule, then
(v H) 1Y = (V @ e ((71) ® HY (T @),

where v is the coaction of (V, s).

Proof. Since v is a map of H-braided spaces, we have

SR A T I Yoo

where the first equality follows from the definition of (s~1)*. O

Theorem 3.5. Let H be a rigid braided bialgebra and (V, s) a left H-braided space. Then (V)
is a right H-comodule via v iff (V, (s~H" isa left H-module via Pv-

Proof. (=): Since (V, (s~1)") is a left H'-braided space and v is a coaction, we have
PEe®V)=(VR evH)o((sfl)b ® H)u(HT ® v)(e ®v) =€e(va))v) =,

for all v € V. Hence, p, is unitary. By Lemma 3.4, the fact that (V, v) is aright H-comodule, the
discussion following Theorem 1.7, the compatibility of s with c, the discussion at the beginning
of Section 2, and the compatibility of s with A, we have
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I B

fjﬂv . )
&_ w: @@: pvo iy ®V),

which shows that p, is associative. It remains to check that s~ HH' @ oy) =
(ov ® HN)-(H' ® (s7")")-(cyy+ ® V). But, by the compatibility of (s~!)" with ¢+, the dis-
cussion following Theorem 1.7 and Lemma 3.4, we have

(«<): Let v € V. Since s is compatible with € and p,, is unitary, we have

o(HT(X)pU)

(V@e)vw) =(VQe)s(HQ py)(coevg @ V)(v)
=(€®V)(H ® py)-(coevy @ V)(v)
=pv(€ ®V)
=,
where the first equality follows from the discussion following Proposition 3.2. Hence, v is couni-
tary. By Lemma 3.3, the fact that (V, s) is a left H f_module, the definition of the multiplication

in H', basic properties of the evaluation and coevaluation maps, the relation between p, and v,
the compatibility of s with A and the discussion at the beginning of Section 2, we have

Jo-Y-

14
\4

Py © (HT ® Pv)
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which shows that v is coassociative. It remains to check that
WR®H)s=(V®c)y(s® H)(HQv).

But, by the relation between p, and v, the compatibility of s with ¢ and Lemma 3.3, we have
AN
| t 5
RNESEIEN
V H \H \ j V H H v.nu
N\ \
V H H V H H

4. Module algebras and comodule algebras

as we want. O

Let H be a braided bialgebra. In this section we introduce the notions of left H-module
algebra and right H-comodule algebra and we study the relation between these concepts.

Definition 4.1. [G-G] Let (A, s) be a left H-braided algebra.

(1) We say that (A, s) is a left H-module algebra if (A, s) is a left H-module and the action
p:H® A — A satisfies:
@ ph®1)=c¢€)l,
®) p(HOu)=pu(p®@p)(HQs®A)(ARAR A).

(2) We say that (A, s) is a right H-comodule algebra if (A, s) is a right H-comodule and the
coaction v: A — A ® H satisfies:
@ vh)=111,
®) vu=pW(AQs®A)-(vev).

Items (1) and (2) of the above definition can be expressed saying that p and v are compatible
with the algebra structure of A.

A map f:(A,s) — (A’,s") is a morphism of left H-module algebras if it is morphism of
left H-modules and a morphism of algebras. The definition of morphism of right H-comodule
algebras is similar.

Let A be a k-algebra and s: A ® H — H ® A a right transposition. The notion of right H-
module algebra structure and left H-comodule algebra structure on (A, s) can be introduced in
a similar way. We leave the details to the reader. Next, we establish a relation between these
notions and the ones introduced in Definition 4.1.

Proposition 4.2. Let H be a braided bialgebra and let (A, s) be a left H-braided algebra. Then
(A, s) is a left H-module algebravia p: H ® A — A iff (A, s™") is a right H®-module algebra
via p-s~'. Similarly, (A,s) is a right H-comodule algebra via v iff (A,s™") is a right HZ -

comodule algebra via s~ '-v.

Proof. From Proposition 3.2 and the discussion following Definition 2.6 it follows immediately
that in order to check the first assertion it suffices to show that p satisfies conditions (a) and (b)
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of item (1) of Definition 4.1 iff pos_l satisfies the analogous conditions. We leave this task to the
reader. The second assertion can be checked similarly. O

Lemma 4.3. Let H be a rigid braided bialgebra and let (V,s) be a left H-braided space. If
(V, (s™Y) is a left H-module, then

s ® H) = (H ® p)(c;;hy: @ V)-(HT @571),

where p denotes the action of H on V.

Proof. By Lemma 3.3, the discussion following Theorem 1.7, and basic properties of the evalu-
ation and coevaluation maps

(%K1

The assertion follows immediately from this equality. O

.

:”@

Theorem 4.4. Let H be a rigid braided bialgebra and let (A, s) be a left H-braided algebra.
Then (A, s) is a right H-comodule algebra via v iff (A, s H isa left H -module algebra
via py.

Proof. (=): By Proposition 2.7 and Theorem 3.5 it suffices to check that p, (¢ ® 1) = ¢(1)1
forall ¢ € H' and py-(H™ ® 1) = p-(py ® pu)-(H' ® (s ® A)-(Ay+ ® A ® A). The first
assertion is immediate. Let us consider the second one. By the definitions of Ag+ and p,, the
discussion following Theorem 1.7, the discussion at the beginning of Section 2, the compatibility
of s with wy, 4 and c, the fact that (V, s) is aright H-comodule viav and vopr = (W Q@ ) (A ®

5 ® A)-(v ® v), we have
e I T(_\A N VA 1
TR

taa . fa a4

7 7 J

-1 \3- -«
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"4 1 A A
_ z? _ Kj@ _tu
as desired.

(«<): We must check that v(1) =1 ® 1 and ver = (U Q@ W) (A ® s ® H)-(v ® v). The first
assertion is immediate. Let us consider the second one. By the relation between v and p,, the
facts that (A, (s~1") is a left H™-module algebra and s is a left transposition, the definition
of Ay, the discussion following Theorem 1.7, the discussion at the beginning of Section 2, and
Lemma 4.3, we have

A A A A
A A
A A /\
A\ﬁ\ %J b
N\
N\ \ h
A A A A A A
A A
/ w
= = = = b
N\ N\ \J

as we want. [
5. H-invariants

Let H be a braided bialgebra and let V be a standard left (right) H-module. Recall that an
element v of V is H-invariant if h - v =€(h)v (v - h = e(h)v) for all h € H. We let v (V)
denote the set of H-invariants of V. Note that this is not the notation used in [G-G], where the
set of invariants of a left action is denoted V.

Proposition 5.1. Let (V,s) be a left H-module and let x :H @ V — V ® H be the map x :=
(p® H)-(H ® 5)(AQ V). Then, an element v € V is H-invariant iff x(h @ v) = s(h ® v) for
allh e H.

Proof. For (V,s) aleft H-module algebra this is [G-G, Proposition 7.2]. The same proof works
for left H-modules. O

Proposition 5.2. s(H ® V) € 'V ® H for each left H-module (V,s).

Proof. For (V,s) aleft H-module algebra this is [G-G, Proposition 7.4]. Se same proof works
for left H-modules. O

Let V be a standard right (left) H-comodule with coaction v. Recall that an element v of V is
H-coinvariantif v(v) = v®1 (v(v) = 1 ®v). We let VH (©°"V) denote the set of H-coinvariant
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elements of V under a right (left) action. In [G-G, Remark 5.1] it was note that if (V, s) is a right
H-comodule, then V! is stable under s (that is, s(H @ V°°H) € VM @ H). Assume that H is
a rigid braided bialgebra. By Theorem 3.5, we know that if (V, s) is a right H-comodule, then
(V, (s7H") is a left H'-module.

Proposition 5.3. It is true that Ve = #'y.

Proof. Let v e V!, Since (s—!)” is compatible with €+,
pv=(Veen) () ®H)Wwove )=V () o) =g,

forallp e H'. So,ve? v Conversely, if ve # ! V, then by the discussion following Proposi-
tion 3.2 and the compatibility of s with 1, we have

n n

v(v) =S<Zh,- ®h;"~v> =S<Zhih;‘(1)®v> =s5(1®v)=v®1,
i=1 i=1

where v is the coaction of V and (4;, hf)lgign are dual basisof H. 0O

The following theorem was communicated to us by the referee of [G-G].

Theorem 5.4. Let (V,s) be a left H-module. If H be a rigid braided bialgebra, then
s(HHUV)=Hv @ H.

Proof. Consider s as a map from H'T ® V to V. ® H'" and (V,s) as a left H"-module. By
Theorem 3.5 (V,%(s~1)) is aright H-comodule. Let v:V — V ® H denote the corresponding
coaction. By Proposition 5.3, 1V = veoH' Let ¢:V — V ® H' be the map defined by ¢ (v) =
v(v) —v®e.Lets): H® MV — "V ® H be the map induced by s and lets': H® (V@ H') —
(VR H")® H bethe map s’ = (V ® cypi) (s ® HT). Since the commutative diagram

H®¢
0—=HHV —= H®V — H®(V®H)

.

0—=Hy@H —H®V — (VHH®H
has exact rows and s and s’ are isomorphisms, s| is also. O
By this theorem, v, s|) is an H-braided space. Furthermore, by [G-G, Proposition 7.3], if
(A, s) is aleft H-module algebra, then s|: H ® A — A ® H is a transposition.

Recall that, by Proposition 3.2, if (V,s) is a left H-module, then (V, s_l) is a right pr-
module. The following result is used without mention in the proof of [G-G, Proposition 8.1].

Proposition 5.5. Suppose that (V. s) is a left H-module. Then 1V = VH.

Proof. Left to the reader. O
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Proposition 5.6. Let H be a rigid Hopf algebra and (A, s) a left H-module algebra. The auto-
morphism gs: A — A of Theorem 2.8 satisfies gs(FTA) = HA.

Proof. By Theorem 2.8 and the discussion preceding Proposition 2.7, we know that the map
s:kt ® A — A ® kt is bijective. Hence, by Theorem 5.4, the map s : kt ® #A — HA ® kt is also.
The proposition follows immediately from this fact. O

6. Smash products

Let H be a braided bialgebra. By [G-G, Theorem 6.3 and Proposition 6.5], we know that
if (A,s) is a left H-module algebra, then the map x: H ® A - A ® H, defined by x :=
(p ® H)-(H® s)(A® A), is compatible with the algebra structures of A and H. Hence, as
was shown in [C-S-V], the tensor product A ® H is an algebra A ®, H, with multiplication
mag, H = (ha ® up)(A® x ® H). This algebra is called the smash product of A with H
associated with (s, p), and it is also denoted A # H. We frequently identify A and H with the
subsets A ® 1 and 1 ® H of A# H, respectively. Consequently, we sometimes write ak instead
ofa#h.

It is easy to check that A is an (A # H, 7/A)-bimodule via the regular right action and the left
action

(a#h)-b=a(h-b). (1)

Furthermore, arguing as in the proof of [G-G, Proposition 8.1] it can be shown that if H is a
braided Hopf algebra with bijective antipode S, then A is an (A¥, A # H)-bimodule via the
regular left action and the right action

b-(a#h)y=Y S'(h)- (ba);, )

where D", h; @ (ba); = s~ 1(ba ® h) and A is the set of invariants of A under the right action
of H obtained by restriction of (2).

Let H be a braided Hopf algebra with bijective antipode S. We just note that if (A, s) is
left H-module algebra via p: H ® A — A, then (A,s™!) is a right H°P-module algebra via
p-s~1(A ® S~!). By Proposition 5.5 we know that A = A, To unify expressions, from now
on we always will write A to denote this set of invariants.

The next results generalize Lemmas 0.3 and 0.6 of [C-F-M], and their proof are closed to the
ones given in that paper.

Proposition 6.1. Let H be a braided bialgebra and let (A, s) be a left H-module algebra. The
following assertions hold:

(1) HA ~ End(42p A)%P, where we consider A as a left A# H-module as in (1).
(2) If H is a braided Hopf algebra with bijective antipode, then A ~End(Aasg), where A is
considered as a right A # H-module as in (2).

Proof. We prove the second assertion because the first one is easier. Let L, : A — A denote the
left multiplication by a. Is is clear that the map a — L,, from HA 1o End(A a#p), is well de-
fined and injective. We claim that it is surjective. Let f € End(A a4x). Since, f(a) = f(1-a) =
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f(1)-a, for each a € A, in order to check the claim it suffices to show that f(1) € HA . This fol-
lows from the above discussion and the fact that f(1)-h = f(1-h) = f(S_l (h)-1) =€(h) f(1),
foralhe H. O

Proposition 6.2. Let H be braided bialgebra and let (A, s) be a left H-module algebra. Consider
A as a left A# H-module via the action (a). For each left A# H-module M and each mo € /M,
the map ¥ : A — M, defined by ¥ (a) := a - my, is a left A# H-homomorphism. Furthermore, if
actA, thena-mye M.

Proof. Leta,b e A and h € H. Since my is invariant and s is compatible with ¢,
(b#h)-W(a)=b#h)-(a-mmy)
= ((b#h)(a # 1)) -myg

= Zb(h(l) - a; #h(z)i) -mo

]

= Zb(h(l) -a;)e(h();) - mo
i

:Zb(h-a)-mo
=W ((b#h)-a),

where Zih(l) ®a; @ hp); = (H ® 5)(A ® A)(h ® a). The last assertion can be easily
checked. O

Proposition 6.3. Ler H be braided Hopf algebra with bijective antipode S and (A, s) a left
H-module algebra. Consider A as a right A # H-module via the action (b). For each right
A # H-module M and each mo € MY, the map W': A — M, defined by ¥'(a) :=mq - a, is a
right A # H-homomorphism. Furthermore, if a € A, then my-a € MH.

Proof. Leta,b € A and h € H. By the proof of [G-G, Proposition 6.9],

ab#h=> (1 #hi(z)j)(S_l(hi(l)j) - (ab); #1),
ij
where 3, iy ; ® S~ (hiqr) ) - (ab); = (H ® p(S~' ® A))(c™"-A ® A)s~!(ab @ h). Using
this, the fact that mo € M and the compatibility of ¢! with €, we obtain
U'(a) - (b#h)=(mo-a)- (b#h)
=mgq-(ab#h)

=my - (Z(l #hi(Z)j)(S_l(hi(l)j) - (ab); # 1))

ij
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=mo - (Ze(himj)(S‘](hm)j) - (ab); # 1))
ij

=mo- (S"(hi) - (ab); #1)

=¥'(a-(b#h)),

as we want. The last assertion can be easily checked. O

Proposition 6.4. Let H be a rigid braided Hopf algebra and (A, s) a left H-module algebra. Let
t be a nonzero left or right integral of H. Then AtA is an ideal of A# H.

Proof. For left integrals ¢ this result is [G-G, Proposition 7.8]. For right integrals ¢ the assertion
can be check in a similar way. We leave the details to the reader. O

Let H be a rigid braided Hopf algebra, (A, s) a left H-module algebra and A # H the smash
product constructed from these data. Consider H ® A and A# H as left H-modules via the actions
[-(h®a):=lh®aand - (ah) :=lah, respectively. Let ¢ be a nonzero left integral of H. We
assert that H(A # H) =tA. In fact, in [G-G, Proposition 6.9] it was proved that the H-linear
map 0:H ® A — A# H given by 0(h ® a) = ha is bijective. So, “(A# H) =0(H(H ® A)) =
0(t®A)=tA.

Proposition 6.5. Let H be a rigid braided Hopf algebra, o the modular function of H and (A, s)
a left H-module algebra. The map (—)* :A# H — A# H, defined by (a# h)* = a # h%, where
h% is the map introduced in Remark 1.23, is an automorphism of algebras.

Proof. Clearly (—)“ is bijective and (1#1)* =1#1. Forhe€ H and b € A let s(h ® b) =
Zi b; ® h;. Then

(@#mG#D)* = (athq) - bi) #hy,l)*

1

= Za(h(]) “bi) # (hyD)*
i

=Y alhqy b #(h))* 1"
i

= Za(hu) bi) #h@); gy (h@); )l

1

=Y alhqy-b) #heyahe)l

1

—@#h)*b#1)?,

where the third and fourth equality follow from Remark 1.23 and the last one from the compati-
bility of s with the comultiplication and Proposition 2.9. O
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7. Galois extensions

Let H be a braided bialgebra and let (A, s) be a right H-comodule algebra. Let v denote the
coaction of A. Recall from [G-G, Section 10] that (A" < A, s) is called a right H-extension
of A®H_ and that such an H-extension is said to be H-Galois if the map B4:A ® gon A —
A ® H, defined by B4(a ® b) = (a ® 1)v(b), is bijective. Furthermore, by Theorem 4.4 and
Proposition 5.3, if H is rigid, then (A, (s~ HP) is a left H'-module algebra and H'A — pooH,

Remark 7.1 and Theorem 7.2 below generalize results of [K-T]. In the proof of the second
one we follow closely an argument of Schneider [Sch].

Remark 7.1. Let H be a braided Hopf algebra with bijective antipode S and let (A, s) be a right
H-comodule algebra. Let

By:AQuon A—>A®H and ®:AQH—>AQH

be the maps defined by ﬂ;‘ =(UAQ H)(A®s)(va®@A)and @ :=(AQ ug)(va ® S). Then,
the following facts hold:

(1) @ is bijective, with inverse ® ! = (A ®@ up) (A Q@ c H-(vg ® S7).
(2) @-Ba =p,. Consequently, B4 is injective (surjective) if and only if g/, is.

Theorem 7.2. Let H be a rigid braided Hopf algebra and (A, s) a right H-comodule algebra
such that the Galois map By is surjective. Let T € H' be a nonzero left integral. Then:

(1) There exist elements ay, ...,an, b1, ...,b, € A such that (x — T - (b;jx), a;) is a projective
basis of A as a right ¥ "A-module.
(2) Ba is injective, and so bijective.

Proof. (1): By Corollary 1.21 there exists a right integral u € H, such that T (uh) = €(h), for

all h € H. Since fs: A ®y+, A— A® H is surjective and g1y : A — A is an algebra auto-
morphism, there exists Zi a; @b € AQy+ A A, such that

Zaig(s—l)b(bi(o)) ®biy=1@u. 3)

1

By Theorem 4.4, the definition of p,, Lemma 3.4 and the compatibility of A+ with (s~hH?,

R -

Let Ty ® T2y = Ap+(T) and

Y i ® Ty ®biqy; @ Ty = bioy ® Ty ® ey (T ® bi1y)-
j
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Let ¢ : A — H'A denote the right H'A linear map defined by ¢;(a) =T - (b;ja). Using (4) and
that (s™1)*(T ® b) = g(;-1y»(b) ® T, we obtain

Zai¢i (a) = ZaiT - (bja) = Zaig(s’l)b(bi(O))(T(l)s biy ;)T - a). (5)

Now, from Remark 1.14 it follows easily that cyigy(p Qu) =u ® goo(flll,)_1 for all ¢ € HY.
Using this fact, (3) and (5) we obtain

D aigi(a) = (Tay, u)(Ter(f) ) -a.

Since, by the definition of A+ and Remark 1.14,

(Tay, )Ty, (fh) ) = (T, we((fl) " ) @ u)) = (T, uh) = e(h),

forall h € H, we have Zi ajp;(a) =€ -a=a, as we want.
(2): By Remark 7.1 it suffices to show that g/, is injective. To simplify notations we set
B =A% Let

Zuj QB Vj eker(ﬁg), so that ZMJ(O)Uji ®uj, =0,
J J

wherezjuj(o)@)vji@uj(l)i=Zjuj(o)®s(uj(l)®vj).Let
_ N(t & (=) _
x=(p@H)(H'®(s7')) (A1 ®A) and x=) a;®T Qb Qu; dpvj.
ij
We have
D ui®pvj=ua®A)(A®p, @A) (AR H @ ua®pA)x)
=(A®puaA)(A®p, @A) (AR H' ® s ®p A)(x)
=(AQpHA)(ARARUA)(ARAR P ®A) (AR X ® A® A)(x)
—(A®ua®ev)(ARA®(s™!) @ H)-(A® x ® B))(x) =0,

where the first equality follows from item (1), the second one from Proposition 5.3, the third one
from the fact that A is a left H-module algebra and the last one from the fact that

Thus B/, is injective. O
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Lemma 7.3. Let H be a rigid braided bialgebra and s: H @ A — A ® H a left transposition.
Then,

(A Qevy ® HT)O((S—I)b ® CHTH)"(HT ® (sfl)b ® H)o((HT)m ®S)
= (eva ® (s71))(H ® ey ® A).

Proof. By the discussion following Theorem 1.7, the discussion at the beginning of Section 2
and the compatibility of (s~1)” with ¢+,

HH*HA
(A

Theorems 7.4 and 7.5 below generalize Theorems 1.2 and 1.2" of [C-F-M] and their proofs
are very close to the ones given in that paper.

H‘H

as we assert. 0O

Theorem 7.4. Let H be a rigid braided Hopf algebra and let (A, s) be a right H-comodule

algebra. Consider A as an (A# H', TA)—bimodule via the actions defined at the beginning of
Section 6. Let g;: A — A be the automorphism of algebras introduced in Theorem 2.8. Let us
8A denote A endowed with the left A-module structure given by a - b = gg(a)b. The following
assertions are equivalent:

(1) ('A< A,s) is H-Galois.
(2) (@) Themapw:A#H — End(AH-;-A), defined by w(a # ¢)(b) := (a# ¢) - b, is an algebra
isomorphism. .

(b) A is a finitely generated projective right ' A-module.

(3) Aisaleft A# H'-generator.

@ If0#£T e fllﬂ then the map [, ]: A ® yt, 8A — A# H' given by [a, b] = aTb is surjective.

(5) For any left A# H'-module M, the map Fy : A Rty Hy 5 M defined by Fy(a @ m) =
a-mis aleft A# H'-module isomorphism, where A iy H'\ has the A # H' -module
structure

(a#tp)- (b@m)=m(a#p)(b) @m.
Proof. (2) < (3): As in the classical setting it follows from a well-known theorem of Morita

[Fa, 4.1.3].
(1) < (4): Let 9 : H — H' be the map defined by

9(h) = (evu ® H')-(H' ® cyyipy) (A1 (T) @ h).

A direct computation shows that @ (h)(I) = T (hl) for all h,1 € H. Hence, by [D, Theorem 3.b],
we know that ¢ is a bijective map. Since g1y is also bijective, to prove that (1) < (4) it
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suffices to show that (g,-1yp @ ¥):fa =, I(g(;-1y» pt, A). Let g = g(;-1y» and g =gs. By
the definition of ¢, the discussion following Proposition 3.2, the definition of g, the fact that g is
an algebra map, the compatibility of (s~!)” with A+, Corollary 2.12, Lemma 7.3, the fact that
(A, (s™H") is a left H-module and basic properties of the evaluation and coevaluation maps,
we have

A A

5 n s ¢
B S
g |
) ] |
as desired.

(4) = (3): By hypothesis there exist x1, ..., Xs, ¥1,..., Vs € A suchthat 1#¢ = Zi x;Ty;.By
this fact, Proposition 6.2 and the discussion following Proposition 6.4, themap f: A®) — A#HT
given by f(ai,....a;) =) ,a;Ty; is A# H'-linear and surjective. Hence A is a left A # H'-
generator.

(5) = (4): By the discussion following Proposition 6.4, #(A # H) = T A. The assertion
follows immediately from this fact.

(2) = (4): By Proposition 6.4 it suffices to prove that 1 #¢€ € AT A. This can be checked as
in [C-F-M].

(4) = (5): The proof given in [C-F-M] works in our setting. O

Theorem 7.5. Let H be a rigid braided Hopf algebra and let (A, s) be a right H-comodule

algebra. Consider A as an (* TA, A # H")-bimodule via the actions defined at the beginning of
Section 6. Let %A be as in Theorem 7.4. The following assertions are equivalent:

(1) ('A< A.s) is H-Galois.
(2) (@) Themapn':A#H' — End(HTAA)°p, defined by ' (a#¢)(b) :==b - (a#¢), is an algebra
isomorphism.

(b) A is a finitely generated projective left 1! ‘A-module.
(3) Aisaright A# H'-generator.
“4) If0#£U € f;l thenthemap [,]: A Qputy 8A — A#HT given by [a, b) = aUb is surjective.

(5) Forany right A# H'-module M, the map G y; : mH Quiy A — M, defined by G y(m®a) =

m-a,isaright A# HT-module isomorphism, where M ®HTA A has the A# HY -module
structure

(m®b)-(attg)=men'(a#p)b).
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Proof. (2) < (3): Is the same as Theorem 7.4.

(1) & (4): Mimic the argument given in the proof of Theorem 7.4, replacing T by U.

(4) = (3): By hypothesis there exist x1,..., X5, ¥1,..., Vs € A such that 1 #¢€ = Zi x;Uyj.
By this, the fact that (A# HT)#" = AU and Proposition 6.3, the map f: A®) — A# H given by
f(ay,...,a5) = Zi a;Uy;is A# HT-linear and surjective. Hence A is aright A # H*—generator.

(5) = (4): This follows immediately from the fact that (A # H")# "= AU.

(2) = (4): By Proposition 6.4 it suffices to prove that 1 #€ € AU A. This can be checked as
in [C-F-M].

(4) = (5): The proof given in [C-F-M] works in our setting. 0O

Corollary 7.6. Let H be a rigid braided Hopf algebra, (A,s) a right H-comodule algebra
and T € fllﬁ \{0}. Let 8A be as in Theorem 7.4. If T'A < A,s) is H-Galois, then the map
T8 — Hom(AHTA, HTAHTA), defined by w(a)(b) =T - (ab), is an isomorphism of (HTA, A)-
bimodules.

Proof. It is clear that 77 is right A-linear. Let ¢ € 7/ 'A. We have
7(c-a)(b) =7 (g;(c)a)(b) =T - (gs(c)ab) = cT - (ab),

where the last equality follows from Corollary 2.12 and the fact that, by Proposition 5.6, we know
that g,(c) € ‘A. This shows that 7 is left #'A-linear. Let us prove that it is bijective. Consider
A# H' and End(A+,) as left H'-modules via ¢ - (ay) = gay and (¢ - f)(a) =¢ - f(a). The
map 7:A# H — End(A+,), introduced in Theorem 7.4, is H-linear. Tt is immediate that
Hom(A 4+, , HTAHTA) is the set of invariants of End(As+,). Hence, by the discussion following

Proposition 6.4, the map 7 restricts to a bijective map from 7T'A to Hom(A+,, Hp uty)- The
assertion follows immediately from this fact. O

Corollary 7.7. Let H be a rigid braided Hopf algebra, (A,s) a right H-comodule algebra
and U € flrﬁ \{0}. Consider A as a right A # H'-module as in Theorem 7.5. Let A8 denote
A endowed with the right A-module structure given by b-a = bg -1y (a), where g;-1yp: A — A
is the automorphism of algebras introduced in Theorem 2.8. If (7 A s A, s) is H-Galois, then
the map 7' A8 — Hom(HTAA HTA), defined by ;(a)(b) = (ba) - U, is an isomorphism of

(A, HTA)—bimodules.

) H%A

Proof. It is clear that 7’ is left A-linear and we leave to the reader the task to check that it is
right 'A-linear. Let us prove that it is bijective. Consider A # HT and End(,,+ AA)°p as right H'-

modules via (@) - ¢ =ay@ and (f - ¢)(a) = f(a)-¢. Themap 7' : A# H' — End(H+AA)°p,
, H'I‘AHTA) are
the sets of invariants of A # H' and End(;+ AA)OP, respectively. Hence, the map 7’ restricts to a

introduced in Theorem 7.5, is H '-linear. It is immediate that AU and Hom(;+ AA

bijective map from AU to Hom(,+, A " TA). This implies that 77/ is also bijective. 0

) H'F'A
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8. Existence of elements of trace 1

Let H be a rigid braided Hopf algebra and (A, s) a right H-comodule algebra. Recall from
Corollary 2.12 that g( ,l)b = g,. In [G-G, Section 8] it was shown that A is a left 7 ‘A-module
viaawb:= gs(a)b and aright A# H'-module viab < (a#¢) =>; S~ ((¢*);) - (ba);, where
a: H" — k is the modular function and > (9" @ (ba); = (s~ H”)Hba ® ¢%). Furthermore,
Aisan (H'A, A# H")-bimodule. Consider the bimodules

M=y, Apggr and N = gupytAyi,,

where the actions on N are the ones introduced in Section 6. In [G-G, Theorem 8.4] it was proved
that the maps

[.1:N®yi, M —> A#H', givenby[a,b]=aTb,

()M ®uuy: N—T'A,  givenby (a,b) =T - (ab),

in which T # 0 is a left integral of H, give a Morita context for 7/'A and A # H*. The purpose
of this section is to study the implications of the surjectivity of the map (,). Proposition 8.1
generalizes item (1) of Proposition 2.5 of [C-F-M] and Propositions 8.2, 8.4 and 8.9 generalize
Propositions 1.4, 1.5 and 1.7 of [C-F], respectively. We prove neither the first one, the second
one nor the fourth one, because the proofs given there work in our context. Before beginning
we recall that an element ¢ of A is called a trace 1 element of A if T - ¢ = 1. It is clear that the
existence of a trace 1 element is equivalent to the surjectivity of (, ).

Proposition 8.1. The map (,) is surjective if and only if there exists x € A# H' such that
TxT =T.

Proposition 8.2. Let V be a left H'A_module. Consider A Qpui, V as a left H T-module
via ¢ - (@ ®@v) =¢-a@uv. If (,) is surjective, then the map iy :V — A ®yt, V, defined by

iv(v) =1®v, is injective and its image is HT(A Oty V).
Definition 8.3. A fotal integral is a right H-colinear map g: H — A such that g(1) = 1.

Proposition 8.4. The following facts hold:

(1) The map (,) is surjective if and only if there is a total integral g : H —> A.

(2) There exists c € A such that T - ¢ =1 and ca = g (a)c for all a € "'A if and only if there
exists a total integral g : H — A satisfying pts-(g ® H' A) = s (AQ 8)° S\ HeH A"

Proof. (1): If (,) is surjective, then there exists ¢ € A such that T - ¢ = 1. Define g(h) =

6~1(h) - ¢, where 0 : H — H is the bijection given by 6(¢) = ¢ — ¢. It is immediate that g

is H'-linear and that g(1) =6~'(1) - ¢ =T - ¢ = 1. Conversely, if g: H — A is a total integral,

then, by Proposition 1.24, T - g(t) = g(T —1t)=g(1) =1.
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(2): Lethe Handae AT c € A satisfies the hypothesis of item (2), then

ga=(0""(h)-c)a=0""(h)-(ca)=0""(h)- (g (a)c) = ng(a) i o),

where ), gs(a); ® 0~V (h); = (s71)*(@7 ' (h) ® gs(a)) and the last equality follows from Propo-
sition 5.6. So, by Proposition 2.11,

ga=pr(AQg)s(h@a). (6)

Conversely, if g satisfies (6), then ¢ = g(¢) satisfies ca = u4(A ® g)-s(t ® a) = gs(a)g(t) =
g (@), forallaec 1'A. O

Now we recall the notion of trace ideal. For any ring R and any right R-module M we let
T (M) denote the image of the evaluation map Hom(Mg, Rg) ® M — R. It is easy to see that
T (M) is a two sided ideal of R. It is well known that 7 (M) = R if and only if M is a generator
of the category of right R-modules. Also, if R is a subring of a ring S, then 7 (S) = R if and
only if R is a right R-summand of S [Fa, 3.26 and 3.27]. Of course, similar results are valid for
left R-modules.

The following result generalizes [K-T, Proposition 1.9] and [C-F-M, Theorem 2.2]. Our proof
follows closely the ones given in those papers.

PropOSItlon 8.5.Let T:A— H'A and U: A — H'A denote the trace maps defined by T(a)
T -a and U(a) =a - U, where U = S(T). Assume that (HA — A,s) is right H-Galois and

consider A asa (A# HT, HY A)-bimodule and a (H A, A# HT)-bimodule via the actions given in
Section 6. The following facts are equivalent:

1 T is surjective.

@) T(Ay:) ="

3) H'A is q right direct H'A _summand of A.

(4) A is a generator of the category of right ¥ ‘A-modules.

(5) A is a finitely generated projective left A # H'-module.

(6) U is surjective.

() Ty, A) = "A.

) H'A is q left direct H'A _summand of A.

(9) A is a generator of the category of left 11 "A-modules.
(10) A is a finitely generated projective right A # H'-module.

Furthermore any of these conditions implies that A# H' and " ‘A are Morita equivalent.

Proof. From Corollary 7.6, it follows easily that 7 (A, A) =T - A. Hence, (1) & (2). That
(2) & (3) < (4) follow from the discussion above this proposition. Now (4) <> (5) follows from
Morita’s Theorem [Fa, 4.1.3], since #'A ~ End( 445+ A)° by Proposition 6.1 and A # HY ~
End(A,+ A) by Theorem 7.4(2). Finally, (4) and Theorem 7.4(2) say that A is a right HAL

progenerator and A # H' ~ End(A + ,)» which imply that A # H " and #'A are Morita equivalent
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[Fa, 4.29]. Alternatively we can use Corollary 8.5 of [G-G]. The equivalence of (6), (7), (8),
(2) and (10) can be proven 12 a similar way. We end the proof by noting that (1) < (6), since
U@ =a-U=T ga)=T(gs(a). O

Remark 8.6. Note that the hypothesis that (¥ A A, s) is right H-Galois is not necessary to
prove (1) = 2) & 3) & (4) & (5), (6) = (7) & (8) & (9) & (10) and (1) & (6).

Remark 8.7. Let 7 : A# H™ — End(A -,) be the morphism introduced in Theorem 7.4. Arguing
as in [C-F, Proposition 1.6] it can be proven that:

(1) if T - c = 1, then 7(Tc) is a right ¥ 'A-linear projection of A on 'A.

(2) Assume that (¥ A A, s) is right H-Galois. By Theorem 7.4, the map 7 is bijective and
[, 1is surjective. If x1, ..., %y, y1,...,y € Asatisfy Y ._,[xi, yi]=1and p € End(A+,) is
a projection of A onto 'A, then ¢ = Y i1 8gs(e-xi)yi, where e = 7 (p), satisfy T - ¢ =1.

(3) If T-c=1and ca = gs(a)c for all @ € #'A, then #'A is a direct #'A-bimodule summand
of A.

4 If (# A s A, s) is right H-Galois and 7 "A is a direct #'A-bimodule summand of A, then A
has a trace 1 element c, such that ca = g;(a)c for all a € A

Corollary 8.8. Let H be a rigid braided Hopf algebra and let (A, s) be a right comodule algebra.
If H is semisimple, then " 'A is an H'A-bimodule direct summand of A.

Proof. Let T € f ;ﬂ- such that €(7) = 1. By Corollary 2.12 and [G-G, Remark 4.16], we know
that g¢ = id and so ¢ = 1 satisfies the condition of item (3) of Remark 8.7. O

The following result generalizes items (1) and (3) of Remark 8.7.
Proposition 8.9. Let B be a k-algebra and let M be a (A# H', B)-bimodule.

. g ; .
(1) If there exists an element ¢ of A of trace 1, then "M is a right B-direct summand of M.

(2) If there exists an element ¢ of A of trace 1, such that ca = gs(a)c for all a € H'A, then Hyp

isa (HTA, B)-direct summand of M.

Recall that a ring A has invariant basis number if in each free A-module M each pair of
basis of M has equal cardinality. Given such a ring and a free left A-module M, we let [M : A];
denote the dimension of M as a left A-module. Similarly if M is a free right A-module, then
[M : A], denotes the dimension of M as a right A-module. The following result generalizes
Corollary 8.3.5 of [M] and its proof is similar to the one given there.

Corollary 8.10. Let H be a rigid braided Hopf algebra and (A, s) a right H-comodule algebra.
The following assertions hold:

(D) IfA# H is simple, then (HTA — A,s) is H-Galois.
(2) A#H T is simple and any of the conditions in Proposition 8.5 is valid if and only if
'A< A, s) is H-Galois and H'A i simple.
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(3) A# H' is simple Artinian if and only ifH%A is, A is a free left and right H'A -module of rank
n=dimH and A# H' ~ M,("'A).

Proof. (1): From Proposition 6.4 we know that [A, A] = AT A is a two sided ideal of A # H.
So,if A# HT is simple, then A # H = [A, A] and by Theorem 7.4, (HTA — A, s) is H-Galois.

(2): Assume that A# H is simple and any of the conditions in Proposition 8.5 is valid. Then,
by 1tem (1), the extension (H A — A, s) is H-Galois. Hence Proposition 8.5 1mpl1es that A# HT
and H'A are Morita equivalent and so H'A s simple. Conversely, assume that (H A< A,s) is
H-Galois and H'A is simple. By the equivalence between items (1) and (2) of Theorem 7.4, the
map T:A— HAis nonzero, and since its image is a two sided ideal of 7 TA it is surjective.
Hence, again by Proposition 8.5, A# H' and ¥ 'A are Morita equivalent and so A # H ' is simple.

(3): Assume that A# H Tis simple Artinian. Then, it is von Neumann regular, and thus there
exists x € A# H' such that T = TxT. By Proposition 8.2 the map T:A— HAis surjective.
Then, by Proposition 8.5, A # H Tand # % are Morita equivalent, and so, H TA is Artinian semi-
simple. It then follows by the lemma of Artin-Whaples that A is a free left # TA-module, say of
rank m. Now, by Theorem 7.4, A # Hf ~ End(AHTA) ~ M, (H-:-A). But then

m>=[A#H'TA], =[A#H': AL [A:TA], =nm.
Thus m = n. Similarly A is a free right # 'A-module of rank n. The converse is trivial. I

Theorem 8.11. Let H be a rigid braided Hopf algebra and let (D, s) be a right H-comodule
algebra, where D is a division ring. Then the following facts are equivalent:

(1) (*'D < D, s) is H-Galois.

) [D:"'D], =dimH.

(3) [D: "D, =dimH.

4) D# H is simple.

(5) D is a faithful right D # H" -module.
(6) D is a faithful left D # H'-module.

Proof. Arguing as in [M, Theorem 8.3.7] we can see that (1) = (5), (1) = (6), (5) = (4),
6) = 4), (2) = (1) and (3) = (1). Corollary 8.10 implies that (4) = (1), (1) = (2) and
H=@3). O

Example 8.12. Let H be the algebra k[X]/(X?), endowed with the braided Hopf algebra struc-
ture given by A(X) =1® X+ X ® 1 and ¢(X ® X) = —X ® X. It is easy to check that H' ~ H.
In fact if €, £x is the dual basis of 1, X, then the map 1 — €, X — &x is an isomorphism. In
[D-G-G, Example 2.4] it was shown that if

(1) «: A — A is an automorphism,
(2) 6: A — A is an «-derivation,
3) S +ad=0,

4) 8% =0,
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then the formulas s (éx ® a) = a(a) ® &éx and p(§x ® a) = §(a), define a transposition s : H' ®
A— A® H' and a s-action p: H' ® A — A. By Proposition 2.7 the map *(s " 1): H ® A —
A ® H, defined at the beginning of Section 2, is a transposition, and, by Theorem 4.4, we know
that (A,(s~ 1)) is a right H-comodule algebra via the map v,: A — A ® H, introduced below
Proposition 3.2. A direct computation shows that *(s"1)(X ® a) = o Ya) ® X and vp(a) =
a®1+a 1-8(a) ® X. The following concrete examples satisfy the hypothesis of Theorem 8.11.

(1) k=Q, A=Q(v2),a(a+bv2)=a —bv2and 8(a+bv/2)=b. o
(2) A the field of Laurent series ) a; Y’ with coefficients in k, «(}_a;Y') => (—1)'a;Y" and

S(ZaiYi) = Zaz,'_HYZi.

In fact, in the former HY A= Q and then [A : H' A], =2 = dim H, and, in the second one ¥ TA =
{>°;a2Y?} and then [A : H'A), =2 =dimH.

From now on, given a left braided space (V, s), we let § denote (((s~1)*)~1)".
Let H be a rigid braided bialgebra and let (A, s) be a right H-comodule algebra. Then,
(A, (s71?) is a left H'-module algebra. Let us consider the smash product A # H T and let

§=(A®cyi)((s7H*® H). Note that with the notations of [G-G, Proposition 10.3], § = (s—1)°.
By [G-G, Proposition 10.4] we know that (A # H T.5)is a right H T-comodule algebra via
va = A ® Ag+. Then, by Theorem 4.4, (A # HY, (571H) is a left HT-module algebra via p,,.
We let ¥ « (a # ¢) denote p,, (¥ Qa#¢).

Let H be a rigid braided Hopf algebra. Given a nonzero left integral T € H' we let 7 denote
from now on the unique left integral of H T such that 7(T') = 1. Note that 7 = r**, where 7 is
the left integral of H satisfying 7' (t) = 1.

Proposition 8.13. The following assertions hold:

(1) Y =(AQcyry) (TR H).
Q) T+T =e.

Proof. (1): A direct computation shows that if (V, sy) and (W, sy) are left H'-braided spaces,
then

(vew) = (V@ (') (") @W).

Using this we immediately see that
671 = (4@ (1)) 58 HY) = (A ey (@ 1Y)

(2): Let W € H'" and ¢ € HT. We have

Using this and that 7 and 7 are left integrals satisfying 7 (7)) =1, we obtain 7 * T =¢€¢. O
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The next remark is an adaptation of [C-F, Remark 0.13].

Remark 8.14. Let (7 A s A, s) be a right H-Galois extension. By Theorem 7.4 there exists
YiXi®y €A ®yt, ¥A such that > ilxi, yil=1.Then, forall a € A,

a=Y [x.yl-a=Y xi(ia)=Y xT-(ya)
and

a=a< ) [x,yl=) (ax)y= Zgg (T - (ax))yi = Zq (T - gs(ax))yi,

where g € kis such that c+ (T ® T) =¢gT ® T and the last equality can be easily checked using
Corollary 2.12 and Lemma 8.2 of [G-G]. In particular, 1 =), x; (T -y;)) =) ; q_l (T -gs(xi))yi.
Furthermore, surjectivity of [, ] implies its injectivity by the Morita theorems. Thus,

MY, uiQueA ®pi, *A satisfies > ilui, vila = gs(a) D ;[ui, vi] for all a € A, then

ng(a)ui ®u; = Z”i ®uia foralla € A.
i

i

@QIfY>,u®veA Qpty A is such that > ilui, vil € Cyupy+(A) (the centralizer of A in
A# HT), then

Zaul@)v,:Zul@v, foralla € A.

The following result generalizes Theorem 1.8 of [C-F] and its proof follows closely the one
given there.

Theorem 8.15. Let H be a rigid Hopf algebra and let (A, s) be a right H-comodule algebra.
Assume that ('A < A, s) is a Galois extension. The following conditions are equivalent:

(1) A/HTA is separable.

(2) There exists w € A# HT such that T x w = 1 and wa = gs_l(a)wfor all a € A.

(3) A is a direct summand of A# H' as an A-bimodule.

(4) Let Y ;c;xi @ yi € A ®yty A such that Y icilxi, yil = 1. There exists ¢ € A such that

- xicy; =1l and ac = cgs(a) orallaelfA.
Dicr Xicy 8

Proof. (1) = (2): Let ) jesaj ® bj be an idempotent of separability of A /B A Let w =
78 (aj i € , where g 1s as 1n Theorem 2.5. Corolla 12 mmphies that g = g5.
jes & (@j)Thj € A#HT, wh is as in Th, 2.8. Corollary 2.12 implies th

Using this fact, that A = H H(A #H T) and Proposition 8.13, we obtain

Txw=Y aj(T+T)bj=) ajbj=1.

jelJ jeJ
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Furthermore,

wa = Zg;l(aj)Tbja = Zg;l(aaj)Tbj = g;l(a)w,
jeJ jelJ

foralla € A,since ) ;c,a; ®bja=3 ;. ,aa; ®b;.
(2) = (1): Since g, and [, ] are bijective maps, there exists Zie] Ui Qu; €A ®H+A 8A, such
that ), , [g;1 (), v;] = w. Furthermore, since

> e aun), vi] = g7 (@w =wa = [g7 (W), via],

iel iel

we have

Zaui ® v; =Zui ® v;a.

iel iel

Finally, } ;c uivi=) ;e uiT «Tvi =T % (3,4 gs_l(u,-)Tv,-) =7 xw.

(2) & (3): This follows immediately from Corollary 2.12 and item (3) of Remark 8.7 applied
to the left H'-module algebra A # H.

()= @): Let>.a; ®b; € A Quty A be a separability idempotent for A/HTA, and set ¢ =
Zj q_lajT - gs(bj), where g € kis such that c;;+ (T ® T) =qT ® T. By Remark 8.14,

incyi = qulxidjT -8s(bj)yi = qulajT -gs(bjxi)yi = Zajbj =1,
i ij ij J

where the second equality follows from the fact that 3 ©; xja; ®b; =} ; a; ®bjx;. Furthermore,

using that > a; ® b; is a separability idempotent and Proposition 5.6, we see that

ac=Yy q 'aa;T-gb) =Y g 'a;T -g(bja) ) q~'a;T - g;(bj)gs(@) = cgs(a)
J J J

foralla e 1'A. i

(4) = (1): Since ac = cggs(a) for all a € 'A, the map 7" : A Quiy A — A ®yi, A, given
by Y(x @ y) =xc ® y, is well defined. Let ) ,a; @ b; =), xic® yi =1 (3_; xi ® yi). By
item (2) of Remark 8.14, the equality ) ; aa; ® b; = ) ; a; @ b;a is satisfied for all a € A, and
by hypothesis, Y " a;b; =) ; xicyi=1. O

Corollary 8.16. Let H be a semisimple braided Hopf algebra. Let t be a left integral of H such
that €(t) = 1. Let A# ¢ H be a braided Hopf crossed product in the sense of [G-G, Definition 9.4].
If f is invertible, then A #¢ H is a separable extension of A.

Proof. Let s be the transposition of H on A. By [G-G, Theorem 10.6] we know that (A —
A#y H,5) is a right Galois extension. Then, by Theorem 8.15, the comment following Theo-
rem 1.16, and [G-G, Remark 4.16] we must pick a w € (A#y H) # HY such that bw = wb for
allb e A#; H and 7 x w = 1. But an easy computation shows that w = 1 # 1 # € satisfies these
conditions. O
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The following result generalizes a theorem due to Doi.

Corollary 8.17. Let H be a semisimple braided Hopf algebra and let (A, s) be a right H-comod-
ule algebra. Let t be a left integral of H such that €(t) = 1. If(HTA < A, s) is a Galois extension,
then AJH A is separable.

Proof. Letting w = 1 #¢, condition (2) of Theorem 8.15 is satisfied. O

Note that Corollary 8.16 is a particular case of Corollary 8.17.
Recall that a braided bialgebra H is cocommutative if ¢y is involutive and cy-Apy = cy. The
following result generalizes Theorem 1.11 of [C-F].

Theorem 8.18. Let H be a cocommutative rigid braided Hopf algebra with braid ¢ and let
s:H®A— A® H be a transposition. Let A#y H be a braided Hopf crossed product in the
sense of [G-G, Definition 9.4]. If there exists a left integral t of H and an element c of A such
that:

M t-c=1,

2) ct®@h)=hQ®tforallh e H,
B) sth®c)=cQ@hforallheH,
“4) st®a)=a®t forallac A,

then, A#y H is a separable extension of A.
Proof. By [G-G, Theorem 10.6] we know that (A — A#y H , ) is aright H-Galois extension

with transposition 5 = (A ® ¢)-(s ® H) and coaction v=AQ A. Let y: H — A#y H be the
map defined by y (h) = 1#/ h and let y ! be the convolution inverse of y. Let

w = (y_l(u(l)) # T)(C #rup)#e),

where u = S(¢) and T is a left integral of H satisfying T () = 1. By Theorem 8.15 (applied to
(A A#y H)) we must see that

Txw=1#;1#e and w(a#sl)=(a#sDHw,

forallac Aandle H. Let5: H'T @ (A#rH)—> (A#; H)® H'" be as in the discussion
preceding Proposition 8.13. By Corollary 2.12, we know that gz = g5 =id. So,
Tsxw= ()/_l(u(l)) #E)(T* (1 #f 1# T))(C #f u) #6)
)/_l(u(l)) #E)(C #f (2) #¢)
= ()/_l(u(l)) #E)(l #f up) #6)(5(14(3)) . C#f 1 #E)
=S5) -c#ylHe

= 1#; 1#e,
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where the second equality follows from item (2) of Proposition 8.13 and the third one from the
hypothesis and the fact that, since H is cocommutative,

(HRc)(AQS)A=(HQRQSQH)(HRc)(HRQA)A=(HRSQH)(HRQ A)A.

By the bijectivity of [, ]: A#y H @4 A#y H — A#y H#HT, in order to check that w(a#sl) =
(a #7 Dw, it suffices to show that foreach z € A # H,

2(y M way) ®a cy ) =y ua) ®a cyue)z.

First let z =a € A. For h € H and b € A, write ) ;b; ® h = s(h ® b). Since h - b =
Y v (ha) i Dy (h),),

y ) ®@acyepa=y vy~ ua) @acyeaijy T we,)y wa,)
ij

= Z V_l(u(l)))/(u(z))aij)/_l(u<3)_,) Q4 cy(u@),)
ij

=D aijy ) ®acyue),)
ij

=ay Nupy) ®acyue)).

Now, let z=1#[.For h,h’ € H, write ) ; h: ® h; =c(h ® h'). Since f(h,h') =3 "; y(h()) x
J/(h’(l)i))/_l(h(z);hzz)),

Y Huay) ®a4 cy(up)z= Z Y Huay) ®a cf (wey, L)y (), le)

1

= Z y ) e, la),) ®acy sy, le)

1

=Y vy~ wayle) ®acy uey,le)
i

=2y ) ®a cy ).
This finishes the proof. O

Corollary 8.19. Under the hypothesis of Theorem 8.18, if A is semisimple Artinian, so is A#¢ H.

Lemma 8.20. Let H be a rigid braided Hopf algebra and let H' a be a braided Hopf subalgebra

¢
of H. Let t' € H' \ {0} be a left integral. If H is semisimple, then there exist T € le such that
T—¢=1.

Proof. The proof of [C-F, Proposition 1.14] works in our setting. O
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Theorem 8.21. Let H be a semisimple braided Hopf algebra and let H ¥ C H' be a braided Hopf

i i
subalgebra of H'. Let T' € j}H \{0}and T € j}H \{0}. Assume that there exist ¢, € H such
that T =T o =y T'. If (A, s) is a Galois right H-comodule algebra with a trace 1 element and

s Y H"®A) CAQHT, then HT,A/H%A is separable.

Proof. We follow closely the proof of [C-F, Theorem 1.15]. Let Z Xi®yi € AQyt A A such
that ) ;[x;, yi] =1 and let ¢ € A be an element of trace one. We claim that ), 7" - x; ® Hig T .

(yi (¢ - ¢)) is a separability idempotent for H'p / Hy, By Lemma 8.20 we know that there exists a
left integral 7 of H'" such that 7 % T’ = €. We have

Z(T’.x,-)y,- =T x Z(T’~xi)Tyi =T % ZT’xiTy,- =T «T =e¢,
i i i

and so,

YT x)(T (yilp-0) =T Y (T x)(vilg-0)) =T - (p-c)=(T'p) - c=T-c=1.

i i

To finish the proof it remains to check that

> wl xi @1, T+ (yilp - ) ZT X @ty T+ (il - ) w (7)

;
for all w € #'A. To prove (7) we will use that, for all w € ¥ T/A,

(D) YT x)T (i - Ow) = w,
) 2 (T - (wx;NT'(i(p-¢) =w,
BT -(jlg-OT" - (wx))=T-(T"- (yj(¢-c)w)x;).

The proof of (1) is similar to the proof of (2) but easier. Let us see (2). First note that there exists
a quotient braided Hopf algebra H’ of H such that H ¥~ H'" Since H is semisimple, the map g;
introduced in Theorem 2.8 is the identity map. By Corollary 2.12 we also have g(,-1y» = id and so
(s H(T®a)=a@T foralla € A. Similarly, since H' is semisimple, (s )*(T'®a)=a® T’
for all a € A. Furthermore, from Remark 2.13 it follows that cy+(T @ T) =T ® T and so,
Remark 8.14 implies that a = ), x; T - (y;a) = Y_;(T - (ax;))y;, for all @ € A. Using all these
facts we obtain that

DT )T (yilp- ) =T"- Y (T - (wx))yip- ) =T (w(p-c))

=wT - (¢p-c)=w(T'¢)-c=wT -c=w.

Let us see (3): We have

T-(yj(@-OT - (wx)) =T (yj(@-)w(T" - x;))

T -
v (T (yjlg - Ow)(T - x)))
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=T-(T' (yj(g-Ow)x;).
The proof of (7) now can be finished as in [C-F, Theorem 1.15]. O

Let G be a finite group. The k[G]-module algebra structures were described in [G-G, Theo-
rem 4.14 and Example 9.8]. The following result generalizes [H-S, Proposition 3.4].

Corollary 8.22. Let (A, s) be a k[G]-module algebra. If A has an element of trace 1, then, for
each subgroup G' < G, the extension A /CA is separable.

Proof. The proof given in [C-F, Corollary 1.18] works in our setting. O

Corollary 8.23. Let H be a semisimple braided Hopf algebra and let H ¥ < HY be a braided

.;_/ + B
Hopf subalgebra of HY. Let T € le \{0}and T € le \{0}. Assume that H" is also semisim-
ple, that T(1) = 1 and that there exists ¢ € H' such that T = T'¢. If (A, s) is a Galois right
H -comodule algebra and (s_l)b(HTl RA)CA® HY, then HTA/HTA is separable.

Proof. The element ¢ = 1 is a trace 1 element since €(T) = T(1) = 1 and €(T”’) # 0, since
1 =¢€(T) =e(Te(p). Since T = S(T) = S(p)S(T") = S(p)T’ we are in the hypothesis of
Theorem 8.21 and so the result follows from that theorem. O
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