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Abstract

In this work we study the class of algebras satisfying a duality property with respect to Hochschild
homology and cohomology, as in [Proc. Amer. Math. Soc. 126 (1998) 1345-1348]. More precisely,
we consider the class of algebrassuch that there exists an invertible bimodtleand an integer
numberd with the propertyH®(A, M) = Hy_o(A,U ®4 M), for all A-bimodulesM. We show
that this class is closed under localization and under smash products with respect to Hopf algebras
satisfying also the duality property.

We also illustrate the subtlety atualities with smash products developing in detail the example
S(V) #G, the crossed product of the symmetric algebra on a vector space and a finite group acting
linearly onV.
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Introduction

The aim of this work is to study the class of algebras satisfying a duality property with
respect to Hochschild homology and cohomology, as in [4]. More precisely, we consider
the class of algebrad such that there exists an invertible bimoddleand an integer
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numberd with the propertyH*(A, M) = Hy_o(A, U ®4 M), for all A-bimodulesM. We
show that this class is closed under localization (Theorem 6) and under smash products
(Theorem 17). By localization we mean an algebra morphiss B with the following
two propertiesB®4 B = B asB-bimodule,andB ® 4 —®4 B is exact. For smash product,
the philosophy is the following: take an algebra in this class with dualizing bimodule
and H a Hopf algebra with dualizing bimoduld, then A # H has dualizing bimodule
U # H (see Remark 16 for the definition 6f# H).

There is a subtlety on dualities with smash products, so the last section is devoted to de-
velop the simplest example illustrating this: the alge®(#) # G, the crossed product of
the symmetric algebra on a vectoiasg, and a finite group acting linearly &1 Given an
algebraA with dualizing moduld/4 = A and a Hopf algebra with dualizing bimodule iso-
morphictoH, Theorem 17 says that# H has a dualizing bimodule isomorphicit # H .
The subtlety is that, even though the bimodlile= A asA-bimodule, it may happen that
Uy # A asH-module, and sd/4 # H * A# H as A # H-bimodule. In the example of
S(V)andG c GL(V), we show that the condition fdrsy) = S(V) asG-modules is that
G C SL(V), and consequently, homology and cohomology will differ. In order to illustrate
the duality, we compute the cohomologytbfs example in two different ways.

The example of Section 3 was motivated by a question of Paul Smith, whether the
methods used in [1] would apply V) # G. The answer to that question is yes, and this
calculation has also motivated Section 2.

General notations

Fix a field k of characteristic zero, unadorngdand Hom will denoteg;, and Hom.

If X is a graded vector space and: Z, we will denoteX[n] the same vector space but
with its degree shifted by. For example, ifX is nonzero only in degree zero, théiin]
is nonzero only in degree

For anyk-algebraB andk-symmetric bimoduléVf, the Hochschild homology and co-
homology of B with coefficients inM are Tof" (B, M) and Ext,. (B, M), respectively,
where B¢ = B ® B°P; they are denotedi,(B, M) and H*(B, M). In the special case
whereM = B, we will also write H Hy(B) := H,(B, B) andH H*(B) := H*(B, B).

The word “module” will mean “left module.” All modules will bé-symmetric, so that
B-bimodulesis the same & -modules. AB-bimoduleP is calledinvertibleif there exists
another bimodule) such thatP ® 3 Q = B andQ ® P = B. The set of isomorphism
classes of invertiblg-bimodules which aré-symmetric is denoted by Ri¢B).

Finally, in Section 3 there is some abuse of notation with the symbol det. Sometimes it
denotes the usual determinant function, and some other times it denotes the 1-dimensional
representation of GLV), or its restriction to som& c GL(V). The meaning will be clear
from the context.

The duality theorem of Van den Berg
In [4], the author proves a theorem relating the Hochschild homology and cohomol-

ogy of a certain class of algebras. We will state this theorem in a way convenient for our
purposes:
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Theorem 1 [4, Theorem 3]Let A be ak-algebra which admits a finitely generated pro-
jective A¢-resolution (for instance, this is the case K¢ is noetheriaj. The following
conditions are equivalent

(1) There exists an invertibld-bimoduleU,4, and an integew such thatH®*(A, M) =
H; (A, Us ®4 M) for all A°-modulesM.

(2) The projective dimension of as A°-module is finite, andExt}. (A, A°) = 0 for all
n > 0 except fom = d whereU, := Ext}. (A, A°) is an invertibleA¢-module.

1. Localization

The general framework of this section is the following:— B is ak-algebra map such
that

e The multiplication mapriduces an isomorphism &¢-modulesB ® 4 B = B.
e The functorsB ® 4 — and— ® 4 B are exact.

We look for conditions orB which, together with the assumption thasatisfies Van den
Bergh’s theorem, allow us to conclude that so dBes

Lemma?2. LetU € Pic(A) andA — B besuchthaB 4 B=B.f U®4 BEB R, U
as A°-modules, then

e BR_AUZ=B®sU®s BasB® A°P-modules

e U®QAB=B®4U®4 BasA® B°°-modulesand

e B®4 U is a B°-module in a natural wayB ®4 U € Pic(B), its inverse iSB ®4
Ul®sB,andU1®4 B=B®4 UL asA¢-modules.

Proof. The first isomorphism is the composition
BRA(U®AB)=BQR4s(BAU)=(BRA4B)®AU=B®aU.
The second one is similar.

Now let U1 be the inverse of/ in Pic(A), sothatyU @4 U 1= U1®,4 U= A. Let
us see thaB ®4 U1 ®4 B is the inverse oB ®4 U:

(B®4U)®5 (B®AU 1®4 B)
WU RiB)®BRAUT@AB=URsBRsU @4 B
“BRAUUR U @AB=BR, A4 B=B®, BB,

and
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(B®aU ' ®4B)®5 (B®4U)
ZBRAU @41 BRAUZBR,Ut®,U®4B
=Z=BR®4AR4B=B®4 B=B. O

A bimoduleU such that there is an isomorphisbh®4 U = U ®4 B of A°-modules
will be said tocommute withB.

Example 3. Let g € Aut;(A) be such that it admits an extensigri Auti(B), i.e.,g(a) =
g(a) forall a € A. Then the elememg € Pic(A) commutes withB. In particular,U = A
commutes withB.

Proof. Let g be such an element and considgr € Pic(A). There is an isomorphism of
B ® A°P-modules,

B®s Ag— Bg, bQ®agr> bag.
On the other hand, one can define an isomorphisrh @f B°P-modules
Ag®s B— Bg, ag®bgr>ag(b)g.
In particular,Ag ®4 B andB ® 4 Ag are isomorphic ag¢-modules. O

Example4. Let g € Auty(A) be such that there exists no elemgrt Aut, (B) extending it.
Then the bimoduletg does not commutes with.

Proof. AssumeB ®4 Ag = Ag ®4 B as A°-modules. From Lemma 2 it follows that
B ®4 Ag € Pic(B). But, as a leftB-module,B ® 4 Ag = B, and it is well known that if an
elementU € Pic(B) issuchthagU = g B, thenitis of the formB« for somex € Auti (B),
the automorphismx being defined up to inner automorphism. In particularder A one
has thatg(a) = ua(a)u~* for someu € U(B). Denotingg := ua(—)u~1, we see that we
have found an automorphism extendighus a contradiction. o

Remark 5. Let A — B be such thatB ®4 B = B. If M is a left B-module, then

M = B ®4 M as a leftB-module. If N is another leftB-module, then Hom(M, N) =

Homyu (M, N).

Proof. Using the hypothesis oR, we see that
M=BQRpM=(BR4B)QpM=BR4(BRpM)=B Qs M,

it follows then that

Homg (M, N) =Homg (B ®4 M, N) =Z=Homuy (M, N). O
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Theorem 6. Let A € VdB(d) with dualizing bimoduld/, and A — B be a morphism of
k-algebras such that

(1) the functorsB ® 4 — and— ® 4 B are exact
(2) the canonical map indred by multiplicatiorB ® 4 B — B is an isomorphisimand
(8) BR4UZ=U ®4 BasA°-modules.

ThenB € VdB(d) with dualizing bimodule3 ®4 U = B®4 U ®4 B.

Notice that ifU = A, then condition (3) is automatically satisfied, and the dualizing
bimodule associated 8 is B.

Proof. By Theorem 1, it is enough to show that the projective dimensioB afs B¢-
module is finite, thaB admits a resolution by means of finitely generaiédprojectives,
and that E)@e(B, B®) =B ®4 U ®4 B and it vanishes elsewhere.

Let P, be a finite resolution ofA as A°-modules, withP, projective and finitely gen-
erated asA¢-modules. Sinc&® ® 4 — and— ®4 B are exact, the compleB ® 4 P, ®4 B
is a resolution o8B ® 4 A ®4 B = B, and soB also has a finite resolution. The bimodules
B®4 P, ®4 B are clearlyB¢-finitely generated and projective.

In order to compute E4t (B, B), one can use this particular resolution, and conse-
quently

Exty (B, B°) = H*(Homge (B ®4 Ps ®4 B, B°)) = H*(Homye (P, B¢)).
We claim that if P is A¢-projective finitely generated, then
Homye (P,, B°) = B ® 4 Homye (P,, A°) ®4 B.
For that, consider the class of°-modules P such that Home(P, B) = B ®a
Homye(P,, A°) ®4 B. This class is closed under direct summands and finite sums, so
it is enough to show our claim that the modué is in it, and that is clear. Using this
isomorphism, one gets
H*(Homye (P,, B°)) = H*(B ® Homye (P,, B°) ®4 B)
and by flatness this is the same as

B ®4 H*(Homye(P,, B)) ®4 B=B ®4 U[d]1®4 B. |

Example 7. One can takeA = A1(k) = k{x, y}/([x,y] = 1) and B = k{x,x~ 1, y}/
{[x, y] = 1). This example is a particular case of the following:

Example 8 (Normal localization). Let A be an algebra and € A such that the set
{1,x,x2,x3,.. .} satisfies the Ore conditions. Take = A[x~1]. If M is a right A-
module, then a&[x] modules we have an isomorphisth ® 4 B = M ®x] klx, x 1.
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This shows thatA — B is flat. It is also clear thaB ® 4 B = B, in the same way as
k[x 1] @y kL *] = k[xE1.

Example 9. Another generalization of Example 7 is the following situation: d&tX)
be the algebra of functions on an affine variéty and letU be an affine open subset
of X. Let A = Diff (X) be the algebra of algebraic differential operatorsioand similarly
B = Diff (U). SinceB = O(U) ®ox) Diff (X), the mapA — B is flat, andB ®4 B = B.

If A satisfies the theorem of Van den Bergh, then so it dbhes

In the next section, we will study the behavior of the duality property with respect to
smash products.

2. Smash products

In this sectionH is a Hopf algebra such thaf € VdB(d) with dualizing bimodule
Uy = H, A € VdB(d’) is an H-module algebra with dualizing bimodulé,, and B :=
A # H. We will prove (see Theorem 17) th&te VdB(d + d’), with dualizing bimodule
Up = Uy # H (see Remark 16 for the definition 6f# H).

Lemma 10. If H is a Hopf algebra, therH € VdB(d) with dualizing bimoduled if and
only if Ext}, (k, M) = Tor,_4(k, M) for all left H-modulesM.

Proof. Let M be a leftH-module, thenV/, is the H¢-module with right action defined by
m.h:=¢(h)m forallm e M andh € H. If H € VdB(d), it follows that

Exty (k, M) = H*(H, M¢) = Hy—o(H, M;) = TOle—q(k, M).

On the other direction, if{ is an H¢-module, thenx?? is the same underlying vector
space but with leftd action defined by: a4 x := h1xS(h2). With this structure (see, for
instance, [3]) one has

H*(H, X) = Ext} (k, X% = Tor,_q(k, X2 = Hy_o(H, M) = TOle_q(k, M). O

Example 11. Let G be a finite group such that/iG| € k. The Reynolds operatar =
(1/1G)) dec g induces an isomorphis = M ¢ for any G-moduleM. This implies
that k[G] € VdB(0) with Uiy = k[G]. This example can be easily generalized in the
following direction:

Example 12. Let H be a semisimple unimodular Hopf algebra, so tHaadmits acentral
integrale € H satisfying

he =¢(h)e, gle) =1

ThenH € VdB(0) with Uy = H. Itis known (see Radford [2, Theorem 4]) that the Drin-
fel'd double of a finite dimensional Hopf algebra is unimodulakfs a finite dimensional
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Hopf algebra and(K) is the Drinfel'd double, again by a result of Radford [2, Propo-
sition 7] D(K) is semisimple if and only iiK is semisimple and cosemisimple. Taking
K = k[G] where G is a noncommutative group wittG|~1 € k, we getH := D(K) a
noncommutative not cocommutative semisimple unimodular Hopf algebra.

Proof. Let H be a unimodular semisimple Hopf algebra, andtlet H be as above. We
will show that Hony (k, M) =k ®y M. If M is a left H-module, then

Homy (k, M) = {m € M | hm = e(hym} =: M".

It is clear that every element of the forem belongs toM ¥ because

h(em) = (heym = g(h)em;
butif m e M, then

em=¢(e)m=m,

soM* coincides with the image of the multiplication byLet us consider the map

e:M—>MH, m— em.
The elements of the foritvn — e (h)m belong to the kernel of this map, so it factors through
My := M /(hm —e(h)m). Now the mapM ¥ — My defined byn — i defines an inverse,
because il y, every elemenin = e(e)m is equivalent teem. We have shown thall

VdB0). O

Example 13. The algebraH = k[x] is a Hopf algebra witi(x) = x ® 1+ 1 ® x. It
belongs to the clasédB(d) with Uy = H.

Proof. Write k[x]¢ = k[x] ® k[x] = k[x, y], and consider the Koszul resolution
0— k[x, y] — k[x, y] = k[x]— O,

where the first map is the multiplication gy — y) and the second map is the evaluation
x =y. Applying the functor Homy. yj(—, k[x, y]), one obtain the complex

0— Homypy y1(klx, y1, k[x, y]) = Homyy y1(k[x, 1, k[x, y]) = O,
where the map is again multiplication by— y. This complex identifies with
0— k[x,y] = k[x,y]—>0

but notice that now the grading increases to the right, so the homolégy,is]/(x — y) =
k[x]in degree one, zero elsewhere, and we concludethat VdB(1). O
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Example 14. The algebrak[x] admits a finitely generateklx]¢-projective resolution;
this fact implies a Kinneth formula for Hochschild cohomology, and so the algebra
klx1,...,x,] € VABn), with Ugx,, ... x,1 = k[x1, ..., x4].

Example 15. The Hopf algebra[xi™, ..., x| = k[Z"], belongs to the clasgdB(d),
because as an algebra, it is a localizatioRk[af, .. ., x;]. Also

_ +1 +17 o1 +1
Uk[xlﬂ ..... xdil]—Uk[xl ,,,,, xa] Oklxy,..., Xd]k['xl s X ]—k[xl s Xy ]

Remark 16. Let A be anH-module algebra an@ € Pic,(A) such thatU is also anH -
module, with the compatibility property

h(aub) = hi(a)h2(u)h3(D)
foralla,be A, h € H, andu € U. Let U~1 := Hom4 (U, A); this is also anH-module

satisfying the same compatibility condition. if # H is the abelian grouy ® H with
A # H-bimodule structure given by

(@#h)(u k) :=(ah1(w) @ hok), @k (a#h) = (uki(a) ® kah),
thenU # H € Piq(A# H), and its inverse i&/ ~1 # H. If M is left A# H-module, then
(U#H)@asn M =U @4 M

asA # H-modules, where thd # H-module structure oV ® 4 M is the one induced by
the obvious leftA-structure and the diagonal-structure.

Proof. We will only exhibit an isomorphisnt/ # H Q@ axn Ul#H > A#H. Let us
denote by(, ) the evaluation map/ ® 4 U~ — A; notice that(, ) is H-linear. Foru € U,
ve U1 handk € H, define

U#H @ U #H — A#H, W®h) ® (v&k) > (1, hi(v))hok.

Theorem 17. Let H € VdB(d) be a Hopf algebra with/y = H. If A is an H-module
algebra withA € VdB(d), thenA# H e VAB(d +d) with Uasy = U # H.

Proof. Let B be A # H. In [3], the author shows that, for B-bimodule M, there is a
spectral sequence converging B (B, M) whose second term is Extk, H1(A, M)).
Similarly, there is a spectral sequence wiR term equal to Toﬁ’ (k, Hy(A, M)) con-
verging toH,(B, M).

Now considerM = B¢, and let us computé/*(B, B¢). First, one notes the following
isomorphism of leftA°-modules:

B*=A°QV,

whereV is the vector spac/ ® H .
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Using Stefan’s spectral sequence, one has
EJ? =Ext}; (k, HI(A, B®)) = Exth, (k, HI (A, A ® V)).
SinceA € VdB(d), it follows that
HY(A,A°QV)ZEHy_o(A,URAA®V) ZHy_o(A, U ®4 A°)QV
ZH*(AA)@V=UIQV.

This implies first that the spectral sequendegenerates at this step, and consequently,
there is an isomorphism

H*(B,B) ZExt; T (l,U® V).
Recall thatV = H ® H°P, we have to consider it a&-module with the adjoint action.
Now we use the fact thaf € VdB(d), with Uy = H, SOH®*(H, X) = H;_.(H, X) for all
H-bimodulesX. In particular, for a leftH -moduleX, one can consider the bimodute,
and this gives the formula
Exty, (k, X)=H*(H, X;) = Hy—o(H, X¢) :Torfff.(k, X).
This formula implies that

H*(B,B) =Ext; “ (k,Us @ V)=Torll, , .k, Us® V).

On the other handH, (B, Us ®4 B¢) = H(B, (Us # H) ® g B¢) can be computed using
a spectral sequence whose second term is

Tor (k, Ho(A, Ua ®4 B®)) =Tor (k, Hy(A, U ®4 (A°® V)))
=Torl (k, Uy @ V).
This spectral sequence collapses giving an isomorphism
Ho(B,Up ®a BY) =Tort (k, Uy ® V).
In particular,
H*(B,B°) = Hyiq'—e(B,U ®4 B)
and

H*¥' (B, B) = Ho(B, U ®4 B¢) = Ho(B, (U #H) ®p B°)
=Ho(B,(U#H)® B)=U#H. m|
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Coroallary 18. With the notations of the above theorem, assidime A as A-bimodules
and H-modules, then

H*(B,M)=Hy1q-«(B,M)
for all A# H-bimodules\.

Example 19. Let A € VdB(d), D € Der(A), and write the Ore extensioB = Al[t, D].
This algebraB coincides withA # k[t] where thek[¢]-module action o is given by
t.a= D(a), B VdBd + 1). For A = k[x] and D = 9/dx one obtains the known result
thatA1(k) € VAB(2).

Example 20. Let 0+ g € k, then B = k{x*1, y*1}/(yx = gxy) € VdB(2). Indeed, this
algebra is isomorphic to[x*1] #k[ y*1] where theH -module structure ok[x*1] is given

by y.x =¢gx.

Example 21. Let A be an algebra and a finite group of automorphism of. If A €
VdB(d), thenA #G € VdB(d).

Warning It can happen tha#l is such thatUs = A as A-bimodule, butUs 2 A as
H-module. It is easy to show an example of this situation wHes k[G].

One can first observe the folling characterization of thd® # G-structures on a-
bimodule isomorphic tot:

Proposition 22. LetU be anA¢-bimodule isomorphic tel. The set of all possibla® # G-
module structures off, moduloA¢ # G-isomorphism, is parametrized B (G, U Z (A)),
the first cohomology afi with coefficients in thémultiplicative abelian group of units of
the center ofA.

Proof. Fix anisomorphismd = U and letz be the image of 1 ilV. HenceU = Au = uA,

and moreovelu = ua for all a € A. One has to define @-action onU such that, for all
a,b e A andv € U, the following identity holds:

glavb) = g(a)g(v)g(b).

Since the bimodul& is generated by, it is clear that it is only necessary to defige:).
The elemeng (z) must belong tdJ, so it is of the formagu for somea, in A. But

au =ua
forall a € A, and applying, one obtains

ag(u)=gw)a, VaeA;
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and so
adgi =dguua =dgau.
It follows thata, must belong to the center @f. Also, every element o/ is of the form
ag(u) = aagu,
soa, must be a unit. We have then shown that the assigngeatz, must be a map from

G intolU(Z(A)).
If one wants associativity, the identity

g(h(w)) = (gh)(w), Vg, hegG,

is required, so

g(hw)) = glanu) = glan)agu = (gh)(u) = aghu.

Butu is a basis ot/ with respect to the lefd-structure, so

glap)ag = ag.

On the other hand, itis clear that an assignngent a, from G into the units of center i
satisfying the above cocycle condition defings-action compatible with tha -bimodule
structure.

Now assume that/ has twoG-actions that are isomorphic. Let us denote them by
g.1(u) = agu, andg.2(u) = byu, and calllU; andU> the bimodulel with the first and the
secondG-structure, respectively.

If ¢ : Uy — Uz is an isomorphism ofA¢ # G-modules, then the image afis some
elementwu, whereix € A. Moreover, is a unit because is an isomorphism, ang
Z(A) because is A¢-linear.

Now G-linearity means that

¢(g.1u) = ¢p(agu) = ragu,
but also
¢(g.au) = g.2¢(u) = g.2(Au) = g(A)g.2u = g(A)bgu,
so we deduce
by =2g(A ) ag.

and the two assignments differ by a coboundarny.
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Example 23. This proposition is more useful when the centerdis small. If A is a
centralk-algebra,G a finite group ofk-linear automorphism, ang : G — k a character,
let defineA, with underlying A°-module structure equal td, and G-action given by
g.a = g(a)x(g). The above proposition tells us that alf # G-module structures on the
A¢-moduleA are of this type.

Despite Proposition 22, for an algebsac VdB, the dualizing bimoduld/ is a very
particular one, namely/4 = Exthf(A, A¢). The following is an example showing (with-
out calculatingH(G,U{Z(A)) that U is isomorphic toA as A¢ bimodule, but not as
G-module:

Example 24. Let V be a finite dimensional vector space= S(V), andG c GL(V) a
finite group. We claim that

Ext (A, A°) = A ® det (4],

whered = dim(V), and det'! is the dual of the determinant representatishi’ . Namely,
det~! is a one dimensionak-vector space, ifv € det™! is a nonzero elemeng, e G, and
a € A, then theG-action is given by

gla ®@w) = g(a)detgly) '@ uw.
We conclude that/4 = A asA€ # G-modules if and only ifG c SL(V).
Proof. Let g € G, and choose a basfsi, . .., x4} of V which diagonalizeg. Notice that
S(V) =),_1 k[x;], and this tensor product jsequivariant with the diagonal action. The

Kinneth formula igg-equivariant, so we only need to prove the following lemma:

Lemma 25. If A =k[x] and g is the automorphism od determined by (x) = Ax, then
Ext}. (A, A°) = A[1], and the action o is given by multiplication by L.

Proof of thelemma. It was shown in Example 13 thafx] € VdB(1). Let us compute the
g-action on

HY(k[x], k[x, y1) = Der(k[x], k[x, y1)/ InnDex(k[x], k[x, y1).

If D:k[x]— k[x, y]is aderivation, them is determined by its valu® (x) onx, and this
gives the isomorphism

Der(k[x], klx, y]) =Zkl[x,y], D+ D(x). @)
If p € k[x, y], the inner derivatiofp, —] takes inx the value

[p.x]=p,y)y —xpx,y)=(x—y)px,y).



M. Farinati / Journal of Algebra 284 (2005) 415-434 427

This shows that, under the isomorphism (1), InnBgwx — y)k[x, y], obtaining

HY(A, A°) =Der(A, A°)/ InnDer(A, A®) = % = k[x].
X — y)klx,y

In order to compute the action gfon H1, we recall that, ifD is a derivation, theg.D =
goDo g*l, SO

(g.D)(x) =g(D(¢*x)) = g(D(x'x)) =2 'g(D(x)),
and if D(x) € k (this is always the case modulo an inner derivation), we get
(¢.D)(x)=2"1Dx). O

Turning back to the examplé = S(V) andG c GL(V) a finite subgroup, we see that
S(V)#G e VdB(dim(V)) butUsvyug = S(V) #G if and only if G C SL(V). This exam-
ple shows a situation whe®*(B, M) = H;_(B,U ®p M) with U # B. In particular,
H*(B) = H,(B, U), which needs not be equal #;_,(B), and in fact it is different.

3. Theexample S(V)#G

We finish with a computation of the homology and cohomolog§of) #G.

Letk be afield,V afinite dimensionat-vector space( a finite subgroup of GUV, k),
A = §(V),and we willassume that/1G| € k. For simplicity we will also assume thahas
a primitive |G |-th root of 1. This condition is not really necessary because of the following
reason: considey a primitive |G|-root of unity in the algebraic closure éfand letK be
k(&) the field generated by and&. One can viewG inside GV ® K, K), and consider
it acting onA ® K = Sg(V ® K). A descend property of the Hochschild homology and
cohomology with respect to this change of the base field assures that the dimension over
K of the (co)homology of the extended algebra is the same as the dimensidnafae
(co)homology of the original one.

If g€ G, V8={xeV]|g)=ux}. As g-module,V$ admits a unique complement
in vV, we will call it V,. We haveV = V¢ @ V, asg-modules, and this decomposition is
canonical.

3.1. Homology of(V)#G

Theorem 26. With the notations as in the above paragraph, derjGtethe set of conjugacy
classes ofG, and forg € G let Z, be the centralizer o¢ in G, so thatZ, ={h € G |
hg = gh}. The Hochschild homology 6fV) # G is given by

Hy(S(V)#G) = Hy(S(V), S\ #G)® = @ (S(v¥) ® a"(v¥)) ™,
(g)€(G)

whereA” (V$8) is the homogeneous component of degreéthe exterior algebra ofv'$.
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Proof. With the hypothesis on the characteristic and the order of the group, the spectral
sequence of [3] gives the following isomorphism:

Ho(S(V)#G) = H,(S(V), S(V) #G) = B Hi(sw). S(V)g) >,
(8)€(G)
valid for anyk-algebra of the typel # G. SinceV = V& @ V,, it follows that
S(V)=S(VE) ® S(Vy)
as algebras, and
S(V)g=S(V8) @ S(Vy)g
asS(V)-bimodules. Using the Kiinneth formula, one gets
Ho(S(V), SVg)% = @B (Hp(S(V¥)) ® Hy(S(Vy). S(Vp)g)) .
ptq=n

By the Hochschild—Kostant—Rosenberg theorem, or directly by computing using a Koszul
type resolution, one sees thatJif is a finite dimensionat-vector space,

Hy(S(W)) =2"(S(W)) =S(W) @ A"W.
The homology with coefficients is computed in the following lemma.
Lemma 27. H.(S(V,), S(V,)g) = k[0] with trivial Z¢-action.

Proof. Leth € Z,. One can diagonalize simultaneouslandg in V,. If {x1,..., x}isa
basis of eigenvectors of bothandg, then the algebré(V,) is isomorphic to

k

k
kxa, .ol = @) klxil and S(Ve)g =klxa, ... xilg = Q) klxilg:.
i=1 i=1

whereg; acts onx; by multiplication of the caresponding eigenvalue @f. Notice also
that/ acts on each; by multiplication by some.}, because; is also an eigenvector af
Using Kiinneth formula again, one gets

Ho(S(Vy), S(Ve)g) = ) He(klxi], klxilg:).

Let us now make the explicit computation for the algeljral, ¢ acting byx — Ax, andh
acting byx — A/x.
Consider, as in Example 13, the resolutiorkpf] ask[x]-bimodule

0— k[x]Qk[x] = k[x] ® k[x] — k[x] — O.
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Here the first morphism is given y® ¢ — px ® ¢ — p ® xgq and the second one is the
multiplication map.
By tensoring withk[x]g overk[x]¢, one gets the complex

0— kl[x]g — k[x]g— 0
with differential
pg > pgx —xpg =px(k—1Dg,
whose homology i, (k[x].k[x]g). The fact thatr # 1 implies that the differential is
injective and the image equals[x]g, SOH1 = 0 andHp = k. Itis clear that: acts trivially

on Hp, and the proof of the lemma is complete

The sum

Ha(S(V), S(V)8) % = @D (Hp(S(V¥)) ® Hy(S(Vy), S(Ve)g)) ™
pt+qg=n

reduces to
Z n Z
Hy(S(V), S(V)) 7= (S(V¢) ® A"(V#))™*
and the proof of the theorem is finished:

Example28. Letk = C, V = C?, G a finite subgroup of S{2, C). Then

Ho(S(V)#G) = S(vV)¢ @ CH&I#D,
Hi(S(V)#G) = (S(V) @ V)€,
Ha(S(V)#G) = (S(V) @ A2(V)) = S(V)C,
Hy(S(V)#G) =0, Vn>2.

3.2. Cohomology: direct computation

The formula

H"(S(V)#G) = H"(S(V), S(V) #G)° H"(S(V), S(V)g) ™

(8)e(G)

is also valid. Usings (V) = S(V#) ® S(V,), and Kiinneth formula, one gets
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H'(S(V). S(V)g) ™ = @D (HP(S(V¥). $(V¥)) @ HY(S(Ve). S(Ve)g) ™

= @ (S(v&)® A7 ((v¥)") ® HI(S(Ve). S(V)g)) ™

Here we have used the isomorphism
H*(S(W), S(W)) = A§y, Der(S(W)) = S(W) @ A*W*.

Now we need the analogue of Lemma 27 for cohomology, whose proof is the same as that
of Lemma 25.

Lemma 29. Let A = k[x], g, h the automorphisms determined pg) = Ax andh(x) =

ux, with A #£ 1. ThenH*(A, Ag) = k[1], and the action of: is given by multiplication

by L.

Corollary 30. If we denote byl, = dim(V,), then
H*(S(Vy), S(Vy)g) = detl;, d,].

This is an isomorphism af,-modules.

Proof. From the fact thag andh commute, one can choose a bdsis ..., x,} of eigen-
vectors of botly andi. The corollary follows from Kiinneth formula, and the lemma above
applied toS(V) = Q!_1 k[x;]l. O

We have obtained the following formula:

Theorem 31.

HY SW#G) = D (S(v¥)® a*((vV¥)") @ det; [d,]) .
®)<(G)

3.3. Cohomology: computation using duality

Using Theorem 17 foH = k[G] (see Example 24), we know that

H*(A#G)=H*(A#G,(Ua#G) Qunc A#G) = Hy_o(A#G, U5 #G)

=Hy—o(A#G, (A®det 1) #G).
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Using Stefan’s spectral, this is the same as
Hi-o(A (A@det ) #G) = @D Hy-u(A. (A®@det 1 (V)).g)™*
(8)€(G)

= P (Hi-o(4, A.g) ® det (V).
()<(G)

Now the same techniques of writing= V¢ @ V, apply, and we obtain

D (Hi—e(A, Ag) @det )% = @B (Hi—a(S(V¥)) @ det )™
(8)€(G) (8)€(G)

= P (S(v¥) ® 4% (v¥) @ det 1)
(£)€(G)

The difference between this formula and that of Theorem 31, having det ¢r, dst
explained by the fact that in Theorem 31, one has a8¢(V$)*), while here one has
A?=*(V#). The multiplication map induces a morphism&f-modules
A%(VE) @ AGMVO=e 8y AdMVE e — det|ys,
and as a consequence one has an isomorphiszg-ofiodules
A*(VE)" = A9MVO=e(yE) @ det], 1.

So we get the same after noticing that gedet|y: ® det|y, .

Example32. Letk = C, V = C?, G a finite subgroup of S{2, C). In this case, homology
and cohomology is the same:

HO(S(V)#G) = S(V)C,
HY(S(V)#G) = (S(V) @ V)°,
H3(S(V)#G) = S(V)¢ @ CH&i7Y,
H"(S(V)#G)=0, Vn>2.

Example 33. Let G = C2 = {1, ¢} the cyclic group of order two. Let be a field of
ch(k) # 2, A = k[x] with ¢ acting onA by x — —x. Using Theorem 26, one gets
Ho(A#G) = A® @k =k[x?] @k,
Hi(A#G) = (A®k.dx)® = k[x?]x dx,
H,(A#G)=0, Vn>1.
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On the other hand,

HOA#G) = AC =k[x?),

Der(A, At)

1 — G TnnDer A An
HY(A#G)=(A®k.9,)" ® <|nnDer(A, An)

Ca
) = k[x?]xd, @0,
H"(A#G)=0, V¥n>1.

In this example, homology and cohomology are not the same. The cohomolbigy]s
free, while the homology has torsion.

In the above example, we see that the cohomology is a “part” of the homology. The
same phenomenon happens in the following:

Example 34. Let W = k", considersS,, acting onW by permutation of the coordinates, and
let

v={@1..., )" ::{(xl,...,xn)EW

md)

i=1
We claim that

H*(S(V)#5,) = H*(S(V), S(V) #A,)™",
whereA,, denote as usual the subgroup of even permutations.

In fact, we can prove an analogous formin the following general setting:

Example 35. Let G ¢ GL(V) be afinite subgrous := G NSL(V) = Ker(det: G — k*),
andC :=det(G) Cc k*. Then

Ho(S(V)#G) = @( P H(sw), S(V)g)2g>,
weC \ (g)e(G), detg)=w

and each of this summands is nonzero, while in cohomology, there are only the terms
corresponding ta = 1:

H(SW#G)= @ H(SV).5(V)g)™.
()< (G). detg)=1

In particular,

H*(S(V)#G) = H*(S(V), S(V)#5)¢ and H*(S(V)#G) # Ha—s(S(V)#G).
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Proof. The formula for the homology is just noticing that the $6% can be split into
smaller pieces, parametrized by the values of the determinant. To see that each summand
is nonzero, we make them explicit. Using Theorem 26, we know that

Ho(S(V), S(V)g)™* = (S(V¥) ® a*VE)?e.
Evenif V¢ =0, one always has the element 1S(V8) @ A°V )%z,
The interesting part is the formula foraltohomology. Recall from the duality formula
that
H*(S(V), S(V)g) =det™t ® Hy—o(S(V), S(V)g).
If one shows thatf, (S(V), S(V)g) is atrivial g-module, then, for dég) £ 1 we will have
(det™*® Hy—u(S(V), S(V)g))* < (det ™ ® Ha—o(S(V). S(V)g))*
= (det™1)* ® Hy—o(S(V), S(V)g)
=0.

So let us see thal, (S(V), S(V)g) has trivialg-action. For that, writd/ = V& @ V,, then
Ho(S(V),S(V)g) = Ho(S(V8)) ® Hy(S(V), S(V)g)). Clearly H,(S(V8)) is a trivial g-
module, andH,(S(V), S(V)g)) also has triviag-action in virtue of Lemma 27. O

Remark 36. The equality between homology@dnohomology depends not only éh but
on the representation. For example, given an arbitrary finite subgrauisL(V), we can
consider the action o and onV*, andG will act symplectically onW =V & V*. In
this case we have

G — Sp(W) C SL(W),

so that

H*(S(W)#G) = Hdimw)—s (S(W) #G).
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