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Abstract

In this work we study the class of algebras satisfying a duality property with respect to Hoch
homology and cohomology, as in [Proc. Amer. Math. Soc. 126 (1998) 1345–1348]. More pre
we consider the class of algebrasA such that there exists an invertible bimoduleU and an integer
numberd with the propertyH •(A,M) ∼= Hd−•(A,U ⊗A M), for all A-bimodulesM . We show
that this class is closed under localization and under smash products with respect to Hopf a
satisfying also the duality property.

We also illustrate the subtlety ondualities with smash products developing in detail the exam
S(V ) # G, the crossed product of the symmetric algebra on a vector space and a finite group
linearly onV .
 2004 Elsevier Inc. All rights reserved.
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Introduction

The aim of this work is to study the class of algebras satisfying a duality property
respect to Hochschild homology and cohomology, as in [4]. More precisely, we con
the class of algebrasA such that there exists an invertible bimoduleU and an intege
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numberd with the propertyH •(A,M) ∼= Hd−•(A,U ⊗A M), for all A-bimodulesM. We
show that this class is closed under localization (Theorem 6) and under smash p
(Theorem 17). By localization we mean an algebra morphismA → B with the following
two properties:B⊗AB ∼= B asB-bimodule, andB⊗A−⊗AB is exact. For smash produc
the philosophy is the following: takeA an algebra in this class with dualizing bimoduleU ,
andH a Hopf algebra with dualizing bimoduleH , thenA # H has dualizing bimodule
U #H (see Remark 16 for the definition ofU #H ).

There is a subtlety on dualities with smash products, so the last section is devoted
velop the simplest example illustrating this: the algebraS(V ) # G, the crossed product o
the symmetric algebra on a vector space, and a finite group acting linearly onV . Given an
algebraA with dualizing moduleUA

∼= A and a Hopf algebra with dualizing bimodule is
morphic toH , Theorem 17 says thatA#H has a dualizing bimodule isomorphic toUA #H .
The subtlety is that, even though the bimoduleUA

∼= A asA-bimodule, it may happen tha
UA �∼= A asH -module, and soUA # H �∼= A # H asA # H -bimodule. In the example o
S(V ) andG ⊂ GL(V ), we show that the condition forUS(V )

∼= S(V ) asG-modules is tha
G ⊂ SL(V ), and consequently, homology and cohomology will differ. In order to illust
the duality, we compute the cohomology ofthis example in two different ways.

The example of Section 3 was motivated by a question of Paul Smith, wheth
methods used in [1] would apply toS(V ) #G. The answer to that question is yes, and t
calculation has also motivated Section 2.

General notations

Fix a field k of characteristic zero, unadorned⊗ and Hom will denote⊗k and Homk .
If X is a graded vector space andn ∈ Z, we will denoteX[n] the same vector space b
with its degree shifted byn. For example, ifX is nonzero only in degree zero, thenX[n]
is nonzero only in degreen.

For anyk-algebraB andk-symmetric bimoduleM, the Hochschild homology and co
homology ofB with coefficients inM are TorB

e

• (B,M) and Ext•Be (B,M), respectively,
whereBe = B ⊗ Bop; they are denotedH•(B,M) and H •(B,M). In the special cas
whereM = B, we will also writeHH•(B) := H•(B,B) andHH •(B) := H •(B,B).

The word “module” will mean “left module.” All modules will bek-symmetric, so tha
B-bimodules is the same asBe-modules. AB-bimoduleP is calledinvertibleif there exists
another bimoduleQ such thatP ⊗B Q ∼= B andQ ⊗B P ∼= B. The set of isomorphism
classes of invertibleB-bimodules which arek-symmetric is denoted by Pick(B).

Finally, in Section 3 there is some abuse of notation with the symbol det. Someti
denotes the usual determinant function, and some other times it denotes the 1-dime
representation of GL(V ), or its restriction to someG ⊂ GL(V ). The meaning will be clea
from the context.

The duality theorem of Van den Berg

In [4], the author proves a theorem relating the Hochschild homology and coho
ogy of a certain class of algebras. We will state this theorem in a way convenient f
purposes:
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Theorem 1 [4, Theorem 3]. Let A be ak-algebra which admits a finitely generated pr
jective Ae-resolution( for instance, this is the case ifAe is noetherian). The following
conditions are equivalent:

(1) There exists an invertibleA-bimoduleUA, and an integerd such thatH •(A,M) ∼=
Hd−•(A,UA ⊗A M) for all Ae-modulesM.

(2) The projective dimension ofA as Ae-module is finite, andExtnAe(A,Ae) = 0 for all
n � 0 except forn = d whereUA := ExtnAe (A,Ae) is an invertibleAe-module.

1. Localization

The general framework of this section is the following:A → B is ak-algebra map suc
that

• The multiplication map induces an isomorphism ofBe-modulesB ⊗A B ∼= B.
• The functorsB ⊗A − and− ⊗A B are exact.

We look for conditions onB which, together with the assumption thatA satisfies Van den
Bergh’s theorem, allow us to conclude that so doesB.

Lemma 2. Let U ∈ Pic(A) andA → B be such thatB ⊗A B ∼= B. If U ⊗A B ∼= B ⊗A U

asAe-modules, then

• B ⊗A U ∼= B ⊗A U ⊗A B asB ⊗ Aop-modules;
• U ⊗A B ∼= B ⊗A U ⊗A B asA ⊗ Bop-modules; and
• B ⊗A U is a Be-module in a natural way,B ⊗A U ∈ Pic(B), its inverse isB ⊗A

U−1 ⊗A B, andU−1 ⊗A B ∼= B ⊗A U−1 asAe-modules.

Proof. The first isomorphism is the composition

B ⊗A (U ⊗A B) ∼= B ⊗A (B ⊗A U) = (B ⊗A B) ⊗A U ∼= B ⊗A U.

The second one is similar.
Now let U−1 be the inverse ofU in Pic(A), so thatU ⊗A U−1 ∼= U−1 ⊗A U ∼= A. Let

us see thatB ⊗A U−1 ⊗A B is the inverse ofB ⊗A U :

(B ⊗A U) ⊗B

(
B ⊗A U−1 ⊗A B

)
∼= (U ⊗A B) ⊗B B ⊗A U−1 ⊗A B ∼= U ⊗A B ⊗A U−1 ⊗A B

∼= B ⊗A U ⊗A U−1 ⊗A B ∼= B ⊗A A ⊗A B ∼= B ⊗A B ∼= B,

and
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(
B ⊗A U−1 ⊗A B

) ⊗B (B ⊗A U)

∼= B ⊗A U−1 ⊗A B ⊗A U ∼= B ⊗A U−1 ⊗A U ⊗A B

∼= B ⊗A A ⊗A B ∼= B ⊗A B ∼= B. �
A bimoduleU such that there is an isomorphismB ⊗A U ∼= U ⊗A B of Ae-modules

will be said tocommute withB.

Example 3. Let g ∈ Autk(A) be such that it admits an extensiong̃ ∈ Autk(B), i.e., g̃(a) =
g(a) for all a ∈ A. Then the elementAg ∈ Pic(A) commutes withB. In particular,U = A

commutes withB.

Proof. Let g be such an element and considerAg ∈ Pic(A). There is an isomorphism o
B ⊗ Aop-modules,

B ⊗A Ag → Bg̃, b ⊗ ag �→ bag̃.

On the other hand, one can define an isomorphism ofA ⊗ Bop-modules

Ag ⊗A B → Bg̃, ag ⊗ bg̃ �→ ag̃(b)g̃.

In particular,Ag ⊗A B andB ⊗A Ag are isomorphic asAe-modules. �
Example 4. Letg ∈ Autk(A) be such that there exists no elementg̃ ∈ Autk(B) extending it.
Then the bimoduleAg does not commutes withB.

Proof. AssumeB ⊗A Ag ∼= Ag ⊗A B as Ae-modules. From Lemma 2 it follows tha
B ⊗A Ag ∈ Pic(B). But, as a leftB-module,B ⊗A Ag ∼= B, and it is well known that if an
elementU ∈ Pic(B) is such thatBU ∼= BB, then it is of the formBα for someα ∈ Autk(B),
the automorphismα being defined up to inner automorphism. In particular, fora ∈ A one
has thatg(a) = uα(a)u−1 for someu ∈ U(B). Denotingg̃ := uα(−)u−1, we see that we
have found an automorphism extendingg, thus a contradiction. �
Remark 5. Let A → B be such thatB ⊗A B ∼= B. If M is a left B-module, then
M ∼= B ⊗A M as a leftB-module. IfN is another leftB-module, then HomB(M,N) =
HomA(M,N).

Proof. Using the hypothesis onB, we see that

M ∼= B ⊗B M ∼= (B ⊗A B) ⊗B M ∼= B ⊗A (B ⊗B M) ∼= B ⊗A M;

it follows then that

HomB(M,N) ∼= HomB(B ⊗A M,N) ∼= HomA(M,N). �
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Theorem 6. Let A ∈ VdB(d) with dualizing bimoduleU , andA → B be a morphism o
k-algebras such that

(1) the functorsB ⊗A − and− ⊗A B are exact;
(2) the canonical map induced by multiplicationB ⊗A B → B is an isomorphism; and
(3) B ⊗A U ∼= U ⊗A B asAe-modules.

ThenB ∈ VdB(d) with dualizing bimoduleB ⊗A U ∼= B ⊗A U ⊗A B.

Notice that ifU = A, then condition (3) is automatically satisfied, and the dualiz
bimodule associated toB is B.

Proof. By Theorem 1, it is enough to show that the projective dimension ofB as Be-
module is finite, thatB admits a resolution by means of finitely generatedBe-projectives,
and that ExtdBe (B,Be) = B ⊗A U ⊗A B and it vanishes elsewhere.

Let P• be a finite resolution ofA asAe-modules, withPn projective and finitely gen
erated asAe-modules. SinceB ⊗A − and− ⊗A B are exact, the complexB ⊗A P• ⊗A B

is a resolution ofB ⊗A A ⊗A B ∼= B, and soB also has a finite resolution. The bimodu
B ⊗A Pn ⊗A B are clearlyBe-finitely generated and projective.

In order to compute Ext•
Be (B,Be), one can use this particular resolution, and con

quently

Ext•Be

(
B,Be

) = H •(HomBe

(
B ⊗A P• ⊗A B,Be

)) ∼= H •(HomAe

(
P•,Be

))
.

We claim that ifP is Ae-projective finitely generated, then

HomAe

(
P•,Be

) ∼= B ⊗A HomAe

(
P•,Ae

) ⊗A B.

For that, consider the class ofAe-modules P such that HomAe(P,Be) ∼= B ⊗A

HomAe(P•,Ae) ⊗A B. This class is closed under direct summands and finite sum
it is enough to show our claim that the moduleAe is in it, and that is clear. Using thi
isomorphism, one gets

H •(HomAe

(
P•,Be

)) ∼= H •(B ⊗A HomAe

(
P•,Be

) ⊗A B
)

and by flatness this is the same as

B ⊗A H •(HomAe (P•,Be)) ⊗A B = B ⊗A U [d] ⊗A B. �
Example 7. One can takeA = A1(k) = k{x, y}/〈[x, y] = 1〉 and B = k{x, x−1, y}/
〈[x, y] = 1〉. This example is a particular case of the following:

Example 8 (Normal localization). Let A be an algebra andx ∈ A such that the se
{1, x, x2, x3, . . .} satisfies the Ore conditions. TakeB = A[x−1]. If M is a right A-
module, then ask[x] modules we have an isomorphismM ⊗A B ∼= M ⊗k[x] k[x, x−1].
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This shows thatA → B is flat. It is also clear thatB ⊗A B ∼= B, in the same way a
k[x±1] ⊗k[x] k[x±1] ∼= k[x±1].

Example 9. Another generalization of Example 7 is the following situation: letO(X)

be the algebra of functions on an affine varietyX, and letU be an affine open subs
of X. LetA = Diff (X) be the algebra of algebraic differential operators onX and similarly
B = Diff (U). SinceB =O(U) ⊗O(X) Diff (X), the mapA → B is flat, andB ⊗A B = B.
If A satisfies the theorem of Van den Bergh, then so it doesB.

In the next section, we will study the behavior of the duality property with respe
smash products.

2. Smash products

In this sectionH is a Hopf algebra such thatH ∈ VdB(d) with dualizing bimodule
UH = H , A ∈ VdB(d ′) is anH -module algebra with dualizing bimoduleUA, andB :=
A # H . We will prove (see Theorem 17) thatB ∈ VdB(d + d ′), with dualizing bimodule
UB = UA #H (see Remark 16 for the definition ofU #H ).

Lemma 10. If H is a Hopf algebra, thenH ∈ VdB(d) with dualizing bimoduleH if and
only if Ext•H(k,M) ∼= Tor•−d(k,M) for all left H -modulesM.

Proof. Let M be a leftH -module, thenMε is theHe-module with right action defined b
m.h := ε(h)m for all m ∈ M andh ∈ H . If H ∈ VdB(d), it follows that

Ext•H (k,M) = H •(H,Mε) ∼= Hd−•(H,Mε) = Tor•−d(k,M).

On the other direction, ifX is an He-module, thenXad is the same underlying vecto
space but with leftH action defined byh ·ad x := h1xS(h2). With this structure (see, fo
instance, [3]) one has

H •(H,X) = Ext•H
(
k,Xad) ∼= Tor•−d

(
k,Xad) ∼= Hd−•(H,Mε) = Tor•−d(k,M). �

Example 11. Let G be a finite group such that 1/|G| ∈ k. The Reynolds operatore =
(1/|G|)∑

g∈G g induces an isomorphismMG
∼= MG for anyG-moduleM. This implies

that k[G] ∈ VdB(0) with Uk[G] = k[G]. This example can be easily generalized in
following direction:

Example 12. Let H be a semisimple unimodular Hopf algebra, so thatH admits acentral
integrale ∈ H satisfying

he = ε(h)e, ε(e) = 1.

ThenH ∈ VdB(0) with UH = H . It is known (see Radford [2, Theorem 4]) that the Dr
fel’d double of a finite dimensional Hopf algebra is unimodular. IfK is a finite dimensiona
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Hopf algebra andD(K) is the Drinfel’d double, again by a result of Radford [2, Pro
sition 7] D(K) is semisimple if and only ifK is semisimple and cosemisimple. Taki
K = k[G] whereG is a noncommutative group with|G|−1 ∈ k, we getH := D(K) a
noncommutative not cocommutative semisimple unimodular Hopf algebra.

Proof. Let H be a unimodular semisimple Hopf algebra, and lete ∈ H be as above. We
will show that HomH(k,M) ∼= k ⊗H M. If M is a leftH -module, then

HomH(k,M) ∼= {
m ∈ M | hm = ε(h)m

} =: MH.

It is clear that every element of the formem belongs toMH because

h(em) = (he)m = ε(h)em;

but if m ∈ MH , then

em = ε(e)m = m,

soMH coincides with the image of the multiplication bye. Let us consider the map

e : M → MH, m �→ em.

The elements of the formhm−ε(h)m belong to the kernel of this map, so it factors throu
MH := M/〈hm−ε(h)m〉. Now the mapMH → MH defined bym �→ m defines an inverse
because inMH , every elementm = ε(e)m is equivalent toem. We have shown thatH ∈
VdB(0). �
Example 13. The algebraH = k[x] is a Hopf algebra with∆(x) = x ⊗ 1 + 1 ⊗ x. It
belongs to the classVdB(d) with UH = H .

Proof. Write k[x]e = k[x] ⊗ k[x] ∼= k[x, y], and consider the Koszul resolution

0 → k[x, y] → k[x, y] → k[x] → 0,

where the first map is the multiplication by(x − y) and the second map is the evaluat
x = y. Applying the functor Homk[x,y](−, k[x, y]), one obtain the complex

0→ Homk[x,y]
(
k[x, y], k[x, y])→ Homk[x,y]

(
k[x, y], k[x, y])→ 0,

where the map is again multiplication byx − y. This complex identifies with

0 → k[x, y] → k[x, y] → 0

but notice that now the grading increases to the right, so the homology isk[x, y]/(x−y) ∼=
k[x] in degree one, zero elsewhere, and we conclude thatk[x] ∈ VdB(1). �
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Example 14. The algebrak[x] admits a finitely generatedk[x]e-projective resolution
this fact implies a Künneth formula for Hochschild cohomology, and so the alg
k[x1, . . . , xn] ∈ VdB(n), with Uk[x1,...,xn] = k[x1, . . . , xn].

Example 15. The Hopf algebrak[x±1
1 , . . . , x±1

d ] = k[Zn], belongs to the classVdB(d),
because as an algebra, it is a localization ofk[x1, . . . , xd ]. Also

U
k[x±1

1 ,...,x±1
d ] = Uk[x1,...,xd ] ⊗k[x1,...,xd ] k

[
x±1

1 , . . . , x±1
d

] = k
[
x±1

1 , . . . , x±1
d

]
.

Remark 16. Let A be anH -module algebra andU ∈ Pick(A) such thatU is also anH -
module, with the compatibility property

h(aub) = h1(a)h2(u)h3(b)

for all a, b ∈ A, h ∈ H , andu ∈ U . Let U−1 := HomA(U,A); this is also anH -module
satisfying the same compatibility condition. IfU # H is the abelian groupU ⊗ H with
A #H -bimodule structure given by

(a #h)(u ⊗ k) := (
ah1(u) ⊗ h2k

)
, (u ⊗ k)(a #h) = (

uk1(a) ⊗ k2h
)
,

thenU #H ∈ Pick(A #H), and its inverse isU−1 #H . If M is left A #H -module, then

(U #H) ⊗A#H M ∼= U ⊗A M

asA # H -modules, where theA # H -module structure onU ⊗A M is the one induced b
the obvious leftA-structure and the diagonalH -structure.

Proof. We will only exhibit an isomorphismU # H ⊗A#H U−1 # H → A # H . Let us
denote by〈 , 〉 the evaluation mapU ⊗A U−1 → A; notice that〈 , 〉 is H -linear. Foru ∈ U ,
v ∈ U−1, h andk ∈ H , define

U #H ⊗A#H U−1 #H → A #H, (u ⊗ h) ⊗ (v ⊗ k) �→ 〈
u,h1(v)

〉
h2k.

Theorem 17. Let H ∈ VdB(d) be a Hopf algebra withUH = H . If A is an H -module
algebra withA ∈ VdB(d), thenA #H ∈ VdB(d + d ′) with UA#H = UA #H .

Proof. Let B be A # H . In [3], the author shows that, for aB-bimoduleM, there is a
spectral sequence converging toH •(B,M) whose second term is Extp(k,Hq(A,M)).
Similarly, there is a spectral sequence withE2 term equal to TorHp (k,Hq(A,M)) con-
verging toH•(B,M).

Now considerM = Be, and let us computeH •(B,Be). First, one notes the followin
isomorphism of leftAe-modules:

Be ∼= Ae ⊗ V,

whereV is the vector spaceH ⊗ H .
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Using Stefan’s spectral sequence, one has

E
pq

2 = ExtpH
(
k,Hq

(
A,Be

)) = ExtpH
(
k,Hq

(
A,Ae ⊗ V

))
.

SinceA ∈ VdB(d ′), it follows that

H •(A,Ae ⊗ V
) ∼= Hd ′−•

(
A,U ⊗A Ae ⊗ V

) ∼= Hd ′−•
(
A,U ⊗A Ae

) ⊗ V

∼= H •(A,Ae
) ⊗ V ∼= U [d] ⊗ V.

This implies first that the spectral sequencesdegenerates at this step, and conseque
there is an isomorphism

H •(B,Be
) ∼= Ext∗−d ′

H (k,U ⊗ V ).

Recall thatV = H ⊗ H op; we have to consider it asH -module with the adjoint action
Now we use the fact thatH ∈ VdB(d), with UH = H , soH •(H,X) ∼= Hd−•(H,X) for all
H -bimodulesX. In particular, for a leftH -moduleX, one can consider the bimoduleXε ,
and this gives the formula

Ext•H(k,X) = H •(H,Xε) ∼= Hd−•(H,Xε) = TorHd−•(k,X).

This formula implies that

H •(B,Be
) ∼= Ext∗−d ′

H (k,UA ⊗ V ) ∼= TorHd ′+d−•(k,UA ⊗ V ).

On the other hand,H•(B,UA ⊗A Be) = H•(B, (UA #H) ⊗B Be) can be computed usin
a spectral sequence whose second term is

TorH•
(
k,H•

(
A,UA ⊗A Be

)) = TorH•
(
k,H•

(
A,U ⊗A

(
Ae ⊗ V

)))
= TorH• (k,UA ⊗ V ).

This spectral sequence collapses giving an isomorphism

H•
(
B,UA ⊗A Be

) ∼= TorH• (k,UA ⊗ V ).

In particular,

H •(B,Be
) ∼= Hd+d ′−•

(
B,U ⊗A Be

)
and

Hd+d ′
(B,Be) = H0

(
B,U ⊗A Be

) = H0
(
B, (U #H) ⊗B Be

)
= H0

(
B, (U #H) ⊗ B

) = U #H. �
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Corollary 18. With the notations of the above theorem, assumeU = A as A-bimodules
andH -modules, then

H •(B,M) ∼= Hd+d ′−•(B,M)

for all A #H -bimodulesM.

Example 19. Let A ∈ VdB(d), D ∈ Derk(A), and write the Ore extensionB = A[t,D].
This algebraB coincides withA # k[t] where thek[t]-module action onA is given by
t .a = D(a), B ∈ VdB(d + 1). For A = k[x] andD = ∂/∂x one obtains the known resu
thatA1(k) ∈ VdB(2).

Example 20. Let 0 �= q ∈ k, thenB = k{x±1, y±1}/〈yx = qxy〉 ∈ VdB(2). Indeed, this
algebra is isomorphic tok[x±1] #k[y±1] where theH -module structure onk[x±1] is given
by y.x = qx.

Example 21. Let A be an algebra andG a finite group of automorphism ofA. If A ∈
VdB(d), thenA #G ∈ VdB(d).

Warning: It can happen thatA is such thatUA
∼= A asA-bimodule, butUA �∼= A as

H -module. It is easy to show an example of this situation whenH = k[G].
One can first observe the following characterization of theAe # G-structures on aA-

bimodule isomorphic toA:

Proposition 22. LetU be anAe-bimodule isomorphic toA. The set of all possibleAe #G-
module structures onU , moduloAe #G-isomorphism, is parametrized byH 1(G,UZ(A)),
the first cohomology ofG with coefficients in the(multiplicative) abelian group of units o
the center ofA.

Proof. Fix an isomorphismA ∼= U and letu be the image of 1 inU . HenceU = Au = uA,
and moreover,au = ua for all a ∈ A. One has to define aG-action onU such that, for all
a, b ∈ A andv ∈ U , the following identity holds:

g(avb) = g(a)g(v)g(b).

Since the bimoduleU is generated byu, it is clear that it is only necessary to defineg(u).
The elementg(u) must belong toU , so it is of the formagu for someag in A. But

au = ua

for all a ∈ A, and applyingg, one obtains

ag(u) = g(u)a, ∀a ∈ A;
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and so

aagu = agua = agau.

It follows thatag must belong to the center ofA. Also, every element ofU is of the form

ag(u) = aagu,

soag must be a unit. We have then shown that the assignmentg �→ ag must be a map from
G into U(Z(A)).

If one wants associativity, the identity

g
(
h(u)

) = (gh)(u), ∀g,h ∈ G,

is required, so

g
(
h(u)

) = g(ahu) = g(ah)agu = (gh)(u) = aghu.

But u is a basis ofU with respect to the leftA-structure, so

g(ah)ag = agh.

On the other hand, it is clear that an assignmentg �→ ag fromG into the units of center ofA
satisfying the above cocycle condition defines aG-action compatible with theA-bimodule
structure.

Now assume thatU has twoG-actions that are isomorphic. Let us denote them
g.1(u) = agu, andg.2(u) = bgu, and callU1 andU2 the bimoduleU with the first and the
secondG-structure, respectively.

If φ : U1 → U2 is an isomorphism ofAe # G-modules, then the image ofu is some
elementλu, whereλ ∈ A. Moreover,λ is a unit becauseφ is an isomorphism, andλ ∈
Z(A) becauseφ is Ae-linear.

Now G-linearity means that

φ(g.1u) = φ(agu) = λagu,

but also

φ(g.1u) = g.2φ(u) = g.2(λu) = g(λ)g.2u = g(λ)bgu,

so we deduce

bg = λg
(
λ−1)ag,

and the two assignments differ by a coboundary.�
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Example 23. This proposition is more useful when the center ofA is small. If A is a
centralk-algebra,G a finite group ofk-linear automorphism, andχ : G → k a character
let defineAχ with underlyingAe-module structure equal toA, andG-action given by
g.a = g(a)χ(g). The above proposition tells us that allAe # G-module structures on th
Ae-moduleA are of this type.

Despite Proposition 22, for an algebraA ∈ VdB, the dualizing bimoduleU is a very
particular one, namelyUA = ExtdAe(A,Ae). The following is an example showing (with
out calculatingH 1(G,UZ(A)) that U is isomorphic toA as Ae bimodule, but not as
G-module:

Example 24. Let V be a finite dimensional vector space,A = S(V ), andG ⊂ GL(V ) a
finite group. We claim that

Ext•Ae

(
A,Ae

) = A ⊗ det−1[d],

whered = dim(V ), and det−1 is the dual of the determinant representationΛdV . Namely,
det−1 is a one dimensionalk-vector space, ifw ∈ det−1 is a nonzero element,g ∈ G, and
a ∈ A, then theG-action is given by

g(a ⊗ w) = g(a)det(g|V )−1 ⊗ w.

We conclude thatUA
∼= A asAe #G-modules if and only ifG ⊂ SL(V ).

Proof. Let g ∈ G, and choose a basis{x1, . . . , xd} of V which diagonalizesg. Notice that
S(V ) = ⊗

i=1 k[xi], and this tensor product isg-equivariant with the diagonal action. Th
Künneth formula isg-equivariant, so we only need to prove the following lemma:

Lemma 25. If A = k[x] andg is the automorphism ofA determined byg(x) = λx, then
Ext•Ae (A,Ae) = A[1], and the action ofg is given by multiplication byλ−1.

Proof of the lemma. It was shown in Example 13 thatk[x] ∈ VdB(1). Let us compute the
g-action on

H 1(k[x], k[x, y]) = Der
(
k[x], k[x, y])/ InnDer

(
k[x], k[x, y]).

If D : k[x] → k[x, y] is a derivation, thenD is determined by its valueD(x) onx, and this
gives the isomorphism

Der
(
k[x], k[x, y]) ∼= k[x, y], D �→ D(x). (†)

If p ∈ k[x, y], the inner derivation[p,−] takes inx the value

[p,x] = p(x, y)y − xp(x, y) = (x − y)p(x, y).
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This shows that, under the isomorphism (†), InnDer∼= (x − y)k[x, y], obtaining

H 1(A,Ae
) = Der

(
A,Ae

)
/ InnDer

(
A,Ae

) ∼= k[x, y]
(x − y)k[x, y]

∼= k[x].

In order to compute the action ofg onH 1, we recall that, ifD is a derivation, theng.D =
g ◦ D ◦ g−1, so

(g.D)(x) = g
(
D

(
g−1x

)) = g
(
D

(
λ−1x

)) = λ−1g
(
D(x)

)
,

and ifD(x) ∈ k (this is always the case modulo an inner derivation), we get

(g.D)(x) = λ−1D(x). �
Turning back to the exampleA = S(V ) andG ⊂ GL(V ) a finite subgroup, we see th

S(V ) #G ∈ VdB(dim(V )) butUS(V )#G
∼= S(V ) #G if and only if G ⊂ SL(V ). This exam-

ple shows a situation whereH •(B,M) = Hd−•(B,U ⊗B M) with U �= B. In particular,
H •(B) ∼= H•(B,U), which needs not be equal toHd−•(B), and in fact it is different.

3. The example S(V ) # G

We finish with a computation of the homology and cohomology ofS(V ) #G.
Let k be a field,V a finite dimensionalk-vector space,G a finite subgroup of GL(V , k),

A = S(V ), and we will assume that 1/|G| ∈ k. For simplicity we will also assume thatk has
a primitive|G|-th root of 1. This condition is not really necessary because of the follow
reason: considerξ a primitive |G|-root of unity in the algebraic closure ofk and letK be
k(ξ) the field generated byk andξ . One can viewG inside GL(V ⊗ K,K), and conside
it acting onA ⊗ K = SK(V ⊗ K). A descend property of the Hochschild homology a
cohomology with respect to this change of the base field assures that the dimensio
K of the (co)homology of the extended algebra is the same as the dimension overk of the
(co)homology of the original one.

If g ∈ G, V g = {x ∈ V | g(x) = x}. As g-module,V g admits a unique compleme
in V , we will call it Vg . We haveV = V g ⊕ Vg asg-modules, and this decomposition
canonical.

3.1. Homology ofS(V ) #G

Theorem 26. With the notations as in the above paragraph, denote〈G〉 the set of conjugac
classes ofG, and forg ∈ G let Zg be the centralizer ofg in G, so thatZg = {h ∈ G |
hg = gh}. The Hochschild homology ofS(V ) #G is given by

Hn

(
S(V ) #G

) = Hn

(
S(V ),S(V ) #G

)G =
⊕

〈g〉∈〈G〉

(
S
(
V g

) ⊗ Λn
(
V g

))Zg ,

whereΛn(V g) is the homogeneous component of degreen of the exterior algebra onV g .
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Proof. With the hypothesis on the characteristic and the order of the group, the sp
sequence of [3] gives the following isomorphism:

Hn

(
S(V ) #G

) = Hn

(
S(V ),S(V ) #G

)G =
⊕

〈g〉∈〈G〉
Hn

(
S(V ),S(V )g

)Zg ,

valid for anyk-algebra of the typeA #G. SinceV = V g ⊕ Vg , it follows that

S(V ) ∼= S
(
V g

) ⊗ S(Vg)

as algebras, and

S(V )g ∼= S
(
V g

) ⊗ S(Vg)g

asS(V )-bimodules. Using the Künneth formula, one gets

Hn

(
S(V ),S(V )g

)Zg =
⊕

p+q=n

(
Hp

(
S
(
V g

)) ⊗ Hq

(
S(Vg), S(Vg)g

))Zg .

By the Hochschild–Kostant–Rosenberg theorem, or directly by computing using a K
type resolution, one sees that, ifW is a finite dimensionalk-vector space,

Hn

(
S(W)

) = Ωn
(
S(W)

) = S(W) ⊗ ΛnW.

The homology with coefficients is computed in the following lemma.

Lemma 27. H•(S(Vg), S(Vg)g) = k[0] with trivial Zg-action.

Proof. Let h ∈ Zg . One can diagonalize simultaneouslyh andg in Vg . If {x1, . . . , xk} is a
basis of eigenvectors of bothh andg, then the algebraS(Vg) is isomorphic to

k[x1, . . . , xk] =
k⊗

i=1

k[xi] and S(Vg)g = k[x1, . . . , xk]g =
k⊗

i=1

k[xi]gi,

wheregi acts onxi by multiplication of the corresponding eigenvalue ofg. Notice also
thath acts on eachxi by multiplication by someλ′

i , becausexi is also an eigenvector ofh.
Using Künneth formula again, one gets

H•
(
S(Vg), S(Vg)g

) =
⊗

i

H•
(
k[xi], k[xi]gi

)
.

Let us now make the explicit computation for the algebrak[x], g acting byx �→ λx, andh

acting byx �→ λ′x.
Consider, as in Example 13, the resolution ofk[x] ask[x]-bimodule

0 → k[x] ⊗ k[x] → k[x] ⊗ k[x] → k[x] → 0.
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Here the first morphism is given byp ⊗ q �→ px ⊗ q − p ⊗ xq and the second one is th
multiplication map.

By tensoring withk[x]g overk[x]e, one gets the complex

0 → k[x]g → k[x]g → 0

with differential

pg �→ pgx − xpg = px(λ − 1)g,

whose homology isH•(k[x].k[x]g). The fact thatλ �= 1 implies that the differential is
injective and the image equalsxk[x]g, soH1 = 0 andH0 = k. It is clear thath acts trivially
onH0, and the proof of the lemma is complete.�

The sum

Hn

(
S(V ),S(V )g

)Zg =
⊕

p+q=n

(
Hp

(
S
(
V g

)) ⊗ Hq

(
S(Vg), S(Vg)g

))Zg

reduces to

Hn

(
S(V ),S(V )

)Zg= (
S
(
V g

) ⊗ Λn
(
V g

))Zg

and the proof of the theorem is finished.�
Example 28. Let k = C, V = C

2, G a finite subgroup of SL(2,C). Then

H0
(
S(V ) #G

) = S(V )G ⊕ C
#{〈g〉�=1},

H1
(
S(V ) #G

) = (
S(V ) ⊗ V

)G
,

H2
(
S(V ) #G

) = (
S(V ) ⊗ Λ2(V )

)G = S(V )G,

Hn

(
S(V ) #G

) = 0, ∀n > 2.

3.2. Cohomology: direct computation

The formula

Hn
(
S(V ) #G

) = Hn
(
S(V ),S(V ) #G

)G =
⊕

〈g〉∈〈G〉
Hn

(
S(V ),S(V )g

)Zg

is also valid. UsingS(V ) = S(V g) ⊗ S(Vg), and Künneth formula, one gets
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as that

ove
Hn
(
S(V ),S(V )g

)Zg =
⊕

p+q=n

(
Hp

(
S
(
V g

)
, S

(
V g

)) ⊗ Hq
(
S
(
Vg

)
, S

(
Vg

)
g
))Zg

=
⊕

p+q=n

(
S
(
V g

) ⊗ Λp
((

V g
)•) ⊗ Hq

(
S(Vg), S(Vg)g

))Zg .

Here we have used the isomorphism

H •(S(W),S(W)
) = Λ•

S(W) Der
(
S(W)

) = S(W) ⊗ Λ•W∗.

Now we need the analogue of Lemma 27 for cohomology, whose proof is the same
of Lemma 25.

Lemma 29. Let A = k[x], g,h the automorphisms determined byg(x) = λx andh(x) =
µx, with λ �= 1. ThenH •(A,Ag) = k[1], and the action ofh is given by multiplication
byµ−1.

Corollary 30. If we denote bydg = dimk(Vg), then

H •(S(Vg), S(Vg)g
) = det|−1

Vg
[dg].

This is an isomorphism ofZg-modules.

Proof. From the fact thatg andh commute, one can choose a basis{x1, . . . , xn} of eigen-
vectors of bothg andh. The corollary follows from Künneth formula, and the lemma ab
applied toS(V ) = ⊗n

i=1 k[xi]. �
We have obtained the following formula:

Theorem 31.

H •(S(V ) #G) =
⊕

〈g〉∈〈G〉

(
S
(
V g

) ⊗ Λ•((V g
)•) ⊗ det|−1

Vg
[dg]

)Zg .

3.3. Cohomology: computation using duality

Using Theorem 17 forH = k[G] (see Example 24), we know that

H •(A #G) = H •(A #G,(UA #G) ⊗A#G A #G
) = Hd−•(A #G,UA #G)

= Hd−•
(
A #G,

(
A ⊗ det−1) #G

)
.
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Using Stefan’s spectral, this is the same as

Hd−•
(
A,

(
A ⊗ det−1) #G

)G =
⊕

〈g〉∈〈G〉
Hd−•

(
A,

(
A ⊗ det−1(V )

)
.g

)Zg

=
⊕

〈g〉∈〈G〉

(
Hd−•(A,A.g) ⊗ det−1(V )

)Zg .

Now the same techniques of writingV = V g ⊕ Vg apply, and we obtain

⊕
〈g〉∈〈G〉

(
Hd−•(A,A.g) ⊗ det−1)Zg =

⊕
〈g〉∈〈G〉

(
Hd−•

(
S
(
V g

)) ⊗ det−1)Zg

=
⊕

〈g〉∈〈G〉

(
S
(
V g

) ⊗ Λd−•(V g
) ⊗ det−1)Zg .

The difference between this formula and that of Theorem 31, having det or det|Vg is
explained by the fact that in Theorem 31, one has alsoΛ•((V g)∗), while here one ha
Λd−•(V g). The multiplication map induces a morphism ofZg-modules

Λ•(V g
) ⊗ Λdim(V g)−•(V g) → Λdim(V g)V g = det|V g ,

and as a consequence one has an isomorphism ofZg-modules

Λ•(V g
)∗ ∼= Λdim(V g)−•(V g

) ⊗ det|−1
V g .

So we get the same after noticing that det= det|V g ⊗ det|Vg .

Example 32. Let k = C, V = C2, G a finite subgroup of SL(2,C). In this case, homolog
and cohomology is the same:

H 0(S(V ) #G
) = S(V )G,

H 1(S(V ) #G
) = (

S(V ) ⊗ V
)G

,

H 2(S(V ) #G
) = S(V )G ⊕ C

#{〈g〉�=1},

Hn
(
S(V ) #G

) = 0, ∀n > 2.

Example 33. Let G = C2 = {1, t} the cyclic group of order two. Letk be a field of
ch(k) �= 2, A = k[x] with t acting onA by x �→ −x. Using Theorem 26, one gets

H0(A #G) = AG ⊕ k = k
[
x2] ⊕ k,

H1(A #G) = (A ⊗ k.dx)G = k
[
x2]x dx,

Hn(A #G) = 0, ∀n > 1.



432 M. Farinati / Journal of Algebra 284 (2005) 415–434

. The

nd

terms
On the other hand,

H 0(A #G) = AG = k
[
x2],

H 1(A #G) = (A ⊗ k.∂x)
G ⊕

(
Der(A,At)

InnDer(A,At)

)C2

= k
[
x2]x∂x ⊕ 0,

Hn(A #G) = 0, ∀n > 1.

In this example, homology and cohomology are not the same. The cohomology isk[x2]-
free, while the homology has torsion.

In the above example, we see that the cohomology is a “part” of the homology
same phenomenon happens in the following:

Example 34. Let W = kn, considerSn acting onW by permutation of the coordinates, a
let

V = {
(1,1, . . . ,1)

}⊥ :=
{

(x1, . . . , xn) ∈ W

∣∣∣∣
n∑

i=1

xi = 0

}
.

We claim that

H •(S(V ) #Sn

) = H •(S(V ),S(V ) #An

)Sn,

whereAn denote as usual the subgroup of even permutations.

In fact, we can prove an analogous formula in the following general setting:

Example 35. Let G ⊂ GL(V ) be a finite subgroup,S := G∩SL(V ) = Ker(det: G → k×),
andC := det(G) ⊂ k×. Then

H•
(
S(V ) #G

) =
⊕
w∈C

( ⊕
〈g〉∈〈G〉,det(g)=w

H•
(
S(V ),S(V )g

)Zg

)
,

and each of this summands is nonzero, while in cohomology, there are only the
corresponding tow = 1:

H •(S(V ) #G
) =

⊕
〈g〉∈〈G〉,det(g)=1

H •(S(V ),S(V )g
)Zg .

In particular,

H •(S(V ) #G
) = H •(S(V ),S(V ) #S

)G and H •(S(V ) #G
) �= Hd−•

(
S(V ) #G

)
.
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Proof. The formula for the homology is just noticing that the set〈G〉 can be split into
smaller pieces, parametrized by the values of the determinant. To see that each su
is nonzero, we make them explicit. Using Theorem 26, we know that

H•
(
S(V ),S(V )g

)Zg = (
S
(
V g

) ⊗ Λ•V g
)Zg .

Even ifV g = 0, one always has the element 1∈ (S(V g) ⊗ Λ•V g)Zg .
The interesting part is the formula for the cohomology. Recall from the duality formu

that

H •(S(V ),S(V )g
) ∼= det−1 ⊗ Hd−•

(
S(V ),S(V )g

)
.

If one shows thatH•(S(V ), S(V )g) is a trivialg-module, then, for det(g) �= 1 we will have

(
det−1 ⊗ Hd−•

(
S(V ),S(V )g

))Zg ⊆ (
det−1 ⊗ Hd−•

(
S(V ),S(V )g

))g

= (
det−1)g ⊗ Hd−•

(
S(V ),S(V )g

)
= 0.

So let us see thatH•(S(V ), S(V )g) has trivialg-action. For that, writeV = V g ⊕Vg , then
H•(S(V ), S(V )g) ∼= H•(S(V g)) ⊗ H•(S(V ), S(V )g)). ClearlyH•(S(V g)) is a trivial g-
module, andH•(S(V ), S(V )g)) also has trivialg-action in virtue of Lemma 27. �
Remark 36. The equality between homology and cohomology depends not only onG, but
on the representation. For example, given an arbitrary finite subgroupG ⊂ GL(V ), we can
consider the action onV and onV ∗, andG will act symplectically onW = V ⊕ V ∗. In
this case we have

G ↪→ Sp(W) ⊂ SL(W),

so that

H •(S(W) #G
) = Hdim(W)−•

(
S(W) #G

)
.
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