
Journal of Algebra 261 (2003) 54–101

www.elsevier.com/locate/jalgebra

Theory of braided Hopf crossed products✩

Jorge A. Guccione and Juan J. Guccione∗

Departamento de Matemática, Facultad de Ciencias Exactas y Naturales,
Pabellón 1 – Ciudad Universitaria, (1428) Buenos Aires, Argentina

Received 24 January 2002

Communicated by Susan Montgomery

Abstract

We define a type of crossed product over braided Hopf algebras, which generalizes the ones
introduced by Blattner, Cohen, and Montgomery, and Doi and Takeuchi, and we study some of
its properties. For instance, we prove Maschke’s Theorem for these new crossed products and
we construct a natural Morita context which extends the one obtained by Cohen, Fischman, and
Montgomery.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The classical notion of Hopf crossed product was introduced in [BCM,DT] as a natural
generalization of group crossed product to the context of Hopf algebras. These algebras
are constructed in the following way: given a Hopf algebraH , an algebraA, a weak action
h⊗ a �→ h · a of H onA, and a cocyclef :H ⊗H → A, the crossed productA #f H is
the vector spaceA⊗H endowed with the multiplication

(a #h)(b # l)=
∑
(h)(l)

a(h(1) · b)f (h(2)⊗ l(1)) #h(3)l(2).
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To ensure thatA #f H is an associative unitary algebra, the action and the cocycle
must verify suitable conditions. In [GG] we proposed a generalization of this concept
introducing a maps :H ⊗ A → A ⊗ H , compatible with the algebraic structures of
H andA. When s is the flip, we recover the notion introduced in [BCM,DT]. In this
paper we extend the definition given in [GG] by allowingH to be a braided Hopf
algebra, and we study some properties of the resulting algebras. Our aim is not to
obtain the all-embracing notion of crossed product, but to introduce the type of crossed
product which includes the classical type, the automorphism Ore extensions type, and
the one considered in [B,M], all that in order to show that many of results for standard
Hopf crossed products, appearing in Montgomery’s book [Mo], remain valid in this new
context.

This paper is organized as follows: in Section 2 we recall a very general definition
of crossed product given by [Br] and review some results needed later. In Section 3
we recall the definitions and basic properties of braided bialgebras and Hopf algebras
given in [T1]. In Section 4 we introduce the notion of transposition and we study its
properties. In Section 5 we adapt to our context the notions ofH -comodule andH -
module algebras. In Section 6 we generalize the concepts of weak and true actions of
a Hopf algebra on an algebra and, for the latter, we introduce the associated smash
products. In Section 7 we study the ring of invariants of such an action. In Section 8
we generalize the Morita equivalence considered in [CFM] to our settings. This is one
of our main results. In Section 9 we introduce the crossed products to be studied in
this paper. In Section 10 we give intrinsic characterizations of these crossed products
as a sort of cleft extensions and normal Galois extensions. For the case considered
in [B,M], the first characterization was obtained in [AV]. In Section 11 we show that
our crossed products satisfy Maschke’s Theorem. Finally, in Section 12, we determine
necessary and sufficient conditions for two crossed products to be equivalent in a natural
sense.

Some, but not all, of the questions studied in this paper were considered in [GG], for
the case whereH is a standard Hopf algebra.

In this article we work in the category of vector spaces over a fieldk. Then we
assume implicitly that all the maps arek-linear. The tensor product overk is denoted
by ⊗, without any subscript. Given a vector spaceV andn � 1, sometimes we letV n

denote then-fold tensor productV ⊗ · · · ⊗ V . Given vector spacesU,V,W , and a map
f :V → W , we writeU ⊗ f for idU ⊗ f andf ⊗ U for f ⊗ idU . We assume that the
reader is familiar with the notions of algebra, coalgebra, module, and comodule. Unless
otherwise explicitly established, we assume that the algebras are associative unitary and
the coalgebras are coassociative counitary. Given an algebraA and a coalgebraC, we let
µ :A⊗A→ A, η : k→ A, ∆ :C→ C ⊗ C, andε :C→ k denote the multiplication, the
unit, the comultiplication, and the counit, respectively, specified with subscript if necessary.
Moreover, givenk-vector spacesV andW , we let τ :V ⊗W → W ⊗ V denote the flip
τ (v⊗w)=w⊗ v.

Some of the results of this paper are valid in the context of monoidal categories. In
fact, in this article we use the well known graphic calculus for monoidal and braided
categories. As usual, morphisms will be composed from up to down and tensor products
will be represented by horizontal concatenation in the corresponding order. The identity



56 J.A. Guccione, J.J. Guccione / Journal of Algebra 261 (2003) 54–101

map of a vector space will be represented by a vertical line. Given an algebraA, the
diagrams

, ◦ , , and

stand for the multiplication map, the unit, the action ofA on a leftA-module, and the ac-
tion ofA on a rightA-module, respectively. Given a coalgebraC, the comultiplication, the
counit, the coaction ofC on a rightC-comodule, and the coaction ofC on a leftC-module
will be represented by the diagrams

, ◦, , and ,

respectively. The mapsc, s, χ , F , andf , which appear in Definitions 3.1, 4.1, 2.2, and
Proposition 9.1, will be represented by the diagrams

, , , F , and • ,

respectively. The inverse maps ofc and s (when s is bijective) will be represented
by

and .

Finally, any other mapg :V → W will be geometrically represented by the dia-
gram

g .

Let V , W be vector spaces and letc :V ⊗W → W ⊗ V be a map. IfV is an algebra,
then we say thatc is compatible with the algebra structure ofV if c(η ⊗ W) =
W ⊗ η and c(µ ⊗ W) = (W ⊗ µ)(c ⊗ V )(V ⊗ c). If V is a coalgebra, then we say
that c is compatible with the coalgebra structure ofV if (W ⊗ ε)c = ε ⊗ W and
(W ⊗ ∆)c = (c ⊗ V )(V ⊗ c)(∆⊗W). Finally, if W is an algebra or a coalgebra, then
we introduce the notion thatc is compatible with the structure ofW in an obvious
way.

2. Brzezínski’s crossed products

In this section we recall a very general definition of crossed product, introduced in [Br],
and its basic properties. For the proofs we refer to [Br,BD].

Throughout this sectionA is a unitary algebra andV is a vector space equipped with
a distinguished element 1∈ V .

Definition 2.1. Given mapsχ :V ⊗ A→ A⊗ V andF :V ⊗ V → A⊗ V , we letA #V

denote the algebra (in general, non-associative and non-unitary) whose underlying vector
space isA⊗ V and whose multiplication map is given by

µA#V := (µ⊗ V )(µ⊗F )(A⊗ χ ⊗ V ).
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The elementa ⊗ v of A # V will usually be writtena # v. The algebraA # V is called
a crossed productif it is associative with 1 # 1 as identity.

Definition 2.2.Let χ :V ⊗A→A⊗ V andF :V ⊗ V →A⊗ V be maps.

(1) χ is a twisting map if it is compatible with the algebra structure ofA andχ(1⊗ a)=
a⊗ 1.

(2) F is normal ifF(1⊗ v) = F(v ⊗ 1)= 1⊗ v, and it is a cocycle which satisfies the
twisted module condition if

F

F = F
F and F = F

, where = χ and F =F .

More precisely, the first equality says thatF is a cocycle and the second thatF satisfies
the twisted module condition.

Theorem 2.3(T. Brzezínski). The algebraA #V is a crossed product iffχ is a twisting
map andF is a normal cocycle satisfying the twisted module condition.

Note that the multiplication of a crossed product verifies

µA#V (a # 1⊗ b #v)= ab #v. (1)

Conversely, it is easy to check that each associative multiplication that satisfies (1) is the
multiplication of a crossed product. The twisting mapχ and the cocycleF are given by
χ(v⊗ a)= (1⊗ v)(a ⊗ 1) andF(v⊗w)= (1⊗ v)(1⊗w).

Next, we mention a few results.

Proposition 2.4.LetA#V be a crossed product and letB be an algebra. Given an algebra
morphismα :A→ B and a mapβ :V →B such that

(1) β(1)= 1,
(2) µ(α⊗ β)χ = µ(β ⊗ α),
(3) µ(α⊗ β)F = µ(β ⊗ β),

there exists a unique algebra morphismγ :A # V → B verifying γ (a # 1) = α(a) and
γ (1 # v) = β(v). Conversely, ifγ :A # V → B is an algebra morphism, then the maps
α(a) := γ (a # 1) andβ(v) := γ (1 #v) verify (1)–(3).

Proposition 2.5.An algebraB is isomorphic to a crossed productA#V iff there are maps
A α−→ B

β←− V such thatα is a morphism of algebras,1= β(1), andµ(α⊗β) :A⊗V →B

is an isomorphism of vector spaces.
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Example 2.6(Twisted tensor products). LetB be an algebra,χ :B⊗A→A⊗B a twisting
map, andF :B⊗B→A⊗B thetrivial cocycleF(v⊗ v′)= 1⊗ vv′. It is immediate that
F is normal and verifies the cocycle condition. Moreover, the twisted module condition
reduces to(A⊗µ)(χ ⊗B)(B ⊗ χ)= χ(µ⊗A). Hence,χ is a twisting map in the sense
of [CSV], and (B,A,χ) is a matched pair of algebras. The crossed productsA ⊗χ B

constructed from this type of data are called twisted tensor products or matched products.
These algebras, which are a direct generalization of the tensor products, were studied in
[CSV,Ta].

We finish this section by introducing a definition which we will need later.

Definition 2.7.Let χ :V ⊗A→A⊗ V be a twisting map. A subalgebraA′ of A is stable
underχ if χ(V ⊗A′)⊆A′ ⊗ V .

3. Braided bialgebras and braided Hopf algebras

Below, we recall the concepts of braided bialgebra and Hopf algebra following the
presentation given in [T1].

Definition 3.1.A braided bialgebra is a vector spaceH , endowed with an algebra structure,
a coalgebra structure, and a bijective Yang–Baxter operatorc ∈ Endk(H 2) (called the braid
of H ) such that:c is compatible with the algebra and coalgebra structures ofH , η is
a coalgebra morphism,ε is an algebra morphism, and∆µ= (µ⊗µ)(H ⊗c⊗H)(∆⊗∆).
Moreover, if there exists a mapS :H → H which is the inverse of the identity in the
monoid Homk(H,H) with the convolution product, then we say thatH is a braided Hopf
algebra and we callS the antipode ofH .

Usually H denotes a braided bialgebra (understanding the structure maps), andc

denotes its braid.

Remark 3.2. Assume thatH is an algebra and a coalgebra andc ∈ Autk(H 2) is
a solution of the Yang–Baxter equation, which is compatible with the algebra and coalgebra
structures. ThenH is a braided bialgebra with braidc iff ∆ :H→H ⊗c H andε :H → k

are morphisms of algebras.

Definition 3.3. Let H andL be braided bialgebras. A mapg :H → L is a morphism of
braided bialgebras if it is a morphism of algebras and coalgebras, andc(g⊗g)= (g⊗g)c.

LetH be a braided Hopf algebra. It was proved in [T1, Proposition 5.5] thatc commutes
with S (that isc(S⊗H)= (H ⊗ S)c andc(H ⊗ S)= (S ⊗H)c). Moreover, it is also true
that Sη = η, Sµ = µ(S ⊗ S)c, εS = ε, and∆S = c(S ⊗ S)∆. Finally, if L is another
braided Hopf algebra andg :H →L is a morphism of bialgebras, thengS = Sg.

Example 3.4.Let V be a vector space andc :V ⊗ V → V ⊗ V a bijective Yang–Baxter
operator. LetT (V ) be the tensor algebra ofV . It is clear that there exists a unique Yang–
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Baxter operatorc :T (V ) ⊗ T (V )→ T (V ) ⊗ T (V ) extendingc :V ⊗ V → V ⊗ V and
compatible with the algebra structure ofT (V ). Now, from the universal property ofT (V )

it follows that there are unique algebra maps∆ :T (V )→ T (V )⊗c T (V ) andε :T (V )→ k

such that∆(v)= 1⊗ v + v ⊗ 1 andε(v)= 0 for all v ∈ V . It is easy to check thatT (V ),
endowed with these structure maps, is a braided Hopf algebra with braidc and antipode
mapS determined byS(v) = −v for all v ∈ V andS(xy) = µT (V )((S ⊗ S)(c(x ⊗ y))).
We letTc(V ) denote this braided Hopf algebra.

Example 3.5. Let H be a braided bialgebra. IfI ⊆ H is an ideal, a coideal, and
c(I ⊗H +H ⊗ I) ⊆ I ⊗H +H ⊗ I , then the quotient vector spaceH/I has a unique
braided bialgebra structure such that the canonical projectionπ :H → H/I is a braided
bialgebra map. Moreover, ifH is a braided Hopf algebra andS(I) ⊆ I , thenH/I is
a braided Hopf algebra.

Example 3.6.Let Tc(V ) as in Example 3.4. Ifc2= idV , then the ideal ofT (V ) generated
by v ⊗ w − c(v ⊗ w), for all v,w ∈ V , satisfies the conditions in Example 3.5. The
quotient braided Hopf algebra is called the symmetric algebra ofV in respect toc, and
is denotedSc(V ).

Example 3.7.Let q ∈ k. Recall that ther-dimensional quantum affine spacekq [x1, . . . , xr ]
is thek-algebra generated by variablesx1, . . . , xr and relationsxjxi = qxixj , for i < j .
This algebra is a braided Hopf algebra via the comultiplication∆, the counitε, and the
braidc determined by∆(xi)= 1⊗ xi + xi ⊗ 1, ε(xi)= 0, and

c(xj ⊗ xi)=

qxi ⊗ xj if i < j,

xi ⊗ xi if i = j,

q−1xi ⊗ xj if i > j,

respectively. In fact, this is a particular case of Example 3.6. It is easy to check that

x
m1
1 · · ·xmr

r x
n1
1 · · ·xnrr = q

∑
i<j nimj x

m1+n1
1 · · ·xmr+nr

r ,

∆
(
x
m1
1 · · ·xmr

r

)= ∑
h1+l1=m1,...,hr+lr=mr

q
∑

i<j hj li

r∏
v=1

(
mv

lv

)
x
h1
1 · · ·xhrr ⊗ x

l1
1 · · ·xlrr ,

c
(
x
m1
1 · · ·xmr

r ⊗ x
n1
1 · · ·xnrr

)= q
∑

i<j nimj−∑i>j nimj x
n1
1 · · ·xnrr ⊗ x

m1
1 · · ·xmr

r .

Finally, the antipode is the mapS(xm1
1 · · ·xmr

r )= (−1)m1+···+mr x
m1
1 · · ·xmr

r . This braided
Hopf algebra is a particular example of the quantum linear spaces studied in [AS].

Remark 3.8. If H is a braided bialgebra, thenH ⊗ H is an algebraH ⊗c H , with unit
η⊗ η and multiplication map(µ⊗ µ)(H ⊗ c ⊗H), and it is a coalgebraH ⊗c H , with
counitε ⊗ ε and comultiplication map(H ⊗ c⊗H)(∆⊗∆). Moreover, ifc is involutive
thenH ⊗ H , endowed with these structures, is a braided bialgebraH ⊗c

c H with braid
(H ⊗ c ⊗ H)(c ⊗ c)(H ⊗ c ⊗ H). Finally, if c is involutive andH is a braided Hopf
algebra, thenH ⊗c

c H also is with antipodeS ⊗ S.
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Remark 3.9. Let H be a braided Hopf algebra. A direct computation shows thatH̃ =
(H,µτ,η, τ∆, ε,S) is a braided Hopf algebra with braid̃c := τcτ , whereτ :H ⊗H →
H ⊗H denotes the flip.

Remark 3.10.If H is a braided bialgebra, thenH op
c := (H,µc−1, η,∆, ε) andH cop

c :=
(H,µ,η, c−1∆,ε) are braided bialgebras, with braidc−1. By combining these construc-
tions we obtain the braided bialgebrasH opcop

c := (H,µc−1, η, c∆, ε) and H
copop
c :=

(H,µc,η, c−1∆,ε), with braid c. Moreover, if S is an antipode forH , thenS is also
an antipode forH opcop

c andH copop
c , and ifS is bijective, then the composition inverse ofS

is an antipode forH op
c andH cop

c . For the proof see [AG, Proposition 2.2.4].

3.1. Rigid braided Hopf algebras

In this subsection we recall the definition and some properties of rigid braided Hopf
algebras, that we will need later.

Let H be a finite-dimensional braided Hopf algebra, ev :H ∗ ⊗ H → k the evaluation
map ev(φ ⊗ h) := φ(h), where φ ∈ H ∗ and h ∈ H , and coev :k → H ⊗ H ∗ the
coevaluation map coev(1) :=∑i ei ⊗ e∗i , where{ei} and {e∗i } are bases ofH andH ∗,
respectively, mutually dual. Lyubashenko [L1] has introduced the mapc2 :H ∗ ⊗ H →
H ⊗H ∗, defined byc2 := (ev⊗H ⊗H ∗)(H ∗ ⊗ c⊗H ∗)(H ∗ ⊗H ⊗ coev).

Definition 3.11.A finite-dimensional braided Hopf algebraH is called rigid if the mapc2

is bijective.

LetH be a rigid braided Hopf algebra.

Theorem 3.12[T2, Theorem 4.1].The antipodeS is bijective.

Definition 3.13.An elementt ∈ H is a left integral ifht = ε(h)t for all h ∈ H , and it is
a right integral ifth = ε(h)t for all h ∈ H . Let

∫ l

H
denote the set of left integrals and let∫ r

H
denote the set of right integrals.

Theorem 3.14 [L2, Theorem 1.6], [FMS, Corollary 5.8], [T2, Theorem 4.6], [D1,
Theorem 3].The sets

∫ l

H and
∫ r

H are one-dimensional vector subspaces ofH .

Theorem 3.15[T1, Section 7].The sets
∫ l

H
and

∫ r

H
verify

c

( l∫
H

⊗H

)
=H ⊗

l∫
H

, c

(
H ⊗

l∫
H

)
=

l∫
H

⊗H,

c

( r∫
H

⊗H

)
=H ⊗

r∫
H

, and c

(
H ⊗

r∫
H

)
=

r∫
H

⊗H.
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Corollary 3.16. There exist unique isomorphisms of braided Hopf algebras

f l
H :H →H and f r

H :H →H

such thatc(h⊗ t)= t ⊗f l
H (h) andc(u⊗h)= f r

H (h)⊗u for all t ∈ ∫ l

H
\{0}, u ∈ ∫ r

H
\{0},

andh ∈H .

Corollary 3.17. Let t ∈ ∫ l

H . Since

S(t)S
(
f l
H (h)

)= µ(S ⊗ S)c(h⊗ t)= S(ht)= ε(h)S(t)= ε
(
S
(
f l
H (h)

))
S(t),

we haveS(
∫ l

H )= ∫ r

H . In a similar way, it can be proved thatS(
∫ r

H )= ∫ l

H . Moreover, using

Corollary 3.16, it can be proved that
∫ l

H
= ∫ r

H
cop
c

and
∫ r

H
= ∫ l

H
cop
c

.

Remark 3.18.Using thatc andS are compatible,S(
∫ l

H
)= ∫ r

H
, andS(

∫ r

H
)= ∫ l

H
, it is easy

to see thatc(t⊗h)= f r
H (h)⊗ t andc(h⊗u)= u⊗f l

H (h), for all t ∈ ∫ l

H \{0}, u ∈
∫ r

H \{0},
andh ∈ H . It follows easily that there existsq ∈ k \ {0} such thatc(t ⊗ t) = qt ⊗ t and
c(u⊗ u)= qu⊗ u.

Let t be a non-zero left integral. There is an algebra mapα :H → k such thatth= α(h)t

for all h ∈ H . This mapα is called the modular function. From Corollary 3.17 and
Remark 3.18 it follows that ifu is a non-zero right integral, thenhu= α(S(f l

H (h)))u.

Theorem 3.19[T2, Section 7].We have(α⊗H)c=H ⊗ α and(H ⊗ α)c = α⊗H .

Let H be a rigid braided Hopf algebra and letφ :H ∗ ⊗ H ∗ → (H ⊗ H)∗ be the
isomorphism defined byφ(f ⊗g)(x⊗y)= g(x)f (y). ThenH ∗ is a braided Hopf algebra,
with the structure defined bycH ∗ := φ−1c∗φ, µH ∗ := ∆∗φc−1

H ∗ , ∆H ∗ := cH ∗φ−1µ∗,
ηH ∗ := ε∗, εH ∗ := η∗, andSH ∗ := S∗. For a proof of this assertion see [AG, Lemma 2.2.3].

Theorem 3.20(Maschke’s Theorem).A rigid braided Hopf algebraH is semisimple iff
there existst ∈ ∫ l

H
such thatε(t) �= 0.

Using this theorem, it is easy to see that ifH is semisimple, then
∫ l

H
= ∫ r

H
and the maps

f r
H andf l

H of Corollary 3.16 are the identity maps.

4. Transpositions

Let H be a braided bialgebra and letA be an algebra. In this section we introduce
a particular type of twisting maps ofH onA, called transpositions, which are compatible
with the braided bialgebra structure ofH .
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4.1. Definition, basic properties, and examples

Definition 4.1.A transposition ofH onA is a twisting maps :H ⊗A→A⊗H satisfying
the equation(s⊗H)(H ⊗ s)(c⊗A)= (A⊗ c)(s⊗H)(H ⊗ s) (compatibility ofs with c)
and compatible with the bialgebra structure ofH . WhenH is a braided Hopf algebra
we also require thats(S ⊗ A) = (A ⊗ S)s. By Proposition 4.3 below, this condition is
automatically verified whens is a bijective map.

Remark 4.2.Using the compatibility ofs with c, it is easy to check thats is a transposition
of H onA iff it is a transposition ofH op

c onA and that this happens iffs is a transposition
of H cop

c onA. Moreover, a direct computation shows that, ifs is a bijective map, thens is
a transposition ofH onA iff s̃−1 := τs−1τ is a transposition of̃H onAop, whereH̃ is the
braided Hopf algebra of Remark 3.9 andAop is the opposite algebra ofA.

The following result is a variant of [T1, Proposition 5.5] and its proof is identical.

Proposition 4.3.LetH be a braided Hopf algebra,A a vector space, and lets :H ⊗A→
A ⊗ H be a bijective map. Ifs is compatible with the bialgebra structure ofH , then
s(S ⊗A)= (A⊗ S)s.

The following result generalizes [GG, Proposition 2.1.5], and it can be proved in the
same way.

Proposition 4.4. Let PrimH be the space of primitive elements inH . For each
transpositions :H ⊗A→A⊗H , it is true thats(PrimH ⊗A)⊆A⊗PrimH .

Example 4.5.Let Tc(V ) be as in Example 3.4. A maps :V ⊗ A→ A ⊗ V extends to
a transposition ofTc(V ) onA iff

(i)
V ◦ = ◦ V , (ii)

VA A

=
V A A

, and (iii )

V V A

=
V V A

.

If c2= id, the same fact is valid for the quantum symmetric algebraSc(V ).

Remark 4.6.In relation to Example 4.5 it is useful to note that:

(1) If A is the tensor algebraTc(W), then each maps :V ⊗ W → W ⊗ V verifying
(s⊗V )(V ⊗s)(c⊗W) = (W⊗c)(s⊗V )(V ⊗s) extends to a unique maps :V ⊗A→
A⊗ V satisfying conditions (i)–(iii).

(2) Assume thatc2
W = id. If A is the symmetric algebraSc(W), then each maps :V ⊗

W → W ⊗ V verifying (s ⊗ V )(V ⊗ s)(c ⊗ W) = (W ⊗ c)(s ⊗ V )(V ⊗ s) and
(cW ⊗ V )(W ⊗ s)(s ⊗ W) = (W ⊗ s)(s ⊗ W)(V ⊗ cW ) extends to a unique map
s :V ⊗A→A⊗ V satisfying conditions (i)–(iii).
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Example 4.7.Let kq[∂/∂X] = kq [∂/∂x1, . . . ,∂/∂xr] andkq [X] = kq[x1, . . . , xr ] be two
r-dimensional quantum affine spaces (see Example 3.7) and letp ∈ k \ {0}. Remark 4.6(2)
implies that the maps : 〈∂/∂X〉 ⊗ 〈X〉→ 〈X〉 ⊗ 〈∂/∂X〉, defined by

s

(
∂

∂xj
⊗ xi

)
=



q−1xi ⊗ ∂

∂xj
if i < j,

pxi ⊗ ∂

∂xj
if i = j,

qxi ⊗ ∂

∂xj
if i > j,

determines a transposition ofkq [∂/∂X] onkq [X].

Example 4.8.Let A andB be algebras and letA⊗χ B be a twisted tensor product (see
Example 2.6). LetsA :H ⊗A→A⊗H andsB :H ⊗B→B ⊗H be transpositions. It is
easy to check that if

(χ ⊗H)(B ⊗ sA)(sB ⊗A)= (A⊗ sB)(sA ⊗B)(H ⊗ χ),

then(A⊗ sB)(sA ⊗B) is a transposition ofH onA⊗χ B.

Example 4.9.LetH be a braided bialgebra and lets :H ⊗A→A⊗H be a transposition.
Assume that the braidc of H is involutive. Using Corollary 4.21 below, it is easy to check
that(s ⊗H)(H ⊗ s) is a transposition ofH ⊗c

c H onA.

4.2. Transpositions of groups

The aim of this section is to characterize the transpositions of a group algebrak[G] on
an algebraA. We begin by noting that each maps : k[G] ⊗ A→ A ⊗ k[G] determines
univocally mapsαyx :A→A (x, y ∈G), by s(x ⊗ a)=∑y∈Gα

y
x (a)⊗ y.

Proposition 4.10.s is a transposition iff, for allx, y, z ∈G, the following conditions hold:

(1) αvx (v ∈G) is a complete family of orthogonal idempotents,
(2) α1

1 = id,
(3) αzxy =

∑
vw=z αvxαwy ,

(4) αxx (1)= 1,
(5) α

y
x (ab)=∑v∈Gαvx(a)α

y
v (b).

Proof. It is easy to see thats is a transposition iffαyx = α
y−1

x−1 andαvxα
w
y = αwy α

v
x , for all

x, y, v,w ∈G, and properties (1)–(5) are verified. Hence, we must prove that (1)–(5) imply
the two equalities. From (1)–(3) we have

α
y
x =

∑
v∈G

α
y
xα

v
xα

v−1

x−1 = α
y
xα

y−1

x−1 =
∑
v∈G

αvxα
v−1

x−1α
y−1

x−1 = α
y−1

x−1 .
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This proves the first equality. In order to prove the second equality, it suffices to verify by
(1) thatαw

′
y αvxα

w
y = 0 if w �=w′. Sinceαwy = (αwy )

2 andαv
′

x (v′ ∈G) is a complete family

of orthogonal idempotents, it suffices to check thatαv
′

x α
w′
y αvxα

w
y (a)= 0 for eachv′ ∈G,

a ∈ Imαwy . Let z′ = v′w′ andz= vw. First supposez �= z′. Then we have

0= αz
′

xyα
z
xy(a)=

( ∑
r ′s ′=z′

αr
′

x α
s ′
y

)(∑
rs=z

αrxα
s
y

)
(a)=

∑
r ′s ′=z′

αr
′

x α
s ′
y α

v
xα

w
y (a).

Because the images of the mapsαr
′

x (r ′ ∈G) form a direct sum, from the above equations
it follows thatαv

′
x αw

′
y αvx α

w
y (a) = 0, as desired. Now, supposez = v′w′ = vw. Then we

have

αvxα
w
y (a)=

∑
rs=z

αrxα
s
y(a)= αzxy(a)=

(
αzxy

)2
(a)=

∑
r ′s ′=z

αr
′

x α
s ′
y α

v
xα

w
y (a).

Because the images of the mapsαr
′

x (r ′ ∈ G) form a direct sum andv′ �= v, the last
equations implyαv

′
x α

w′
y αvxα

w
y (a)= 0. ✷

Proposition 4.11.Let s : k[G] ⊗ A→ A ⊗ k[G] be a map. Givenx, y ∈ G, we write
A
y
x = {a ∈ A: s(x ⊗ a) = a ⊗ y}. We have thats is a transposition iff the familyAy

x(s)

verifies:

(1)
⊕

y∈GA
y
x =A, for all x ∈G,

(2) A1
1= A,

(3) Az
xy =

⊕
vw=z Av

x ∩Aw
y , for all x, y, z ∈G,

(4) 1∈Ax
x , for all x ∈G,

(5) if a ∈A
y
x andb ∈Az

y , thenab ∈Az
x , for all x, y, z ∈G.

Proof. It is immediate that ifs is a transposition, then (1), (2), (4), (5) are verified. It is easy
to check that the mapsαvxα

w
y (v,w ∈G) are a complete family of orthogonal idempotents.

So, ⊕
z∈G

Az
xy =A=

⊕
v,w∈G

Av
x ∩Aw

y .

SinceAv
x ∩Aw

y ⊆ Avw
xy , also (3) is valid. To prove the inverse assertion it suffices to check

that the idempotentsαyx ∈ Endk(A), associated with the decompositionsA =⊕y∈GA
y
x ,

satisfy the properties enunciated in Proposition 4.10. We leave this task to the reader.✷
Remark 4.12.By Proposition 4.11(3) it is easy to prove by induction onn that for each
finite family x1, . . . , xn of elements ofG,

A=
⊕

y1,...,yn∈G
A
y1
x1 ∩ · · · ∩A

yn
xn.
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Proposition 4.13.A transpositions : k[G] ⊗A→A⊗ k[G] is bijective iffA=⊕x∈GA
y
x

for eachy ∈G. In this case

s−1(a⊗ x)=
∑
y∈G

y ⊗ αxy (a) for all x ∈G, a ∈A.

Proof. It is immediate thats is bijective iff, for eachy ∈G anda ∈A, there exist unique
x1, . . . , xn ∈G anda1, . . . , an ∈ A such thats(xi ⊗ ai) = ai ⊗ y anda1+ · · · + an = a.
That is, iffA=⊕x∈GA

y
x for all y ∈G. The last assertion can be easily checked.✷

Theorem 4.14. Let G be a finitely generated group and letA be a k-algebra.
Each transpositions : k[G] ⊗ A→ A ⊗ k[G] determines anEnd(G)op-gradationA =⊕

ζ∈End(G) Aζ onA, by

Aζ =
⋂
x∈G

Aζ(x)
x = {a ∈A: s(x ⊗ a)= a⊗ ζ(x) for all x ∈G

}
.

The map defined in this way is bijective. Moreover, a transpositions is invertible iffAζ = 0
for all ζ ∈ End(G) \Aut(G).

Proof. Fix a transpositions : k[G] ⊗A→A⊗ k[G]. Let x1, . . . , xn be a set of generators
of G. By Proposition 4.11, for eachζ ∈ End(G), the homogeneous component of degree
ζ of A is

Aζ =
⋂
x∈G

Aζ(x)
x =Aζ(x1)

x1
∩ · · · ∩Aζ(xn)

xn
.

By Remark 4.12, in order to check thatA =⊕ζ∈End(G) Aζ it suffices to verify that if

A
y1
x1 ∩ · · · ∩ A

yn
xn �= 0 then there exists an endomorphismζ of G verifying ζ(xi) = yi .

Let a be a non-zero element ofAy1
x1 ∩ · · · ∩ A

yn
xn and letK ⊆ G be the set of allx ∈ G

such thata ∈A
y
x for some (necessarily unique)y ∈G. By Proposition 4.11(2)–(3) and the

fact thatAy
x = A

y−1

x−1 for all x, y ∈ G, K is a subgroup ofG. Sincex1, . . . , xn ∈ K, we

haveK = G. We defineζ by ζ(x) := y if a ∈ A
y
x . It is easy to see thatζ ∈ End(G). By

Proposition 4.11(4)–(5),A =⊕ζ∈End(G) Aζ is an End(G)op-graded algebra. Conversely,
given an End(G)op-gradationA=⊕ζ∈End(G) Aζ of A, the formulas(x ⊗ a)= a ⊗ ζ(x)

if a ∈Aζ defines a transposition. The last assertion can be easily checked.✷
4.3. Transpositions and integrals

The relation between integrals and transpositions is given in the following result.

Theorem 4.15.Let H be a rigid braided Hopf algebra,A an algebra, ands a bijective
transposition ofH on A. There is a unique automorphism of algebrasgs :A→ A such
that s(t ⊗ a)= gs(a)⊗ t for all left or right integralst ∈H . Moreover, we have
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s
(
f r
H ⊗ gs

)= (gs ⊗ f r
H

)
s and s

(
f l
H ⊗ g−1

s

)= (g−1
s ⊗ f l

H

)
s,

wheref r
H andf l

H are the maps introduced in Corollary3.16.

Proof. It is clear that if there exists a map asgs , then it is unique. Lett ∈ H be a left
integral. By Remark 3.18 and the compatibility ofs with ε andµH , we have:

ε(h)s(t ⊗ a) = ε
(
f r
H (h)

)
s(t ⊗ a)= s

(
f r
H (h)t ⊗ a

)
= (A⊗µ)(s ⊗H)(H ⊗ s)(c⊗A)(t ⊗ h⊗ a)

= (A⊗µ)(A⊗ c)(s ⊗H)(H ⊗ s)(t ⊗ h⊗ a), (2)

wheref r
H is the map introduced in Corollary 3.16. Let us writes−1(a⊗h)=∑j hj ⊗ aj .

By replacing
∑

j t ⊗ hj ⊗ aj by t ⊗ h⊗ a in (2), we obtain:

(A⊗µ)(A⊗ c)(s ⊗H)(t ⊗ a⊗ h)=
∑
j

ε(hj )s(t ⊗ aj )= ε(h)s(t ⊗ a),

where the last equality is valid because(ε ⊗ A)s−1 = A ⊗ ε. Let us writes(t ⊗ a) =∑
i ai ⊗ ti , whereai are linearly independent. We have proved that∑

i

ai ⊗ ε(h)ti =
∑
i

ai ⊗µc(ti ⊗ h) for all h ∈H.

Since the elementsai are linearly independent, this equality implies that eachti is a right
integral ofH copop

c , and a left integral ofH (Corollary 3.17). Hence, there exist elements
λi in k such thatti = λit . So, s(t ⊗ a) = gs(a) ⊗ t with gs(a) =∑i λiai . Sinces is
compatible with the algebra structure ofA, the mapgs is an endomorphism of algebras.
SinceS(

∫ l

H
) = ∫ r

H
ands(S ⊗ A)= (A⊗ S)s, we also haves(u⊗ a)= gs(a)⊗ u, when

u is a right integral. A similar argument applied to the transpositions̃−1, introduced
in Remark 4.2, proves thatgs is bijective. Finally, if s(f l

H (h) ⊗ a) =∑j aj ⊗ hj and
s(h⊗ gs(a))=∑k a

′
k ⊗ h′k , then

∑
gs(aj )⊗ t ⊗ hj = (s ⊗H)(H ⊗ s)(c⊗A)(h⊗ t ⊗ a)

= (A⊗ c)(s ⊗H)(H ⊗ s)(h⊗ t ⊗ a)

=
∑

a′k ⊗ t ⊗ f l
H

(
h′k
)
.

Hence(gs ⊗ H)s(f l
H ⊗ A) = (A ⊗ f l

H )s(H ⊗ gs). In a similar way we can see that
s(f r

H ⊗ gs)= (gs ⊗ f r
H )s. ✷

Remark 4.16. Let s :H ⊗ A → A ⊗ H be a bijective transposition. IfH is a rigid
semisimple braided Hopf algebra, thengs = idA. In fact, lett be a non-zero integral ofH
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and leta ∈ A be arbitrary. Sinceε(t)a = ε(t)gs(a) and by Maschke’s Theoremε(t) �= 0,
we obtaings(a)= a.

Proposition 4.17.LetH be a rigid braided Hopf algebra,α :H → k the modular function
ofH ,A an algebra, ands :H ⊗A→A⊗H a bijective transposition. We have(A⊗α)s =
α⊗A.

Proof. Let t be a non-zero left integral ofH . Write s(h ⊗ a) =∑ai ⊗ hi . Sinces is
compatible with the multiplication ofH and, by Theorem 4.15, there is an automorphism
of algebrasgs :A→A such thats(t ⊗ a)= gs(a)⊗ t for all a ∈A, we have

α(h)gs(a)⊗ t = s
(
α(h)t ⊗ a

)= s(th⊗ a)=
∑

gs(ai)⊗ thi =
∑

α(hi)gs(ai)⊗ t .

Hence,α(h)a =∑α(hi)ai . ✷
Corollary 4.18. LetH be a rigid braided Hopf algebra,α :H → k the modular function
of H , A an algebra, ands :H ⊗ A→ A ⊗ H a bijective transposition. Then we have
(A⊗ α ⇀ ( ))s = s(α ⇀ ( )⊗A).

Proof. By Proposition 4.17 and the compatibility ofs with ∆, we have

α =
α

=
α
,

as desired. ✷
4.4. A technical property

We finish this section by proving an elementary result which determines sufficient
conditions for two diagrams to represent the same map. We will use this result repeatedly
in the following sections.

Recall that the Braid GroupBr is the group defined by generatorsτ1, . . . , τr−1 and
relations

τiτj = τj τi if |i − j |� 2, (3)

τiτi+1τi = τi+1τiτi+1. (4)

The symmetric groupSr is the group defined by generatorsσ1, . . . , σr−1 and relations (3),
(4), and(σi)2 = 1 (1� i < r). We see the elements ofSr as functions in the usual way.
The canonical mapφ :Br → Sr is the morphism defined byφ(τi)= σi . For eachτ ∈ Br ,
the permutation associated withτ is by definitionφ(τ).

An elementτ ∈ Br is simple if there existτi1, . . . , τin such thatτ = τi1 · · · τin and
σi1 · · ·σin is a reduced expression ofφ(τ) (i.e., for each pair of indicesp < q , there
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exists 0� s � n such thatσij · · ·σin(p) < σij · · ·σin(q) for all j > s andσij · · ·σin(p) >
σij · · ·σin(q) for all j � s). Such an expression ofτ is called simple. A simple expression
τi1 · · · τin of τ is normal if

φ(τi1 · · ·τij )(i) < φ(τi1 · · · τij )(i + 1) for all j and eachi > ij .

For example, by (4),τ1τ2τ1 = τ2τ1τ2. Both expressions are simple. However, the first is
normal, while the second is not.

Proposition 4.19.Each simple elementτ ∈ Br has a unique normal expression.

Proof. Existence. We are going to prove that ifτ has a simple expressionτ = τi1 · · · τin ,
then there exists a normal expressionτ = τj1 · · · τjn . By inductive hypothesis we can
assume thatτi1 · · · τin−1 is a normal expression. Letm be the maximum of all the indices
i such thatφ(τ)(i) > φ(τ)(i + 1). It is clear thatin � m. We divide the proof into three
cases.

Case 1(m = in). In this case it is easy to see thatτi1 · · · τin−1τin is a normal expression
of τ .

Case 2(m > in + 1). In this case, by using thatτi1 · · · τin−1 is a normal expression, it can
be proved thatin−1=m and that

τi1 · · · τin−1τin = τi1 · · · τin−2τinτin−1.

By inductive hypothesis, we can writeτi1 · · · τin−2τin in a normal formτj1 · · · τjn−1. This
finishes the proof, since the resultant expressionτ = τj1 · · · τjn−1τin−1 of τ verifies the
conditions of Case 1.

Case 3(m= in + 1). In this case, by using thatτi1 · · · τin−1 is a normal expression, it can
be proved thatin−1 = m and that there existsl � 1 such thatin−s = in + s for 1 � s � l

andin−l−1= in. So,

τi1 · · · τin−1τin = τi1 · · · τin−l−2τin+l · · · τin+2τinτin+1τin

= τi1 · · · τin−l−2τin+l · · · τin+2τin+1τinτin+1,

where the last equality follows from (4). To finish, it suffices to note that the last expression
is normal.

Uniqueness. Supposeτj1 · · · τjn′ = τi1 · · · τin are two normal expressions ofτ . Then
by definition jn′ = m = in. The proof can be finished immediately by induction on
min(n,n′). ✷
Corollary 4.20. Let τ andτ ′ be two simple elements ofBr . If φ(τ)= φ(τ ′) thenτ = τ ′.
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Proof. Let τ = τi1 · · · τin and τ ′ = τj1 · · · τjn′ be the normal expressions ofτ and τ ′,
respectively. We note thatjn′ = m = in, wherem is as in the proof of Proposition 4.19.
The proof can be finished immediately by induction on min(n,n′). ✷

Next, we consider diagrams obtained by composition of morphisms of the form

V1 H H V2 ,
V3 H A V4 ,

V5 H V6 , and V7 H H V8 ,

whereV1, . . . , V7 are tensor products ofA andH . We enumerate the vertices at the top
and the bottom of such a diagramD from left to right. Letl be a line that joins the top
with the bottom ofD. Let t (l) andb(l) denote the vertex at the top and at the bottom ofl,
respectively. Given verticesi at the top andj at the bottom ofD, let nD(i, j) denote the
cardinal of the set of descending lines that joini with j .

For instance, for the diagrams representingc ands, we havenD(1,1)= nD(2,2)= 0
andnD(1,2) = nD(2,1) = 1. We say that adiagramD is admissible if two descending
lines l andl′ in D cross(by means ofc, s, or a multiplication followed by a comultiplica-
tion) at most once, and if such a crossing occurs, thent (l) �= t (l′) andb(l) �= b(l′).

Corollary 4.21. LetD1 andD2 be two admissible diagrams. If

(1) D1 andD2 have the same domain and the same codomain,
(2) nD1(i, j)= nD2(i, j) for each top vertexi and each bottom vertexj ,

then the maps represented byD1 andD2 coincide.

Proof. Let φ1 and φ2 be the maps represented byD1 and D2, respectively. By the
compatibility of ∆ and µ with c and s, and the fact that∆µ = (µ ⊗ µ)∆H⊗cH ,
we can replaceD1 andD2 by admissible diagrams that represent the same maps, but
that have, from up to down, first the comultiplications, then the braiding maps, and
finally the multiplications. Hence,φ1 = φM

1 φD
1 φC

1 andφ2 = φM
2 φD

2 φC
2 , whereφM

1 , φM
2

consist of multiplications,φD
1 , φD

2 are made out of braiding maps, andφC
1 , φ

C
2 consist

of comultiplications. We claim thatφC
1 = φC

2 . In fact
∑

j nDl (i, j) is the number
of comultiplications that occurs in the vertexi of the top of diagramDl for l =
1,2. SincenD1(i, j) = nD2(i, j) for all i, j , the claim follows from coassociativity of
comultiplication. Similarly,φM

1 = φM
2 . Finally, the fact thatφD

1 = φD
2 follows from

Corollary 4.20. ✷

5. H -comodule algebras andH -module algebras

Let H be a braided bialgebra. The aim of this section is to adapt to our context the
notions ofH -comodule algebra andH -module algebra. Although in this section the mapss

(sometimes adorned with a subscript) are not necessarily transpositions, we represent them
geometrically by the same diagrams as true transpositions.
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An H -braided space(V , s) is a vector spaceV endowed with a maps :H⊗V → V ⊗H

which is compatible with the bialgebra structure ofH and verifies

(s ⊗H)(H ⊗ s)(c⊗ V )= (V ⊗ c)(s ⊗H)(H ⊗ s)

(compatibility ofs with the braid). WhenH is a braided Hopf algebra we also require that
s(S ⊗ V ) = (V ⊗ S)s. A mapg :V → V ′ is said to be an homomorphism ofH -braided
spaces, from(V , s) to (V ′, s′), if (g⊗H)s = s′(H ⊗g). We letBH denote the category of
all H -braided spaces. It is easy to check that this is a monoidal category with

• unit (k, τ ), whereτ :H ⊗ k→ k⊗H is the flip;
• tensor product(V , sV ) ⊗ (U, sU) = (V ⊗ U, sV⊗U ), wheresV⊗U :H ⊗ V ⊗ U →
V ⊗U ⊗H is the mapsV⊗U := (V ⊗ sU )(sV ⊗U); and

• the usual associativity and unit constraints.

Note that(H, c) is a coalgebra object and an algebra object inBH . Hence, one can
consider left and right(H, c)-modules and(H, c)-comodules in this monoidal category.
To abbreviate we will say that(V , s) is a rightH -comodule, to mean that it is a right
(H, c)-comodule inBH and that(V , s) is a leftH -module, to mean that it is a left(H, c)-
module inBH . Note that if(V , s) is a rightH -comodule, thenV is a rightH -comodule in
the standard sense. Similarly for leftH -modules.

For instance, whenH is a standard bialgebra ands :H ⊗ V → V ⊗H is the flip, then
(V , s) is a rightH -comodule iffV is a right standardH -comodule, and(V , s) is a left
H -module iffV is a left standardH -module.

LetV be a right standardH -comodule with coactionν. Recall thatv ∈ V is coinvariant
if ν(v)= v⊗ 1. As usual,V coH denotes the set of coinvariants ofV .

Remark 5.1. If (V , s) is a right H -comodule, thenV coH is stable unders (that is,
s(H ⊗ V coH)⊆ V coH⊗H ). So,(V coH, s) is anH -braided space.

Given rightH -comodules(V , sV ) and(U, sU ) with coactionsνV andνU respectively,
we letνV⊗U denote the codiagonal coaction

νV⊗U := (V ⊗U ⊗µ)(V ⊗ sU ⊗H)(νV ⊗ νU ).

In the following proposition we show, in particular, that(V , sV ) ⊗ (U, sU) is a right
H -comodule viaνV⊗U .

Proposition 5.2.The category(BH)H of right H -comodules inBH , endowed with the
usual associativity and unit constraints, is monoidal.

Proof. First note that(k, τ ), endowed with the trivial coaction, is anH -comodule. This is
the unit of(BH)H . Next, we prove that the tensor product of twoH -comodules(V , sV )
and(U, sU ) is anH -comodule. It is easy to check thatνV⊗U is counitary. So, we must
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prove only thatνV⊗U is a morphism inBH and thatνV⊗U is coassociative. We check the
second assertion and leave the first one to the reader. We have

= = = ,

where the first equality follows from the fact thatH is a braided Hopf algebra, the
second one follows from the compatibility ofsU with the comultiplication ofH and
the coassociativity ofνV and νU , and the third one follows from the fact thatνU is
a morphism inBH . Finally, it is immediate that the usual associativity and unit constrains
are morphisms in(BH)H . ✷
Definition 5.3. We say that(V , s) is a rightH -comodule algebra if it is an algebra in
(BH)H .

For instance,(k, τ ) and(H, c) are rightH -comodule algebras andη : (k, τ )→ (H, c)

is anH -comodule algebra homomorphism.

Remark 5.4. Let (B, s) be a rightH -comodule, whereB is an algebra. It is easy to
see that(B, s) is a rightH -comodule algebra iffs is a transposition and the coaction
ν :B→B ⊗s H is an algebra homomorphism, whereB ⊗s H is the algebra mentioned in
Example 2.6.

The following result will be used in Section 10 in order to prove that a crossed product
B #f H with invertible cocycle is a free rightB-module.

Proposition 5.5.Assume thatH is a braided Hopf algebra. Lets :H ⊗ B→ B ⊗H be

an bijective transposition. By Remarks3.9and3.10, ˜H
cop
c is a braided Hopf algebra with

braid c̃−1= τc−1τ . Let s̃−1 : H̃ cop
c ⊗Bop→ Bop⊗H̃

cop
c be the transpositioñs−1= τs−1τ

introduced in Remark4.2. If (B, s) is a right H -comodule algebra with coactionν, then

(Bop, s̃−1) is a right ˜H
cop
c -comodule algebra with coactioñν := τs−1ν.

This result generalizes [GG, Proposition 4.4], and can be proved similarly.

Given rightH -modules(V , sV ) and(U, sU ), with actionsρV andρU , respectively, we
let ρV⊗U denote the diagonal action

ρV⊗U := (ρV ⊗ ρU)(H ⊗ sV ⊗U)(∆⊗ V ⊗U).

In the following proposition we show, in particular, that(V , sV ) ⊗ (U, sU) is a left H -
module viaρV⊗U .

Proposition 5.6.The categoryH(BH) of left H -modules inBH , endowed with the usual
associativity and unit constraints, is monoidal.
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The proof is similar to that of Proposition 5.2.

Definition 5.7.We say that(V , s) is a leftH -module algebra if it is an algebra inH(BH).

Note that if(B, s) is anH -module algebra, thens is a transposition.

6. Weaks-actions and smash products

LetH be a braided bialgebra,A an algebra, ands :H ⊗A→A⊗H a transposition. In
this section we generalize the classical concept of smash productA #H to our setting.
The twisting mapχ involved in the construction of smash product has the formχ =
(ρ ⊗H)(H ⊗ s)(∆⊗A), whereρ is a map fromH ⊗A to A. We begin by determining
the hypothesisχ must satisfy in order for the mapρ to exist. Note thatρ is uniquely
determined byρ = (A⊗ ε)χ .

(Proposition 6.1, Theorem 6.3, Proposition 6.4, and Proposition 6.5 below are direct
generalizations of Proposition 3.2, Theorem 3.4, Lemma 3.5, and Proposition 3.6 of [GG].
All the proofs given there work in our setting.)

Proposition 6.1. Let χ :H ⊗ A → A ⊗ H be a map. The following assertions are
equivalent:

(1) There is an arrowρ :H ⊗A→A such thatχ = (ρ ⊗H)(H ⊗ s)(∆⊗A).
(2) (χ ⊗H)(H ⊗ s)(∆⊗A)= (A⊗∆)χ .

An object(V , s) in BH , endowed with a mapρ :H ⊗ V → V , is said to be a weak left
H -module inBH , or simply a weak leftH -module, if

(1) ρ(1⊗ a)= a, for all a ∈A,
(2) s(H ⊗ ρ)= (ρ ⊗H)(H ⊗ s)(c⊗A).

The categoryw.H (BH) of weak leftH -modules inBH becomes a monoidal category in
the same way asH (BH). A weak leftH -module algebra(A, s) is by definition an algebra
in this category.

Remark 6.2. (A, s) is a weakH -module algebra iffA is an usual algebra,s is
a transposition ofH onA, and the structure mapρ satisfies the following conditions:

(1) ρ(H ⊗µ)= µ(ρ ⊗ ρ)(H ⊗ s ⊗A)(∆⊗A⊗A),
(2) ρ(h⊗ 1)= ε(h)1, for all h ∈H ,
(3) ρ(1⊗ a)= a, for all a ∈A,
(4) s(H ⊗ ρ)= (ρ ⊗H)(H ⊗ s)(c⊗A).
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Let A be an algebra ands :H ⊗ A→ A⊗H a transposition. A mapρ :H ⊗ A→ A is
said to be a weaks-action ofH onA if it satisfies the conditions of the above remark. An
s-action is a weaks-action which satisfies

(5) ρ(H ⊗ ρ)= ρ(µ⊗A).

Note that(A, s) is anH -algebra inH(BH) via ρ :H ⊗A→A iff A is an usual algebra,
s is a transposition ofH onA, andρ is ans-action ofH onA.

Theorem 6.3.Let ρ :H ⊗ A→ A be a map. The mapχ :H ⊗ A→ A ⊗ H , defined
by χ := (ρ ⊗ H)(H ⊗ s)(∆ ⊗ A), is a twisting map ofH on A iff ρ satisfies the first
three conditions of Remark6.2. More precisely, condition(1) happens iffχ is compatible
with µA, condition(2) happens iffχ(h ⊗ 1) = 1⊗ h for all h ∈ H , and condition(3)
happens iffχ(1⊗ a)= a⊗ 1, for all a ∈A.

In the rest of this sectionχ :H⊗A→A⊗H is the twisting map associated with a weak
s-actionρ :H ⊗A→A. Note thatχ is a map inBH since, by Remark 3.2(4), so isρ.

Proposition 6.4. Let T = (H 2 ⊗ s ⊗ H)(H 3 ⊗ s)(∆H⊗cH ⊗ A). The twisting mapχ
satisfies:

(χ ⊗H)(H ⊗ χ)= (ρ ⊗H 2)(H ⊗ ρ ⊗H 2)T and

χ(µ⊗A)= (ρ ⊗µ)
(
µ⊗A⊗H 2)T .

Proposition 6.5.The mapρ is ans-action iff the twisting mapχ satisfies the equation

χ(µ⊗A)= (A⊗µ)(χ ⊗H)(H ⊗ χ).

Hence, ifρ is ans-action, then(H,A,χ) forms a matched pair of algebras inBH .

Remark 6.5.1. If ρ is an s-action, thens is univocally determined by the formula
s = (ρ ⊗H)(S ⊗ χ)(∆⊗A). Indeed, in this case we have

S = S = S = ◦◦ = .

Definition 6.6. Let ρ :H ⊗ A→ A be ans-action. We define the smash productA #H

as the matched product associated with the matched pair of algebras(H,A,χ). By
Proposition 6.5 and Example 2.6,A #H is an associative algebra with identity 1 # 1.

It is easy to see thatA�A # 1 andH � 1 #H . For this reason we frequently abbreviate
the elementa #h by ah.
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Remark 6.7. When ρ is the trivial actionh ⊗ a �→ ε(h)a, then the algebraA # H

(Definition 6.6) is called the twisted tensor product bys of A with H , and is denoted
A⊗s H . This notation is coherent with that in Remark 3.8.

Lemma 6.8.Let H be a braided Hopf algebra with bijective antipodeS. Let S be the
composition inverse ofS. Then

(µ⊗H)(H ⊗ c)
(
∆⊗ S

)
c−1∆= (ηε ⊗H)∆ and

(H ⊗µ)
(
H ⊗ S ⊗H

)(
c−1⊗H

)
(∆⊗H)c−1∆= (H ⊗ ηε)∆.

Proof. From∆S = c(S ⊗ S)∆ it follows that

µ
(
H ⊗ S

)
c−1∆= µ

(
S ⊗H

)
c−1∆= ηε.

Using this, the compatibility ofc−1 with ∆, the coassociativity of∆ andc−1∆, and the
fact thatc commutes withS, we obtain

S =
S

=
S

=
S

= ◦◦ and

S

=
S

=
◦◦
= ◦◦ . ✷

Proposition 6.9.LetH be a braided Hopf algebra,s :H ⊗A→ A⊗H a transposition,
ρ an s-action, andA # H the corresponding smash product. If the antipodeS and the
transpositions are bijective, then the mapθ :H ⊗A→A #H , defined byθ(h⊗ a)= ha,
is an isomorphism of rightA-modules. Consequently,A #H is a free rightA-module.

Proof. Let S be the composition inverse ofS. We assert that

θ := (H ⊗ ρ)(H ⊗ S ⊗A)
(
c−1⊗A

)
(∆⊗A)s−1

is the inverse ofθ . In fact, by Remark 6.2(3)–(5) and Lemma 6.8, we have

θ ◦ θ = S = S = S = ◦◦ = idA#H and
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θ ◦ θ =

S

=

S

=
S

= ◦◦ = idH⊗A. ✷

7. The ring of invariants

Let H be a braided Hopf algebra,A an algebra,s :H ⊗ A→ A⊗H a transposition,
ρ :H ⊗A→ A an s-action, andχ the twisting map associated withρ. In this section we
study the ring of invariants ofH in A.

Definition 7.1.An elementa ∈A is said to be invariant ifρ(h⊗a)= ε(h)a, for all h ∈H .
We letAH denote the set of invariants ofH in A.

Proposition 7.2.An elementa ∈A is invariant iffχ(h⊗ a)= s(h⊗ a), for all h ∈H .

Proof. If χ(h⊗ a)= s(h⊗ a), thenρ(h⊗ a)= (A⊗ ε)χ(h⊗ a)= (A⊗ ε)s(h⊗ a)=
ε(h)a. Conversely, ifρ(h⊗ a)= ε(h)a for all h ∈H , then by Remark 6.2(4) and the fact
that(H ⊗ ε)c−1= ε ⊗H ,

χ(h⊗ a) = (ρ ⊗H)(H ⊗ s)(∆⊗A)(h⊗ a)

= (ρ ⊗H)(H ⊗ s)(c⊗A)
(
c−1⊗A

)
(∆⊗A)(h⊗ a)

= s(H ⊗ ρ)
(
c−1⊗A

)
(∆⊗A)(h⊗ a)

= s(h⊗ a),

for all h ∈H . ✷
Proposition 7.3.It is true thatAH is a subalgebra ofA.

Proof. It is clear that 1∈AH andAH is closed by sums and action of scalars. LetB =AH .
The equalities

H B B

=
H B B

=
H B B

=
H B B

show thatAH is closed by products.✷
Proposition 7.4.It is true thats(H ⊗AH )⊆AH ⊗H . Consequently, the mapgs :A→A,
introduced in Theorem4.15, verifiesgs(AH )⊆AH .
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Proof. LetB =AH . By Remark 6.2(4) and the definition ofAH ,

H H B

=
H H B

=

H H B

◦◦ =
H H B

◦◦ .

It follows easily thats(H ⊗AH)⊆AH ⊗H . ✷
Lemma 7.5.Assume thatH is a rigid braided Hopf algebra and lett ∈ ∫ l

H . The map
t̂ :A→ A, given byt̂ (a)= t · a, is a rightAH -module map with values inAH , where the
dot denotes thes-action. Moreover,t · (ab)= gs(a)(t · b) for all a ∈AH andb ∈A, where
gs :A→A is the map introduced in Theorem4.15.

Proof. From Remark 6.2(5) and the fact thatt ∈ ∫ l

H
, we obtain thath · (t · a)= (ht) · a =

ε(h)(t · a) for all h ∈ H anda ∈ A. This shows that the image oft̂ is included inAH .
Let a ∈ A and b ∈ AH . For h ∈ H and a ∈ A we write s(h ⊗ a) =∑

i ai ⊗ hi . By
Remark 6.2(1), the fact thatb ∈AH , and the compatibility ofs with ε, we have

t · (ab)=
∑
i

(t(1) · ai)(t(2)i · b)=
(
t(1)ε(t(2)) · a

)
b = (t · a)b.

The proof of the last assertion is similar.✷
Definition 7.6. The mapt̂ :A→ AH in Lemma 7.5 is called aleft trace function forH
onA.

(Items (1)–(4) of Theorem 7.7 below generalize Lemma 4.3.4, Corollary 4.3.5,
Theorems 4.3.7 and 4.4.2 of [Mo], respectively. Moreover, Propositions 7.8 and 7.9
generalize Lemma 4.4.3 and Proposition 4.4.4 of [Mo]. All the proofs given there, except
the one of Lemma 4.4.3, work in our setting.)

The unique point that requires some attention is the fact that the mapµ :L(WA#H)→
L(VAH ) [Mo, p. 49] isAH -linear. Next, we check this fact. Letv ∈ V , h ∈H , anda ∈AH .
Sinceχ(h⊗ a)= s(h⊗ a) and(A⊗ ε)s = ε ⊗A, we have

µ(v⊗A ha) = µ
(
v⊗A s(h⊗ a)

)= v⊗A (A⊗ ε)
(
s(h⊗ a)

)
= v⊗A (ε ⊗A)(h⊗ a)= ε(h)va = µ(v⊗ h) a.

Theorem 7.7.Assume thatH is a rigid braided Hopf algebra and that̂t :A→ AH is
surjective. Letc ∈A such thatt · c= 1. The following facts hold:

(1) e= tc is an idempotent ofA #H verifyinge(A #H)e=AHe�AH .
(2) If A is left or right Noetherian, then so isAH .
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(3) If A is left or right Noetherian and finitely generated as ak-algebra, thenAH is finitely
generated as ak-algebra.

(4) If A is right Noetherian, thenA is a right NoetherianAH -module.

Proposition 7.8.Assume thatH is a rigid braided Hopf algebra and thats is bijective. Let
t be a non-zero left integral ofH and letS be the composition inverse ofS. Then, for all
a ∈A, h ∈H ,

(1) hat= (h·a)t and tah=∑i t (S(α ⇀ h)i ·ai), whereα :H → k is the modular function
of H and ∑

i

S(α ⇀ h)i ⊗ ai = s−1(a⊗ S(α ⇀ h)
)
,

(2) AtA is an ideal ofA #H .

Proof. (2) follows immediately from (1). The first equality of (1) can be obtained arguing
as in [Mo, Lemma 4.3.4]. We prove the second equality. Leth ∈H anda ∈A. Write

s−1(a⊗ h)=
∑
i

hi ⊗ ai and c−1(hi(1) ⊗ hi(2)
)=∑

j

hi(2)j
⊗ hi(1)j

.

From the proof of Proposition 6.9, we obtain

a #h=
∑
i,j

(
1 #hi(2)j

)(
S
(
hi(1)j

) · ai # 1
)
.

Hence, from Theorem 3.19,

(1 #t)(a #h) =
∑
i,j

(1 # t)
(
1 #hi(2)j

)(
S
(
hi(1)j

) · ai # 1
)

=
∑
i,j

(
1 #α

(
hi(2)j

)
t
)(
S
(
hi(1)j

) · ai # 1
)

=
∑
i,j

(1 # t)
(
S
(
hi(1)α

(
hi(2)

)) · ai # 1
)
.

Put(H ⊗s−1)(s−1⊗H)(A⊗∆)(a⊗h)=∑i,j h(1)i ⊗h(2)j ⊗aij . From the compatibility

of s with ∆ andS, and from Proposition 4.17,

(1 # t)(a #h) =
∑
i,j

(1 #t)
(
S
(
h(1)i α

(
h(2)j

)) · aij # 1
)

=
∑
i

(1 #t)
(
S
(
h(1)i α

(
h(2)

)) · ai # 1
)
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=
∑
i

(1 #t)
(
S(α ⇀ h)i · ai # 1

)
. ✷

Proposition 7.9.Assume thatH is a rigid braided Hopf algebra. Lett be a non-zero left
integral ofH . The following assertions hold:

(1) For any a ∈ A ∩ AtA, there exist{bi}, {ci} ∈ A such that for all d ∈ A, ad =∑n
i=1bi t̂ (cid). Consequently,aA⊆∑n

i=1 biA
H .

(2) If AtA=A #H , thenA is a finitely generatedAH -module.
(3) If A∩AtA contains a regular element ofA, thenA is a rightAH -submodule of a finite

freeAH -module.

8. A Morita context relating A #H and AH

Let H be a rigid braided Hopf algebra,A an algebra,s a bijective transposition ofH
onA, andρ ans-action ofH onA. In this section we construct a Morita context between
AH andA #H , generalizing the main result of [CFM]. It is immediate thatA is a leftAH -
module viaa � b := g−1

s (a)b, wheregs :A→ A is thek-algebra isomorphism introduced
in Theorem 4.15 and a rightAH -module by the right multiplication. Moreover, it is easy to
check thatA is a leftA#H -module via(a #h) · b= a(h · b), whereh · b denotesρ(h⊗ b).
With this actionA becomes an(A #H,AH)-bimodule.

Proposition 8.1.A is a right A #H -module viab← (a # h) =∑i S((α ⇀ h)i) · (ba)i ,
whereα :H → k is the modular function ofH ,

∑
i (α ⇀ h)i ⊗ (ba)i = s−1(ba⊗ α ⇀ h),

andS is the composition inverse ofS. Moreover,A is an(AH ,A #H)-bimodule.

Proof. First we prove thatA is a rightA#H -module. For this it suffices to check thatA is
a rightA-module, a rightH -module, and that(b← h)a = b← (ha), for all a, b ∈ A and
h ∈H . The first assertion is evident. We check the others.

Step 1.A is a rightH -module viab← h=∑i S((α ⇀ h)i) · bi .
It is clear thatb← 1= b. Now, we prove that(b← h)← l = b← (hl), for all b ∈ A

andh, l ∈H . To abbreviate we writêα instead ofα ⇀ ( ). By Remark 6.2(4)–(5), the facts
thatc−1(S⊗H)= (H ⊗ S)c−1, the maps is compatible withµ(S⊗ S)c−1= Scµ, andα̂
is an algebra map, we have

α̂

S

α̂

S

=

α̂ α̂

S

S

=

α̂ α̂

S S

=

α̂ α̂

S

=
α̂

S

.
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Step 2.b← (ha)= (b← h)a, for all a, b ∈A andh ∈H .
In fact,

α̂

S

=

α̂

S

=

α̂

S
=

α̂

S S

=

α̂

S

S

=

α̂

S S

=

α̂

S S

=

α̂

S

S

=

α̂

S
,

where the first equality follows from Corollary 4.18 and the compatibility ofs with µA,
the second one follows from Remark 6.2(1), (4), the third one from the fact that∆S =
(S ⊗ S)c−1∆, the forth from the fact thats(S ⊗A)= (A⊗ S)s and from Remark 6.2(5),
the fifth from the compatibility ofs andc with c−1∆ (see Remarks 3.10 and 4.2), the sixth
from the fact that(H ⊗∆)(H ⊗ α̂)∆= (∆⊗ α̂)∆, the seventh from the compatibility of
c with ∆, and the eighth follows from the fact thatµ(S ⊗H)c−1∆= ηHεH .

It remains to prove that the leftAH and the rightA #H actions commute. It suffices to
note that, by the compatibility ofs with µA, Remark 6.2(1), Proposition 7.4, and the fact
that(S ⊗AH)s−1= s−1(AH ⊗ S), we have

B A H

ḡs α̂

S

=

B A H

ḡs α̂

S

=

B A H

ḡs α̂

S
=

B A H

ḡs α̂

S

=

B A H

ḡs α̂

S

,

whereB denotesAH andḡs denotesg−1
s . ✷
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Lemma 8.2.Letq ∈ k \ {0} such thatc(t ⊗ t)= qt ⊗ t for eacht ∈ ∫ l

H . Then it is true that
qt · gs(a)= gs(t · a), for all a ∈A.

Proof. Since by Remark 6.2(4),c(t ⊗ t)= qt ⊗ t , we have

gs(t · a)⊗ t = s(t ⊗ t · a)= (· ⊗H)(H ⊗ s)(c⊗A)(t ⊗ t ⊗ a)= qt · gs(a)⊗ t .

The assertion follows immediately.✷
In the proof of the next lemma we follow closely the arguments in [DNR, p. 224].

Lemma 8.3.For eacht ∈ ∫ l

H it is true thatS(t) = qt(1)α(t(2)), whereq ∈ k \ {0} is as in
Lemma8.2.

Proof. Let ϕ :H ∗ → H be the map defined byϕ(h∗) = t(1)h
∗(t(2)). Sinceϕ is bijective,

there existsT ∈H ∗ such thatt(1)T (t(2))= 1. Applyingε we obtainT (t)= 1. Hence, we
have

S(h) = S(h(1))ε(h(1))t(1)T (t(2))=
∑
i

S(h(1))h(2)t(1)iT (h(3)i t(2))

=
∑
i

ε(h(1))t(1)iT (h(2)i t(2))=
∑
i

t(1)iT (hit(2)),

where
∑

i li ⊗ hi denotesc(h⊗ l). Consequently, by Corollary 3.17, Remark 3.18, and
Theorem 3.19,

S(t) = f r
H (t(1))T (tt(2))= f r

H (t(1))α
(
f r
H (t(2))

)
T (t)= qt(1)α(t(2))T (t)

= qt(1)α(t(2)). ✷
Recall that in a Morita context connecting two ringsR andS consists of an(R,S)-

bimoduleM, an(S,R)-bimoduleN , and two bimodule maps

[ , ] :N ⊗R M→ S and ( , ) :M ⊗S N→ R,

such thatm · [n,m′] = (m,n) · m′ and [n,m] · n′ = n · (m,n′), for all m,m′ ∈ M and
n,n′ ∈N .

Theorem 8.4.The bimodulesM =AH AA#H andN =A#H AAH , together with the maps

[ , ] :N ⊗AH M→A #H, given by [a, b] = atb,

( , ) :M ⊗A#H N→AH, given by (a, b)= t · (ab),

give a Morita context forAH andA #H .
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Proof. By Proposition 7.2 and Theorem 4.15,ta = gs(a)t for all a ∈AH . It follows easily
that [ , ] is middleAH -linear. Now, we prove that[ , ] is anA #H -bimodule map. Since
hbt = (h · b)t , for all b ∈A andh ∈H , we have

(a #h)[b, c] = (a #h)btc= ahbtc= a(h · b)tc= [a(h · b), c]= [(a #h) · b, c].
Thus,[ , ] is a leftA #H -module map. Let us see that[ , ] is a rightA #H -module map.
Let b ∈A andh ∈H . By Proposition 6.9,

bh=
∑
i,j

hi (2)j

(
S
(
hi (1)j

) · bi),
where

∑
i hi ⊗ bi = s−1(b ⊗ h) and

∑
j hi(2)j ⊗ hi (1)j = c−1(hi(1) ⊗ hi(2)). Hence, by

Theorem 3.19. the compatibility ofs with ∆ and Proposition 4.17,

[a, b](c #h) = atbch= at
∑
i,j

hi (2)j

(
S
(
hi (1)j

) · (bc)i)
= a

∑
i,j

α
(
hi (2)j

)
t
(
S
(
hi (1)j

) · (bc)i)= [a,∑
i

α(hi (2))S(hi (1)) · (bc)i
]

=
[
a,
∑
i

S(α ⇀ hi) · (bc)i
]
=
[
a,
∑
i

S
(
(α ⇀ h)i

) · (bc)i]
= [

a, b← (c #h)
]
.

Now, we prove that( , ) is middleA #H -linear. Since(H ⊗ S)c−1 = c−1(S ⊗H), ∆ is
compatible withc, andµc−1 (S ⊗H)∆= εη, we have

S = S = S = ◦◦ .

On the other hand, by (1), (4), (5) of Remark 6.2 we have

= = = .
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Thus,

S =
S

= .

Using that and Theorem 3.19, we obtain

kt A A H A

S α =

kt A A H A

α S
=

kt A A H A

S

=

kt A A H A

S =
kt A A H A

,

which shows that(c← (a #h), b)= (c, (a #h) · b), for all a, b, c ∈A andh ∈H .
Let us see that( , ) is left and right AH -linear. Let a, b ∈ A and c ∈ AH . By

Remark 6.2(1), Proposition 7.4, and Theorem 4.15, we have

(c � a, b) = t · (g−1
s (c)ab

)
= µ(ρ ⊗ ρ)(H ⊗ s ⊗A)

(
∆(t)⊗ g−1

s (c)⊗ ab
)

= µ(ρ ⊗ ρ)(ηε ⊗ s ⊗A)
(
∆(t)⊗ g−1

s (c)⊗ ab
)

= c
(
t · (ab))= c(a, b).

Similarly ( , ) is rightAH -linear.
To finish the proof we must see that

a←[b, c] = (a, b) � c and [a, b] · c= a(b, c),

for all a, b, c ∈A. Let q ∈ k \ {0} defined byc(t ⊗ t)= qt ⊗ t . Using the compatibility of
s−1 with S, Theorem 4.15, and Lemmas 8.2 and 8.3, we obtain

a←[b, c] = (a← b # t)← c # 1= q−1(t · g−1
s (ab)

)
c= g−1

s

(
t · (ab))c= (a, b) � c,

and from Remark 6.2(1)
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[a, b] · c = atb · c=
∑
i

(
(at(1) · bi) # t(2)i

) · c=∑
i

(at(1) · bi)(t(2)i · c)

= a
(
t · (bc))= a(b, c),

where
∑

i t(1)⊗ bi ⊗ t(2)i =
∑

t(1)⊗ s(t(2)⊗ b). ✷
Corollary 8.5. If t̂ :A→ AH is surjective andAtA = A # H , thenA # H is Morita
equivalent toAH .

9. Normal cocycles and crossed products

Let H be a braided bialgebra andA an algebra. In this section we introduce the notion
of crossed product. The twisting mapχ and the cocycleF involved in the construction of
the crossed product have the form

χ = (ρ ⊗H)(H ⊗ s)(∆⊗A) and F = (f ⊗µ)∆H⊗cH ,

wheres :H ⊗A→A⊗H is a transposition,ρ is a map fromH ⊗A to A, H ⊗c H is the
coalgebra of Remark 3.8, andf is a map fromH 2 to A. In Section 6 we have established
what hypothesisχ must satisfy in order for the mapρ to exist, and we also proved that
χ is a twisting map iffρ satisfies the first three conditions of Remark 6.2. In this section
we assume thatρ is a weaks action andχ = (ρ ⊗H)(H ⊗ s)(∆⊗A), and we study the
relations between the mapsF andf . We start by determining the conditions whichF must
satisfy in order for the mapf to exist. Note that in this casef is uniquely determined by the
formulaf = (A⊗ ε)F . In a further step, we establish necessary and sufficient conditions
onf for F to be a normal cocycle satisfying the twisted module condition in respect toχ .

Proposition 9.1.LetF :H ⊗H →A⊗H be a map. There is a mapf :H ⊗H →A such
thatF = (f ⊗µ)∆H⊗cH iff (F ⊗µ)∆H⊗cH = (A⊗∆H)F .

The proof is left to the reader.

Definition 9.2. Let f :H ⊗ H → A be a map. We say thatf is normal if f (1⊗ x) =
f (x ⊗ 1) = ε(x) for all x ∈ H , and thatf is a cocycle that satisfies the twisted module
condition if

•
•
= •

•
and

•
= • , where • = f.
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More precisely, the first equality is the cocycle condition and the second is the twisted
module condition. Finally, we say thatf is compatible withs if it is a map inBH , in other
words, if

(f ⊗H)(H ⊗ c)(c⊗H)= s(H ⊗ f ).

Let f :H 2 → A be a map and letF :H ⊗ H → A ⊗ H be the mapF := (f ⊗
µ)∆H⊗cH . It is immediate thatF is a map inBH iff f is compatible withs.

Theorem 9.3.Let f :H 2→ A be a map and letF := (f ⊗ µ)∆H⊗cH . Assume thatf is
compatible withs. ThenF is a normal cocycle satisfying the twisted module condition iff
f is.

Proof. Clearly F is normal iff f is. Let us consider the cocycle conditions. By the
compatibility of f with s, the fact that∆µ = (µ ⊗ µ)(H ⊗ c ⊗ H)(∆ ⊗ ∆), and
Corollary 4.21, we have:

F

F =
•

•

=
•

•

=
•

•

;

and by the fact that∆µ= (µ⊗ µ)(H ⊗ c ⊗H)(∆⊗∆), the compatibility ofµ with c,
and Corollary 4.21, we have

F
F =

•

•

=
• •

=
•

•

.

The above imply that the cocycle conditions onF and f are equivalent. To finish the
proof, it remains to show thatF satisfies the twisted module condition ifff does. To
check this, we do not use the fact thatf is compatible withs. From the second formula of
Proposition 6.4 and Corollary 4.21, we obtain:
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F
= • =

•

=

•

;

from the first formula of Proposition 6.4 and Corollary 4.21, we obtain:

F =
•

=

•

.

From these equalities it follows easily that the twisted module conditions onF andf are
equivalent. ✷
Definition 9.4. Let H be a braided bialgebra,A an algebra,s a transposition of
H on A, ρ :H ⊗ A → A a weak s-action, χ the twisting map associated withρ,
f :H 2→ A a normal cocycle compatible withs satisfying the twisted module condition,
andF :H ⊗H →A⊗H the mapF = (f ⊗µ)∆H⊗cH . By definition, the crossed product
associated with(s, ρ,f ) is the algebraA#f H , constructed fromχ andF in Definition 2.1.
By Theorems 2.3, 6.3, and 9.3 we know thatA #f H is associative and unitary.

Next we consider several examples of crossed products constructed from data which
satisfies the conditions of Definition 9.4.

Example 9.5.WhenH is a standard Hopf algebra ands is the flip, Definition 9.4 gives
the classical crossed products introduced in [BCM,DT]. WhenH is a Hopf algebra in
a braided categoryC whose underlying monoidal category is of vector spaces ands is the
braid ofC, then we obtain the algebra crossed products underlying the bialgebra crossed
products considered in [M].

Example 9.6.Supposef is trivial (that is,f (h⊗ l)= ε(h)ε(l) for all h, l ∈H ). Thenf is
automatically a normal cocycle and the crossed product condition holds iffρ is ans-action.
It follows that the crossed products withf trivial are the smash products introduced
in Section 6. In [GG] we show that in this sense the Ore extensionsA[x,α, δ], with
homeomorphismα :A→ A and anα-derivationδ :A→ A such thatαδ = δα, are smash



86 J.A. Guccione, J.J. Guccione / Journal of Algebra 261 (2003) 54–101

products. Another example is the algebra of differential operatorsDq,p(X,∂/∂X) (p,q ∈
k \ {0}), which is the algebra generated by the variablesx1, . . . , xr,∂/∂x1, . . . ,∂/∂xr , and
the relations

xjxi = qxixj ,
∂

∂xj

∂

∂xi
= q

∂

∂xi

∂

∂xj
,

∂

∂xj
xi = q−1xi

∂

∂xj
if i < j,

∂

∂xi
xi = pixi

∂

∂xi
+ 1,

∂

∂xj
xi = qxi

∂

∂xj
if i > j.

Let s be the transposition ofkq[∂/∂X] on kq [X] (considered in Example 4.7), and for

1 � j � r let δ(p)j : kq[X]→ kq[X] be the map defined by

δ
(p)
j

(
x
n1
1 · · ·xnrr

)= { [nj ]pxn1
1 · · ·x

nj−1
j · · ·xnrr if nj > 0,

0 if nj = 0,

where[n]p = 1+ n+ · · · + np−1. It is easy to check that the formula

ρ

(
∂

∂xj
⊗ P

)
= δ

(p)
j (P )

defines ans-action ofkq [∂/∂X] on kq [X], and thatDq,p(X,∂/∂X) is isomorphic to the
smash product constructed from these data.

Example 9.7.Supposeρ is the trivials-actionρ(h⊗a)= ε(h)a. Then the twisted module
condition is satisfied iffµ(A⊗f )(s⊗H)(H ⊗ s)= µ(f ⊗A). If this equality is valid and
f is a normal cocycle compatible withs (for the trivial action), thenA #f H is a crossed
product denoted byAs

f [H ]. If f is also trivial, thenAs[H ] :=As
f [H ] equalsA⊗s H .

Example 9.8.Let G be a finitely generated group,A a k-algebra, ands : k[G] ⊗ A→
A ⊗ k[G] a bijective transposition. By Theorem 4.14 there is an Aut(G)op-gradation
A=⊕ζ∈Aut(G) Aζ onA such thats(x ⊗ a)= a ⊗ ζ(x) for all a ∈Aζ . It is easy to check
that a mapg⊗ a �→ g · a is a weaks-action ofk[G] onA iff

(1) x · (ab)= (x · a)(ζ(x) · b), for a ∈Aζ andx ∈G,
(2) x · 1= 1, for all x ∈G,
(3) 1 · a = a, for all a ∈A,
(4) x · a ∈Aζ , for all x ∈G, a ∈Aζ ;

and that a mapf : k[G] ⊗ k[G]→A is a normal cocycle compatible withs, satisfying the
twisted module condition, iff

(1) Imf ⊆Aid,
(2) f (x ⊗ 1)= f (1⊗ x)= 1, for all x ∈G,
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(3) xf (y ⊗ z)f (x ⊗ yz)= f (x ⊗ y)f (xy ⊗ z), for all x, y, z ∈G,
(4) (x · (y · a))f (ζ(x)⊗ ζ(y))= f (x ⊗ y)((xy) · a), for all x, y ∈G, a ∈Aζ .

The multiplication map of the crossed productA #f k[G], constructed from these data,
is given by

(a #x)(b #y)= a(x · b)f (ζ(x)⊗ y
)

# ζ(x)y, if b ∈Aζ . (5)

The group of automorphisms Aut(G) acts onGop via ζ ·x = ζ(x). Consider the semidirect
productGop � Aut(G). From (5) it follows immediately thatA #f k[G] is a (Gop �

Aut(G))op-graded algebra, withAζ ⊗ x as the homogeneous component of degree(x, ζ ).

We finish this section showing that iff is convolution invertible, then the maps
univocally determined.

Theorem 9.9.Let H be a braided Hopf algebra,A an algebra,χ :H ⊗ A→ A ⊗ H

a twisting map, andF :H ⊗H →A⊗H a normal cocycle satisfying the twisted module
condition. If there exists a maps :H⊗A→A⊗H compatible with the coalgebra structure
of H , a mapρ :H ⊗ A→ A satisfyingρ(1⊗ a) = a for all a ∈ A, and a convolution
invertible mapf :H ⊗c H →A such that

χ = (ρ ⊗H)(H ⊗ s)(∆⊗A) and F = (f ⊗µ)∆H⊗cH ,

then

ρ = (A⊗ ε)χ, f = (A⊗ ε)F , and

s = (
µ2⊗H

)(
f−1⊗A⊗ f ⊗H

)
(H ⊗H ⊗ χ ⊗∆)(H ⊗ c⊗A⊗H)

×(∆⊗H ⊗A⊗H)(S ⊗H ⊗ χ)
(
∆2⊗A

)
.

Proof. The formula forf is immediate, and using the compatibility ofs with ε it is easy
to check the formula forρ. It remains to prove the assertion abouts. By the compatibility
of s with ∆, we have:

= = = = .

Using this, the twisted module condition ofF , Corollary 4.4.3 of [GG], and the fact that
ρ(1⊗ a)= a for all a ∈A, we obtain:
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S

� •

=
S

� •

=
S

� F

=

S

� •

=

S

� •

= S = S = , where � = f−1. ✷

10. Intrinsic characterizations

Let H be a braided Hopf algebra. In this section we adapt to our context the notions
of cleft, H -Galois, and normalH -extensions. We also prove that the characterization
of crossed productA #f H with convolution invertible cocycle, as anH -Galois normal
extension and as a cleft extension, remains valid in our setting. As in [S], we recall a well-
known result [Mo, p. 91]:

Lemma 10.1.Let R be an algebra,C a coalgebra, and letEndCR(R ⊗ C) be thek-
algebra of all leftR-linear and rightC-colinear endomorphisms ofR ⊗ C. The map
T C
R : Homk(C,R) → EndCR(R ⊗ C), given byT C

R (g)(r ⊗ c) = rg(c(1)) ⊗ c(2), is an
anti-isomorphism of algebras(here Homk(C,R) is considered as an algebra via the
convolution product andEndCR(R ⊗ C) is considered as an algebra via the composition
of endomorphisms). The inverse map ofT C

R is given by(T C
R )−1(g)(c)= (R⊗ ε)g(1⊗ c).

Propositions 10.3 and 10.4 are direct generalizations of Propositions 4.7 and 4.8 of
[GG]. The proofs given there work in our setting.

Definition 10.2. Let H be a braided Hopf algebra,(B, s) a rightH -comodule algebra,
and i :A ↪→ B an algebra inclusion. We say that(i :A ↪→ B, s) is anH -extension of
A if i(A) = BcoH. Let (i ′ :A ↪→ B ′, s′) be anotherH -extension ofA. We say that
(i :A ↪→ B, s) and (i ′ :A ↪→ B ′, s′) are equivalent if there is anH -comodule algebra
isomorphismf : (B, s)→ (B ′, s′) which is also a leftA-module homomorphism.

Proposition 10.3.Lets be a transposition ofH onA, ρ :H ⊗A→A a weaks-action, and
f :H 2→ A a normal cocycle compatible withs verifying the twisted module condition.
LetA#f H be the crossed product associated with(s, ρ,f ). The map̂s := (A⊗ c)(s⊗H)

is a transposition ofH onA #f H .
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Proposition 10.4.(A #f H, ŝ) is an H -comodule algebra viaν := A ⊗ ∆. Moreover,
(A ↪→ A #f H, ŝ) is an H -extension and the mapγ : (H, c)→ (A #f H, ŝ), defined by
γ (h)= 1 #h, is anH -comodule homomorphism.

Definition 10.5. An H -extension(i :A ↪→ B, s) of A is a cleft if there is a convolution
invertible H -comodule homomorphismγ : (H, c)→ (B, s); it is H -Galois if the map
βB :B⊗A B→ B⊗H , defined byβ(b⊗ b′)= (b⊗1)ν(b′) whereν denotes the coaction
of B, is bijective; and it has the normal basis property if there exists a leftA-linear right
H -comodule isomorphismφ : (A⊗H, ŝ)→ (B, s), where the coaction ofA⊗H isA⊗∆

andŝ = (A⊗ c)(s ⊗H).

Let γ : (H, c)→ (B, s) be a cleft map. Forh ∈H , write s(h⊗γ−1(1))=∑i γ
−1
i ⊗hi .

Since s(h ⊗ γ (1)) = γ (1) ⊗ h, we have thatγ (1)γ−1(1) ⊗ h = 1⊗ h = s(h ⊗ 1) =
s(h⊗ γ (1)γ−1(1))=∑i γ (1)γ

−1
i ⊗ hi . Hence,s(h⊗ γ−1(1))= γ−1(1)⊗ h. Using this

fact we obtain thatγ ′ := γ (1)−1γ is a cleft map verifyingγ ′(1)= 1.
If (A ↪→ B, s) is anH -extension with a normal basisφ : (A⊗H, ŝ)→ (B, s) satisfying

φ(1⊗ 1) = 1, thenB is isomorphic viaφ to the crossed productA #f H constructed
from the transpositionsA :H ⊗ A→ A ⊗ H induced bys (see Remark 5.1), the weak
sA-action ρ(h ⊗ a) = (A ⊗ ε)φ−1(φ(1 ⊗ h)φ(a ⊗ 1)), and the cocyclef (h ⊗ l) =
(A ⊗ ε)φ−1(φ(1⊗ h)φ(1⊗ l)). In fact, arguing as in [S, Section 3], we see that the
multiplication mapµA#f H of A⊗H , obtained by transporting throughφ the multiplication
map ofB, has the form

µA#f H = (µ⊗H)(µ⊗F )(A⊗ χ ⊗A),

where χ = (ρ ⊗ H)(H ⊗ sA)(∆ ⊗ A) and F = (f ⊗ µ)∆H⊗cH . By Theorems 2.3
and 6.3, we know thatρ satisfies the first three conditions of Remark 6.2. Using that
ŝA :H ⊗ A #f H → A #f H ⊗ H is compatible withµA#f H , it is easy to check that it
also satisfies Remark 6.2(4), and that the cocyclef is compatible withsA. Finally, from
Theorems 2.3 and 9.3 it follows thatf is a normal cocycle satisfying the twisted module
condition. Conversely, it is clear that each crossed product is anH -extension, which has
the normal basis property in an obvious way.

Theorem 10.6.Let H be a braided Hopf algebra and(A ↪→ B, s) an H -extension. The
following assertions are equivalent:

(1) (A ↪→ B, s) is cleft.
(2) (A ↪→ B, s) is H -Galois with a normal basis.
(3) There is an isomorphism(B, s)→ (A #f H, ŝ), whereA #f H is a crossed product

whose cocyclef :H ⊗c H →A is convolution invertible.

Proof. (1)⇔ (2). Let γ : (H, c)→ (B, s) be a cleft map. Then,νγ = (γ ⊗ H)∆ is
a convolution invertible map, sinceν :B → B ⊗s H is an algebra map. Moreover, for
b ∈ B,
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T H
B⊗sH

(νγ )
(
ν
(
b(0)γ

−1(b(1))
)⊗ b(2)

)= T H
B⊗sH

(νγ )
(
T H
B⊗sH

(
νγ−1)(ν(b(0))⊗ b(1)

))
= b(0)γ

−1(b(1))γ (b(2))⊗ b(3)⊗ b(4)

= T H
B⊗sH

(
(γ ⊗H)∆

)(
b(0)γ

−1(b(1))⊗ 1⊗ b(2)
)
.

Applying (B ⊗ H ⊗ ε)(T H
B⊗sH

)−1(ν γ ) to this equality we obtainν(b(0)γ−1(b(1))) =
b(0)γ

−1(b(1)) ⊗ 1. Thus, the mapφ : (A ⊗ H, ŝ)→ (B, s), given byφ(a ⊗ h) = aγ (h)

is a normal basis, sinceb �→ b(0)γ
−1(b(1))⊗ b(2) is a well-defined map fromB to A⊗H ,

which is the composition inverse ofφ. Letα :B⊗H →B⊗A B be the mapα := B⊗A γ .
Forb ∈ B andh ∈H , we have

βBα(b⊗ h)= βB
(
b⊗ γ (h)

)= bγ (h(1))⊗ h(2) = T H
B (γ )(b⊗ h). (6)

Hence,βBα = T H
B (γ ). Then βB is an isomorphism, sinceT H

B (γ ) and α are. Now,
assume that(A ↪→ B, s) is Galois with a normal basis. Letφ : (A ⊗ H, ŝ)→ (B, s) be
a normal basis. Letγ : (H, c)→ (B, s) be the map defined byγ (h) = φ(1⊗ h) and let
α :B ⊗H → B ⊗A B be as above. Then the equality (6) holds. SinceβBα is a bijective
map andT H

B is an algebra isomorphism, this shows thatγ is convolution invertible.
(2)⇒ (3). Let φ : (A ⊗ H, ŝ)→ (B, s) be a normal basis of(A ↪→ B, s). From the

equivalence between items (1) and (2), and the discussion following Definition 10.5, we
can assume thatφ(1⊗ 1)= 1 (by simply takingφ(a ⊗ h) = aγ (h), whereγ : (H, c)→
(B, s) is a cleft map satisfyingγ (1)= 1), that(B, s) is a crossed product(A #f H, ŝ), and
that the cleft mapγ is the inclusionh �→ 1 #h. Fora #h ∈A #f H , we have

βB(B ⊗ γ )(a⊗ h⊗ l)= (a #h)(1 # l(1))⊗ l(2) = (A⊗ βH )T H⊗cH
A (f )(a ⊗ h⊗ l).

SinceβB(B ⊗ γ ) andβH are bijective maps andT H⊗cH
A is an algebra isomorphism,f is

convolution invertible.
(3)⇒ (1). We can assume that(B, s)= (A #f H, ŝ) for some crossed productA #f H

with convolution invertible cocycle. Letγ be the inclusionh �→ 1 #h. Fora #h ∈A #f H ,
we have

T H
A#fH (γ )(a⊗ h⊗ l)= (a #h)(1 # l(1))⊗ l(2) = (A⊗ βH )T H⊗cH

A (f )(a ⊗ h⊗ l).

Since (A ⊗ βH )T H⊗cH
A (f ) is bijective andT H

A#fH
is an algebra isomorphism,γ is

convolution invertible. ✷
Let A #f H be a crossed product withf a convolution invertible normal cocycle. Let

γ :H →A #f H be the cleft maph �→ 1 #h. The mapγµ is convolution invertible, since
γ is andµ :H ⊗c H →H is a coalgebra map. Moreover,(γµ)−1= γ−1µ. On the other
hand, it is immediate thatµA#f H (γ ⊗ γ )= (f ⊗ 1H) ∗ (γµ). Hence,

f ⊗ 1H =
(
µA#f H (γ ⊗ γ )

) ∗ (γ−1µ
)
. (7)



J.A. Guccione, J.J. Guccione / Journal of Algebra 261 (2003) 54–101 91

This gives a formula forf in terms ofγ .
Next, we obtain a formula for the convolution inverse ofγ . From the proof of

Theorem 10.6 it follows that

γ−1= (T H
A#f H

)−1(
T H⊗cH
A

(
f−1)(A⊗ β−1

H

))
,

wheref−1 denotes the convolution inverse off :H ⊗c H → A. Making the calculations
we obtain

γ−1(h)= (f−1⊗H
)
(S ⊗H ⊗ S)(H ⊗ c)(c⊗H)(∆⊗H)∆(h).

Lemma 10.7. Let (A ↪→ B, s) be an H -extension. Assume thats is bijective. If
γ : (H, c)→ (B, s) is a cleft map, then

(1) (H ⊗ γ−1)c−1= s−1(γ−1⊗H).
(2) νγ−1= (γ−1⊗ S) c∆, whereν is the coaction ofB.

Proof. (1) It suffices to check thats(H ⊗γ−1)= (γ−1⊗H)c. By the fact that(γ ⊗S)s =
s(S ⊗ γ ) and the compatibility ofs with µH andµB , we have

γ S γ̃ =
S γ γ̃

=
S γ γ̃

= ηH ε ⊗ ηBε,

whereγ̃ is the convolution inverse ofγ . Hences(S ⊗ γ−1) is a convolution right inverse
of s(H ⊗ γ ) :H ⊗c H → B ⊗s H . In a similar way, we can check that(γ−1 ⊗ S)c is
a convolution left inverse of(γ ⊗H)c :H ⊗c H →B⊗s H . Since,s(H ⊗γ )= (γ ⊗H)c,
we get thats (S ⊗ γ−1)= (γ−1⊗ S)c. The assertion follows easily from this fact.

(2) First note that sinceν :B → B ⊗s H is an algebra map,ν γ−1 is the inverse
of νγ = (γ ⊗ H)∆. On the other hand, by item (1), the coassociativity of∆, and the
compatibility ofc with ∆ andε, we have

γ γ̃ S
=

γ γ̃ S

=
γ γ̃ S

= γ γ̃
◦◦

= ηB⊗sH ε.

Thus,(γ−1⊗ S)c∆ is a right inverse ofνγ , and so(γ−1⊗ S)c∆= νγ−1. ✷
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Next, we generalize Proposition 6.9. Our proof is very close to that given in [Mo,
Corollary 7.2.11].

Proposition 10.8. Let H be a braided Hopf algebra,s a transposition ofH on A,
ρ :H ⊗ A→ A a weaks-action, andf :H 2 → A a normal cocycle compatible withs
satisfying the twisted module condition. LetB =A #f H be the crossed product built from
(s, ρ,f ). If s and the antipodeS of H are bijective maps andf is convolution invertible,
thenB �H ⊗A as rightA-modules.

Proof. Let sB :H ⊗ B → B ⊗ H be the transpositionsB = (A ⊗ τ )(s ⊗ H) and let
τB :H ⊗ B → B ⊗ H be the flip. By Proposition 5.5, we know that(Bop, s̃B

−1) is an
˜H

cop
c -comodule algebra with coactioñν = τBs̃B

−1ν, whereν = A ⊗ ∆. We assert that
(Bop)coH=Aop. It is clear thatAop⊆ (Bop)coH. SinceB = (A⊗ k)⊕ (A⊗kerε), to prove
the converse inclusion it suffices to see that(Bop)coH∩ (A⊗ kerε) = 0. Now, using that
τs−1 = (A ⊗ ε ⊗ H)ν̃, it follows easily thatτs−1 andA ⊗ ηH ε coincide on(Bop)coH.
Hence,τs−1= 0 on(Bop)coH∩ (A⊗ kerε). Sinceτs−1 is an injective map, we have that

(Bop)coH ∩ (A ⊗ kerε) = 0. So,(Aop ↪→ Bop, s̃B
−1) is an ˜H

cop
c -extension ofAop. Let

γ : (H, c)→ (B, sB) be the map defined byγ (h) = 1 #h. From Theorem 10.6 we know
that γ is a convolution invertible map of rightH -comodules. LetS be the composition
inverse ofS. The equalities

µBop
(
γ−1S ⊗ γ S

)
∆˜H

cop
c

= µB

(
γ S ⊗ γ−1S

)
c−1∆= µB

(
γ ⊗ γ−1)∆S = ηBε

show thatγ−1S is a convolution left inverse ofγ S : ˜H
cop
c → Bop. Similarly, we can show

thatγ−1S is also a convolution right inverse ofγ S. Moreover, by Lemma 10.7(1) and the
fact that(S⊗H)τc−1τ = τc−1τ (H ⊗S) and(H ⊗γ )τc−1τ = τBs

−1
B τB(γ ⊗H), we have(

γ S ⊗H
)
c̃−1 = (

γ S ⊗H
)
τc−1τ = τB

(
H ⊗ γ S

)
c−1τ

= τB(H ⊗ γ )c−1τ
(
H ⊗ S

)= τBs
−1
B (H ⊗ γ )τ

(
H ⊗ S

)
= τBs

−1
B τB

(
H ⊗ γ S

)= s̃B
−1(H ⊗ γ S

)
.

Finally, by Lemma 10.7 and the fact thatτc−1(S ⊗H)= (S ⊗H)τc−1, we have

ν̃γ−1S = τB s̃B
−1νγ−1S = τB s̃B

−1(γ−1⊗ S
)
c∆S

= τB s̃B
−1(γ−1⊗ S

)(
S ⊗ S

)
∆= τBs̃B

−1(γ−1S ⊗H
)
∆

= (
γ−1⊗H

)
τc−1(S ⊗H

)
∆= (γ−1S ⊗H

)
τc−1∆

= (
γ−1S ⊗H

)
∆˜H

cop
c

.

Therefore,(Aop ↪→ Bop, s̃B
−1) is a cleft via γ−1S : (˜H cop

c , c̃−1)→ (Bop, s̃B
−1). Con-

sequently, by Theorem 10.6, the mapφ :Aop ⊗ H̃
cop
c → Bop, given by φ(a ⊗ h) =
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a(γ−1S(h)), is an isomorphism of leftAop-modules. This implies thatH ⊗ A � B as
rightA-modules viah⊗ a �→ γ−1S(h)a. ✷

11. Maschke’s Theorem

In [LS] the classical theorem of Maschke about the semisimplicity of the group algebras
was extended to Hopf algebras: A finite-dimensional Hopfk-algebra is semisimple iff
ε(x) �= 0 for a left integralx of H . The proof was obtained by a similar argument to that
used in the classical proof of Maschke. LetA #H be a smash product. Using an extension
of this argument [CF, Theorem 4], it was proved that ifA andH are Artinian semisimple,
thenA #H also is. In [BM, Theorem 2.6] this theorem was generalized to Hopf crossed
products (see [BCM]) with invertible cocycle. Now, letH be a braided Hopf algebra and
let s :H ⊗A→A⊗H be a bijective transposition. In this section we show that Maschke’s
Theorem remains valid for crossed productsA #f H , constructed from a weaks-action
h ⊗ a �→ h · a and a convolution invertible cocycle compatible withs. This generalizes
Theorem 5.1 of [GG], where the case whenH is a standard Hopf algebra was considered.

Theorem 11.1.Let H be a semisimple braided Hopf algebra,s a bijective transposition
of H onA, let h⊗ a �→ h · a be a weaks-action ofH onA, andf :H 2→ A a normal
cocycle compatible withs, satisfying the twisted module condition. LetA #f H be the
crossed product constructed from these data. Assume thatf is convolution invertible. The
following assertions hold:

(1) If V is a leftA#f H -module andW ⊆ V is a submodule which has a complement in the
category of A-modules, thenW has a complement in the category ofA #f H -modules.

(2) If A is Artinian semisimple, then so isA #f H .

Proof. Clearly, (1) implies (2). In order to prove (1), consider anA-linear projection
π :V → W and chooset ∈ ∫ r

H with ε(t) = 1. As in [BM], let π̃ :V → W be the map
defined by

π̃(v)=
∑
(t)

γ−1(t(1))π
(
γ (t(2))v

)
for all v ∈ V,

whereγ :H → A #f H is the map defined byγ (h) = 1 #h. It is easy to check that̃π
is a projection ofV ontoW . We must see that̃π is A-linear andH -linear. The former
assertion can be proved as in [GG, Theorem 5.1]. Let us see the latter one. Letγ̃ denote
the convolution inverseγ−1 of γ . We have
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H V

γ

π̃

=

kt H V

γ̃ γ γ

π

=

kt H V

γ̃

•

γ

π

=

kt H V

γ̃

•

γ

π

=

kt H V

γ̃ γ γ

γ

γ̃

π

=

kt H V

γ

γ γ̃

=

kt H V

γ γ̃ γ

π

,

where the first equality follows from the definition ofπ̃ and the fact thatV is a left
A #f H -module, the second one follows from the definition of the multiplication ofE,
the third from using the fact thatπ is A-linear, the fourth follows from (7) and the fact
thatV is a leftA #f H -module, the fifth from the coassociativity and the fact thatγ̃ is the
convolution inverse ofγ , and the sixth follows from the fact thatc is compatible with the
comultiplication. Since, by Corollary 3.16 and the discussion following Theorem 3.20,

(H ⊗µ⊗µ)(H ⊗∆H⊗cH )(c⊗H)(H ⊗∆)(t ⊗ h)

= h(1)⊗∆(th(2))= h(1)⊗∆
(
tε(h(2))

)= h⊗∆(t)

for all h ∈ H , we obtain thatπ̃(γ (h)v) = γ (h)γ−1(t(1))π(γ (t(2))v) = γ (h)π̃(v) for all
h ∈H , v ∈ V , as desired. ✷

12. Equivalence of crossed products

The purpose of this section is to give necessary and sufficient conditions for two crossed
products to be equivalent. As a consequence we obtain that a crossed productA #f H is
equivalent to one of the formAs

f [H ] iff the action is inner (see Definition 12.5). It will be
convenient to work in the more general context allowingA #f H to be not necessarily an
associative algebra.
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Fix an associative unitaryk-algebraA and a braided bialgebraH . Let s be a transpo-
sition ofH onA, ρ :H ⊗A→ A a map satisfying conditions of Remark 6.2(2)–(4), and
f :H 2→A a normal map compatible withs. LetA #f H be the (not necessarily associa-
tive) unitaryk-algebra, constructed as in Definition 9.6, from the triple(s, ρ,f ). It is easy
to check that:

(1) the mapŝ = (A⊗ τ )(s ⊗ H) :H ⊗ A #f H → A #f H ⊗ H satisfies the properties
required by Definition 4.1;

(2) A#f H is a rightH -comodule viaA⊗∆ :A#f H →A#f H ⊗H and(A#f H)coH=
A;

(3) A ⊗ ∆ :A #f H → A #f H ⊗ŝ H is a homomorphism of unitary algebras, where
A #f H ⊗ŝ H is (A #f H)⊗H with the multiplication twisted bŷs;

(4) A⊗∆ : (A #f H, ŝ)→ (A #f H, ŝ)⊗ (H, c) is a map ofBH .

In fact, it is easy to see that in the proof of Propositions 10.3 and 10.4 the associativity of
A #f H is not used. So, it has sense to say that(A #f H, ŝ) is a not necessarily associative
H -comodule algebra, and that(A⊆A#f H, ŝ) is anH -extension ofA. Finally, the notion
of morphism of generalH -comodule unitary algebras is identical to that in the associative
setting.

Definition 12.1.Fix a Hopf algebraH and an algebraA. Let (s, ρ,f ) and(s′, ρ′, f ′) be
two triples, as above. Let(A ⊆ A #f H, ŝ) and (A ⊆ A #f ′ H, ŝ′) be theH -extensions
associated with(s, ρ,f ) and (s′, ρ′, f ′), respectively. We say that(A ⊆ A #f H, ŝ) and
(A ⊆ A #f ′ H, ŝ′) are equivalent if there is an isomorphism ofH -comodule algebras
g : (A #f H, ŝ)→ (A #f ′ H, ŝ′), which is also anA-linear map.

Remark 12.2.If there is anA-linearH -comodule algebra mapg : (A #f H, ŝ)→ (A #f ′
H, ŝ′), thens = s′. In fact, writes(h⊗ a)=∑i ai ⊗ hi ands′(h⊗ a)=∑i′ ai′ ⊗ hi′ . We
have,∑

i′
ai′ # 1⊗ hi′ = ŝ′(H ⊗ g)(h⊗ a # 1)= (g⊗H)ŝ(h⊗ a # 1)=

∑
i

ai # 1⊗ hi,

where the first and the third equality follow from the fact thatg is anA-linear map and
g(1 # 1) = 1 # 1. In spite of this remark, we will follow using the notationss and s′ to
emphasize the difference betweenŝ andŝ′, which are not equal as transpositions, since the
products ofA #f H andA #f ′ H are different.

Let g :A⊗H → A⊗H be anA-linear andH -colinear map. By the definition of the
coactionν of A⊗H , we have:

g(1⊗ h) = (A⊗ ε ⊗H)νg(1⊗ h)= (A⊗ ε ⊗H)(g⊗H)ν(1⊗ h)

= (A⊗ ε)g(1⊗ h(1))⊗ h(2).
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Hence,g(a ⊗ h) = ag(1⊗ h) = au(h(1))⊗ h(2) for all a ∈ A andh ∈ H , whereu(h) =
(A⊗ ε)g(1⊗ h). This gives a bijective correspondence between the maps fromH to A

and theA-linear andH -colinear maps fromA⊗H toA⊗H . We assert thatg is bijective
iff u is convolution invertible. Moreover, in this case,g−1(a ⊗ h)= au−1(h(1))⊗ h(2) for
all a ∈ A andh ∈ H . In fact, supposeg is invertible. Letv(h) = (A⊗ ε)g−1(1⊗ h). We
have

1⊗ h= g−1g(1⊗ h)= g−1(u(h(1))⊗ h(2)
)= u(h(1))v(h(2))⊗ h(3).

ApplyingA⊗ ε to both sides of this equality, we obtainu(h(1))v(h(2))= ε(h)1. A similar
argument shows thatv(h(1))u(h(2)) = ε(h)1. Sov is the convolution inverse ofu. The
converse is immediate.

In the next theorem we obtain necessary and sufficient conditions onu in order forg to
be a morphism ofH -comodule algebras.

This result, for the case whenH is a standard Hopf algebra and the transposition is the
flip, was independently obtained by Doi [D2] and R.J. Blattner (unpublished).

Theorem 12.3.Let g and u be as in the previous discussion. Theng is a morphism of
H -comodule algebras from(A #f H, ŝ) to (A #f ′ H, ŝ′) iff

(1) u(1)= 1,
(2) (u⊗H)c= s′(H ⊗ u),
(3) µ(A⊗ u)χ = µ(u⊗ ρ′)(∆⊗A),
(4) µ(A⊗ u)F = µ2(ρ ⊗A2)(H ⊗ u⊗ u⊗ f ′)(H ⊗ c⊗H 2)(∆⊗H 2)∆H⊗cH ,

where χ = (ρ ⊗ H)(H ⊗ s)(∆ ⊗ A), F = (f ⊗ µ)∆H⊗cH , and µ :A2 → A is the
multiplication map. Moreover,g is an isomorphism iffu is convolution invertible. In this
case,ρ is a weaks-action andf is a cocycle satisfying the twisted module condition iffρ′
andf ′ respectively are.

Proof. Assume thatg is aH -comodule algebra map. Fromg(1 # 1)= 1 # 1 we obtain that
u(1)= 1, and applyingA⊗ ε ⊗H to the both sides of the equality

(g⊗H)ŝ(h⊗ 1 # l)= ŝ′(H ⊗ g)(h⊗ 1 # l) for all h, l ∈H,

we obtain(u⊗H)c= s′(H ⊗u). Moreover, sinceg((1 #h)(a # 1))= g(1 #h)g(a # 1) and
g((1 #h)(1 # l))= g(1 #h)g(1 #l) for all a ∈A andh, l ∈H , we have

u
= �

u and

F

u
=

u u

�
F ′

, where � = χ ′.
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ApplyingA⊗ ε to these equalities, we obtain condition (3) and the following equality:

µ(A⊗ u)F = µ(µ⊗ f ′)(A⊗ χ ′ ⊗H)(u⊗H ⊗ u⊗H)(∆⊗∆). (4′)

Conversely, suppose conditions (1)–(3) and(4′) are satisfied. From condition (1) we have
g(1 # 1)= 1 # 1 and from condition (2) it follows easily that(g⊗H)ŝ = ŝ′(H ⊗ g). Let

�= ρ′ and � = f ′.

By the compatibility ofs with the comultiplication, the coassociativity, and condition (3),
we get

u
=

u

=
u

=
u

=
u �

= u

�
= �

u ,

and using the coassociativity, the compatibility ofc and s with the comultiplication,
conditions (2) and(4′), and the fact that∆µ= (µ⊗µ)(H ⊗ c⊗H)(∆⊗∆),

F

u
=

•

u

=
•

u

= •

u

= u u

� �

= u u

� �

=
u u

� �

=
u u

� �

=
u u

�

�

=
u u

�
F ′

.
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Using these facts, the associativity ofµA, and the compatibility ofχ ′ with µA, we obtain

F

u

=
F

u
=

u u

�
F ′

=
u u

�
F ′
=

�
u u

�
F ′

=
�

u u

�
F ′
=

u u

�
F ′

,

which proves thatg preserves the multiplication. Since the left sides of the equalities (4)
and (4′) coincide, to finish the proof of the first assertion it suffices to check that if
conditions (1)–(3) hold, then the right sides of (4) and(4′) also coincide. But, by the
coassociativity of∆ and conditions (2) and (3),

u u

�
�

=
u

u

� �
=

u

�

u

= �
u u .

The discussion above shows thatg is an isomorphism iffu is convolution invertible. The
last assertion follows from Theorems 2.3, 6.3, and 9.3 and the fact thatA#f H is associative
iff A #f ′ H is. ✷
Corollary 12.4. Let ρ, ρ′, f , f ′, χ , F , g, andu be as in Theorem12.3. Assume thatu is
convolution invertible,u(1)= 1, (u⊗H)c= s′(H ⊗ u), andρ is a weaks-action. Theng
is an equivalence between(A #f H, ŝ) and(A #f ′ H, ŝ′) iff

(1) ρ′ = µ(µ⊗ u)(u−1⊗ χ)(∆⊗A),
(2) f ′ = µ2(A⊗ ρ ⊗µ)(u−1⊗H ⊗ u−1⊗A⊗ u)(∆⊗H ⊗F )∆H⊗cH .

Proof. It is immediate thatu being convolution invertible, items (3) of Theorem 12.3 and
(1) of the present corollary are equivalent. Hence, we only need to check that item (4)
of the mentioned theorem and item (2) of the present corollary also are. Since the right
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side of the equality in item (4) of the previous theorem is the convolution product of
µ(ρ ⊗ A)(H ⊗ u ⊗ u)(H ⊗ c)(∆ ⊗ H) and f ′ in Homk(H ⊗c H,A), to do this will
be sufficient to prove that the first map is left convolution invertible in Homk(H ⊗c H,A)

with inverseµ(A⊗ ρ)(u−1 ⊗ H ⊗ u−1)(∆ ⊗ H). But, by the coassociativity of∆, the
compatibility of∆ with c, the fact that(u⊗H)c= s′(H ⊗ u), the coassociativity ofµA,
and by Remark 6.2(1)–(2),

ũ ũ u u
=

ũ ũ u u
= ũ ũ u u = ũ ũ u u = (ε ⊗ ε)1A,

whereũ denotes the convolution inverse ofu. ✷
Definition 12.5.A weaks-actionρ :H⊗A→A is inner if there is a convolution invertible
elementu ∈Homk(H,A) satisfying(u⊗H)c= s(H ⊗ u) such that

ρ = µ2(u⊗A⊗ u−1)(H ⊗ s)(∆⊗A), (9)

whereu−1 denotes the inverse ofu.

Let u ∈ Homk(H,A) be a convolution invertible map such that(u⊗H)c= s(H ⊗ u).
Let g :A ⊗ H → A ⊗ H be theA-linear andH -colinear map, defined byg(a ⊗ h) =
au(h(1))⊗ h(2). By the discussion preceeding Theorem 12.3 and its proof,

(u⊗H)c= s(H ⊗ u) ⇐⇒ (g⊗H)ŝ = ŝ′(H ⊗ g)

⇐⇒ (
g−1⊗H

)
ŝ′ = ŝ

(
H ⊗ g−1)

⇐⇒ (
u−1⊗H

)
c= s

(
H ⊗ u−1).

Therefore,u−1 satisfies the equality(u−1⊗H)c= s(H ⊗ u−1). Using this fact it is easy
to check that such a mapu defines a weaks-action by formula (8) iffu(1) belongs to the
centerZ(A) of A. We leave this and the proof of Proposition 12.7 to the reader.

Definition 12.6. Let u,v ∈ Homk(H,A) be convolution invertible maps such that(u ⊗
H)c= s(H ⊗ u), (v⊗H)c= s(H ⊗ v), u(1) ∈ Z(A), andv(1) ∈ Z(A). We say thatu is
equivalent tov and we writeu� v, if u andv induce the same weaks-action ofH onA.



100 J.A. Guccione, J.J. Guccione / Journal of Algebra 261 (2003) 54–101

Proposition 12.7.Letu,v as in Definition12.5. We have

(1) u�w, wherew ∈Homk(H,A) is the maph �→ u(h)u(1)−1,
(2) u� v iff µ2

A(v
−1⊗ u⊗A)(∆⊗A)= µ2

A(A⊗ v−1⊗ u)(A⊗∆)s.

Proposition 12.8.Let s be a transposition ofH on A, ρ :H ⊗ A→ A a weaks-action,
andf :H 2→ A a map. Supposeρ is inner viau ∈ Homk(H,A). Assume thatu(1)= 1.
Letf ′ ∈Homk(H

2,A) be the map given by

f ′ := µ2(A⊗ ρ ⊗µ)
(
u−1⊗H ⊗ u−1⊗A⊗ u

)
(∆⊗H ⊗F )∆H⊗cH ,

whereF = (f ⊗µ)∆H⊗cH . Thenf ′ is a normal cocycle compatible withs, satisfying the
twisted module condition in respect to the trivial action ofH onA, iff f is a normal cocycle
compatible withs, satisfying the twisted module condition in respect toρ. Moreover, in this
case(A #f H, ŝ)� (A

f

s ′ [H ], ŝ′), wheres′ = s. Conversely, if(A #f H, ŝ) � (A
f

s ′ [H ], ŝ′),
thenρ is inner.

Proof. It is immediate thatf ′ is normal ifff is, and a direct computation shows thatf ′ is
compatible withs iff f is. The other assertions follow easily from Corollary 12.4.✷

Let s be a transposition ofH on A. Suppose an inner weaks-action ofH on A is
implemented byu ∈Homk(H,A) with u(1)= 1. Then the mapf :H 2→A defined by

f := (u⊗ u⊗ u−1µ
)
∆H⊗cH

is a normal cocycle compatible withs, satisfying the twisted module condition. We callf

the inner cocycle defined byu. By Proposition 12.8, we obtain thatA #f H �A⊗s H .
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