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INTRODUCTION 

By a well-known theorem due to Kaplansky a commutative ring R is 
von Neumann regular if and only if every simple R module is injective. 
In the noncommutative case neither the necessary nor the sufficient part 
of Kaplansky’s theorem holds as has been shown by C. Faith [6] and 
J. Cozzens [4]. 

This paper is mainly concerned with the determination of the structure 
of a {not necessarily commutative) ring R (with identity) whose simple 
right R moduIes are injective. In Section 2 the main properties of such a ring R 
are stated; some of them were obtained by the second author many years 
ago (cf. 161) without being published. In particular, it is shown that the center 
Z(R) of R is von Neumann regular (Coroilary 2.2 and Lemma 2.3), and that 
the class of rings R considered here is Morita invariant (Theorem 2.5). As 
an application of the results of Section 2 we obtain in Section 3 that the ring R 
is semisimple and artinian if and only if every cyclic semisimple R module 
is injective (Theorem 3.2). This answers an open question of Sandomierski 
and Cateforis [3]. In Section 4 it is shown that the rings R of right Krull- 
dimension at most one, whose simple right R modules are injective, are 
exactly the direct sums of finitely many simple rings Si each of which is 
Morita equivalent to a right hereditary, right noetherian domain Di whose 
torsion modules are injective and completely reducible (Theorem 4.2). 
If R is also left noetherian, then the simple left R modules are injective 
(Corollary 4.4). 
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The last two sections are concerned with the von Neumann regularity 
of rings R satisfying polynomial identities and having the property that the 
simple right R modules are injective. If R satisfies a homomorphic polynomial 
identity, then R is von Neumann regular if and only if every nonzero right 
ideal of every nonzero epimorphic image of R contains a nonzero idempotent 
(Theorem 5.4). Following C. Procesi the ring R is called affine, if each 
epimorphic image of R satisfies a polynomial identity with coefficients 
contained in its center, and if R is finitely generated as a ring over its center 
Z(R). Using sheaves in Section 6 it is shown that the simple right R modules 
of the affine ring R are injective if and only if R is von Neumann regular, 
which again is equivalent to the biregularity of R (Theorem 6.3). If A is 
the group ring of the group G over the affine ring R, and if the simple right 
A modules are injective, then A is von Neumann regular (Corollary 6.8). 
Finally it is remarked that that Theorem 6.3 and Corollary 6.8 do not hold 
in general for rings R which are finitely generated as a ring over their centers 
Z(R), as is easily seen by the examples of Cozzens [4]. 

Concerning our terminology and notations we refer to the books by 
Jacobson [8], Lambek [9] and Pierce [13]. 

2. RINGS WHOSE SIMPLE MODULES AREINJECTIVE 

In this section we give the main properties and characterizations of those 
rings R whose simple (right) R modules are injective. The R module M is 
semisimple, if the intersection of all maximal submodules of M is zero. 

THEOREM 2.1. The following properties of the ring R are equivalent: 

(1) Every simple R module is injective. 

(2) Every R module is semisimple. 

(3) Every cyclic R module is semisimple. 

(4) Every right ideal of R is an intersection of maximal right ideals of R. 

Proof. Let M be a right R module, where R is a ring whose simple 
R modules are injective. If 0 # x EM, then by Zorn’s lemma there is a sub- 
module Y of M which is maximal among the submodules X of M with x $ X. 
Let D denote the intersection of all submodules S of M with S > Y. Then 
x E D, and D/Y # 0 is simple. Therefore M/Y = D/Y @ K/Y, where K 
is a submodule of M. Since x cannot be contained in K, it follows that Y is 
a maximal submodule of M. Hence M is semisimple, because x $ Y. 

Condition (2) trivially implies (3), and it is clear that (4) follows from (3). 
Now let S be a simple R module, and let X be a right ideal of R. If 
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01 E hom,(X, S), and if Y = ker 01, then by (4) there is a maximal right ideal 
M of R such that M 2 Y, but M 2 X. Since X/Y is a simple R module, 
M n X = Y. Therefore 

R/M = (M+ X)/MS X/Mn X = X/Y= S. 

Thus a: can be extended to an R module homomorphism B E hom,(R, S). 
Hence S is injective by [9, p. 881. Th is completes the proof of Theorem 2.1. 

COROLLARY 2.2. If every simple R module is injective, then every right 
ideal X of the ring R is idempotent. 

Proof. Suppose that X2 is different from X, then by Theorem 2.1 there 
is a maximal right ideal M of R such that X2 < M, but X < M. Hence 
1 =x+mforsomexEXandmEM.Thusx=x2+mxEM,and1EM, 
a contradiction! 

The element c E R is right regular, if cx = 0 implies x = 0. A right and 
left regular element is called regular. 

LEMMA 2.3. If every right ideal of the ring R is idempotent, then R has 
the following properties: 

(a) R = RcR for every right regular element c E R. 

(b) The left singular ideal T,(R) = {x E R 1 xI is essential} = 0. 

(c) R/K is a flat left R module for every two-sided ideal K. 

(d) The center Z(R) of R is von Neumann regular. 

Proof. (a) Since CR = cRcR, there are elements ri , si E R such that 
c = Cy=, cricsi . Hence R = RcR, because c is right regular. 

(b) Let x E T,(R). Then xR = xRxR implies the existence of an 
element z E T,(R) such that x = xz. Now z1 is an essential left ideal of R. 
Letv~Rxnz,.Thenv=rxforsomer~R,andO=vz=rx.z=rx=v. 
Hence x = 0. 

(c) Let 0 # x E K. Then again there is a a E K such that x = xx. 
Ify=l-.z,thenanyxy=Oandya=afora=l+KER/K.Hence 
R/K is a flat left R module by Lemma 1 of [16]. 

(d) For each a E Z(R) there is an x E R such that a = axa, because 
aR = aRa. Clearly e = xa = ax = e2, and a = ae = ea. For each b E R 
we have ab - ba = 0. Hence 

a(be - eb) = abe - aeb = abe - bae = (a6 - ba)e = 0. 

Thus be - eb E a, = e, = (1 - e)R, which implies eb = ebe. Similarly it 
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follows that be = eBe. Therefore e E Z(R), and &Z(R) = eZ(R). Hence Z(R) 
is von Neumann regular by [9, p. 671. 

Remark. Since every epimorphic image of a von Neumann regular ring is 
von Neumann regular, Kaplansky’s theorem [15, Theorem 61 mentioned 
in the introduction follows at once from Theorem 2.1, Corollary 2.2 and 
Lemma 2.3(d). 

For later use we now prove the Morita invariance of the equivalent 
properties (l)-(4) of Theorem 2.1. The rings R and S are Morita equivalent, 
if their categories ‘&RR and !IIuls of right modules are equivalent. The ring- 
theoretical property e is Morita invariant, if e is inherited by Morita- 
equivalent rings. 

LEMMA 2.4. Let e # 0 be an idempotent of the ring R such that R = ReR. 
If the simple R modules are inject&e, then also the simple S mod&es are injective, 
where S = eRe. 

Pmof, Suppose that Lemma 2.4 is false. Then by Theorem 2.1 there is 
a right ideal X of S which is not the intersection D of all maximal right 
ideals M of S with M > X. Hence there is an eIement d E D with d 4 X. 
Since R = ReR it follows that XR < DR < eR. By Theorem 2.1 there is 
a maximal R submodule T of eR with d 4 T and XR < T. Thus 

S = eTe -I- dS. 

Again using R = ReR it is easy to see that eTe is a maximal right ideal 
of S = eRe. Since XR < T, it follows that X < eTe, and therefore dS < eTe, 
which implies S = eTe + dS = eTe, a contradiction! 

THEOREM 2.5. If the ring S is cotta equival~t to the ring R, and ;f 
the simple R modules are injective, then also the simple S modarles are injective. 

Proof. Since S is Morita equivalent to R, there exists an integer n and 
an idempotent e = ,a e R, such that S g eR,e and R, = R,eR, , where R, 
denotes the ring of tt x n matrices over R. Thus Lemma 2.4 implies 
Theorem 2.5. 

3. RINGSWHOSESEILPI-SIMPLE ~ODULESAR~INJE~TI~ 

Using Theorem 2.1 in this section we give an affirmative answer to the 
following question by Cateforis and Sandomierski [3]: Is every ring R whose 
semisimple (right) R modules are injective a semisimple, artinian ring ? 
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As is usual the ring R is called a right Goldie ring, if R satisfies the ascending 
chain conditions on annihilator right ideals and on direct sums of nonzero 
right ideals of R. 

LEMMA 3.1. The right Goldie ring R whose right ideals are idempotent 
is a direct sum of finitely many simple rings. 

Proof. Because of Theorem 2.1 the ring R is semisimple. Hence by 
Theorems 3.13 and 6, I of [lo] R is an irredundant subdirect sum of a finite 
number of prime rings Ri(i = 1, 2,..., k) which are also right Goldie rings. 
Each two-sided ideal A # 0 of R, is an essential right ideal of Ii, . By 
Theorem 3.9 of [7], there exists a regular element c of R in A. Hence 
R = RcR < A < R by Lemma 2.3. Since Ri is simple for i = I, 2,..,, K 
it follows that 

THEOREM 3.2. The following conditions of the ring R are equivalent: 

(1) R is semisimple and artinian. 

(2) Every s~isimple R module is ~nje~tive. 

(3) Every cyclic semisimple R module is injective. 

(4) R is a right Goldie ring such that 

(a) Every ~‘rnp~e R module is ~njective, and 

(b) indecomposable injective R modules with the same associated prime 
ideal of R are isomorphic. 

Proof. It is well known that (2) f 11 o ows from (l), and the implication 
(2) -+ (3) is trivial. If (3) holds, then every simple R module 5’ is injective, 
because S is cyclic. Therefore Theorem 2.1 implies that every R module is 
semisimple. Hence every cyclic R module is injective, which implies that R 
is semisimple and artinian by the theorem of Osofsky [12, p. 6491. Thus 
(4) follows from (3). 

If (4) holds, then R is a direct sum of finitely many simple right Goldie 
rings Ri by Lemma 3.1. From (4b) now follows that R, contains a minimal 
right ideal. Hence Ri is a simple ring with minimum condition, and (1) holds. 

Remark. The examples of [4] show that in general condition (4b) of 
Theorem 3.2 cannot be omitted, though it hoIds for all commutative rings. 
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4. STRUCTURE OF RINGS WITH KRULL DIMENSION ONE 

WHOSE SIMPLE MODULES ARE INJECTIVE 

The notion of right Krull dimension was introduced by Gabriel (cf. [l I]). 
The ring R has right Krull dimension K-dim < 1, if each properly descending 
chain 

A, > A, > a-* > A, > A,,, > -I* 

of right ideals Ai of R, such that for each i = I, 2,... the right R module 
A,&, is not artinian, has only finitely many terms. If K-dim R < 1, 
but R is not right artinian, then R has right khll dirne~~~ one. 

LEMMA 4.1. If the simple right R modules of the ring R with right Krull 
dim~sion one are i~jective, then the right singular ideal 

T*(R) = (x E R [ x, essential) = 0. 

Proof. Assume that there is an element 0 # x E T,.(R), Then by Corollary 
2.2 there exists a x E T;(R) such that x = XX. Clearly z is not nilpotent, and 
(z$ < x, for all integers n > 1. Suppose that x,jzr is an artinian right 
R module, then it is a direct sum of finitely many simple right R modules, 
because it is semisimple by Theorem 2.1. Hence the ascending chain 

2, < W)r Q *** < (,+ < (s-$. < *” 

becomes stationary. Thus (z?), = (x~~)+ for some k. It follows that 
zkR n (zk), = 0, which is a contradiction. Hence X,/X, is not artinian. 

By induction, we therefore obtain an infinite sequence of elements 
0 # xi E T,(R), such that x1 = X, xz = z, xi = x++~+~ , and (x~+~)J(x&. is 
is not an artinian right R module for all i = 1,2, 3,... . But then R has Krull 
dimension greater than one, a contradiction! Hence T,.(R) = 0. 

Following A. W. Goldie the (right) R module M is called a torsion module, 
if M = T(M), where T(M) = ( m E M / m, = {y E R 1 my = O> is an essential 
right ideal of Ii>. 

THEOREM 4.2. The ring R is a r&g with r&ht Krull dimension at most 
oze whose simple right R modules are injkctive if and only if R is a direct sum 
of finitely many simple rings Si each of which is Morikz equivaleent to a. right 
h~editury, right ~oeth~i~, simple domain Di whose torsion rn~d~~es are 
completely reducible and injective. 

Proof. If R is a direct sum X:=1 @ S, of simple rings S, , each of which 
is Morita equivalent to a simple domain L), having the properties stated in 
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Theorem 4.2, then R is a semiprime right noetherian right hereditary ring. 
In order to prove that K-dim R < 1 it suffices to show by Hilfsatz 2.1 of 
[ll] that R/E is an artinian right R module for every essential right ideal 
E of R. Since R is right noetherian, we may assume that E is irreducible. 
Hence R/E is an indecomposabIe torsion R module. Thus R/E is simple, 
because it is completely reducible. Therefore K-dim R < 1. 

If D,(i = 1, 2,..., k) is not a division ring, then each simple right Di module 
is a torsion module. Hence it is injective. If DC is a division ring, then any 
right f)+ module is injective. Therefore Theorem 2.5 implies that every 
simple right R module is injective. 

Conversely, if K-dim R = I, and if the simple right R modules are 
injcctive, then the right singular ideal T,(R) of R is zero by Lemma 4.1. 
Furthermore, R is right finite Dimensions in the sense of Goldie [7] by 
the proof of Hilfsatz 2.1 of 1111. Therefore R is a right Goldie ring by 
[9, pp. 106 and 1081. Hence Lemma 3.1 applies, and R is a direct sum 
of finitely many simple rings having the same properties as R. Thus we may 
assume that R is simple. 

In order to prove that R is right noetherian, it suffices to show that each 
essential right ideal E of R is finitely generated, because by Zorn’s lemma 
each right ideal X of R is a direct summand of an essential right ideal. Since 
R is a right Goldie prime ring, E contains a regular element c of R by 
Theorem 3.9 of [7]. By Hilfsatz 2.1 of [ll] the right R module R/CR is 
artinian, because CR is an essential right ideal. Since R/CR is semisimple by 
Theorem 2. I, it follows that R/CR is a direct sum of finitely many simple right 
R modules. Hence E/CR < R/CR is finitely generated, and R is right 
noetherian. 

If the right R module A4 # 0 is torsion, then for every 0 + m E M there is 
an essential right ideal E of R such that mR s R/E. Therefore mR is a direct 
sum of finitely many simple injective right R modules by Theorem 2.1 and 
[l 1, Hilfsatz 2.11. Since R is right noetherian, it follows that .M is completely 
reducible and injective. Thus each torsion right R module is injective. 

The ring R is right hereditary if and only if each epimorphic image of 
an injective right R moduIe Q is injective. Let 0 # U be a submodule of Q, 
and let V be the injective envelope of U in Q. Then Q/U is injective, if V/U 
is injective. Since T,(R) = 0 by Lemma 4.1, the right R module V/U is 
torsion by [6, p. ZS]. Thus VjlJ is injective, and R is right hereditary. As R 
is simple an easy application of the Morita theorems now shows that R is 
Morita equivalent to a simple right hereditary, right noetherian domain D 
with K-dim D < 1. Since the simple right D modules are injective by 
Theorem 2.5, it follows from the last paragraph that every torsion right 
D module is injective and completely reducible. This completes the proof 
of Theorem 4.2. 
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Remark 4.3. By a theorem due to Cateforis and Sandomierski [3] a 
commutative ring R whose torsion modules are injective is a semihereditary 
ring with finitely many essential ideals. But a noncommutative ring R 
whose torsion modules are injective in general has infinitely many essential 
right ideals as is easily seen by Theorem 4.2 and the examples given by 
Cozzens [4]. 

COROLLARY 4.4. The following properties of the ring R are equivalent: 

(1) R is a left noetherian ring with right Krull dimension at most one 
whose simple right R modules are injective. 

(2) R is a right noetheriun ring with left Krull dimension at most one 
whose simple left R modules are injective. 

(3) R is a right and left noeth~ian hereditary ring whose one-sided 
simple R modules are injective. 

Proof. Since a right and left noetherian hereditary ring has right and 
left Kruil dimension at most one by Theorem 4 of Webber [17] and Hilfsatz 
2.1 of [ll], it s&ices to show that (1) implies (2). By Theorem 4.2 R is right 
hereditary. As R is also left noetherian a well-known theorem due to 
M. Ausfander implies that R is also left hereditary. Thus R has left Krull 
dimension at most one. Therefore by Theorem 2.1 it remains to show that 
each left ideal X of I? is an intersection of maximal left ideals of R. Because 
of Theorems 4.2 and 2.5 we may assume that R is a simpIe domain. Thus 0 
is an intersection of maximal left ideals. If X f 0, then X is an essential left 
ideal. Let X* = hom,(X, R), and let Q be the quotient division ring of R. 
Then X* = (y E Q j Xy < Rj, because Q is the injective hull of R. Hence 
X*/R is a finitely generated, torsion right R module. Thus by Theorem 4.2 
it is completely reducible, i.e., there are k < co submodules R < Si < X* 
of X* such that 

where each SJR is simple and injective. Since X* is finitely generated and 
projective, and since R is noetherian and hereditary, each right R module 
S, is finitely generated and projective. Let Mi = homa(Si , R) for all i. 
Then M6* = S, , and R > iV$ > X, because X and S, are reflexive. 
Furthermore, Iw, is a maximal Ieft ideal of R, because SJR is simple. It is 
now easy to see that X = &, Mi , because X* = ~~zl Si . This completes 
the proof of Corollary 4.4. 

Remark 4.5. Corollary 4.4 suggests the following question: Is every 
simple left R module injective, if every simple right R module is injective ? 
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Without any restrictions on R this question has a negative answer. One 
counterexample is the following von Neumann regular ring R (cf. also 
[6], p. 130): Let I/ be an infinite-dimensional right vector space over the 
field K. Let S be the socle of E = horn&V, V), and let R be the subring of E 
generated by S and the center K of E. Then V is a simple left R module. 
If V* = hom,(V, K) and if V** = hom,(V*, K), then V < V**, because 
V is infinite dimensional over K. Since the left R module V** is an essential 
extension of V, the simple left R module I’ is not injective. 

As R is von Neumann regular, the field K is a flat left R module. Hence 
V* = hom,( V, K) and K are injective right R modules by Cartan-Eilenberg 
[2, p. 123, Example lo]. Since it is well known that (up to isomorphisms) I’* 
and K are the only simple right R modules, it follows that every simple right 
R module is injective. 

5. RINGS WITHPOLYNOMIAL IDENTITIES WHOSE 

SIMPLE MODULES ARE INJECTIVE 

In this section we give necessary and sufficient conditions for the von 
Neumann regularity of rings with polynomial identities whose simple modules 
are injective. 

Let J2 be a set of endomorphisms of the additive group R+ of the ring R 
containing 1 and -w whenever w f Q such that 

W@Y> = @WY = +JY) forall WEQ and x,y~R. 

Let X = fXj 1 j 6 1, I some index set] be a set of noncommutative indeter- 
minates, and consider the polynomials 

PLq = P(X, 9 x2 ,***, x?J = c W(i) &,Xi2... rrin 

with coefficients ~(~1 E Q, where all monomials Xi,Xi ,.. Xti are different. 
Then by Amitsur [I, p. 4707 the ring R sutisjies a no~tri~~EgenRernEp*~~orniaZ 
identity, if there exists a polynomial p[X] E fz[X] such that 

for all ri E R, and 

for some coefficient w(~) of p[X]. 
It is clear that D induces linear mappings in each epimorphic image of R. 

If the polynomial p[q is nontrivially satisfied by all epimo~hic images of 
R, then R is a ring satisfying a homomorphic polynomial identity. Clearly 
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each standard identity is a homomorphic polynomial identity. If the simple 
right R modules are injective, then also the converse is true by 

PROPOSITION 5.1. If the simple right R modules are injective, the-n R 
s~t~s~es a komomorph~~ poly~rn~u~ ~d~tity if and only ;f R satis$es a sta~~rd 
identity. 

Proof. We may assume that R satisfies a homomorphic identity. Since 
the simple right R modules are injective, R is semiprimitive by Theorem 2.1. 
Hence A is a subring of a direct product of primitive rings RN satisfying 
p[XCJ By Kaplansky’s theorem R, is a central simple algebra of dimension 
c < id2 over its center C, , where d is the degree of p[X]. By Proposition 1 
of [S, p. 2271 there is then an integer K such that each ring R, satisfies the 
standard identity of degree k. Thus R satisfies a standard identity. 

LEMMA 5.2. If R is a prime ring satisfprzg a nontrivial po~norni~~ identity 
of minimal degree d such that each right ideal of R is idempotent then R is 
aJinite-dimensional, central simple algebra over its center C, and [R : CJ = &d2. 

ProoJ By Theorem 7 of Amitsur [l] R has a classical ring of quotients Q 
which is a central simple algebra over its center C of dimension id2 over C. 
Let c be a nonzero divisor of R. Then CR is an essential right ideal of R. 
Hence by Theorem 9 of Amitsur [l] there is a nonzero two-sided ideal X 
contained in CR. Therefore 

by Lemma 3.1, and c is a unit in R. Thus R = Q. 

Remark 5.3. The following results and notations from Pierce [13] will be 
used throughout the rest of the paper. Let B(R) be the Boolean algebra 
of all central idempotents of R(cf. [13, p. 41). For each maximal ideal M of 
B(R) let iGi; = MR = (er 1 e E M, r f R). Equipped with the hull-kernel 
topology the set X(R) of all maximal ideals of B(R) is a totally disconnected, 
compact, Hausdorff space. Let 

Then in [13, p- 161 it is shown that %(R) can be topologized such that S(R) 
becomes a reduced sheaf of rings over the Boolean space X(R). Fu~he~ore, 
by Theorem 4.4 of Pierce [13], R is isomorphic to the ring r@(R), S(R)) of 
all sections of R(R) over x(R). Therefore, by Proposition 3.4 of Pierce [13], 
the ring R is von Neumann regular, if each ring R/A%? with ME X(R) is von 
Neumann regular. 
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For the proof and the statement of the next result we repeat the following 
(well-known) definitions. The right ideal X of R is potent, if it is not a nilideal. 
By Jacobson [S, p. 2101 the ring R is an I ring, if each potent right ideal 
of R contains an idempotent x # 0. 

LEMMA 5.4. Let R be a ring satisfying a homomorphic polynomial identity 
such that the simple R modules are injective. If each epimorphic image of R is 
an I ring, and if R does not contain nilpotent elements x # 0, then R is von 
Neumann regular. 

Proof. By Theorem 2.1 each epimorphic image of R is semisimple. Let 
p[X] be a homomorphic polynomial identity satisfied by R, and let n be its 
degree. Let ME X(R), and let i? = R/M. If P is a prime ideal of i?, then i?jP 
is a central simple algebra over its center C of dimension [R/P: C] = t2 by 
Lemma 5.2, where t is a positive integer less or equal to n. Therefore zct = 0 
for all nilpotent elements x E a/P. Clearly x” = 0. Since n is independent 
of the prime ideal P of R, the ring i? is an I ring having the property that 
R/P is of bounded index for every primitive ideal P of i?. By Theorem 2.1 
the ring 2 is semiprimitive. Thus by Theorem 3 of [8, p. 2391 every nonzero 
two-sided ideal B of i? contains a central idempotent eM # 0 of f7. Since 
S(R) is a sheaf over the Boolean space X(R), there is an open and closed 
neighborhood !R of M in X(R) and a section 7 E r(!R, S(R)) such that 
T(M) = eM and (T” - T)(Q) = 0, = 0 + QR E R/Q for all Q E %(cf. [13, 
Lemma 3.2, p. Ill). Define u E F@(R), ‘S(R)) by u(X) = T(X) for all 
X E !R and u(X) = 0, for all X E X(R) - ‘R Then u = u2. Since 
I’@(R), S(R)) z R, and since R does not contain nilpotent elements x # 0, 
it follows that u is a central idempotent of &X(R), g(R)) such that u(M) = 
eM Lf 0. As 93(R) is a reduced sheaf of rings over X(R), it follows that 
u(M) = eM is the identity of w = R/MR (cf. [13, p. 151). Therefore B = R 
and i? is simple. By Lemma 5.2 a is then a central simple algebra over its 
center. Thus E is von Neumann regular. This completes the proof of Lemma 
5.4. 

THEOREM 5.5. Let R be a ring satisfying a homomorphic polynomial 
identity such that the simple R modules are injective. 

Then R is von Neumann regular if and only if every epimorphic image of R 
is an I ring. 

Proof. Clearly each epimorphic image of a von Neumann regular ring 
is an I ring. Therefore it remains to prove the sufficiency of the condition. 

Suppose that R is not von Neumann regular. An easy application of 
Zorn’s lemma shows that the sum T(R) of all two-sided ideals K of R which 
are von Neumann regular as a ring is a von Neumann regular ring, and that 
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T(R/T(R)) = 0. Clearly, R # T(R). By Theorem 2.1 the simple right 
R/T(R) modules are also injective. Hence we may assume that T(R) = 0. 

By Theorem 2.1 and Lemma 4.1 the ring R is a semiprimitive I ring 
having the property that R/P is of bounded index for every primitive idea1 
P of R. Therefore by Theorem 3 of [S, p. 2391 every nonzero ideal B of R 
contains a two-sided ideal C # 0 generated by a central idempotent e # 0 
of R such that C is isomorphic to a ring of n x n matrices over a ring D 
without nilpotent elements. Since R = C @ (1 - e)R each simple C module 
is injective, and each epimorphic image of C is an I ring. By Proposition 1 of 
[S, p. 401 each idea1 of C is a ring of n x n matrices over an ideal of D. 
Therefore every epimorphic image of D is an f ring by [8, p. 21 I]. Since D 
is Morita equivalent to C, the simple D modules are aiso injective by Theorem 
2.5. As R = C @ (I - e)R, the ring C satisfies a homomorphic polynomi~ 
identity, say p[X] with degree less or equal to d, where d is an even integer. 
Because of the semisimplicity of C it follows by application of Lemma 5.2 
that C satisfies a standard identity of degree less or equal to d (cf. [I, p. 4781). 
Hence also D satisfies a homomorphic polynomial identity therefore D is 
von Neumann regular by Lemma 5.4. Thus the nonzero ideal C of R is 
von Neumann regular. This is a contradiction, because T(R) = 0. Hence 
Theorem 5.5 holds. 

COROLLARY 5.6. A rr-regular ring R satisfring a honeomorphic polynomial 
identity such that the simple R modules are inj.ective is von Neumann regular. 

Proof. The proof follows at once from Theorem 4.3 and Proposition 1 of 
Jacobson [8, p. 2101. 

6. AFFINE RINGS WHOSE SIMPLE MOD~LESA~E INJECTIVE 

The ring R is finitely generated as a ring over its center Z(R), if R is an 
epimorphic image of a free (noncommutative) ring over Z(R) generated by 
finitely many indeterminates X1 , Xs ,.,., X, which only commute with the 
elements of Z(R). Following C. Procesi the ring R is called an a&e ring, 
if R is finitely generated over its center Z(R), and if every epimorphic image 
of R satisfies a polynomial identity with coefficients contained in its center. 
It is well known that each ring R which is finitely generated as a module over 
its center is an affine ring. In this section Kaplansky’s theorem mentioned 
in the introduction is generalized for affine rings. 

With the notations of Remark 5.3 the following statement holds. 

LEMMA 6.1. Let R be an afine ring. Then RIM is an indecomposable ring 
for every maximal ideal M of B(R). 
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Proof. Suppose R/M is not indecomposable for some ME X(R). Then 
there is a nonzero central idempotent eM E R/M. Let eM = a + M. If 
jr, fi ,..., fn are the generators of the ring R over its center Z(R), then 
a. - u2 E ik?, and afi -f,a E Mfor i = 1,2 ,..., n. Since R E F = I”(X(R), S(R)), 
the ring ris finitely generated as a ring over its center A. Let cpi , i = 1,2,..., n 
be the corresponding generators. Since S(R) is a sheaf over the BooIean 
space X(R), by Lemma 3.2 of [13] there is an open neighborhood ‘$I of M 
in X(R) and a section r G I’(%, S(R)) such that for all Q E % 

(1) (T - TV> = 0, == 0 + p E R/Q, 

(2) (qi - ANT) = 0, = 0 + Q E RIP. 

Define (T E I’@(R), g(R)) by o(X) = T(X) for all X E !R, and u(X) = 0, 
for all X E X(R) - %. Then u2 = 0, and cpio = a~~ for i = 1, 2 ,..., n by 
Proposition 3.4 of [13]. Thus 0 E B(r(X(R), S(R)). Since ‘%(I?) is a reduced 
sheaf over I(R), it follows from Pierce 113, p. 151 that 

0 # eM =I: T(M) = u(M) .= 1 + Z, 

a contradiction. Therefore Lemma 6.1 holds. 

LEMMA 6.2. Let R be an a&e ring such that the right ideals of every 

ep~~o~ph~c image of R are ~de~pot~t. Thea R is bi~egula~. 

Proof. Let M be a maximal ideal of the Boolean algebra l?(R) of central 
idempotents of R. Then using the notations of Remark 5.3 the ring i? = R/R 
is indecomposable by Lemma 6. I. Since each right ideal of R is idempotent, 
its center C is von Neumann regular by Lemma 2.3. Hence C is a field. 
As R is finitely generated as a ring over its center Z(R), and as 
(Z(R) + IV)/= < C, the ring R is finitely generated over C. Let P be a prime 
ideal of i?. Then R’ = w/P is a prime ring satisfying a nontrivial polynomial 
identity such that each right ideal of R’ is idempotent. Thus by Lemma 5.2 
R’ is a simple ring with minimum condition on right and left ideals. Therefore 
Theorem 1 of Procesi [14] appl’ les, and B is right artinian. Since R is semi- 
primitive and indecomposable, it follows that R = R/iv is simple for every 
maximal ideal M of Z?(R). Hence S(R) is a sheaf of simple rings over the 
Boolean space X(R). Thus R is biregular by Remark 5.3 and the theorem of 
Dauns and Hofmann [5]. 

THEOREM 6.3. The fo~~o~~n~ pretties of the ache ring R are equiva~~t~ 

(1) Every simple right R module is injective. 

(2) R is van Neumann regular. 
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(3) R is bireguEar. 

(4) R is isomorphic to the ring I’(& 93) of all sections of a sheaf $I of 
central simple finite-dimensional algebras over a totally disconnected, compact, 
Hausdorfs’ space. 

(5) Every simple left R module is injective. 

Proof. Since (3) is symmetric in both sides, it remains to prove the equiv- 
alence of the first four statements. 

If (4) holds, then R is von Neumann reguIar by Remark 5.3. In case R 
satisfies (2), then Lemma 6.2 applies, and R is biregular. Suppose that (3) 
holds. Then by the theorem of Dauns and Hofmann [SJ R is isomorphic 
to the ring r(X, %) of all sections of a sheaf % of simple rings R, , x E X, 
over a totally disconnected, compact Hausdorff space X. Since R is affine, 
the simple ring R, satisfies a nontrivial polynomial identity, Hence R, is 
a central simple finite-dimensional algebra by Theorems 7 and 9 of [l]. 
Therefore (2), (3) and (4) are equivalent. 

If (1) holds, then every right ideal of every epimorphic image of R is 
idempotent by Theorem 2.1 and Corollary 2.2. Therefore R is biregular 
by Lemma 6.2. Thus it remains to show that (2) implies (1). 

Let M be a simple right R module of the affine, von Neumann regular 
ring R, and let P = (x E R / MX = 03. Then P is prime ideal of R, and R/P 
is a von Neumann regular prime ring satisfying a polynomial identity. Hence 
R/P is simple and right artinian by Theorems 7 and 9 of [l], and P is maximal. 
By Lemma 2.3 the center Z(R) of R is a von Neumann regular ring, Therefore 
Q = P n Z(R) is a maximal ideal of Z(R). Thus S = Z(R) - Q is a 
multiplicatively closed set contained in the center of R. Hence RS = 
{IS-~ 1 Y E R, s E S} is a ring, and V = {x E R 1 xs = 0 for some s E S} is a 
two-sided ideal of R. By the equivalence of (2) and (3), the ring R is biregular. 
Thus for every 0 # p E P there is an idempotent 0 # e E Q such that p =I: er 
for some Y E R. Since s = 1 - e E S, and since ps = res = re( 1 - e) = 0, it 
follows that P < V. As P is maximal, and as Y # R, we obtain P = V. 
Furthermore, every s E S is a unit modulo V. Hence R, = R/P is simple 
and right artinian. 

We now can employ an argument due to Rosenberg and Zelinsky [15]. Let 
E be the injective hull of the right R module M, and let s E S. Then Es is 
a right R module contained in E. If T = (e E E 1 es = O> # 0, then 
0 # 3” n M = M < T, because T is a right R module, and E is an essential 
extension of the simple module M. Thus s E P, a contradiction! Therefore 
Es g E, and Es is injective. Since E is indecomposable, it follows that E = ES 
for every s E S. Therefore E is a right R, module, so is M. As E is an essential 
extension of the right R module M, E is an essentia1 extension of the right 
R, module M. Since RS is simple and right artinian, M is an injective right 
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R, module. Hence E = M, and M is injective. This completes the proof of 
Theorem 6.3. 

Remark. Theorem 6.3 does not hold for arbitrary rings which are finitely 
generated (as a ring) over their centers, because the examples constructed 
by Cozzens are finitely generated over their center. 

COROLLARY 6.4. If R is $nitely generated as a module over its center, 
then the simple right R modules are injective if and only if R is von Neumann 
regular. 

Proof. Since R satisfies a standard identity, Corollary 6.4 follows at once 
from Theorem 6.3. 

LEMMA 6.5. Let A be the group ring RG of the group G over the ring R. 
Let COG be the augmentation ideal of A. Then R z AjwG is a flat left A module 
if and only if the following conditions hold: 

(a) G is locally $nite. 

(b) The order n of every element g E G is a unit of R. 

Proof. If R and G satisfy the conditions (a) and (b), then R is a flat left 
A module by Villamayor [16, p. 9491. 

Conversely, if R g A/wG is a flat left A module, then (a) and (b) hold 
by Lemmas 1 and 4 of Villamayor [16]. 

COROLLARY 6.6. Let A be the group ring RG of the group G over the ring R. 
If every simple right A module is inje~tive, then A is von Neumann regular ;f 
and only if R is von Neumann regular. 

Proof. By Corollary 2.2 and Lemma 2.3 the left A module R g AjwG 
is flat. Hence Corollary 6.6 follows from Lemma 6.5 and Proposition 2 of 
[9, p. 1551. 

COROLLARY 6.7. The simple right A modules of the group ring A = RG 
of the fiaite group G over the ring R are injective ;f and only if the order n of G 
is a unit in R and every simple right R module is injective. 

Proof, If every simple right A module is injective, then every simple 
right R module is injective by Theorem 2.1. Furthermore, n = ] G 1 is a unit 
in R by Lemmas 6.5 and 2.3. 

Conversely, let M be a simple right A module. Then M is a finitely 
generated right R module. By Zorn’s lemma M contains a maxima1 R sub- 
module I/. Let N = fiQEG Vg. Then N is a proper A submodule of M. 
Hence N = 0, and the right R module M is isomorphic to a direct summand 



200 MICHLER AND VILLAMAYOR 

of the completely reducible right R module X = CgEc @ M/Vg. Since every 
simple right R module is injective, X is an injective right R module. Let 
0 -+ P --f Q be an exact sequence of right A modules, and let T E hom,(P, M). 
Then there is a # E hom,(Q, M) with #(p) = v(p) for every p E P, because 
MR is injective. If for every 4 EQ 

then $ E hom,(Q, M), and q(p) = y(p) for every p E P. Thus M is an 
injective right A module. 

COROLLARY 6.8. If the simple right A modules of the group ring A = RG 
of the group G over the a#ne ring R are injective, then A is van Neumann 
regular. 

Proof. By Theorem 2.1 the simple right R modules are injective. Hence R 
is von Neumann regular by Theorem 6.3. Therefore A is von Neumann 
regular by Corollary 6.6. 

REFERENCES 

1. S. A. AMITSUR, Prime rings having polynomial identities with arbitrary coefficients, 
Proc. London Math. Sot. 17 (1967), 47Cb486. 

2. H. CARTAN AND S. EILENBERG, “Homological Algebra,“Princeton University Press, 
Princeton, 1956. 

3. V. C. CATFSORIS AND F. L. SANDOMIERSKI, On commutative rings over which the 
singular submodule is a direct summand for every module, Pacific J. Math. 31 
(1969), 289-292. 

4. J. H. COZZENS, Homological properties of the ring of differential polynomials, 
Bull. Amer. Math. Sot. 76 (1970), 75-79. 

5. J. DAUNS AND K. H. HOFMANN, The representation of biregular rings by sheaves, 
Math. Z. 91 (1966), 103-123. 

6. C. FAITH, “Lectures on Injective Modules and Quotient Rings,” Lecture Notes 
in Mathematics, Vol. 49, Springer-Verlag, Heidelberg, 1967. 

7. A. W. GOLDIE, Semi-prime rings with maximum conditions Proc. London Math. 
Sot. 10 (1960), 201-220. 

8. N. JACOBSON, Structure of rings, Amer. Math. Sot. Colloq. Publ. 37 (1964). 
9. J. LAMBEK, “Lecture on Rings and Modules,” Blaisdell Publishing Co., Waltham, 

1966. 
10. L. LEVY, Unique subdirect sums of prime rings, Trans. Amer. Math. Sot. 106 

(1963), 64-76. 
11. G. MICHLER, Primringe mit Krull-Dimension Eins, J. Reine Angew. Math. 

239/240 (1970), 366-381. 
12. B. L. OSOFSKY, Rings all of whose finitely generated modules are injective, Pacific 

J. Math. 14 (1964), 654-650. 



RINGS WHOSE SIMPLE MODULES ARE INJECTIVE 201 

13. R. S. PIERCE, Modules over commutative regular rings, Mem. Amer. Math. Sot. 
70 (1967). 

14. C. PROCESI, Sugli anelli non commutativi zero dimensionali con identita polinomiale 
Rend. Circ. Mat. Palermo 18 (1968), 5-12. 

15. A. ROSENBERG AND D. ZELINSKY, Finiteness of the inject& hull., Math. Z. 80 
(1959), 372-380. 

16. O.E. VILLAMAYOR, On weak dimension of algebras, Pacific J. Math. (1959), 
941-951. 

17. D. B. WEBBER, Ideals and modules of simple noetherian hereditary rings, J. 
Algebra 16 (1970), 239-242. 

Printed in Belgium 


