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INTRODUCTION

By a well-known theorem due to Kaplansky a commutative ring R is
von Neumann regular if and only if every simple R module is injective.
In the noncommutative case neither the necessary nor the sufficient part
of Kaplansky’s theorem holds as has been shown by C. Faith [6] and
J. Cozzens [4].

This paper is mainly concerned with the determination of the structure
of a (not necessarily commutative) ring R (with identity) whose simple
right R modules are injective. In Section 2 the main properties of such a ring R
are stated; some of them were obtained by the second author many years
ago {cf. [6]) without being published. In particular, it is shown that the center
Z(R) of R is von Neumann regular (Corollary 2.2 and Lemma 2.3), and that
the class of rings R considered here is Morita invariant (Theorem 2.5). As
an application of the results of Section 2 we obtain in Section 3 that the ring R
is semisimple and artinian if and only if every cyclic semisimple R module
is injective (Theorem 3.2). This answers an open question of Sandomierski
and Cateforis [3]. In Section 4 it is shown that the rings R of right Krull-
dimension at most one, whose simple right R modules are injective, are
exactly the direct sums of finitely many simple rings S; each of which is
Morita equivalent to a right hereditary, right noetherian domain D, whose
torsion modules are injective and completely reducible (Theorem 4.2).
If R is also left noetherian, then the simple left R modules are injective
{Corollary 4.4).
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The last two sections are concerned with the von Neumann regularity
of rings R satisfying polynomial identities and having the property that the
simple right R modules are injective. If R satisfies a homomorphic polynomial
identity, then R is von Neumann regular if and only if every nonzero right
ideal of every nonzero epimorphic image of R contains a nonzero idempotent
(Theorem 5.4). Following C. Procesi the ring R is called affine, if each
epimorphic image of R satisfies a polynomial identity with coefficients
contained in its center, and if R is finitely generated as a ring over its center
Z(R). Using sheaves in Section 6 it is shown that the simple right R modules
of the affine ring R are injective if and only if R is von Neumann regular,
which again is equivalent to the biregularity of R (Theorem 6.3). If 4 is
the group ring of the group G over the affine ring R, and if the simple right
A modules are injective, then 4 is von Neumann regular (Corollary 6.8).
Finally it is remarked that that Theorem 6.3 and Corollary 6.8 do not hold
in general for rings R which are finitely generated as a ring over their centers
Z(R), as is easily seen by the examples of Cozzens [4].

Concerning our terminology and notations we refer to the books by
Jacobson [8], Lambek [9] and Pierce [13].

2. RiNGs WHOSE SIMPLE MODULES ARE INJECTIVE

In this section we give the main properties and characterizations of those
rings R whose simple (right) R modules are injective. The R module M is
semisimple, if the intersection of all maximal submodules of M is zero.

Tueorem 2.1, The following properties of the ring R are equivalent:

(1) Every simple R module is injective.

(2) Every R module is semisimple.

(3) Ewery cyclic R module is semisimple.

(4) Fuwery right ideal of R is an intersection of maximal right ideals of R.

Proof. Let M be a right R module, where R is a ring whose simple
R modules are injective. If 0 :£ x € M, then by Zorn’s lemma there is a sub-
module ¥ of M which is maximal among the submodules X of M with x ¢ X.
Let D denote the intersection of all submodules S of M with S > Y. Then
xe D, and DY +# 0 is simple. Therefore M|Y = D|/Y @ K/Y, where K
is a submodule of M. Since x cannot be contained in X, it follows that Y is
a maximal submodule of M. Hence M is semisimple, because x ¢ Y.

Condition (2) trivially implies (3), and it is clear that (4) follows from (3).
Now let S be a simple R module, and let X be a right ideal of R. If
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a € homg(X, S), and if Y = ker «, then by (4) there is a maximal right ideal
M of R such that M > Y, but M } X. Since X/Y is a simple R module,
M N X =Y. Therefore

RIM = (M+ X)) M XIMN X = X|Y =~ 8.

Thus « can be extended to an R module homomorphism & € homg(R, S).
Hence S is injective by [9, p. 88]. This completes the proof of Theorem 2.1.

CoroLLARY 2.2. If every simple R module is injective, then every right
ideal X of the ring R is idempotent.

Proof. Suppose that X? is different from X, then by Theorem 2.1 there
is a maximal right ideal M of R such that X2 <{ M, but X { M. Hence
l=x-+mforsomexeXandme M. Thus x = x2 - mxe M, and 1 € M,
a contradiction!

The element ¢ € R is right regular, if cx = 0 implies x = 0. A right and
left regular element is called regular.

Lemma 2.3, If every right ideal of the ring R is idempotent, then R has
the following properties:
() R = RcR for every right regular element c € R.
(b) The left singular ideal T(R) = {x € R | x; is essential} = 0.
(¢) R/K is a flat left R module for every two-sided ideal K.
(d) The center Z(R) of R is von Neumann regular.

Proof. (a) Since cR = cRcR, there are elements 7;, s; € R such that
¢ =Y, crics; . Hence R = ReR, because ¢ is right regular.

(b) Let xe TWR). Then xR = xRxR implies the existence of an
element z e T}(R) such that ¥ = x2. Now 2; is an essential left ideal of R.
Letve Re N z;. Then v = rx forsomer € R, and 0 = vz = rxz = rx = 0.
Hence x = 0.

(¢) Let O xe K. Then again there is a 2 € K such that x = x2.
If y=1— 2, then any xy = 0 and ya = a for a =1 + K € R/K. Hence
R/K is a flat left R module by Lemma 1 of [16].

(d) For each a € Z(R) there is an x € R such that a = axa, because
aR = aRa. Clearly ¢ = xa = ax = ¢?, and a = ae = ea. For each be R
we have ab — ba = 0. Hence

a(be — eb) = abe — aeb = abe — bae = (ab — ba)e = 0.

Thus be — ebea, = e, = (1 — e)R, which implies eb = ebe. Similarly it
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follows that be = ebe. Therefore ¢ € Z(R), and aZ(R) = eZ(R). Hence Z(R)
is von Neumann regular by [9, p. 67].

Remark. Since every epimorphic image of a von Neumann regular ring is
von Neumann regular, Kaplansky’s theorem [15, Theorem 6] mentioned
in the introduction follows at once from Theorem 2.1, Corollary 2.2 and
Lemma 2.3(d).

For later use we now prove the Morita invariance of the equivalent
properties (1}-(4) of Theorem 2.1. The rings R and § are Morita equivalent,
if their categories Mz and M of right modules are equivalent. The ring-
theoretical property ¢ is Morita invariant, if ¢ is inherited by Morita-
equivalent rings.

LevMa 2.4, Let e 7 0 be an idempotent of the ring R such that R = ReR.
If the simple R modules are injective, then also the simple S modules are injective,
where S = eRe.

Proof. Suppose that Lemma 2.4 is false. Then by Theorem 2.1 there is
a right ideal X of S which is not the intersection D of all maximal right
ideals M of S with M > X. Hence there is an element de D with d¢ X,
Since R = ReR it follows that XR < DR < eR. By Theorem 2.1 there is
a maximal R submodule T of eR with d ¢ T and XR << T. Thus

S = eTe - dS.

Again using R = ReR it is easy to see that eTe is a maximal right ideal
of S = eRe. Since XR < T, it follows that X <{ eTe, and therefore dS < eTe,
which implies § = eTe + dS = eTe, a contradiction!

THEOREM 2.5. If the ring S is Morita equivalent to the ring R, and if
the simple R modules are injective, then also the simple S modules are injective.

Proof. Since S is Morita equivalent to R, there exists an integer # and
an idempotent e = e? € R, such that S =~ eR,e and R, = R,¢R,, where R,
denotes the ring of # X n matrices over R. Thus Lemma 2.4 implies
Theorem 2.5.

3. Rines wHOSE SEMI-SIMPLE MODULES ARE INJECTIVE
Using Theorem 2.1 in this section we give an affirmative answer to the

following question by Cateforis and Sandomierski [3]: Is every ring R whose
semisimple (right) R modules are injective a semisimple, artinian ring?
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As is usual the ring R is called a right Goldie ring, if R satisfies the ascending

chain conditions on annihilator right ideals and on direct sums of nonzero
right ideals of R.

Lemma 3.1.  The right Goldie ring R whose right ideals are idempotent
is a direct sum of finitely many simple rings.

Proof. Because of Theorem 2.1 the ring R is semisimple. Hence by
Theorems 3.13 and 6.1 of [10] R is an irredundant subdirect sum of a finite
number of prime rings R,(i = 1, 2,..., k) which are also right Goldie rings.
Each two-sided ideal A £ 0 of R; is an essential right ideal of R;. By
Theorem 3.9 of [7], there exists a regular element ¢ of R in 4. Hence
R = RcR < A < R by Lemma 2.3. Since R, is simple for i=1,2,..., %
it follows that

TuroreMm 3.2.  The following conditions of the ving R are equivalent:

(1) R is semisimple and artinian.
(2) Every semisimple R module is injective.
(3) Every cyclic semisimple R module is injective.
(4) R s a right Goldie ring such that
(8) Ewvery simple R module is injective, and

(b) indecomposable injective R modules with the same associated prime
tdeal of R are isomorphic.

Proof. 1t is well known that (2) follows from (1), and the implication
(2) — (3) is trivial. If (3) holds, then every simple R module S is injective,
because S is cyclic. Therefore Theorem 2.1 implies that every R module is
semisimple. Hence every cyclic R module is injective, which implies that R
is semisimple and artinian by the theorem of Osofsky [12, p. 649]. Thus
{4) follows from (3).

If (4) holds, then R is a direct sum of finitely many simple right Goldie
rings R; by Lemma 3.1. From (4b) now follows that R; contains a minimal
right ideal. Hence R, is a simple ring with minimum condition, and (1) holds.

Remark. The examples of [4] show that in general condition (4b) of
Theorem 3.2 cannot be omitted, though it holds for all commutative rings.
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4. STRUCTURE OF RINGS WiTH KRULL DIMENSION ONE
WHOSE SIMPLE MODULES ARE INJECTIVE

The notion of right Xrull dimension was introduced by Gabriel (cf. [11]).
The ring R has right Krull dimension K-dim <C 1, if each properly descending
chain

Al > A2 > te > Ak > Ak+1 > M

of right ideals 4; of R, such that for each ¢ = 1, 2,... the right R module
A;/A;.; is not artinian, has only finitely many terms. If K-dim R < 1,
but R is not right artinian, then R has right Krull dimension one.

Lemma 4.1, If the simple right R modules of the ring R with right Krull
dimension one are injective, then the right singular ideal

TR) = {x € R| x, essential} = 0.

Proof. Assume that there is an element 0 = x € T,(R). Then by Corollary
2.2 there exists a € T,(R) such that x = xz. Clearly # is not nilpotent, and
(2™, < «, for all integers n > 1. Suppose that x,/z, is an artinian right
R module, then it is a direct sum of finitely many simple right R modules,
because it is semisimple by Theorem 2.1. Hence the ascending chain

z, < (29, < - < (2%), < (), < -

becomes stationary. Thus (%), = (2%), for some k. It follows that
2*R N (2%), = 0, which is a contradiction. Hence x,/z, is not artinian.

By induction, we therefore obtain an infinite sequence of elements
0 # x;,& T(R), such that x; = x, x, = 2, %; = %%, , and (¥.1),/(%;), I8
is not an artinian right R module for all 7 == 1, 2, 3,... . But then R has Krull
dimension greater than one, a contradiction! Hence T,(R) = 0.

Following A. W, Goldie the (right) R module M is called a torsion module,
if M = T(M), where T(M) = {me M | m, = {y € R | my = 0} is an essential
right ideal of R}.

TuEOREM 4.2. The ring R is a ving with right Krull dimension at most
one whose simple right R modules are injective if and only if R is a direct sum
of finitely many simple rings S, each of which is Morita equivalent to a right
hereditary, right noetherian, simple domain D; whose torsion modules are
completely reducible and injective.

Proof. If Ris a direct sum Z‘f:l @ S, of simple rings .S, , each of which
is Morita equivalent to a simple domain D, having the properties stated in
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Theorem 4.2, then R is a semiprime right noetherian right hereditary ring.
In order to prove that K-dim R <1 it suffices to show by Hilfsatz 2.1 of
[11] that R/E is an artinian right R module for every essential right ideal
E of R. Since R is right noetherian, we may assume that E is irreducible.
Hence RJE is an indecomposable torsion R module. Thus R/E is simple,
because it is completely reducible. Therefore K-dim R < 1.

If D,(i = 1, 2,..., k) is not a division ring, then each simple right D, module
is a torsion module. Hence it is injective. If D, is a division ring, then any
right D; module is injective. Therefore Theorem 2.5 implies that every
simple right R module is injective.

Conversely, if K-dim R =1, and if the simple right R modules are
injective, then the right singular ideal T,(R) of R is zero by Lemma 4.1.
Furthermore, R is right finite dimensional in the sense of Goldie [7] by
the proof of Hilfsatz 2.1 of [11}. Therefore R is a right Goldie ring by
[9, pp. 106 and 108]. Hence Lemma 3.1 applies, and R is a direct sum
of finitely many simple rings having the same properties as R. Thus we may
assume that R is simple.

In order to prove that R is right noetherian, it suffices to show that each
essential right ideal E of R is finitely generated, because by Zorn’s lemma
each right ideal X of R is a direct summand of an essential right ideal. Since
R is a right Goldie prime ring, E contains a regular element ¢ of R by
Theorem 3.9 of [7]. By Hilfsatz 2.1 of [11] the right R module R/cR is
artinian, because cR is an essential right ideal. Since R/¢R is semisimple by
Theorem 2.1, it follows that R/cR is a direct sum of finitely many simple right
R modules. Hence EjcR << RjcR is finitely generated, and R is right
noetherian.

If the right R module M 5= 0 is torsion, then for every 0 54 m € M there is
an essential right ideal E of R such that mR oz R/E. Therefore mR is a direct
sum of finitely many simple injective right R modules by Theorem 2.1 and
[11, Hilfsatz 2.1]. Since R is right noetherian, it follows that M is completely
reducible and injective. Thus each torsion right R module is injective.

The ring R is right hereditary if and only if each epimorphic image of
an injective right R module Q is injective. Let 0 # U be a submodule of O,
and let V be the injective envelope of U in Q. Then Q/U is injective, if ViU
is injective. Since T,(R) = 0 by Lemma 4.1, the right R module V/U is
torsion by [6, p. 15]. Thus V/U is injective, and R is right hereditary. As R
is simple an easy application of the Morita theorems now shows that R is
Morita equivalent to a simple right hereditary, right noetherian domain D
with K-dim D < 1. Since the simple right [ modules are injective by
Theorem 2.5, it follows from the last paragraph that every torsion right
D module is injective and completely reducible. This completes the proof
of Theorem 4.2,

481/25{1-13
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Remark 4.3. By a theorem due to Cateforis and Sandomierski [3] a
commutative ring R whose torsion modules are injective is a semihereditary
ring with finitely many essential ideals. But a noncommutative ring R
whose torsion modules are injective in general has infinitely many essential
right ideals as is easily seen by Theorem 4.2 and the examples given by
Cozzens [4].

CoroLLaRY 4.4.  The following properties of the ring R are equivalent:

(1) R s a left noetherian ring with right Krull dimension at most one
whose simple right R modules are injective.

(2) R is a right noetherian ring with left Krull dimension at most one
whose simple left R modules are injective.

{3) R is a right and left noctherian heveditary ring whose one-sided
simple R modules are injective.

Proof. Since a right and left noetherian hereditary ring has right and
left Krull dimension at most one by Theorem 4 of Webber [17] and Hilfsatz
2.1 of {11}, it suffices to show that (1) implies (2). By Theorem 4.2 R is right
hereditary. As R is also left noetherian a well-known theorem due to
M. Auslander implies that R is also left hereditary. Thus R has left Krull
dimension at most one. Therefore by Theorem 2.1 it remains to show that
each left ideal X of R is an intersection of maximal left ideals of R. Because
of Theorems 4.2 and 2,5 we may assume that R is a simple domain. Thus 0
is an intersection of maximal left ideals. If X 54 0, then X is an essential left
ideal. Let X* = homg(X, R), and let { be the quotient division ring of R,
Then X* = {yc Q| Xy < R}, because Q is the injective hull of R. Hence
X*[R is a finitely generated, torsion right R module. Thus by Theorem 4.2
it is completely reducible, i.e., there are 2 < 0o submodules R < §; < X*
of X* such that

X*[R = S1/R @S/RD D Si/R.

where each S;/R is simple and injective. Since X* is finitely generated and
projective, and since R is noetherian and hereditary, each right R module
S; is finitely generated and projective. Let M, = homg(S;, R} for all 4,
Then M * = S8;, and R > M, > X, because X and S, are reflexive.
Furthermore, M, is a max1m31 left ideal of R, because S,/R is simple. It is
now easy to see that X == ﬂ, _1 M, , because X* = Z,_l S; . This completes
the proof of Corollary 4.4.

Remark 4.5. Corollary 4.4 suggests the following question: Is every
simple left R module injective, if every simple right R module is injective ?
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Without any restrictions on R this question has a negative answer. One
counterexample is the following von Neumann regular ring R (cf. also
[6], p. 130): Let J7 be an infinite-dimensional right vector space over the
field XK. Let S be the socle of E = homg(V, V), and let R be the subring of E
generated by .S and the center K of E. Then V is a simple left R module.
If V* = homg(V, K) and if 7"** = homg(FV*, K), then V' << '**, because
V is infinite dimensional over K. Since the left R module F'** is an essential
extension of ¥, the simple left R module ¥ is not injective.

As R is von Neumann regular, the field K is a flat left R module. Hence
V* = homg(V, K) and K are injective right R modules by Cartan-Eilenberg
[2, p. 123, Example 10]. Since it is well known that (up to isomorphisms) }*
and K are the only simple right R modules, it follows that every simple right
R module is injective.

5. Rincs wiTH PoLYNOMIAL IDENTITIES WHOSE
SIMPLE MODULES ARE INJECTIVE

In this section we give necessary and sufficient conditions for the von
Neumann regularity of rings with polynomial identities whose simple modules
are injective.

Let 2 be a set of endomorphisms of the additive group R* of the ring R
containing 1 and —w whenever w € & such that

w(xy) = (wx)y = x(wy) forall we and x yeR

Let X = {X,|jel, I some index set} be a set of noncommutative indeter-
minates, and consider the polynomials

PIX] = p(Xy, Xy ooy Xp) = 3wy X3 X, X,

with coefficients w; € 2, where all monomials X, X, X are different.
Then by Amitsur [1, p. 470] the ring R satisfies a nmsmmal geneml polynomial
tdentity, if there exists a polynomial p[X] e £[X] such that

P(ry y Ta gy 7y) =
forallr,e R, and

me =+ 0

for some coefficient =y, of p[X].

It is clear that 2 induces linear mappings in each epimorphic image of R.
If the polynomial p[X] is nontrivially satisfied by all epimorphic images of
R, then R is a ring satisfying a homomorphic polynomial identity. Clearly
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each standard identity is a homomorphic polynomial identity. If the simple
right R modules are injective, then also the converse is true by

ProposiTioN 5.1. If the simple right R modules are injective, then R
satisfies a homomorphic polynomial identity if and only if R satisfies a standard
identity.

Proof. We may assume that R satisfies a homomorphic identity. Since
the simple right R modules are injective, R is semiprimitive by Theorem 2.1.
Hence R is a subring of a direct product of primitive rings R, satisfying
p[X]. By Kaplansky’s theorem R, is a central simple algebra of dimension
¢ < }d? over its center C, , where d is the degree of p[.X], By Proposition 1
of [8, p. 227] there is then an integer % such that each ring R, satisfies the
standard identity of degree k. Thus R satisfies a standard identity.

Lemma 5.2, If R is a prime ring satisfying a nontrivial polynomial identity
of minimal degree d such that each vight ideal of R is idempotent then R is
a finite-dimensional, central simple algebra over its center C, and [R : C] = 1d%

Proof. By Theorem 7 of Amitsur [1] R has a classical ring of quotients O
which is a central simple algebra over its center C of dimension }d? aver C.
Let ¢ be a nonzero divisor of R. Then ¢R is an essential right ideal of R.
Hence by Theorem 9 of Amitsur [1] there is a nonzero two-sided ideal X
contained in ¢R. Therefore

R=X<R<KR

by Lemma 3.1, and ¢ is a unit in R. Thus R = Q.

Remark 5.3. The following results and notations from Pierce [13] will be
used throughout the rest of the paper. Let B(R) be the Boolean algebra
of all central idempotents of R(cf. [13, p. 4]). For each maximal ideal M of
B(R) let M = MR ={er|ec M, re R}. Equipped with the hull-kernel
topology the set X(R) of all maximal ideals of B(R) is a totally disconnected,
compact, Hausdorff space. Let

RER)= () RIM.

MeX(R)
Then in [13, p. 16] it is shown that R(R) can be topologized such that R(R)
becomes a reduced sheaf of rings over the Boolean space X(R). Furthermore,
by Theorem 4.4 of Pierce [13], R is isomorphic to the ring I'(X(R), R(R)} of
all sections of R(R) over X(R). Therefore, by Proposition 3.4 of Pierce [13],
the ring R is von Neumann regular, if each ring R/M with 3 € X(R) is von
Neumann regular.
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For the proof and the statement of the next result we repeat the following
(well-known) definitions. The right ideal X of R is potent, if it is not a nilideal.
By Jacobson [8, p. 210] the ring R is an I ring, if each potent right ideal
of R contains an idempotent x = 0.

LemMa 5.4. Let R be a ring satisfying a homomorphic polynomial identity
such that the simple R modules are injective. If each epimorphic image of R is
an I ring, and if R does not contain nilpotent elements x # 0, then R is von
Neumann regular.

Proof. By Theorem 2.1 each epimorphic image of R is semisimple. Let
p[X] be a homomorphic polynomial identity satisfied by R, and let # be its
degree. Let M € X(R), and let R = R/M. If P is a prime ideal of R, then R/P
is a central simple algebra over its center C of dimension [R/P: C] = t2 by
Lemma 5.2, where t is a positive integer less or equal to #. Therefore x* =0
for all nilpotent elements x € R/P. Clearly x* = 0. Since 7 is independent
of the prime ideal P of R, the ring R is an [ ring having the property that
R/P is of bounded index for every primitive ideal P of R. By Theorem 2.1
the ring R is semiprimitive. Thus by Theorem 3 of [8, p. 239] every nonzero
two-sided ideal B of R contains a central idempotent ey, 7= 0 of R. Since
R(R) is a sheaf over the Boolean space X(R), there is an open and closed
neighborhood 9 of M in X(R) and a section =& I'(M, R(R)) such that
(M) = ey and (72 — 7)(Q) = 0o = 0 + QR e R/Q for all Q e N(cf. [13,
Lemma 3.2, p. 11]). Define o I'(X(R), R(R)) by o(X)=r(X) for all
XeN and o(X) =0y for al XeX(R)—N. Then o = o% Since
I'(X(R), R(R)) =2 R, and since R does not contain nilpotent elements x = 0,
it follows that ¢ is a central idempotent of I'(X(R), R(R)) such that o(M) =
ey 7= 0. As R(R) is a reduced sheaf of rings over X(R), it follows that
o(M) = e, is the identity of R = R/MR (cf. [13, p. 15]). Therefore B = R
and R is simple. By Lemma 5.2 R is then a central simple algebra over its

center. Thus R is von Neumann regular. This completes the proof of Lemma
54.

THEOREM 5.5. Let R be a ring satisfying a homomorphic polynomial
identity such that the simple R modules are injective.

Then R is von Neumann regular if and only if every epimorphic image of R
is an I ring.

Proof. Clearly each epimorphic image of a von Neumann regular ring
is an I ring. Therefore it remains to prove the sufficiency of the condition.

Suppose that R is not von Neumann regular. An easy application of
Zorn’s lemma shows that the sum T'(R) of all two-sided ideals K of R which
are von Neumann regular as a ring is a von Neumann regular ring, and that
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T(R/T(R)) = 0. Clearly, R s T(R). By Theorem 2.1 the simple right
R/T(R) modules are also injective. Hence we may assume that T(R) = 0.

By Theorem 2.1 and Lemma 4.1 the ring R is a semiprimitive I ring
having the property that R/P is of bounded index for every primitive ideal
P of R. Therefore by Theorem 3 of [8, p. 239] every nonzero ideal B of R
contains a two-sided ideal C 54 0 generated by a central idempotent ¢ 5 0
of R such that C is isomorphic to a ring of # X » matrices over a ring D
without nilpotent elements. Since R = C @ (1 — e)R each simple C module
is injective, and each epimorphic image of C is an [ ring. By Proposition 1 of
[8, p. 40] each ideal of C is a ring of # X n matrices over an ideal of D.
Therefore every epimorphic image of D is an I ring by [8, p. 211]. Since D
is Morita equivalent to C, the simple D modules are also injective by Theorem
2.5. As R = C @ (1 — )R, the ring C satisfies a homomorphic polynomial
identity, say p[.X] with degree less or equal to d, where 4 is an even integer.
Because of the semisimplicity of C it follows by application of Lemma 5.2
that C satisfies a standard identity of degree less or equal to d (cf. [1, p. 478]).
Hence also D satisfies a homomorphic polynomial identity therefore D is
von Neumann regular by Lemma 5.4. Thus the nonzero ideal C of R is
von Neumann regular. This is a contradiction, because T(R) = 0. Hence
Theorem 5.5 holds. \

CoROLLARY 5.6. A m-regular ring R satisfying a homomorphic polynomial
identity such that the simple R modules are injective is von Neumann regular.

Proof. The proof follows at once from Theorem 4.3 and Proposition 1 of
Jacobson [8, p. 210}

6. AFFINE RINGs WHOSE SIMPLE MODULES ARE INJECTIVE

The ring R is finitely generated as a ring over its center Z(R), if R is an
epimorphic image of a free (noncommutative) ring over Z(R) generated by
finitely many indeterminates X , X, ,..., X,, which only commute with the
elements of Z(R). Following C. Procesi the ring R is called an affine ring,
if R is finitely generated over its center Z(R), and if every epimorphic image
of R satisfies a polynomial identity with coefficients contained in its center.
It is well known that each ring R which is finitely generated as a module over
its center is an affine ring. In this section Kaplansky’s theorem mentioned
in the introduction is generalized for affine rings.

With the notations of Remark 5.3 the following statement holds.

Lemma 6.1. Let R be an affine ring. Then R|M is an indecomposable ring
for every maximal ideal M of B(R).
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Proof. Suppose R/M is not indecomposable for some M € ¥(R). Then
there is a nonzero central idempotent ey & R/M. Let ep = a + M. If
fis fas, fu are the generators of the ring R over its center Z(R), then
a-ateM,and af,—fraec M fori =1,2,...,n. Since R~ I' = I'(X(R), R(R)),
the ring I' is finitely generated as a ring over its center 4. Let g, ,i = 1,2,...,n
be the corresponding generators. Since R(R) is a sheaf over the Boolean
space X(R), by Lemma 3.2 of [13] there is an open neighborhood R of M
in X(R) and a section 7 € I'(N, R(R)) such that for all 0 e N

(1) =)@ =0 =0+0eRIC,
@ (9= 9D =0 =0+ Qe RID,

Define ¢ e I'(X(R), R(R)) by o(X) = 7(X) for all XeR, and of{X) = 0y
for all X e X(R) — N. Then o% =0, and @0 = op; for i =1, 2,..,n by
Proposition 3.4 of [13]. Thus o € B(I'(X(R), R(R)). Since R(R) is a reduced
sheaf over X(R), it follows from Pierce [13, p. 15] that

0 # ey = 1(M) = o(M) =1+ M,

a contradiction. Therefore Lemma 6.1 holds.

LemMa 6.2, Let R be an affine ring such that the right ideals of every
epimorphic image of R are tdempotent. Then R is biregular.

Proof. Let M be a maximal ideal of the Boolean algebra B(R) of central
idempotents of R. Then using the notations of Remark 5.3 the ring R = R/M
is indecomposable by Lemma 6.1. Since each right ideal of R is idempotent,
its center C is von Neumann regular by Lemma 2.3. Hence C is a feld.
As R is finitely generated as a ring over its center Z(R), and as
(Z(R) + M)|M < C, the ring R is finitely generated over C. Let P be a prime
ideal of R. Then R’ = R/P is a prime ring satisfying a nontrivial polynomial
identity such that each right ideal of R’ is idempotent. Thus by Lemma 5.2
R’ is a simple ring with minimum condition on right and left ideals. Therefore
Theorem 1 of Procesi [14] applies, and R is right artinian. Since R is semi-
primitive and indecomposable, it follows that R = R/M is simple for every
maximal ideal M of B{R). Hence R(R) is a sheaf of simple rings over the
Boolean space X(R). Thus R is biregular by Remark 5.3 and the theorem of
Dauns and Hofmann [5].

TureoreM 6.3. The following properties of the affine ring R are equivalent:

(1) Every simple right R module is injective.

(2) R is von Neumann regular.
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(3) Ris biregular.

(4) R is isomorphic to the ring I'(X, R) of all sections of a sheaf R of
central simple finite-dimensional algebras over a totally disconnected, compact,
Hausdorff space.

(5) Ewvery simple left R module is injective.

Proof. Since (3) is symmetric in both sides, it remains to prove the equiv-
alence of the first four statements.

If (4) holds, then R is von Neumann regular by Remark 5.3. In case R
satisfies (2), then Lemma 6.2 applies, and R is biregular. Suppose that (3)
holds. Then by the theorem of Dauns and Hofmann [5] R is isomorphic
to the ring I'(X, R) of all sections of a sheaf R of simple rings R, , x€ X,
over a totally disconnected, compact Hausdorff space X. Since R is affine,
the simple ring R, satisfies a nontrivial polynomial identity. Hence R, is
a central simple finite-dimensional algebra by Theorems 7 and 9 of [1].
Therefore (2), (3) and (4) are equivalent,

If (1) holds, then every right ideal of every epimorphic image of R is
idempotent by Theorem 2.1 and Corollary 2.2. Therefore R is biregular
by Lemuma 6.2. Thus it remains to show that (2) implies (1).

Let M be a simple right R module of the affine, von Neumann regular
ring R, and let P = {x € R | Mx = 0}. Then P is prime ideal of R, and R/P
is a von Neumann regular prime ring satisfying a polynomial identity. Hence
R/P is simple and right artinian by Theorems 7 and 9 of 1], and P is maximal.
By Lemma 2.3 the center Z(R) of R is a von Neumann regular ring. Therefore
Q = PN ZR) is a maximal ideal of Z(R). Thus S = Z(R) — Q is a
multiplicatively closed set contained in the center of R. Hence Ry =
{rs1|reR,5€8}is a ring, and V ={xec R | xs =0 for some s€ S} is a
two-sided ideal of R. By the equivalence of (2) and (3), the ring R is biregular.
Thus for every 0 £ p € P there is an idempotent 0 # e €Q such that p = er
for somer e R. Since s = 1 — e€ S, and since ps = res =re(l — ) =0, it
follows that P <{ V. As P is maximal, and as V =% R, we obtain P ==V,
Furthermore, every s€ S is a unit modulo V. Hence Rg; = R/P is simple
and right artinian.

We now can employ an argument due to Rosenberg and Zelinsky [15]. Let
E be the injective hull of the right R module M, and let s € .S. Then Es is
a right R module contained in E. If T ={ecE|es =0} # 0, then
0% TN M=M<T, because T is a right R module, and E is an essential
extension of the simple module M. Thus s & P, a contradiction! Therefore
Es =~ E, and Es is injective. Since E is indecomposable, it follows that E = Es
for every s € S. Therefore E is a right Rg module, so is M. As E is an essential
extension of the right R module M, E is an essential extension of the right
R module M. Since Ry is simple and right artinian, M is an injective right
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R module. Hence E = M, and M is injective. This completes the proof of
Theorem 6.3.

Remark. Theorem 6.3 does not hold for arbitrary rings which are finitely
generated (as a ring) over their centers, because the examples constructed
by Cozzens are finitely generated over their center.

CoroLLARY 6.4. If R is finitely generated as a module over its center,
then the simple right R modules are injective if and only if R is von Neumann
regular.

Proof. Since R satisfies a standard identity, Corollary 6.4 follows at once
from Theorem 6.3.

LevMa 6.5. Let A be the group ring RG of the group G over the ring R.
Let G be the augmentation ideal of A. Then R o~ AlwGis a flat left A module
if and only if the following conditions hold:

(2) G is locally finite.
(b) The order n of every element g € G is a unit of R.

Proof. If R and G satisfy the conditions (a) and (b), then R is a flat left
A module by Villamayor [16, p. 949].

Conversely, if Rz« 4w is a flat left 4 module, then (a) and (b) hold
by Lemmas 1 and 4 of Villamayor [16].

CoRrOLLARY 6.6. Let A be the group ring RG of the group G over the ring R.
If every simple right A module is injective, then A is von Neumann regular if
and only if R is von Neumann regular.

Proof. By Corollary 2.2 and Lemma 2.3 the left 4 module R o AjwG
is flat. Hence Corollary 6.6 follows from Lemma 6.5 and Proposition 2 of
[9, p. 155].

CoroLLARY 6.7. The simple right A modules of the group ring A = RG
of the finite group G over the ring R are injective if and only if the order n of G
is a unit in R and every simple right R module is injective.

Proof. 1If every simple right 4 module is injective, then every simple
right R module is injective by Theorem 2.1. Furthermore, n = | G | is a unit
in R by Lemmas 6.5 and 2.3.

Conversely, let M be a simple right 4 module. Then M is a finitely
generated right R module. By Zorn’s lemma M contains a maximal R sub-
module V. Let N = (),.¢ Vg. Then N is a proper A submodule of M.
Hence N = 0, and the right R module J is isomorphic to a direct summand
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of the completely reducible right R module X =Y . @ M/Vg. Since every
simple right R module is injective, X is an injective right R module. Let
0-—> P — Q be an exact sequence of right 4 modules, and let ¢ € hom (P, M).
Then there is a € homg(Q, M) with (p) = ¢(p) for every p € P, because
My, is injective. If for every g€ Q

) =5 T e

' geG

then ¢ € hom,(Q, M), and ¢(p) = ¢(p) for every pe P. Thus M is an
injective right 4 module.

CoroLLARY 6.8. If the simple right A modules of the group ring A = RG
of the group G over the affine ring R are injective, then A is von Neumann
regular.

Proof. By Theorem 2.1 the simple right R modules ate injective. Hence R
is von Neumann regular by Theorem 6.3. Therefore 4 is von Neumann
regular by Corollary 6.6.
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