Hochschild (Co)Homology of Differential Operator Rings ${ }^{1}$

Jorge A. Guccione and Juan J. Guccione
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Pabellón 1 - Ciudad Universitaria, 1428 Buenos Aires, Argentina
E-mail: vander@mate.dm.uba.ar
Communicated by Susan Montgomery

Received July 19, 2000

Abstract

We show that the Hochschild homology of a differential operator k-algebra $E=A \#_{f} U(g)$ is the homology of a deformation of the Chevalley-Eilenberg complex of \mathfrak{g} with coefficients in $\left(M \otimes \overline{A^{*}}, b_{*}\right)$. Moreover, when A is smooth and k is a characteristic zero field, we obtain a type of Hochschild-Kostant-Rosenberg theorem for these algebras. When $A=k$ our complex reduces to the one obtained by C. Kassel (1988, Invent. Math. 91, 221-251) for the homology of filtrated algebras whose associated graded algebras are symmetric algebras. In the last section we give similar results for the cohomology. © 2001 Academic Press

INTRODUCTION

Let k be a field and A an associative k-algebra with 1 . An extension $E \supseteq A$ of A is a differential operator ring on A if there exists a k-Lie algebra \mathfrak{g} and a vector space embedding $x \mapsto \bar{x}$, of \mathfrak{g} into E, such that for all $x, y \in \mathfrak{g}, a \in A$:
(1) $\bar{x} a-a \bar{x}=a^{x}$, where $a \mapsto a^{x}$ is a derivation,
(2) $\overline{x y}-\overline{y x}=\overline{[x, y]}_{\mathfrak{g}}+f(x, y)$, where $[-,-]_{\mathfrak{g}}$ is the bracket of g and $f: \mathfrak{g} \times \mathfrak{g} \rightarrow A$ is a bilinear map,

[^0](3) for a given basis $\left(x_{i}\right)_{i \in I}$ of \mathfrak{g}, E is a free left A-module with the standard monomials in the x_{i} 's as a basis.

This general construction was introduced in [Ch, Mc-R]. Several particular cases of this type of extensions have been considered previously in the literature. For instance:

- when \mathfrak{g} is one dimensional, f is trivial and E is the Ore extension $A[x, \delta]$, where $\delta(a)=a^{x}$,
- when $A=k$, one obtains the algebras studied by Sridharan in [S], which are the quasi-commutative algebras E, whose associated graded algebra is a symmetric algebra.
— in [Mc, Sect. 2] this type of extension was studied under the hypothesis that A is commutative and $(x, a) \mapsto a^{x}$ is an action and in [B-G-R, Theorem 4.2] the case in which the cocycle is trivial was considered.

In [B-C-M, D-T] the study of the crossed products $A \#_{f} H$ of an algebra A by a Hopf algebra H was begun and in [M] it was proved that the differential operator rings on A are the crossed products of A by enveloping algebras of Lie algebras.

In [G-G] we obtained a complex, simpler than the canonical one, giving the Hochschild homology of a general crossed product $E=A \#_{f} H$ with coefficients in an arbitrary E-bimodule M. In the present paper we show that, for differential operator rings, a complex simpler than the one obtained in [G-G] also works, and we give some applications of this result.

This paper is organized as follows: In Section 1 we recall the definition of differential operator rings following the Hopf algebra point of view of [B-C-M, D-T]. In Section 2 we recall a technical result, established in [G-G], that we need in order to carry out our computations. In Section 3 we get a resolution of a differential operator ring $E=A \#_{f} U(\mathfrak{g})$ as an E-bimodule. This resolution is a mixture of the canonical Hochschild normalized resolution of A and the Chevalley-Eilenberg resolution of \mathfrak{g}. In Section 4 we study the Hochschild homology of E with coefficients in an arbitrary E-bimodule M. The main result is Theorem 4.1, where the promised complex, which is a deformation of the Chevalley-Eilenberg complex of \mathfrak{g} with coefficients in $\left(M \otimes \overline{A^{*}}, b_{*}\right)$, is obtained. Then we consider a natural filtration of this complex, and we derive from it the spectral sequence of $[\mathrm{St}]$ in a more explicit way than the original one. Then, we consider the case when A is a commutative smooth algebra. The result obtained by us under this condition is a common generalization of the Hochschild-Kostant-Rosenberg theorem and the computation given in [K] for the Hochschild homology of algebras whose associated graded algebras are symmetric algebras. Finally, in Section 5, we study the cohomology.

1. PRELIMINARIES

Let A be a k-algebra and H a Hopf algebra. A weak action of H on A is a bilinear map $(h, a) \mapsto a^{h}$ from $H \times A$ to A such that, for $h \in H, a, b \in A$,

$$
\begin{align*}
& \text { (1) }(a b)^{h}=\sum_{(h)} a^{h^{(1)}} b^{h^{(2)}}, \tag{1}\\
& \text { (2) } 1^{h}=\epsilon(h) 1, \\
& \text { (3) } a^{1}=a .
\end{align*}
$$

By an action of H on A we mean a weak action such that

$$
\begin{equation*}
\left(a^{1}\right)^{h}=a^{h l} \text { for all } h, l \in H, a \in A \tag{4}
\end{equation*}
$$

Let A be a k-algebra and H a Hopf algebra with a weak action on A. Given a k-linear map $f: H \otimes H \rightarrow A$ we let $A \#_{f} H$ denote the k-algebra (in general non-associative and without 1) whose underlying vector space is $A \otimes H$ and whose multiplication is given by

$$
(a \otimes h)(b \otimes l)=\sum_{(h)(l)} a b^{h^{(1)}} f\left(h^{(2)}, l^{(1)}\right) \otimes h^{(3)} l^{(2)},
$$

for all $a, b \in A, h, l \in H$. The element $a \otimes h$ of $A \#_{f} H$ will usually be written $a \# h$ to remind us H is weakly acting on A. The algebra $A \#_{f} H$ is called a crossed product if it is associative with $1 \# 1$ as identity element. In [B-C-M] was proved that this happens if and only if f and the weak action satisfy the following conditions
(1) (normality of f) for all $h \in H$ we have $f(h, 1)=f(1, h)=\epsilon(h) 1_{A}$,
(2) (cocycle condition) for all $h, l, m \in H$ we have

$$
\sum_{(h)(l)(m)} f\left(l^{(1)}, m^{(1)}\right)^{h^{(1)}} f\left(h^{(2)}, l^{(2)} m^{(2)}\right)=\sum_{(h)(l)} f\left(h^{(1)}, l^{(1)}\right) f\left(h^{(2)} l^{(2)}, m\right),
$$

(3) (twisted module condition) for all $h, l \in H, a \in A$ we have

$$
\sum_{(h)(l)}\left(a^{l^{(1)}}\right)^{h^{(1)}} f\left(h^{(2)}, l^{(2)}\right)=\sum_{(h)(l)} f\left(h^{(1)}, l^{(1)}\right) a^{h^{(2)} l^{(2)}}
$$

From now on, we assume that H is the enveloping algebra $U(\mathrm{~g})$ of a Lie algebra g . In this case, item (1) of the definition of weak action implies that $(a b)^{x}=a^{x} b+a b^{x}$ for $x \in \mathrm{~g}$. So, a weak action determines a linear map $\delta: \mathfrak{g} \rightarrow \operatorname{Der}_{k}(A)$ by $\delta(x)(a)=a^{x}$. Moreover if $(h, a) \mapsto a^{h}$ is an action, then δ is a homomorphism of Lie algebras. Reciprocally given a linear map $\delta: \mathfrak{g} \mapsto \operatorname{Der}_{k}(A)$, there exists a (generality non-unique) weak action of $U(\mathrm{~g})$ on A such that $\delta(x)(a)=a^{x}$. When δ is a homomorphism of Lie algebras, there is a unique action of $U(\mathrm{~g})$ on A such that $\delta(x)(a)=a^{x}$. For a proof of these facts see $[\mathrm{B}-\mathrm{C}-\mathrm{M}]$.

Next we show that each normal cocycle $f: U(\mathrm{~g}) \otimes U(\mathrm{~g}) \rightarrow A$ is convolution invertible, giving a formula for f^{-1}.

Remark 1.1. Each normal cocycle $f: U(\mathrm{~g}) \otimes U(\mathrm{~g}) \rightarrow A$ is convolution invertible. Moreover, for each $h \in U(\mathfrak{g})$ and each family x_{1}, \ldots, x_{r} of elements of \mathfrak{g}, we have $f^{-1}(1, h)=f^{-1}(h, 1)=\epsilon(h) 1_{A}$ and

$$
\begin{aligned}
& f^{-1}\left(x_{1} \cdots x_{r}, h\right) \\
&= \sum_{l=1}^{r}(-1)^{l} \sum_{\substack{1 \leq p_{1}, \ldots p_{l} p_{l} \\
p_{1}++p_{l}}} \sum_{\tau \in S h_{p_{1}, \ldots, p_{l}}(h)} \sum_{r\left(p_{1}\right)} f\left(x_{\tau(1)} \cdots x_{\tau\left(p_{1}\right)}, h^{(1)}\right) \\
& \times f\left(x_{\tau\left(p_{1}+1\right)} \cdots x_{\tau\left(p_{1}+p_{2}\right)}, h^{(2)}\right) \cdots f\left(x_{\tau\left(p_{1}+\cdots+p_{l-1}+1\right)} \cdots x_{\tau(r)}, h^{(1)}\right),
\end{aligned}
$$

where $S h_{p_{1}, \ldots, p_{l}}$ denotes the multishuffles associated to p_{1}, \ldots, p_{l}. That is,

$$
S h_{p_{1}, \ldots, p_{l}}=\left\{\tau \in \mathbb{G}_{r}: \tau\left(1+\sum_{j=1}^{i} p_{j}\right)<\cdots<\tau\left(\sum_{j=1}^{i+1} p_{j}\right) \text { for } 0 \leq i<l\right\} .
$$

This fact can be proved by a direct computation.

2. A METHOD FOR CONSTRUCTING RESOLUTIONS

Let k be a commutative ring with 1 and E a k-algebra. In this section we recall a result that we will use in Section 3. For the proof we remit to [G-G].

Let

be a diagram of E-bimodules and morphisms of E-bimodules verifying:
(1) The column and the rows are chain complexes,
(2) Each $X_{r s}$ is isomorphic to a free E-bimodule $E \otimes \bar{X}_{r s} \otimes E$,
(3) Each row is contractible as a complex of left E-modules, with a chain contracting homotopy $\sigma_{0 s}^{0}: Y_{s} \rightarrow X_{0 s}$ and $\sigma_{r+1, s}^{0}: X_{r s} \rightarrow X_{r+1, s}$ ($r \geq 0$).

We define E-bimodule morphisms $d_{r s}^{l}: X_{r s} \rightarrow X_{r+l-1, s-l}(r \geq 0$ and $1 \leq l \leq s$), recursively by
$d_{r s}^{l}(\mathbf{x})= \begin{cases}-\sigma_{0, s-1}^{0} \circ \partial_{s} \circ \mu_{s}(\mathbf{x}) & \text { if } r=0 \text { and } l=1, \\ -\sum_{j=1}^{l-1} \sigma_{l-1, s-l}^{0} \circ d_{j-1, s-j}^{l-j} \circ d_{0 s}^{j}(\mathbf{x}) & \text { if } r=0 \text { and } 1<l \leq s, \\ -\sum_{j=0}^{l-i} \sigma_{r+l-1, s-l}^{0} \circ d_{r+j-1, s-j}^{l-j} \circ d_{r s}^{j}(\mathbf{x}) & \text { if } r>0,\end{cases}$
for $\mathbf{x}=1 \otimes \overline{\mathbf{x}} \otimes 1$ with $\overline{\mathbf{x}} \in \bar{X}_{r s}$.
Theorem 2.1. Let $\tilde{\mu}: Y_{0} \rightarrow E$ be a morphism of E-bimodules such that

$$
E \stackrel{\tilde{\mu}}{\longleftarrow} Y_{0} \stackrel{\partial_{1}}{\longleftarrow} Y_{1} \stackrel{\partial_{2}}{\longleftarrow} Y_{2} \stackrel{\partial_{3}}{\longleftarrow} Y_{3} \stackrel{\partial_{4}}{\longleftarrow} Y_{4} \stackrel{\partial_{5}}{\leftrightarrows} Y_{5} \stackrel{\partial_{6}}{\longleftarrow} Y_{6} \stackrel{\partial_{7}}{\longleftarrow} \ldots,
$$

is a complex that is contractible as a complex of left E-modules. Then

$$
E \stackrel{\mu}{\longleftarrow} X_{0} \stackrel{d_{1}}{\longleftarrow} X_{1} \stackrel{d_{2}}{\longleftarrow} X_{2} \stackrel{d_{3}}{\leftrightarrows} X_{3} \stackrel{d_{4}}{\leftrightarrows} X_{4} \stackrel{d_{5}}{\leftrightarrows} X_{5} \stackrel{d_{6}}{\leftrightarrows} X_{6} \stackrel{d_{7}}{\leftrightarrows} \ldots,
$$

where

$$
\mu=\tilde{\mu} \circ \mu_{0}, \quad X_{n}=\bigoplus_{r+s=n} X_{r s}, \quad \text { and } \quad d_{n}=\sum_{\substack{r+s=n \\ r+1>0}} \sum_{l=0}^{s} d_{r s}^{l},
$$

is a relative projective resolution of E as an E-bimodule.

3. A RESOLUTION FOR A DIFFERENTIAL OPERATOR RING

Let $E=A \#_{f} U(\mathfrak{g})$ be a crossed product. In this section we obtain an E-bimodule resolution (X_{*}, d_{*}) of E, that is simpler than the canonical of Hochschild. Then an explicit expression of the boundary maps of this resolution is given. To begin, we fix some notations:
(1) For each k-algebra B and each $r \in \mathbb{N}$, we write $\bar{B}=B / k, B^{r}=$ $B \otimes \cdots \otimes B(r$ times $)$ and $\bar{B}^{r}=\bar{B} \otimes \cdots \otimes \bar{B}(r$ times $)$. Moreover, for $b \in B$, we also let b denote the class of b in \bar{B}.
(2) Given $a_{0} \otimes \cdots \otimes a_{r} \in A^{r+1}$ and $0 \leq i<j \leq r$, we write $\mathbf{a}_{i j}=$ $a_{i} \otimes \cdots \otimes a_{j}$.
(3) For each Lie k-algebra \mathfrak{g} and each $s \in \mathbb{N}$, we write $\mathfrak{g}^{\wedge s}=\mathfrak{g} \wedge \cdots \wedge \mathfrak{g}$ (s times).
(4) Given $\mathbf{x}=x_{1} \wedge \cdots \wedge x_{s} \in \mathfrak{g}^{\wedge s}$ and $1 \leq i \leq s$, we write $\mathbf{x}_{\hat{i}}=$ $x_{1} \wedge \cdots \wedge \hat{x}_{i} \wedge \cdots \wedge x_{s}$.
(5) Given $\mathbf{x}=x_{1} \wedge \cdots \wedge x_{s} \in \mathfrak{g}^{\wedge s}$ and $1 \leq i<j \leq s$, we write $\mathbf{x}_{i \hat{j}}=$ $x_{1} \wedge \cdots \wedge \hat{x}_{i} \wedge \cdots \wedge \hat{x}_{j} \wedge \cdots \wedge x_{s}$.

3.1. The Complex $\left(Y_{*}^{\prime}, \partial_{X}^{\prime}\right)$

Let $\tilde{\mathfrak{g}}$ be the direct sum of two copies $\left\{y_{x}: x \in \mathfrak{g}\right\}$ and $\left\{z_{x}: x \in \mathfrak{g}\right\}$ of \mathfrak{g}, endowed with the bracket given by $\left[y_{x}, y_{x^{\prime}}\right]_{\tilde{\mathfrak{g}}}=y_{\left[x, x^{\prime}\right]_{\mathfrak{g}}}$ and $\left[y_{x}, z_{x^{\prime}}\right]_{\tilde{\mathfrak{g}}}=$ $\left[z_{x}, z_{x^{\prime}}\right]_{\tilde{\mathfrak{g}}}=z_{\left[x, x^{\prime}\right]_{\mathfrak{g}}}$. Note that $\tilde{\mathfrak{g}}$ is the semi-direct sum arising from the adjoint action of \mathbf{g} on itself. Let $\pi: U(\tilde{\mathfrak{g}}) \rightarrow U(\mathfrak{g})$ be the algebra map defined by $\pi\left(y_{x}\right)=\pi\left(z_{x}\right)=x$. Let $\Lambda(\mathrm{g})$ be the exterior algebra generated by \mathfrak{g}. That is, the algebra generated by the elements $e_{x}(x \in \mathfrak{g})$ and the relations $e_{\lambda x+x^{\prime}}=\lambda e_{x}+e_{x^{\prime}}$ and $e_{x}^{2}=0\left(\lambda \in k, x, x^{\prime} \in \mathfrak{g}\right)$. Let us consider the action of $U(\tilde{\mathfrak{g}})$ on $\Lambda(\mathfrak{g})$ determined by $e_{x^{\prime}}^{y_{x}}=e_{\left[x, x^{\prime}\right]_{\mathrm{g}}}$ and $e_{x^{\prime}}^{z_{x}}=0$. The enveloping algebra $U(\tilde{\mathfrak{g}})$ of $\tilde{\mathfrak{g}}$ acts weakly on $A \otimes \Lambda(\mathfrak{g})$ via $(a \otimes e)^{u}=$ $a^{\pi(u)} \otimes e+a \otimes e^{u}(a \in A, e \in \Lambda(\mathfrak{g})$ and $u \in U(\tilde{\mathfrak{g}}))$. Moreover, the map $\tilde{f}: U(\tilde{\mathfrak{g}}) \times U(\tilde{\mathfrak{g}}) \rightarrow A \otimes \Lambda(\mathfrak{g})$, defined by $\tilde{f}(u, v)=f(\pi(u), \pi(v)) \otimes 1$, is a normal 2-cocycle which satisfies the twisted module condition.

Theorem 3.1.1. Let Y_{*}^{\prime} be the graded algebra generated by A, the degree zero elements $y_{x}, z_{x}(x \in \mathfrak{g})$, the degree one elements $e_{x}(x \in \mathfrak{g})$, and the relations

$$
\begin{aligned}
& y_{\lambda x+x^{\prime}}=\lambda_{y_{x}}+y_{x^{\prime}}, \quad y_{x} a=a^{x}+a y_{x}, \quad e_{x^{\prime}} y_{x}=y_{x} e_{x^{\prime}}+e_{\left[x^{\prime}, x\right]_{\mathrm{g}}}, \\
& z_{\lambda x+x^{\prime}}=\lambda z_{x}+z_{x^{\prime}}, \\
& z_{x} a=a^{x}+a z_{x}, \quad e_{x^{\prime}} z_{x}=z_{x} e_{x^{\prime}}, \\
& e_{\lambda x+x^{\prime}}=\lambda e_{x}+e_{x^{\prime}}, \\
& y_{x} a=a e_{x}, \quad e_{x}^{2}=0, \\
& y_{x^{\prime}} y_{x}=y_{x} y_{x^{\prime}}+y_{\left[x^{\prime}, x\right]_{\mathrm{s}}}+f\left(x^{\prime}, x\right)-f\left(x, x^{\prime}\right), \\
& z_{x^{\prime}} y_{x}=y_{x} z_{x^{\prime}}+z_{\left[x^{\prime}, x\right]_{\mathrm{s}}}+f\left(x^{\prime}, x\right)-f\left(x, x^{\prime}\right), \\
& z_{x^{\prime}} z_{x}=z_{x} z_{x^{\prime}}+z_{\left[x^{\prime}, x\right]_{\mathrm{g}}}+f\left(x^{\prime}, x\right)-f\left(x, x^{\prime}\right) .
\end{aligned}
$$

Let $\left(x_{i}\right)_{i \in I}$ be a basis of \mathfrak{g} with indexes running on an ordered set I. For each $i \in I$ let us write $y_{i}=y_{x_{i}}, z_{i}=z_{x_{i}}$, and $e_{i}=e_{x_{i}}$. Then each Y_{s}^{\prime} is a free A-module with basis
$y_{i_{1}}^{m_{1}} e_{i_{1}}^{\delta_{1}} z_{i_{1}}^{n_{1}} \cdots y_{i_{l}}^{m_{l}} e_{i_{l}}^{\delta_{l}} z_{i_{l}}^{n_{l}} \quad\binom{l \geq 0, i_{1}<\cdots<i_{l} \in I, m_{j}, n_{j} \geq 0, \delta_{j} \in\{0,1\}}{m_{j}+\delta_{j}+n_{j}>0, \delta_{1}+\cdots+\delta_{l}=s}$.
Proof. Let $\vartheta: Y_{*}^{\prime} \rightarrow(A \otimes \Lambda(\mathrm{~g})) \#_{{ }_{f}} U(\tilde{\mathfrak{g}})$ be the homomorphism of algebras defined by $\vartheta(a)=(a \otimes 1) \# 1$ for all $a \in A$ and $\vartheta\left(y_{x}\right)=(1 \otimes 1) \# y_{x}$, $\vartheta\left(z_{x}\right)=(1 \otimes 1) \# z_{x}$ and $\vartheta\left(e_{x}\right)=\left(1 \otimes e_{x}\right) \# 1$ for all $x \in \mathfrak{g}$. Because of the Poincaré-Birkhoff-Witt theorem,

$$
\begin{aligned}
& \vartheta\left(y_{i_{1}}^{m_{1}} e_{i_{1}}^{\delta_{1}} z_{i_{1}}^{n_{1}} \cdots y_{i_{l}}^{m_{l}} e e_{i_{l}}^{\delta_{l}} z_{i_{l}}^{n_{l}}\right) \\
& \quad\left(l \geq 0, i_{1}<\cdots<i_{l} \in I, m_{j}, n_{j} \geq 0 \text { and } \delta_{j} \in\{0,1\}\right),
\end{aligned}
$$

is a basis of $(A \otimes \Lambda(\mathfrak{g})) \#_{\tilde{f}} U(\tilde{\mathfrak{g}})$ as an A-module. The theorem follows immediately from this fact.

REmARK 3.1.2. Note that E is a subalgebra of Y_{*}^{\prime} by embedding $a \in A$ to a and $x \in \mathfrak{g}$ to y_{x}. This gives rise to a structure of the left E-module on Y_{s}^{\prime}. Similarly we consider Y_{*}^{\prime} as a right E-module via the embedding of E in Y_{*}^{\prime} that sends $a \in A$ to a and $x \in \mathfrak{g}$ to z_{x}.

THEOREM 3.1.3. Let $\tilde{\mu}^{\prime}: Y_{0}^{\prime} \rightarrow E$ be the algebra map defined by $\tilde{\mu}^{\prime}(a)=$ a for $a \in A$ and $\tilde{\mu}^{\prime}\left(y_{i}\right)=\tilde{\mu}^{\prime}\left(z_{i}\right)=x_{i}$ for $i \in I$. There is a unique derivation $\partial_{*}^{\prime}: Y_{*}^{\prime} \rightarrow Y_{*-1}^{\prime}$ such that $\partial_{1}^{\prime}\left(e_{i}\right)=z_{i}-y_{i}$ for $i \in I$. Moreover, the chain complex of E-bimodules

$$
E \stackrel{\tilde{\mu}^{\prime}}{\longleftarrow} Y_{0}^{\prime} \stackrel{\partial_{1}^{\prime}}{\longleftarrow} Y_{1}^{\prime} \stackrel{\partial_{2}^{\prime}}{\longleftarrow} Y_{2}^{\prime} \stackrel{\partial_{3}^{\prime}}{\longleftarrow} Y_{3}^{\prime} \stackrel{\partial_{4}^{\prime}}{\leftarrow} Y_{4}^{\prime} \stackrel{\partial_{5}^{\prime}}{\longleftarrow} Y_{5}^{\prime} \stackrel{\partial_{6}^{\prime}}{\longleftarrow} Y_{6}^{\prime} \stackrel{\partial_{7}^{\prime}}{\longleftarrow} \ldots
$$

is contractible as a complex of k-modules. A chain contracting homotopy is given by $\sigma_{0}\left(a \# x_{i_{1}}^{m_{1}} \cdots x_{i_{l}}^{m_{l}}\right)=a z_{i_{1}}^{m_{1}} \cdots z_{i_{l}}^{m_{l}}$ and

$$
\begin{aligned}
\sigma_{s+1}\left(a y_{i_{1}}^{m_{1}} e_{i_{1}}^{\delta_{1}} z_{i_{1}}^{n_{1}} \cdots y_{i_{l}}^{m_{l}} e_{i_{l}}^{\delta_{l}} z_{i_{l}}^{n_{l}}\right)= & -\sum_{\substack{j<\alpha \\
0 \leq h<m_{j}}} a z_{i_{1}}^{m_{1}+n_{1}} \cdots z_{i_{j-1}}^{m_{j-1}+n_{j-1}} y_{i_{j}}^{h} e_{i_{j}} \\
& \times z_{i_{j}}^{m_{j}+n_{j}-h-1} y_{i_{j+1}}^{m_{j+1}} e_{i_{j+1}}^{\delta_{j+1}} z_{i_{j+1}}^{n_{j+1}} \cdots y_{i_{l}}^{m_{l}} e_{i_{l}}^{\delta_{l}} z_{i_{l}}^{n_{l}},
\end{aligned}
$$

where $\alpha=\min \left\{k: \delta_{k}=1\right\}$ (in particular $\delta_{1}=\cdots=\delta_{\alpha-1}=0$).
Proof. We must check that $\tilde{\mu}^{\prime} \circ \sigma_{0}=i d, \sigma_{0} \circ \tilde{\mu}^{\prime}+\partial_{1}^{\prime} \circ \sigma_{1}=i d$ and $\partial_{s+1}^{\prime} \circ$ $\sigma_{s+1}+\sigma_{s} \circ \partial_{s}^{\prime}=i d$ for all $s>0$. It is immediate that

$$
\tilde{\mu}^{\prime} \circ \sigma_{0}\left(a \# x_{i_{1}}^{m_{1}} \cdots x_{i_{l}}^{m_{l}}\right)=\tilde{\mu}^{\prime}\left(a z_{i_{1}}^{m_{1}} \cdots z_{i_{l}}^{m_{l}}\right)=a \# x_{i_{1}}^{m_{1}} \cdots x_{i_{l}}^{m_{l}}
$$

and

$$
\sigma_{0} \circ \tilde{\mu}^{\prime}\left(a y_{i_{1}}^{m_{1}} z_{i_{1}}^{n_{1}} \cdots y_{i_{l}}^{m_{l}} z_{i_{l}}^{n_{l}}\right)=\sigma_{0}\left(a \# x_{i_{1}}^{m_{1}+n_{1}} \cdots x_{i_{l}}^{m_{l}+n_{l}}\right)=a z_{i_{1}}^{m_{1}+n_{1}} \cdots z_{i_{l}}^{m_{l}+n_{l}} .
$$

Let us compute $\partial_{s+1}^{\prime} \circ \sigma_{s+1}$ for $s \geq 0$ and $\sigma_{s} \circ \partial_{s}^{\prime}$ for $s>0$. To abbreviate we write

$$
\begin{aligned}
& \mathbf{M}_{\mathbf{i}_{u v}}^{\mathbf{m} \delta \mathbf{n}}=y_{i_{u}}^{m_{u}} e_{i_{u}}^{\delta_{u}} z_{i_{u}}^{n_{u}} \cdots y_{i_{v}}^{m_{v}} e_{i_{v}}^{\delta_{v}} z_{i_{v}}^{n_{v}} \quad \text { for } 1 \leq u<v \leq l, \\
& \mathbf{Z}_{\mathbf{i}_{u v}}^{\mathbf{m}+\mathbf{n}}=z_{i_{u}}^{m_{u}+n_{u}} \cdots z_{i_{v}}^{m_{v}+n_{v}} \quad \text { for } 1 \leq u<v \leq l, \\
& |\delta|_{h}=\delta_{1}+\cdots+\delta_{h} \quad \text { for } 1 \leq h \leq l .
\end{aligned}
$$

We have

$$
\begin{aligned}
\partial_{s+1}^{\prime} \circ \sigma_{s+1}\left(a \mathbf{M}_{i_{1 l}}^{\mathbf{m} \delta \mathbf{n}}\right)= & \partial_{s}^{\prime}\left(-\sum_{\substack{u<\alpha \\
0 \leq h<m_{u}}} a \mathbf{Z}_{\mathbf{i}_{1, u-1}}^{\mathbf{m}+\mathbf{n}} y_{i_{u}}^{h} e_{i_{u}} z_{i_{u}}^{m_{u}+n_{u}-h-1} \mathbf{M}_{\mathbf{i}_{u+1, l}}^{\mathbf{m} \delta \mathbf{n}}\right) \\
= & -\sum_{\substack{u<\alpha \\
0 \leq h<m_{u}}} a \mathbf{Z}_{\mathbf{i}_{1, u-1}}^{\mathbf{m}+\mathbf{n}}\left(y_{i_{u}}^{h} z_{i_{u}}^{m_{u}+n_{u}-h}-y_{i_{u}}^{h+1} z_{i_{u}}^{m_{u}+n_{u}-h-1}\right) \mathbf{M}_{\mathbf{i}_{u+1, l}}^{\mathbf{m} \delta \mathbf{n}} \\
& -\sum_{\substack{u<\alpha \\
0 \leq h<m_{u}}} \sum_{v \geq \alpha}(-1)^{|\delta|_{v}} \delta_{v} a \mathbf{Z}_{\mathbf{i}_{1, u-1}}^{\mathbf{m}+\mathbf{n}} y_{i_{u}}^{h} e_{i_{u}} z_{i_{u}}^{m_{u}+n_{u}-h-1}
\end{aligned}
$$

$$
\begin{aligned}
& \times \mathbf{M}_{\mathbf{i}_{u+1, v-1}}^{\mathbf{m} \delta \mathbf{n}} y_{i_{v}}^{m_{v}} z_{i_{v}}^{n_{v}+1} \mathbf{M}_{\mathbf{i}_{v+1, l}}^{\mathbf{m} \delta \mathbf{n}} \\
& +\sum_{\substack{u<\alpha \\
0 \leq h<m_{u}}} \sum_{v \geq \alpha}(-1)^{|\delta|_{v}} \delta_{v} a \mathbf{Z}_{\mathbf{i}_{1, u-1}}^{\mathbf{m}+\mathbf{n}} y_{i_{u}}^{h} e_{i_{u}} z_{i_{u}}^{m_{u}+n_{u}-h-1} \\
& \times \mathbf{M}_{\mathbf{i}_{u+1, v-1}}^{\mathbf{m} \delta \mathbf{n}} y_{i_{v}}^{m_{v}+1} z_{i_{v}}^{n_{v}} \mathbf{M}_{\mathbf{i}_{v+1, l}}^{\mathbf{m} \delta \mathbf{n}},
\end{aligned}
$$

where $\alpha=\min \left\{k: \delta_{k}=1\right\}$. Since

$$
\begin{aligned}
& \sum_{\substack{u<\alpha \\
0 \leq h<m_{u}}} a \mathbf{Z}_{\mathbf{i}_{1}, u-1}^{\mathbf{m}+\mathbf{n}}\left(y_{i_{u}}^{h} z_{i_{u}}^{m_{u}+n_{u}-h}-y_{i_{u}}^{h+1} z_{i_{u}}^{m_{u}+n_{u}-h-1}\right) \mathbf{M}_{\mathbf{i}_{u+1, l}}^{\mathbf{m} \delta \mathbf{n}} \\
& \quad= \sum_{u<\alpha} a \mathbf{Z}_{\mathbf{i}_{1, u-1}}^{\mathbf{m}+\mathbf{n}}\left(z_{i_{u}}^{m_{u}+n_{u}}-y_{i_{u}}^{m_{u}} z_{i_{u}}^{n_{u}}\right) \mathbf{M}_{\mathbf{i}_{u+1, l}}^{\mathbf{m} \delta \mathbf{n}} \\
& \quad=a \mathbf{Z}_{\mathbf{i}_{1, \alpha-1}}^{\mathbf{m}+\mathbf{n}} \mathbf{M}_{\mathbf{i}_{\alpha l}}^{\mathbf{m} \delta \mathbf{n}}-a \mathbf{M}_{\mathbf{i}_{l l}}^{\mathbf{m} \delta \mathbf{n}}
\end{aligned}
$$

we obtain

$$
\begin{aligned}
\partial_{s+1}^{\prime} \circ \sigma_{s+1}\left(a \mathbf{M}_{i_{1 l}}^{\mathbf{m} \delta \mathbf{n}}\right)= & -a \mathbf{Z}_{\mathbf{i}_{1, \alpha-1}}^{\mathbf{m}+\mathbf{n}} \mathbf{M}_{\mathbf{i} \alpha l}^{\mathbf{m} \delta \mathbf{n}}+a \mathbf{M}_{\mathbf{i}_{1 l}}^{\mathbf{m} \delta \mathbf{n}} \\
& -\sum_{\substack{u<\alpha \\
0 \leq h<m_{u}}} \sum_{v \geq \alpha}(-1)^{|\delta|_{v}} \delta_{v} a \mathbf{Z}_{\mathbf{i}_{1, u-1}}^{\mathbf{m}+\mathbf{n}} y_{i_{u}}^{h} e_{i_{u}} z_{i_{u}}^{m_{u}+n_{u}-h-1} \\
& \times \mathbf{M}_{\mathbf{i}_{u+1, v-1}}^{\mathbf{m} \delta \mathbf{n}} y_{i_{v}}^{m_{v}} z_{i_{v}}^{n_{v}+1} \mathbf{M}_{\mathbf{i}_{v+1, l}}^{\mathbf{m} \delta \mathbf{n}} \\
& +\sum_{\substack{u<\alpha \\
0 \leq h<m_{u}}} \sum_{v \geq \alpha}(-1)^{|\delta|_{v}} \delta_{v} a \mathbf{Z}_{\mathbf{i}_{1, u-1}}^{\mathbf{m}+\mathbf{n}} y_{i_{u}}^{h} e_{i_{u}} z_{i_{u}}^{m_{u}+n_{u}-h-1} \\
& \times \mathbf{M}_{\mathbf{i}_{u+1, v-1}}^{\mathbf{m} \delta \mathbf{n}} y_{i_{v}}^{m_{v}+1} z_{i_{v}}^{n_{v}} \mathbf{M}_{\mathbf{i}_{v+1, l}}^{\mathbf{m} \delta \mathbf{n}} .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\sigma_{s} \circ \partial_{s}^{\prime}\left(a \mathbf{M}_{i_{1 l}}^{\mathbf{m} \delta \mathbf{n}}\right)=\sigma_{s}(& \sum_{v \geq \alpha}(-1)^{|\delta|_{v}-1} \delta_{v} a \mathbf{M}_{i_{1, v-1}}^{\mathbf{m} \delta \mathbf{n}} \\
& \left.\times\left(y_{i_{v}}^{m_{v}} z_{i_{v}}^{n_{v}+1}-y_{i_{v}}^{m_{v}+1} z_{i_{v}}^{n_{v}}\right) \mathbf{M}_{i_{v+1, l}}^{\mathbf{m} \delta \mathbf{n}}\right) .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \sigma_{s}\left(a \mathbf{M}_{i_{1, \alpha-1}}^{\mathbf{m} \delta \mathbf{n}}\left(y_{i_{\alpha}}^{m_{\alpha}} z_{i_{\alpha}}^{n_{\alpha}+1}-y_{i_{\alpha}}^{m_{\alpha}+1} z_{i_{\alpha}}^{n_{\alpha}}\right) \mathbf{M}_{i_{\alpha+1, l}}^{\mathbf{m} \delta \mathbf{n}}\right) \\
& \quad=a \mathbf{Z}_{\mathbf{i}_{1, \alpha-1}}^{\mathbf{m}+\mathbf{n}} y_{i_{\alpha}}^{m_{\alpha}} e_{i_{\alpha}} z_{i_{\alpha}}^{n_{\alpha}} \mathbf{M}_{\mathbf{i}_{\alpha+1, l}}^{\mathbf{m} \delta \mathbf{n}}-\sum_{\substack{u<\alpha \alpha \\
0 \leq h<m_{u}}} a \mathbf{Z}_{\mathbf{i}_{1, u-1}}^{\mathbf{m}+\mathbf{n}} y_{i_{u}}^{h} e_{i_{u}} z_{i_{u}}^{m_{u}+n_{u}-h-1} \\
& \quad \times \mathbf{M}_{\mathbf{i}_{u+1, \alpha-1}}^{\mathbf{m} \delta n}\left(y_{i_{\alpha}}^{m_{\alpha}} z_{i_{\alpha}}^{n_{\alpha}+1}-y_{i_{\alpha}}^{m_{\alpha}+1} z_{i_{\alpha}}^{n_{\alpha}}\right) \mathbf{M}_{\mathbf{i}_{\alpha+1, l}}^{\mathbf{m} \delta \mathbf{n}}
\end{aligned}
$$

and, for $v>\alpha$,

$$
\begin{aligned}
& \sigma_{s}\left(a \mathbf{M}_{i_{1, v-1}}^{\mathbf{m} \delta \mathbf{n}}\left(y_{i_{v}}^{m_{v}} z_{i_{v}}^{n_{v}+1}-y_{i_{v}}^{m_{v}+1} z_{i_{v}}^{n_{v}}\right) \mathbf{M}_{i_{v+1, l}}^{\mathbf{m} \delta \mathbf{n}}\right) \\
&=-\sum_{\substack{u<\alpha \\
0 \leq h<m_{u}}} a \mathbf{Z}_{\mathbf{i}_{1, u-1}}^{\mathbf{m}+\mathbf{n}} y_{i_{u}}^{h} e_{i_{u}} z_{i_{u}}^{m_{u}+n_{u}-h-1} \\
& \times \mathbf{M}_{\mathbf{i}_{u+1, v-1}}^{\mathbf{m} \delta \mathbf{n}}\left(y_{i_{v}}^{m_{v}} z_{i_{v}}^{n_{v}+1}-y_{i_{v}}^{m_{v}+1} z_{i_{v}}^{n_{v}}\right) \mathbf{M}_{\mathbf{i}_{v+1, l} \mathbf{m} \delta \mathbf{n}}^{l}
\end{aligned}
$$

we obtain

$$
\begin{aligned}
\sigma_{s} \circ \partial_{s}^{\prime}\left(a \mathbf{M}_{i_{1 l}}^{\mathbf{m} \delta \mathbf{n}}\right)= & a \mathbf{Z}_{\mathbf{i}_{1, \alpha-1}}^{\mathbf{m}+\mathbf{n}} \mathbf{M}_{\mathbf{i}_{\alpha l}}^{\mathbf{m} \delta \mathbf{n}} \\
& +\sum_{\substack{u<\alpha \\
0 \leq h<m_{u}}} \sum_{v \geq \alpha}(-1)^{|\delta|_{v}} \delta_{v} a \mathbf{Z}_{\mathbf{i}_{1, u-1}}^{\mathbf{m}+\mathbf{n}} y_{i_{u}}^{h} e_{i_{u}} z_{i_{u}}^{m_{u}+n_{u}-h-1} \\
& \times \mathbf{M}_{\mathbf{i}_{u+1, v-1}}^{\mathbf{m} \delta \mathbf{n}} y_{i_{v}}^{m_{v}} z_{i_{v}}^{n_{v}+1} \mathbf{M}_{\mathbf{i}_{v+1, l}}^{\mathbf{m} \delta \mathbf{n}} \\
& -\sum_{\substack{u<\alpha \\
0 \leq h<m_{u}}} \sum_{v \geq \alpha}(-1)^{|\delta|_{v}} \delta_{v} a \mathbf{Z}_{\mathbf{i}_{1, u-1}}^{\mathbf{m}+\mathbf{n}} y_{i_{u}}^{h} e_{i_{u}} z_{i_{u}}^{m_{u}+n_{u}-h-1} \\
& \times \mathbf{M}_{\mathbf{i}_{u+1, v-1}}^{\mathbf{m} \delta \mathbf{n}} y_{i_{v}}^{m_{v}+1} z_{i_{v}}^{n_{v}} \mathbf{M}_{\mathbf{i}_{v+1, l}}^{\mathbf{m} \delta \mathbf{n}} .
\end{aligned}
$$

The result follows immediately from these facts.

3.2. The Resolution $\left(X_{*}, d_{*}\right)$

Let $Y_{s}=E \otimes \mathfrak{g}^{\wedge s} \otimes U(\mathfrak{g})(s \geq 0)$ and $X_{r s}=E \otimes \mathfrak{g}^{\wedge s} \otimes \bar{A}^{r} \otimes E(r, s \geq 0)$. The groups $X_{r s}$ are E-bimodules in an obvious way and the groups Y_{s} are E-bimodules via the left canonical action and the right action

$$
\begin{aligned}
\left(a_{0} \otimes(v \otimes \mathbf{x} \otimes w)\right)(a \# u)= & \sum_{(u)(v)(w)} a_{0}\left(a^{w^{(1)}}\right)^{v^{(1)}} f\left(w^{(2)}, u^{(1)}\right)^{v^{(2)}} \\
& \otimes\left(v^{(3)} \otimes \mathbf{x} \otimes w^{(3)} u^{(2)}\right)
\end{aligned}
$$

where $\mathbf{x}=x_{1} \wedge \cdots \wedge x_{s}$. Let us consider the diagram.
where $\partial_{*}: Y_{*} \rightarrow Y_{*-1}, \mu_{*}: X_{0 *} \rightarrow Y_{*}$ and $d_{* *}^{0}: X_{* *} \rightarrow X_{*-1, *}$, are defined by

$$
\begin{aligned}
\partial_{s}(a \# v \otimes \mathbf{x} \otimes w)= & \sum_{i=1}^{s}(-1)^{i} \sum_{(v)\left(x_{i}\right)} a f\left(v^{(1)}, x_{i}^{(1)}\right) \# v^{(2)} x_{i}^{(2)} \otimes \mathbf{x}_{i} \otimes w \\
& -\sum_{i=1}^{s}(-1)^{i} \sum_{(w)\left(x_{i}\right)} a f\left(x_{i}^{(1)}, w^{(1)}\right)^{v^{(1)}} \# v^{(2)} \otimes \mathbf{x}_{i} \otimes x_{i}^{(2)} w^{(2)} \\
& -\sum_{1 \leq i<j \leq s}(-1)^{i+j} a \# v \otimes\left[x_{i}, x_{j}\right] \wedge \mathbf{x}_{\hat{i} j} \otimes w, \\
\mu_{s}\left(a_{0} \# v \otimes \mathbf{x} \otimes a_{1} \# w\right)= & \sum_{(v)} a_{0} a_{1}^{v^{(1)} \# v^{(2)} \otimes \mathbf{x} \otimes w} \\
d_{r s}^{0}\left(a_{0} \# v \otimes \mathbf{x} \otimes \mathbf{a}_{1, r+1} \# w\right)= & \sum_{(v)} a_{0} a_{1}^{v^{(1)} \# v^{(2)} \otimes \mathbf{x} \otimes \mathbf{a}_{2, r+1} \# w} \\
& +\sum_{i=1}^{r}(-1)^{i} a_{0} \# v \otimes \mathbf{x} \otimes \mathbf{a}_{1, i-1} \\
& \otimes a_{i} a_{i+1} \otimes \mathbf{a}_{i+1, r+1} \# w,
\end{aligned}
$$

where $\mathbf{a}_{1, r+1}=a_{1} \otimes \cdots \otimes a_{r+1}$ and $\mathbf{x}=x_{1} \wedge \cdots \wedge x_{s}$. It is immediate that the μ_{s} 's and the $d_{r s}^{0}$'s are E-bimodule maps. In the proof of Theorem 3.2.1 we will see that the ∂_{s} 's are also. Each horizontal complex $X_{* s}$ is the tensor product $(E \otimes U(\mathrm{~g})) \otimes_{A}\left(A \otimes \overline{A^{*}}, b_{*}^{\prime}\right) \otimes_{A} E$, where $E \otimes U(\mathrm{~g})$ is a right A module via the canonical inclusion of A in E. Hence, the family $\sigma_{0 s}^{0}: Y_{s} \rightarrow$ $X_{0 s}, \sigma_{r+1, s}^{0}: X_{r s} \rightarrow X_{r+1, s}(r \geq 0)$, of left E-module maps, defined by $\sigma_{r+1, s}^{0}\left(a_{0} \# v \otimes \mathbf{x} \otimes \mathbf{a}_{1, r+1} \# w\right)=(-1)^{r+1} a_{0} \# v \otimes \mathbf{x} \otimes \mathbf{a}_{1, r+1} \otimes 1 \# w \quad(r \geq-1)$, is a contracting homotopy of

$$
Y_{s} \stackrel{\mu_{s}}{\leftrightarrows} X_{0 s} \stackrel{d_{1 s}^{0}}{\longleftarrow} X_{1 s} \stackrel{d_{2 s}^{0}}{\leftrightarrows} X_{2 s} \stackrel{d_{2 s}^{0}}{\leftrightarrows} X_{3 s} \stackrel{d_{3 s}^{0}}{\leftrightarrows} X_{4 s} \stackrel{d_{s s}^{0}}{\leftrightarrows} \ldots
$$

Moreover each $X_{r s}$ is a projective relative E-bimodule. We define E-bimodule maps

$$
d_{r s}^{l}: X_{r s} \rightarrow X_{r+l-1, s-l} \quad(r \geq 0 \text { and } 1 \leq l \leq s),
$$

recursively by
$d_{r s}^{l}(\mathbf{y})= \begin{cases}-\sigma_{0, s-1}^{0} \circ \partial_{s} \circ \mu_{s}(\mathbf{y}) & \text { if } r=0 \text { and } l=1, \\ -\sum_{j=1}^{l-1} \sigma_{l-1, s-l}^{0} \circ d_{j-1, s-j}^{l-j} \circ d_{0 s}^{j}(\mathbf{y}) & \text { if } r=0 \text { and } 1<l \leq s, \\ -\sum_{j=0}^{l-1} \sigma_{r+l-1, s-l}^{0} \circ d_{r+j-1, s-j}^{l-j} \circ d_{r s}^{j}(\mathbf{y}) & \text { if } r>0,\end{cases}$
where $\mathbf{y}=1 \# 1 \otimes x_{1} \wedge \cdots \wedge x_{s} \otimes \mathbf{a}_{1 r} \otimes 1 \# 1 \in X_{r s}$.

Theorem 3.2.1. The complex

$$
E \stackrel{\mu}{\longleftarrow} X_{0} \stackrel{d_{1}}{\longleftarrow} X_{1} \stackrel{d_{2}}{\longleftarrow} X_{2} \stackrel{d_{3}}{\longleftarrow} X_{3} \stackrel{d_{4}}{\longleftarrow} X_{4} \stackrel{d_{5}}{\longleftarrow} X_{5} \stackrel{d_{6}}{\longleftarrow} X_{6} \stackrel{d_{7}}{\longleftarrow} \ldots
$$ where $\mu\left(a_{0} \# v \otimes a_{1} \# w\right)=\sum_{(v)(w)} a_{0} a_{1}^{v^{(1)}} f\left(v^{(2)}, w^{(1)}\right) \# v^{(3)} w^{(2)}$,

$$
X_{n}=\bigoplus_{r+s=n} X_{r s} \quad \text { and } \quad d_{n}=\sum_{\substack{r+s=n \\ r+1>0}} \sum_{l=0}^{s} d_{r s}^{l}
$$

is a relative projective resolution of the E-bimodule E.
Proof. Let $\tilde{\mu}^{\prime}: Y_{0}^{\prime} \rightarrow E$ and $\left(Y_{*}^{\prime}, \partial_{*}^{\prime}\right)$ be as in Theorem 3.1.1 and let $\tilde{\mu}: Y_{0} \rightarrow E$ be the E-bimodule map defined by

$$
\tilde{\mu}(a \otimes(v \otimes w))=\sum_{(v)(w)} a f\left(v^{(1)}, w^{(1)}\right) \# v^{(2)} w^{(2)}
$$

Let $\vartheta_{*}:\left(Y_{*}, \partial_{*}\right) \rightarrow\left(Y_{*}^{\prime}, \partial_{*}^{\prime}\right)$ be the isomorphism of E-bimodule complexes, determined by $\vartheta_{s}\left(x_{1} \wedge \cdots \wedge x_{s}\right)=e_{x_{1}} \wedge \cdots \wedge e_{x_{s}}$. Since $\tilde{\mu}=\tilde{\mu}^{\prime} \circ \vartheta_{0}$, we obtain from Theorem 3.1.1 that the complex of E-bimodules

$$
E \stackrel{\tilde{\mu}}{\leftarrow} Y_{0} \stackrel{\partial_{1}}{\leftarrow} Y_{1} \stackrel{\partial_{2}}{\leftrightarrows} Y_{2} \stackrel{\partial_{3}}{\leftrightarrows} Y_{3} \stackrel{\partial_{4}}{\leftrightarrows} Y_{4} \stackrel{\partial_{5}}{\leftarrow} Y_{5} \stackrel{\partial_{6}}{\leftarrow} Y_{6} \stackrel{\partial_{7}}{\leftarrow} \ldots
$$

is contractible as a complex of k-modules. Hence, the result follows immediately from Theorem 2.1.

The boundary maps of the relative projective resolution of E that we just found are defined recursively. Next we compute these morphisms.

THEOREM 3.3. For $x_{i}, x_{j} \in \mathfrak{g}$, we put $\hat{f}_{i j}=f\left(x_{i}, x_{j}\right)-f\left(x_{j}, x_{i}\right)$. We have $d_{r s}^{1}\left(a_{0} \# 1 \otimes \mathbf{x} \otimes \mathbf{a}_{1, r+1} \# 1\right)=\sum_{i=1}^{s}(-1)^{i+r+1} a_{0} \# x_{i} \otimes \mathbf{x}_{\hat{i}} \otimes \mathbf{a}_{1, r+1} \# 1$

$$
+\sum_{i=1}^{s}(-1)^{i+r} a_{0} \# 1 \otimes \mathbf{x}_{\hat{i}} \otimes \mathbf{a}_{1, r+1} \# x_{i}
$$

$$
+\sum_{\substack{i=1 \\ 1 \leq h \leq r+1}}^{s}(-1)^{i+r} a_{0} \# 1 \otimes \mathbf{x}_{\hat{i}} \otimes \mathbf{a}_{1, h-1} \otimes a_{h}^{x_{i}} \otimes \mathbf{a}_{h+1, r+1} \# 1
$$

$$
+\sum_{1 \leq i<j \leq s}(-1)^{i+j+r} a_{0} \# 1 \otimes\left[x_{i}, x_{j}\right] \wedge \mathbf{x}_{i \hat{j}} \otimes \mathbf{a}_{1, r+1} \# 1
$$

$d_{r s}^{2}\left(a_{0} \# 1 \otimes \mathbf{x} \otimes \mathbf{a}_{1, r+1} \# 1\right)=\sum_{\substack{1 \leq i \leq j \leq s \\ 0 \leq h \leq r}}(-1)^{i+j+h} a_{0} \# 1 \otimes \mathbf{x}_{\hat{i} \hat{j}} \otimes \mathbf{a}_{1 h} \otimes \hat{f}_{i j} \otimes \mathbf{a}_{h, r+1} \# 1$
and $d_{r s}^{l}=0$ for all $l \geq 3$, where $\mathbf{a}_{1, r+1}=a_{1} \otimes \cdots \otimes a_{r+1}$ and $\mathbf{x}=x_{1} \wedge \cdots \wedge x_{s}$.

Proof. To unify the expressions in the proof, we put $d_{0 s}^{0}:=\mu_{s}, d_{-1, s}^{1}=\partial_{s}$ and $d_{-1, s}^{2}=0$. First, we compute the maps $d_{r s}^{1}$. For $r=-1$ the assertion is trivial. Suppose $r \geq 0$ and the result is valid for $d_{r^{\prime} s}^{1}$ with $-1 \leq r^{\prime}<r$. Since, for all $r, s \geq 0$,

$$
\begin{equation*}
\sigma_{r s}\left(b_{0} \# v \otimes \mathbf{x} \otimes \mathbf{b}_{1, r-1} \otimes 1 \# w\right)=0, \tag{1}
\end{equation*}
$$

then

$$
\begin{aligned}
d_{r s}^{1}\left(a_{0} \# 1 \otimes \mathbf{x} \otimes \mathbf{a}_{1 r} \otimes 1 \# 1\right) & =-\sigma_{r, s-1}^{0} \circ d_{r-1, s}^{1} \circ d_{r s}^{0}\left(a_{0} \# 1 \otimes \mathbf{x} \otimes \mathbf{a}_{1 r} \otimes 1 \# 1\right) \\
& =(-1)^{r+1} \sigma_{r, s-1}^{0} \circ d_{r-1, s}^{1}\left(a_{0} \# 1 \otimes \mathbf{x} \otimes \mathbf{a}_{1 r} \# 1\right) .
\end{aligned}
$$

Hence, the formula for $d_{r s}^{1}\left(a_{0} \# 1 \otimes \mathbf{x} \otimes \mathbf{a}_{1 r} \otimes 1 \# 1\right)$ follows immediately by induction on r. Now, let us compute $d_{r s}^{2}$. Suppose $r \geq 0$ and the result is valid for $d_{r^{\prime} s}^{2}$ with $0 \leq r^{\prime}<r$. Using (1) twice, we get
$d_{r s}^{2}\left(a_{0} \# 1 \otimes \mathbf{x} \otimes \mathbf{a}_{1 r} \otimes 1 \# 1\right)$

$$
\begin{aligned}
= & -\sigma_{r+1, s-2}^{0} \circ\left(d_{r-1, s}^{2} \circ d_{r s}^{0}+d_{r, s-1}^{1} \circ d_{r s}^{1}\right)\left(a_{0} \# 1 \otimes \mathbf{x} \otimes \mathbf{a}_{1 r} \otimes 1 \# 1\right) \\
= & \sigma_{r+1, s-2}^{0}\left(\sum_{1 \leq i<j \leq s} \sum_{h=0}^{r-1}(-1)^{i+j+h+r+1} a_{0} \# 1 \otimes \mathbf{x}_{\hat{i j}} \otimes \mathbf{a}_{1 h} \otimes \hat{f}_{i j} \otimes \mathbf{a}_{h+1, r} \# 1\right) \\
& -\sigma_{r+1, s-2}^{0}\left(d_{r, s-1}^{1}\left(\sum_{j=1}^{s}(-1)^{j+r} a_{0} \# 1 \otimes \mathbf{x}_{\hat{j}} \otimes \mathbf{a}_{1 r} \otimes 1 \# 1\right)\left(1 \# x_{j}\right)\right) \\
= & \sum_{1 \leq i<j \leq s} \sum_{h=0}^{r-1}(-1)^{i+j+h} a_{0} \# 1 \otimes \mathbf{x}_{\hat{i} j} \otimes \mathbf{a}_{1 h} \otimes \hat{f}_{i j} \otimes \mathbf{a}_{h+1, r} \otimes 1 \# 1 \\
& -\sigma_{r+1, s-2}^{0}\left(\sum_{1 \leq i<j \leq s}(-1)^{i+j} a_{0} \# 1 \otimes \mathbf{x}_{\hat{i} \hat{j}} \otimes \mathbf{a}_{1 r} \otimes \hat{f}_{i j} \# 1\right) \\
= & \sum_{1 \leq i<j \leq s} \sum_{l=0}^{r}(-1)^{i+j+h} a_{0} \# 1 \otimes \mathbf{x}_{\hat{i} \hat{j}} \otimes \mathbf{a}_{1 h} \otimes \hat{f}_{i j} \otimes \mathbf{a}_{h+1, r} \otimes 1 \# 1 .
\end{aligned}
$$

To prove that $d_{r s}^{l}=0$ for all $l>2$, it is sufficient to check that

$$
\begin{aligned}
& \sigma_{r+2, s-4}^{0} \circ d_{r+1, s-2}^{2} \circ d_{r s}^{2}\left(a_{0} \# 1 \otimes \mathbf{x} \otimes \mathbf{a}_{1 r} \otimes 1 \# 1\right)=0, \\
& \sigma_{r+1, s-3}^{0} \circ d_{r+1, s-2}^{1} \circ d_{r s}^{2}\left(a_{0} \# 1 \otimes \mathbf{x} \otimes \mathbf{a}_{1 r} \otimes 1 \# 1\right)=0, \\
& \sigma_{r+1, s-3}^{0} \circ d_{r, s-1}^{2} \circ d_{r s}^{1}\left(a_{0} \# 1 \otimes \mathbf{x} \otimes \mathbf{a}_{1 r} \otimes 1 \# 1\right)=0 .
\end{aligned}
$$

Next, we give an explicit formula for the comparison map between $\left(X_{*}, d_{*}\right)$ and the canonical normalized Hochschild resolution $\left(E \otimes \bar{E}^{*} \otimes\right.$ $\left.E, b_{*}^{\prime}\right)$. Using this map it is easy to obtain explicit quasi-isomorphisms from the complex obtained in the following section for the Hochschild homology into the canonical one, and similarly for the cohomology.

Remark 3.4. There is a map of complexes $\theta_{*}:\left(X_{*}, d_{*}\right) \rightarrow\left(E \otimes \bar{E}^{*} \otimes\right.$ E, b_{*}^{\prime}), given by

$$
\begin{aligned}
& \theta_{r+s}\left(1_{E} \otimes x_{1} \wedge \cdots \wedge x_{s} \otimes a_{1} \otimes \cdots \otimes a_{r} \otimes 1_{E}\right) \\
& =\sum_{\tau \in \mathscr{G}_{s}} \operatorname{sg}(\tau) 1_{E} \otimes\left(\left(1 \# x_{\tau(1)}\right) \otimes \cdots \otimes\left(1 \# x_{\tau(s)}\right)\right) \\
& \quad *\left(\left(a_{1} \# 1\right) \otimes \cdots \otimes\left(a_{r} \# 1\right)\right) \otimes 1_{E},
\end{aligned}
$$

where $*$ denotes the shuffle product defined by

$$
\left(e_{1} \otimes \cdots \otimes e_{s}\right) *\left(e_{s+1} \otimes \cdots \otimes e_{n}\right)=\sum_{\sigma \in\{(s, n-s) \text {-shuffles }\}} \operatorname{sg}(\sigma) e_{\sigma(1)} \otimes \cdots \otimes e_{\sigma(n)} .
$$

4. THE HOCHSCHILD HOMOLOGY

Let $E=A \#_{f} U(\mathrm{~g})$ and M be an E-bimodule. We use Theorem 3.2.1 in order to construct a complex $\bar{X}_{*}(E, M)$, simpler than the canonical one, giving the Hochschild homology of E with coefficients in M.

The Complex $\bar{X}_{*}(E, M)$. Let $r, s, l \geq 0$ with $l \leq \min (2, s)$ and $r+l>0$. We define the morphism $\bar{d}_{r s}^{l}: M \otimes \bar{A}^{r} \otimes \mathfrak{g}^{\wedge s} \rightarrow M \otimes \bar{A}^{r+l-1} \otimes \mathfrak{g}^{\wedge s-l}$, by

$$
\begin{aligned}
\bar{d}_{r s}^{0}\left(m \otimes \mathbf{a}_{1 r} \otimes \mathbf{x}\right)= & m a_{1} \otimes \mathbf{a}_{2 r} \otimes \mathbf{x}+\sum_{i=1}^{r-1}(-1)^{i} m \otimes \mathbf{a}_{1, i-1} \otimes a_{i} a_{i+1} \\
& \otimes \mathbf{a}_{i+2, r} \otimes \mathbf{x}+(-1)^{r} a_{r} m \otimes \mathbf{a}_{1, r-1} \otimes \mathbf{x} \\
\bar{d}_{r s}^{1}\left(m \otimes \mathbf{a}_{1 r} \otimes \mathbf{x}\right)= & \sum_{i=1}^{s}(-1)^{i+r}\left(\left(1 \# x_{i}\right) m-m\left(1 \# x_{i}\right)\right) \otimes \mathbf{a}_{1 r} \otimes \mathbf{x}_{\hat{i}} \\
& +\sum_{\substack{i=1 \\
1 \leq h \leq r}}^{s}(-1)^{i+r} m \otimes \mathbf{a}_{1, h-1} \otimes a_{h}^{x_{i}} \otimes \mathbf{a}_{h+1, r} \otimes \mathbf{x}_{\hat{i}} \\
& +\sum_{1 \leq i<j \leq s}(-1)^{i+j+r} m \otimes \mathbf{a}_{1 r} \otimes\left[x_{i}, x_{j}\right] \wedge \mathbf{x}_{\hat{i} \hat{j}} \\
\bar{d}_{r s}^{2}\left(m \otimes \mathbf{a}_{1 r} \otimes \mathbf{x}\right)= & \sum_{\substack{1 \leq i<j \leq s \\
0 \leq h \leq r}}(-1)^{i+j+h} m \otimes \mathbf{a}_{1 h} \otimes \hat{f}_{i j} \otimes \mathbf{a}_{h+1, r} \otimes \mathbf{x}_{\hat{i} \hat{j}},
\end{aligned}
$$

where $\mathbf{a}_{1 r}=a_{1} \otimes \cdots \otimes a_{r}, \mathbf{x}=x_{1} \wedge \cdots \wedge x_{s}$, and $\hat{f}_{i j}=f\left(x_{i}, x_{j}\right)-f\left(x_{j}, x_{i}\right)$.
Theorem 4.1. The Hochschild homology $\mathrm{H}_{*}(A, M)$, of E with coefficients in M, is the homology of

$$
\bar{X}_{*}(E, M)=\bar{X}_{0} \stackrel{\bar{d}_{1}}{\longleftarrow} \bar{X}_{1} \stackrel{\bar{d}_{2}}{\longleftarrow} \bar{X}_{2} \stackrel{\bar{d}_{3}}{\leftrightarrows} \bar{X}_{3} \bar{d}_{4}^{\leftrightarrows} \bar{X}_{4} \stackrel{\bar{d}_{5}}{\longleftarrow} \bar{X}_{5} \stackrel{\bar{d}_{6}}{\longleftarrow} \bar{X}_{6} \stackrel{\bar{d}_{7}}{\longleftarrow} \ldots,
$$

where

$$
\bar{X}_{n}=\bigoplus_{r+s=n} M \otimes \bar{A}^{r} \otimes \mathfrak{g}^{\wedge s} \quad \text { and } \quad \bar{d}_{n}=\sum_{\substack{r+s=n \\ r+l>0}} \sum_{l=0}^{\min (s, 2)} \bar{d}_{r s}^{l}
$$

Proof. It follows from the fact that $\bar{X}_{*}(E, M)$ is the complex obtained by taking the tensor product $M \otimes_{E^{e}}\left(X_{*}, d_{*}\right)$, where $\left(X_{*}, d_{*}\right)$ is the complex of Theorem 3.2.1, and using the identifications $\vartheta_{r s}: M \otimes \overline{A^{\tau}} \otimes \mathfrak{g}^{\wedge s} \rightarrow$ $M \otimes_{E^{e}} E \otimes \mathfrak{g}^{\wedge s} \otimes \overline{A^{r}} \otimes E$, given by $\vartheta_{r s}\left(m \otimes \mathbf{a}_{1 r} \otimes \mathbf{x}\right)=m \otimes\left(1 \# 1 \otimes \mathbf{x} \otimes a_{1 r} \otimes\right.$ 1\#1).

Note that when f takes its values in k, then $\bar{X}_{*}(E, M)$ is the total complex of the double complex $\left(M \otimes \bar{A}^{*} \otimes \mathfrak{g}^{\wedge *}, \bar{d}_{* *}^{0}, \bar{d}_{* *}^{1}\right)$.

4.2. Stefan's Spectral Sequence

Next we show that the complex $\bar{X}_{*}(E, M)$ has a natural filtration, which gives a more explicit version of the homology spectral sequence obtained in [St.]

For each $x \in \mathfrak{g}$, we have the morphism $\Theta_{*}^{x}:\left(M \otimes \bar{A}^{*}, b_{*}\right) \rightarrow(M \otimes$ $\left.\overline{A^{*}}, b_{*}\right)$, defined by $\Theta_{r}^{x}\left(m \otimes \mathbf{a}_{1 r}\right)=((1 \# x) m-m(1 \# x)) \otimes \mathbf{a}_{1 r}+\sum_{1 \leq h \leq r} m \otimes$ $\mathbf{a}_{1, h-1} \otimes a_{h}^{x} \otimes \mathbf{a}_{h+1, r}$.

Proposition 4.2.1. For each $x, x^{\prime} \in \mathfrak{g}$ the endomorphisms of $\mathrm{H}_{*}(A, M)$ induced by $\Theta_{*}^{x^{\prime}} \circ \Theta_{*}^{x}-\Theta_{*}^{x} \circ \Theta_{*}^{x^{\prime}}$ and by $\Theta_{*}^{\left[x, x^{\prime}\right]}$ coincide. Consequently $\mathrm{H}_{*}(A, M)$ is a right $U(\mathfrak{g})$-module.

Proof. By a standard argument it is sufficient to prove it for $\mathrm{H}_{0}(A, M)$. In this case, the assertion can be easily checked, using that $\left(1 \# x^{\prime}\right)(1 \# x)=$ $f\left(x^{\prime}, x\right) \# 1+1 \# x^{\prime} x$ for all $x, x^{\prime} \in \mathfrak{g}$.

The chain complex $\bar{X}_{*}(E, M)$ has the filtration $F_{0} \subseteq F_{1} \subseteq F_{2} \subseteq \ldots$, where

$$
F_{i}\left(\bar{X}_{n}\right)=\bigoplus_{\substack{r+s=n \\ r \geq 0,0 \leq s \leq i}} M \otimes \overline{A^{r}} \otimes \mathfrak{g}^{\wedge s}
$$

Using this fact and Proposition 4.2.1, we obtain the following:
COROLLARY 4.2.2. There is a converging spectral sequence

$$
E_{r s}^{2}=\mathrm{H}_{s}\left(\mathfrak{g}, \mathrm{H}_{r}(A, M)\right) \Rightarrow \mathrm{H}_{r+s}(E, M)
$$

Given an A-bimodule M we let $[A, M]$ denote the k-submodule of M generated by the commutators $a m-m a(a \in A$ and $m \in M)$.

Corollary 4.2.3. If A is separable, then $\mathrm{H}_{*}(E, M)=\mathrm{H}_{*}\left(\mathfrak{g}, \frac{M}{[A, M]}\right)$.

4.3. Smooth Algebras

Let A be a commutative ring and let M be a symmetric A-bimodule. In the famous paper [H-K-R] was proved that if A is a commutative smooth k algebra, then $H_{n}(A, M)=M \otimes_{A} \Omega_{A / k}^{n}$, where $\Omega_{A / k}^{n}$ denotes the A-module of differential n-forms of A. Next, we generalize this result by computing the Hochschild homology of a differential operator ring $E=A \#_{f} U(\mathfrak{g})$ with coefficients in an E-bimodule M which is symmetric as an A-bimodule, under the hypothesis that $\mathbb{Q} \subseteq k$ and A is a commutative smooth k-algebra.

Let us assume that $\mathbb{Q} \subseteq k, A$ is a commutative ring, and M is symmetric as an A-bimodule. For each $r, s, l \geq 0$ with $1 \leq l \leq \min (2, s)$, we define the morphism $\tilde{d}_{r s}^{l}: M \otimes_{A} \Omega_{A / k}^{r} \otimes \mathfrak{g}^{\wedge s} \rightarrow M \otimes_{A} \Omega_{A / k}^{r+l-1} \otimes \mathfrak{g}^{\wedge s-l}$, by

$$
\begin{aligned}
& \tilde{d}_{r s}^{1}\left(m \otimes_{A} d a_{1} \cdots d a_{r} \otimes \mathbf{x}\right) \\
&= \sum_{i=1}^{s}(-1)^{i+r}\left(\left(1 \# x_{i}\right) m-m\left(1 \# x_{i}\right)\right) \otimes_{A} d a_{1} \cdots d a_{r} \otimes \mathbf{x}_{\hat{i}} \\
&+\sum_{\substack{i=1 \\
1 \leq h \leq r}}^{s}(-1)^{i+r} m \otimes d a_{1} \cdots d a_{h-1} d a_{h}^{x_{i}} d a_{h+1} \cdots d a_{r} \otimes \mathbf{x}_{\hat{i}} \\
&+\sum_{1 \leq i<j \leq s}(-1)^{i+j+r} m \otimes_{A} d a_{1} \cdots d a_{r} \otimes\left[x_{i}, x_{j}\right] \wedge \mathbf{x}_{\hat{i} \hat{j}} \\
& \tilde{d}_{r s}^{2}\left(m \otimes_{A} d a_{1} \cdots d a_{r} \otimes \mathbf{x}\right) \\
&=\sum_{1 \leq i<j \leq s}(-1)^{i+j} m \otimes_{A} d \hat{f}_{i j} d a_{1} \cdots d a_{r} \otimes \mathbf{x}_{\hat{i} \hat{j}}
\end{aligned}
$$

where $\mathbf{x}=x_{1} \wedge \cdots \wedge x_{s}$ and $\hat{f}_{i j}=f\left(x_{i}, x_{j}\right)-\left(x_{j}, x_{i}\right)$. Consider the complex

$$
\tilde{X}_{*}(E, M)=\tilde{X}_{0} \stackrel{\tilde{d}_{1}}{\leftrightarrows} \tilde{X}_{1} \stackrel{\tilde{d}_{2}}{\leftrightarrows} \tilde{X}_{2} \stackrel{\tilde{d}_{3}}{\leftrightarrows} \tilde{X}_{3} \stackrel{\tilde{d}_{4}}{\leftrightarrows} \tilde{X}_{4} \stackrel{\tilde{d}_{5}}{\leftrightarrows} \ldots,
$$

where

$$
\tilde{X}_{n}=\bigoplus_{r+s=n} M \otimes_{A} \Omega_{A / k}^{r} \otimes \mathfrak{g}^{\wedge s} \quad \text { and } \quad \tilde{d}_{n}=\sum_{\substack{r+s=n \\ r+l>0}} \sum_{l=1}^{\min (s, 2)} \tilde{d}_{r s}^{l}
$$

Let $\vartheta_{n}: \bar{X}_{n} \rightarrow \tilde{X}_{n}$ be the $\operatorname{map} \vartheta_{n}\left(m \otimes \mathbf{a}_{1 r} \otimes \mathbf{x}\right)=(1 / r!) m \otimes_{A} d a_{1} \ldots$ $d a_{r} \otimes \mathbf{x}$. It is easy to check that $\vartheta_{*}: \bar{X}_{*}(E, M) \rightarrow \widetilde{X}_{*}(E, M)$ is a morphism of complexes, which is a quasi-isomorphism when A is smooth. Hence, in this case, the Hochschild homology of E with coefficients in M is the homology of $\tilde{X}_{*}(E, M)$.

A filtrated algebra E is called quasi-commutative if its associated graded algebra is commutative. In [S] was proved that if E is a quasi-commutative
algebra whose associated graded algebra is a polynomial ring, then E is isomorphic to a differential polynomial ring $k \#_{f} U(\mathfrak{g})$, with g a finite dimensional Lie algebra. The Hochschild homology of this type of algebras was computed in [K, Theorem 3]. Next, we generalize this result.

Remark 4.3.1. Now, we assume that \mathfrak{g} acts trivially on A. Consider the symmetric algebra $S=S_{A}(\mathfrak{g})$, endowed with the Poisson bracket defined by $\{a, x\}=\{a, b\}=0$ and $\{x, y\}=f(x, y)-f(y, x)+[x, y]_{\mathfrak{g}}(a \in$ $A, x, y \in \mathfrak{g})$. It is easy to check that $\widetilde{X}_{*}(E, E)$ is isomorphic to the canonical complex $\left(\Omega_{S / k}^{*}, \delta_{*}\right)$ introduced by Brylinski and Koszul in [B, Ko], respectively. In fact an isomorphism $\Theta_{*}:\left(\Omega_{S / k}^{*}, \delta_{*}\right) \rightarrow \widetilde{X}_{*}(E, E)$ is given by $\Theta_{r+s}\left(P d a_{1} \cdots d a_{r} d x_{1} \cdots d x_{s}\right)=(-1)^{s} \eta(P) d a_{1} \cdots d a_{r} x_{1} \wedge \cdots \wedge x_{s}$, where $P \in S, a_{1}, \ldots, a_{r} \in A, x_{1}, \ldots, x_{s} \in \mathfrak{g}$ and $\eta: S \rightarrow E$ is the symmetrization $\eta\left(a y_{1} \cdots y_{n}\right)=\frac{a}{n!} \sum_{\sigma \in \mathscr{S}_{n}} y_{\sigma(1)} \cdots y_{\sigma(n)}$.

4.4. Compatibility with the Canonical Decomposition

Let us assume that $k \supseteq \mathbb{Q}, A$ is a commutative ring, M is symmetric as an A-bimodule, and the cocycle f takes its values in k. In [G-S] was obtained a decomposition of the canonical Hochschild complex ($M \otimes \bar{A}^{*}, b_{*}$). It is easy to check that the maps \bar{d}_{0} and \bar{d}_{1} are compatible with this decomposition. Since \bar{d}_{2} is the zero map, we obtain a decomposition of $\bar{X}_{*}(E, M)$, and then a decomposition of $\mathrm{H}_{*}(E, M)$.

5. THE HOCHSCHILD COHOMOLOGY

Let $E=A \#_{f} U(\mathfrak{g})$ and M be an E-bimodule. Using again Theorem 3.5 we construct a complex $\bar{X}^{*}(E, M)$, simpler than the canonical one, giving the Hochschild cohomology of E with coefficients in M.

The Complex $\bar{X}^{*}(E, M)$. Let $r, s, l \geq 0$ with $l \leq \min (2, s)$ and $r+l \geq 0$. We define the morphism $\bar{d}_{l}^{r s}: \operatorname{Hom}_{k}\left(\overline{A^{r}+l-1} \otimes \mathrm{~g}^{\wedge s-l}, M\right) \rightarrow \operatorname{Hom}_{k}\left(\overline{A^{r}} \otimes\right.$ $\left.\mathrm{g}^{\wedge s}, M\right)$, by

$$
\begin{aligned}
\bar{d}_{0}^{r s}(\varphi)\left(\mathbf{a}_{1 r} \otimes \mathbf{x}\right)= & a_{1} \varphi\left(\mathbf{a}_{2 r} \otimes \mathbf{x}\right)+\sum_{i=1}^{r-1}(-1)^{i} \varphi\left(\mathbf{a}_{1, i-1} \otimes a_{i} a_{i+1} \otimes \mathbf{a}_{i+2, r} \otimes \mathbf{x}\right) \\
& +(-1)^{r} \varphi\left(\mathbf{a}_{1, r-1} \otimes \mathbf{x}\right) a_{r}, \\
\bar{d}_{1}^{r s}(\varphi)\left(\mathbf{a}_{1 r} \otimes \mathbf{x}\right)= & \sum_{i=1}^{s}(-1)^{i+r}\left[\varphi\left(\mathbf{a}_{1 r} \otimes \mathbf{x}_{i}\right)\left(1 \# x_{i}\right)-\left(1 \# x_{i}\right) \varphi\left(\mathbf{a}_{1 r} \otimes \mathbf{x}_{i}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{\substack{i=1 \\
1 \leq h \leq r}}^{s}(-1)^{i+r} \varphi\left(\mathbf{a}_{1, h-1} \otimes a_{h}^{x_{i}} \otimes \mathbf{a}_{h+1, r} \otimes \mathbf{x}_{\hat{i}}\right) \\
& +\sum_{1 \leq i<j \leq s}(-1)^{i+j+r} \varphi\left(\mathbf{a}_{1 r} \otimes\left[x_{i}, x_{j}\right] \wedge \mathbf{x}_{\hat{i} \hat{j}}\right)
\end{aligned}
$$

$$
\bar{d}_{2}^{r s}(\varphi)\left(\mathbf{a}_{1 r} \otimes \mathbf{x}\right)=\sum_{\substack{1 \leq i<j \leq s \\ 0 \leq h \leq r}}(-1)^{i+j+h} \varphi\left(\mathbf{a}_{1 h} \otimes \hat{f}_{i j} \otimes \mathbf{a}_{h+1, r} \otimes \mathbf{x}_{\hat{i} \hat{j}}\right)
$$

where $\mathbf{a}_{1 r}=a_{1} \otimes \cdots \otimes a_{r}, \mathbf{x}=x_{1} \wedge \cdots \wedge x_{s}$, and $\hat{f}_{i j}=f\left(x_{i}, x_{j}\right)-$ $f\left(x_{j}, x_{i}\right)$. Applying the functor $\operatorname{Hom}_{E^{e}}(-, M)$ to the complex $\left(X_{*}, d_{*}\right)$ of Theorem 3.2.1, and using the identifications

$$
\vartheta^{r s}: \operatorname{Hom}_{k}\left(\overline{A^{r}} \otimes \mathfrak{g}^{\wedge s}, M\right) \rightarrow \operatorname{Hom}_{E^{e}}\left(E \otimes \mathfrak{g}^{\wedge s} \otimes \overline{A^{r}} \otimes E, M\right)
$$

given by $\vartheta^{r s}(\varphi)\left(1 \# 1 \otimes \mathbf{x} \otimes \mathbf{a}_{1 r} \otimes 1 \# 1\right)=\varphi\left(\mathbf{a}_{1 r} \otimes \mathbf{x}\right)$, we obtain the complex

$$
\bar{X}^{*}(E, M)=\bar{X}^{0} \xrightarrow{\bar{d}^{1}} \bar{X}^{1} \xrightarrow{\bar{d}^{2}} \bar{X}^{2} \xrightarrow{\bar{d}^{3}} \bar{X}^{3} \xrightarrow{\bar{d}^{4}} \bar{X}^{4} \xrightarrow{\bar{d}^{5}} \ldots,
$$

where

$$
\bar{X}^{n}=\bigoplus_{r+s=n} \operatorname{Hom}_{k}\left(\bar{A}^{r} \otimes \mathfrak{g}^{\wedge s}, M\right) \quad \text { and } \quad \bar{d}^{n}=\sum_{\substack{r+s=n \\ r+l>0}} \sum_{l=0}^{\min (s, 2)} \bar{d}_{l}^{r s}
$$

Note that when f takes its values in k, then $\bar{X}^{*}(E, M)$ is the total complex of the double complex $\left(\operatorname{Hom}_{k}\left(\overline{A^{*}} \otimes \mathfrak{g}^{\wedge *}, M\right), \bar{d}_{0}^{* *}, \bar{d}_{1}^{* *}\right)$.

Theorem 5.1. The Hochschild cohomology $H^{*}(E, M)$, of E with coefficients in M, is the homology of $\bar{X}^{*}(E, M)$.

Proof. It is an immediate consequence of the above discussion.

5.2. Stefan's Spectral Sequence

Next we show that the complex $\bar{X}^{*}(E, M)$ has a natural filtration, which gives a more explicit version of the cohomology spectral sequence obtained in [St].

For each $x \in \mathfrak{g}$, we have the map

$$
\Theta_{x}^{*}:\left(\operatorname{Hom}_{k}\left(\overline{A^{*}}, M\right), b^{*}\right) \rightarrow\left(\operatorname{Hom}_{k}\left(\overline{A^{*}}, M\right), b^{*}\right)
$$

defined by $\Theta_{x}^{r}(\varphi)\left(\mathbf{a}_{1 r}\right)=(1 \# x) \varphi\left(\mathbf{a}_{1 r}\right)-\varphi\left(\mathbf{a}_{1 r}\right)(1 \# x)-\sum_{h=1}^{r} \varphi\left(\mathbf{a}_{1, h-1} \otimes\right.$ $\left.a_{h}^{x} \otimes \mathbf{a}_{h+1, r}\right)$.

Proposition 5.2.1. For each $x, x^{\prime} \in \mathfrak{g}$ the endomorphisms of $\mathrm{H}^{*}(A, M)$ induced by $\Theta_{x^{\prime}}^{*} \circ \Theta_{x}^{*}-\Theta_{x}^{*} \circ \Theta_{x^{\prime}}^{*}$ and by $\Theta_{\left[x^{\prime}, x\right]}^{*}$ coincide. Consequently $\mathrm{H}^{*}(A, M)$ is a left $U(\mathfrak{g})$-module.

Proof. It is similar to the proof of Proposition 4.2.1.
The cochain complex $\bar{X}^{*}(E, M)$ has the filtration $F^{0} \supseteq F^{1} \supseteq \ldots$, where

$$
F^{i}\left(\bar{X}^{n}\right)=\underset{\substack{r+s=n \\ r \geq 0, s \geq i}}{\bigoplus} \operatorname{Hom}_{k}\left(\overline{A^{r}} \otimes \mathfrak{g}^{\wedge s}, M\right) .
$$

From this fact and Proposition 5.2.1, we obtain the following:
Corollary 5.2.2. There is a converging spectral sequence

$$
E_{2}^{r s}=\mathrm{H}^{s}\left(\mathfrak{g}, \mathrm{H}^{r}(A, M)\right) \Rightarrow \mathrm{H}^{r+s}(E, M) .
$$

Given an A-bimodule M we let M^{A} denote the k-submodule of M consisting of the elements m verifying $a m=m a$ for all $a \in A$.

Corollary 5.2.3. If A is separable, then $\mathrm{H}^{*}(E, M)=\mathrm{H}^{*}\left(\mathrm{~g}, M^{A}\right)$.

5.3. Smooth Algebras

Let us assume that $k \supseteq \mathbb{Q}, A$ is a commutative ring, and M is symmetric as an A-bimodule. For each $r, s, l \geq 0$ with $1 \leq l \leq \min (2, s)$, we define the morphism $\tilde{d}_{l}^{r s}: \operatorname{Hom}_{A}\left(\Omega_{A / k}^{r+l-1} \otimes \mathfrak{g}^{\wedge s-l}, M\right) \rightarrow \operatorname{Hom}_{A}\left(\Omega_{A / k}^{r} \otimes \mathfrak{g}^{\wedge s}, M\right)$, by

$$
\begin{aligned}
\tilde{d}_{1}^{r s}(\varphi)\left(d a_{1} \cdots d a_{r} \otimes \mathbf{x}\right)= & \sum_{i=1}^{s}(-1)^{i+r}\left[\varphi\left(d a_{1} \cdots d a_{r} \otimes \mathbf{x}_{i}\right),\left(1 \# x_{i}\right)\right] \\
& +\sum_{\substack{i=1 \\
1 \leq \leq \leq r}}^{s}(-1)^{i+r} \varphi\left(d a_{1} \cdots d_{h-1} d a_{h}^{x_{i}} d_{h+1} \cdots d_{r} \otimes \mathbf{x}_{i}\right) \\
& +\sum_{1 \leq i<j \leq s}(-1)^{i+j+r} \varphi\left(d a_{1} \cdots d a_{r} \otimes\left[x_{i}, x_{j}\right] \wedge \mathbf{x}_{\hat{i} \hat{j}}\right), \\
\tilde{d}_{2}^{r s}(\varphi)\left(d a_{1} \cdots d a_{r} \otimes \mathbf{x}\right)= & \sum_{1 \leq i<j \leq s}(-1)^{i+j} \varphi\left(d \hat{f}_{i j} d a_{1} \cdots d a_{r} \otimes \mathbf{x}_{\hat{i} \hat{j}}\right),
\end{aligned}
$$

where $\mathbf{x}=x_{1} \wedge \cdots \wedge x_{s}, \hat{f}_{i j}=f\left(x_{i}, x_{j}\right)-f\left(x_{j}, x_{i}\right)$ and $\left[\varphi\left(d a_{1} \cdots d a_{r} \otimes \mathbf{x}_{i}\right)\right.$, $\left.\left(1 \# x_{i}\right)\right]=\varphi\left(d a_{1} \cdots d a_{r} \otimes \mathbf{x}_{\hat{i}}\right)\left(1 \# x_{i}\right)-\left(1 \# x_{i}\right) \varphi\left(d a_{1} \cdots d a_{r} \otimes \mathbf{x}_{\hat{i}}\right)$. Consider the complex

$$
\tilde{X}^{*}(E, M)=\tilde{X}^{0} \xrightarrow{\tilde{d}^{1}} \widetilde{X}^{1} \xrightarrow{\tilde{d}^{2}} \widetilde{X}^{2} \xrightarrow{\tilde{d}^{3}} \widetilde{X}^{3} \xrightarrow{\tilde{d}^{4}} \widetilde{X}^{4} \xrightarrow{\tilde{d}_{5}} \ldots,
$$

where

$$
\widetilde{X}^{n}=\bigoplus_{r+s=n} \operatorname{Hom}_{k}\left(\Omega_{A / k}^{r} \otimes \mathfrak{g}^{\wedge s}, M\right) \quad \text { and } \quad \tilde{d}^{n}=\sum_{\substack{r+s=n \\ r+1>0}} \sum_{l=1}^{\min (s, 2)} \tilde{d}_{l}^{r s} .
$$

Let $\vartheta: \widetilde{X}^{n} \rightarrow \bar{X}^{n}$ be the map $\vartheta^{n}(\varphi)\left(\mathbf{a}_{1 r} \otimes \mathbf{x}\right)=\frac{1}{r!} \varphi\left(d a_{1} \cdots d a_{r} \otimes \mathbf{x}\right)$. It is easy to check that $\vartheta^{*}: \tilde{X}^{*}(E, M) \rightarrow \bar{X}^{*}(E, M)$ is a morphism of complexes, which is a quasi-isomorphism when A is smooth. Hence, in this case, the Hochshild cohomology of E with coefficients in M is the cohomology of $\tilde{X}^{*}(E, M)$.

5.4. Compatibility with the Canonical Decomposition

Let us assume that $k \supseteq \mathbb{Q}, A$ is a commutative ring, M is symmetric as an A-bimodule, and the cocycle f takes its values in k. Then the Hochschild cohomology $\mathrm{H}^{*}(E, M)$ has a decomposition similar to the one obtained in paragraph 4.4 for the Hochschild homology.

REFERENCES

[B-C-M] R. J. Blattner, M. Cohen, and S. Montgomery, Crossed products and inner actions of Hopf algebras, Trans. Amer. Math. Soc. 298 (1986), 671-711.
[B-G-R] W. Borho, P. Gabriel, and R. Rentschler, "Primideale in Einhüllenden auflösbarer Lie-Algebren," Lecture Notes in Mathematics, Vol. 357, Springer-Verlag, Berlin/Heidelberg/New York, 1973.
[B] J. L. Brylinski, A differential complex for Poisson manifolds, J. Differential Geom. 28 (1988), 93-114.
[C-S-V] A. Cap, H. Schichl, and J. Vanzura, On twisted tensor products of algebras, Comm. Algebra 23 (1995), 4701-4735.
[Ch] W. Chin, Prime ideals in differential operator rings and crossed products of infinite groups, J. Algebra 106 (1987), 78-104.
[D-T] Y. Doi and M. Takeuchi, Cleft comodule algebras by a bialgebra, Comm. Algebra 14 (1986), 801-817.
[G-S] M. Gerstenhaber and S. D. Schack, A Hodge-type decomposition for commutative algebra cohomology, J. Pure Appl. Algebra 48 (1987), 229-247.
[G-G] J. A. Guccione and J. J. Guccione, Hochschild (co)homology of a Hopf crossed products, K-theory, to appear.
[H-K-R] G. Hochschild, B. Kostant, and A. Rosenberg, Differential forms on regular affine algebras, Trans. Amer. Math. Soc. 102 (1962), 383-408.
[K] C. Kassel, L'homologie cyclique des algèbres enveloppantes, Invent. Math. 91 (1988), 221-251.
[Ko] J. L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in "Colloque Elie Cartan," pp. 257-271, Astérisque Hour Series, Soc. Math. France, Marseille, 1985.
[Mc] J. C. McConnell, Representations of solvable Lie algebras and the Gelfand-Kirillov conjecture, Proc. London Math. Soc. 29 (1974), 453-484.
[Mc-R] J. C. McConnell and J. C. Robson, "No Commutative Noetherian Rings," WileyInterscience, New York, 1987.
[M] S. Montgomery, Crossed products of Hopf algebras and enveloping algebras, in "Perspectives in Ring Theory," pp. 253-268, Kluwer Academic, Dordrecht, 1988.
[S] R. Sridharan, Filtered algebras and representations of Lie algebras, Trans. Amer. Math. Soc. 100 (1961), 530-550.
[St] D. Stefan, Hochschild cohomology of Hopf Galois extensions, J. Pure Appl. Algebra 103 (1995), 221-233.

[^0]: ${ }^{1}$ Supported by UBACYT 01/TW79 and CONICET. We thank the referee for a substantial simplification in the proof of Theorem 3.1.1.

