
J. Math. Pures Appl. 86 (2006) 552–589

www.elsevier.com/locate/matpur

A two phase elliptic singular perturbation problem
with a forcing term ✩

Claudia Lederman ∗, Noemi Wolanski

Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428) Buenos Aires, Argentina

Received 12 April 2006

Abstract

We study the following two phase elliptic singular perturbation problem:

�uε = βε

(
uε

) + f ε,

in Ω ⊂ R
N , where ε > 0, βε(s) = 1

ε β( s
ε ), with β a Lipschitz function satisfying β > 0 in (0,1), β ≡ 0 outside (0,1) and∫

β(s)ds = M . The functions uε and f ε are uniformly bounded. One of the motivations for the study of this problem is that
it appears in the analysis of the propagation of flames in the high activation energy limit, when sources are present.

We obtain uniform estimates, we pass to the limit (ε → 0) and we show that limit functions are solutions to the two phase free
boundary problem:

�u = f χ{u �≡0} in Ω \ ∂{u > 0},∣∣∇u+∣∣2 − ∣∣∇u−∣∣2 = 2M on Ω ∩ ∂{u > 0},
where f = limf ε , in a viscosity sense and in a pointwise sense at regular free boundary points.

In addition, we show that the free boundary is smooth and thus limit functions are classical solutions to the free boundary
problem, under suitable assumptions.

Some of the results obtained are new even in the case f ε ≡ 0.
The results in this paper also apply to other combustion models. For instance, models with nonlocal diffusion and/or transport.

Several of these applications are discussed here and we get, in some cases, the full regularity of the free boundary.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Nous étudions le problème de perturbations singulières elliptiques à deux phases suivant :

�uε = βε

(
uε

) + f ε,

dans Ω ⊂ R
N , où ε > 0, βε(s) = 1

ε β( s
ε ), β fonction lipschitzienne qui satisfait β > 0 sur (0,1), β ≡ 0 hors de (0,1) et∫

β(s)ds = M . Les fonctions uε et f ε sont uniformément bornées.
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Une des motivations pour l’étude de ce problème est qu’on le trouve dans l’analyse de la propagation des flammes à la limite
des hautes énergies d’activation, en présence de sources.

Nous obtenons des estimations uniformes qui nous permettent de passer à la limite lorsque (ε → 0) : nous montrons que les
fonctions limites sont solution du problème de frontière libre,

�u = f χ{u �≡0} dans Ω \ ∂{u > 0},∣∣∇u+∣∣2 − ∣∣∇u−∣∣2 = 2M sur Ω ∩ ∂{u > 0},
où f = limf ε , au sens de la viscosité et au sens ponctuel aux points réguliers de la frontière libre.

De plus, nous montrons la régularité de la frontière libre, d’où les fonctions limites sont solutions classiques de notre problème
à frontière libre, sous certaines hypothèses.

Une partie des résultats obtenus est originale, même dans le cas f ε ≡ 0.
Les résultats obtenus s’appliquent à d’autres modèles de combustion. Par exemple aux modèles avec diffusion non locale et/ou

avec transport. D’autres applications sont considerées ici et nous obtenons, dans certains cas, la régularité globale de la frontière
libre.
© 2006 Elsevier Masson SAS. All rights reserved.

MSC: 35R35; 35J65; 80A25; 35B65

Keywords: Free boundary problem; Two phase; Viscosity solutions; Regularity; Combustion

1. Introduction

In [24] the following singular perturbation problem for a nonlocal evolution operator was considered: Study the
uniform properties, and the limit as ε → 0, of nonnegative solutions uε of the problem:

θ�uε + (1 − θ)
(
J ∗ uε − uε

) − uε
t = βε

(
uε

)
in R

N × (0,+∞),

uε(x,0) = uε
0(x) in R

N,
(1.1)

where 0 < θ � 1, ε > 0, βε(s) = 1
ε
β( s

ε
), with β a Lipschitz continuous function satisfying β > 0 in (0,1), β ≡ 0

outside (0,1) and
∫

β(s)ds = M . The symbol ∗ denotes spatial convolution and J = J (x) is an even nonnegative
kernel with unit integral.

Problem (1.1) arises in the analysis of the propagation of flames in the high activation energy limit, when admitting
nonlocal effects (for the model, see [24] and the references therein).

In [24] it was shown that the understanding of the nonlocal problem (1.1) reduces to the understanding of the local
problem:

�uε − uε
t = βε

(
uε

) + f ε. (Pε(f
ε))

It is worth noticing that problem Pε(f
ε) appears in other situations as well. For instance, in the study of the

combustion model with transport,

�uε + aε(x, t) · ∇uε + cε(x, t)uε − uε
t = βε

(
uε

)
, (1.2)

when aε , ∇uε , cε and uε are uniformly bounded. Moreover, the elliptic version of Pε(f
ε), namely:

�uε = βε

(
uε

) + f ε, (Eε(f
ε))

also appears in the analysis of the travelling wave solutions to a combustion model studied in [3].
In [24] a family of nonnegative solutions uε(x, t) of equations Pε(f

ε) in a domain D ⊂ R
N+1 is considered. It is

assumed that both families uε and f ε are uniformly bounded in L∞ norm in D. Uniform estimates are obtained for
the family uε that allow the passage to the limit, as ε → 0. It is also shown that the limit function u is a solution of the
free boundary problem:

�u − ut = f in D ∩ {u > 0},
|∇u| = √

2M on D ∩ ∂{u > 0},
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in a parabolic viscosity sense and in a pointwise sense at regular free boundary points. Here f = limf ε , M is as above
and the free boundary is defined as D ∩ ∂{u > 0}.

In order to go further in the understanding of problem Pε(f
ε), we deal in the present paper with the elliptic version

of it, i.e., with Eε(f
ε).

We here consider a family uε of solutions to Eε(f
ε) in a domain Ω ⊂ R

N , such that both families uε and f ε are
uniformly bounded in L∞ norm in Ω , and we study the passage to the limit, as ε → 0.

Our aim is twofold: we are interested, on one hand, in discussing the problem when there is no sign restriction on
uε and, on the other hand, in studying the regularity of the free boundary for the limit functions—topics that remained
unexplored in [24].

We point out that there is a vast literature on problem Eε(f
ε) (and on the parabolic version of it, Pε(f

ε)) in the
particular case that f ε ≡ 0. A well studied free boundary problem is obtained in the limit; see, for instance, [3,7,12,
13,16,19,23,24,27]. However, the extension of the results holding for Eε(f

ε) when f ε ≡ 0 to the case f ε �≡ 0 is not
immediate, in particular when dealing with two phase functions.

On one hand, new tools are required to obtain uniform estimates that allow the passage to the limit. We achieve
here this purpose with the aid of the recent monotonicity formula of [8].

On the other hand, the presence of a forcing term in Eε(f
ε) which does not have a sign, introduces a new difficulty

due to the occurrence of a free boundary Γ − := Ω ∩ (∂{u < 0} \ ∂{u > 0}), that did not appear in the two phase
homogeneous case (see [12,13,23]).

In fact, we prove that the limit problem has two free boundaries: Γ + := Ω ∩ ∂{u > 0} (i.e., the one already
appearing in the homogeneous problem) and Γ − = Ω ∩ (∂{u < 0} \ ∂{u > 0}). We show that on Γ − limit functions
are solutions of an obstacle type problem and that on Γ + limit functions behave as those in the case f ε ≡ 0.

More precisely, we first prove that any limit function u satisfies:

�u − f χ{u �≡0} = Λ in Ω,

with Λ a Radon measure supported on Ω ∩ ∂{u > 0} and f = limf ε . This implies, in particular, that there is no jump
of ∇u on Γ −.

We then show that, under suitable assumptions, the limit function u is a solution of the free boundary problem:

�u = f χ{u �≡0} in Ω \ ∂{u > 0},∣∣∇u+∣∣2 − ∣∣∇u−∣∣2 = 2M on Ω ∩ ∂{u > 0}, (E(f ))

in a pointwise sense at regular free boundary points, and in a viscosity sense. Here M and f are as above,
u+ = max(u,0) and u− = max(−u,0). The key tools here are: the monotonicity formula of [8]—in the case of
the pointwise sense result—and some asymptotic development results proven in [24] for nonnegative functions with
bounded heat (or Laplacian) at boundary points with a tangent ball—in the case of the viscosity sense result.

We also prove that, under certain conditions, the free boundary Ω ∩∂{u > 0} is locally a C1,α surface and therefore,
the free boundary condition, ∣∣∇u+∣∣2 − ∣∣∇u−∣∣2 = 2M on Ω ∩ ∂{u > 0}, (1.3)

is satisfied in the classical sense. We obtain two different type of results. One of them, holding for one phase limits,
in the lines of the regularity theory developed in [1] (and its extension to inhomogeneous problems in [20] and [22])
and other results in the lines of the regularity theory developed in [5,6] (and its recent extension to inhomogeneous
problems in [9]).

We remark that there are limit functions u which do not satisfy the free boundary condition (1.3) in the classical
sense on any portion of Ω ∩ ∂{u > 0} (see examples in [24], Section 3). The hypotheses we assume here are necessary
to rule out those examples. In particular, we need to assume some kind of nondegeneracy for u+, and we thus devote
a complete section to the discussion of conditions implying this nondegeneracy.

We point out that most of the regularity results we prove in this paper are new even when f ε ≡ 0 (see discussion
in Remark 9.7). This is the case, in particular, of Theorems 9.5, 9.6 and 9.7 which are obtained by applying a local
monotonicity formula recently proved by the authors, as well as its consequences (see [25]).

We finally present applications of our results to the study of the regularity of the free boundary for the limit of
different singular perturbation problems. Namely, for the limit of stationary solutions to the nonlocal combustion
model studied in [24], for the limit of stationary solutions to (1.2), for the limit of the travelling wave solutions to
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a combustion model first studied in [3] and for the limit of minimizers of an energy functional that we construct in
Proposition 2.2. In particular, in the last two examples we prove that there is an open and dense subset R of the free
boundary that is a C1,α surface and the reminder of the free boundary has (N − 1)-dimensional Hausdorff measure
zero. In dimension 2 we prove that, in both cases, the whole free boundary is C1,α and we get the same result in
dimension 3 in the case of minimizers (Theorems 10.1 and 10.2).

An outline of the paper is as follows. In Section 2 we obtain uniform estimates for our problem and also the first
results on the passage to the limit ε → 0. Section 3 contains some basic examples and Section 4 results on the behavior
of limit functions near the free boundary. In Section 5 we prove nondegeneracy results for u+. Next, in Section 6 we
obtain results on the asymptotic development at regular free boundary points. In Section 7 we obtain other asymptotic
development results and we deal with the concept of viscosity solution to problem E(f ). In Section 8 we analyze the
behavior of limit functions which satisfy an additional uniform nondegeneracy assumption on u+. In Section 9 we
study the regularity of the free boundary and finally, in Section 10 we discuss applications of our results.

Notation and assumptions. Throughout the paper N will denote the spatial dimension. The set Ω ∩ ∂{u > 0} will be
referred to as the free boundary.

We will assume that the functions βε are defined by scaling of a single function β : R → R satisfying:

(i) β is a Lipschitz continuous function,
(ii) β > 0 in (0,1) and β ≡ 0 otherwise,

(iii)
∫ 1

0 β(s)ds = M .

And then βε(s) := 1
ε
β( s

ε
).

In addition, the following notation will be used:

• |S| N -dimensional Lebesgue measure of the set S,
• HN−1 (N − 1)-dimensional Hausdorff measure,
• Br(x0) open ball of radius r and center x0,
• −

∫
Br(x0)

u = 1
|Br (x0)|

∫
Br(x0)

udx,

• −
∫

∂Br (x0)
u = 1

HN−1(∂Br (x0))

∫
∂Br (x0)

udHN−1,
• χ

S
characteristic function of the set S,

• u+ = max(u,0), u− = max(−u,0),
• 〈· , ·〉 scalar product in R

N ,
• Bε(s) = ∫ s

0 βε(τ )dτ .

2. Uniform estimates and passage to the limit

In this section we consider a given family of solutions uε(x) of the equations Eε(f
ε):

�uε = βε(u
ε) + f ε,

in a domain Ω ⊂ R
N . We assume that both families uε and f ε are uniformly bounded in L∞ norm in Ω , and we

obtain further uniform estimates on the family uε that allow the passage to the limit, as ε → 0.
We then pass to the limit, and we show that the limit problem has two free boundaries: Γ + := Ω ∩ ∂{u > 0}

(i.e., the free boundary that already appeared in the case f ε ≡ 0) and Γ − := Ω ∩ (∂{u < 0} \ ∂{u > 0}) (a new free
boundary, which was not present in the case f ε ≡ 0).

We here show that on Γ − limit functions are solutions of an obstacle type problem and we also draw our first
conclusions on the behavior of limit functions on Γ +.

More precisely, we prove that any limit function u satisfies:

�u − f χ{u �≡0} = Λ in Ω, (2.1)

with Λ a Radon measure supported on Ω ∩ ∂{u > 0} and f = limf ε . This implies, in particular, that there is no jump
of ∇u on Γ −.
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Finally, we conclude the section by presenting an example of a family of uniformly bounded solutions of Eε(f
ε)

in general settings, which is obtained by minimization of energy functionals.
We start the section by proving a lemma that will be used throughout the paper (for the homogeneous version

see [1], Remark 4.2).

Lemma 2.1. Let v be a continuous nonnegative function in a domain Ω ⊂ R
N , v ∈ H 1(Ω), such that �v = g in

{v > 0} with g ∈ L∞(Ω). Then λv := �v − gχ{v>0} is a nonnegative Radon measure with support on Ω ∩ ∂{v > 0}.

Proof. Let η ∈ C∞
c (Ω) be nonnegative and let:

φk = η
(
1 − h(kv)

)
,

where h(s) = max(min(2 − s,1),0). Then,∫
Ω

gχ{v>0}φk = −
∫
Ω

∇v∇φk � −
∫
Ω

∇v∇η
(
1 − h(kv)

)
.

Then, letting k → ∞, we obtain: ∫
Ω

gχ{v>0}η � −
∫
Ω

∇v∇η,

which gives the desired result. �
We will next obtain uniform Lipschitz estimates for our family. Before doing so we state the following monotonicity

result from [8] that will allow us to obtain these estimates and that will also be used at other stages of our work:

Theorem 2.1. Let ui , i = 1,2, be nonnegative continuous functions in B1(0), which verify:

(i) �ui � −1 in the sense of distributions in B1(0),
(ii) u1(x).u2(x) = 0 for x ∈ B1(0),

(iii) u1(0) = u2(0) = 0.

Set

Φ(r) =
(

1

r2

∫
Br (0)

|∇u1(x)|2
|x|N−2

dx

)(
1

r2

∫
Br(0)

|∇u2(x)|2
|x|N−2

dx

)
.

Then,

Φ(r) � C
(
1 + ‖u1‖2

L2(B1/2(0))
+ ‖u2‖2

L2(B1/2(0))

)2
, 0 < r < 1/4, C = C(N).

Suppose, in addition, that

(iv) ui(x) � C|x|σ in B1(0), for some C > 0, σ > 0.

Then, the limit limr→0+ Φ(r) exists.

Proof. It follows from Theorems 1.3 and 1.4 and Remark 2.2 of [8]. �
As a consequence we obtain:

Theorem 2.2. Let uε be a family of solutions to Eε(f
ε) in a domain Ω ⊂ R

N such that ‖uε‖L∞(Ω) � A1 and
‖f ε‖L∞(Ω) � A2 for some A1 > 0, A2 > 0. Let K ⊂ Ω be compact and let τ > 0 be such that Bτ (x0) ⊂ Ω , for every
x0 ∈ K . There exists a constant L = L(N, τ,A1,A2,‖β‖∞) such that∣∣∇uε(x)

∣∣ � L for x ∈ K. (2.2)
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Proof. We will follow arguments similar to those in Theorem 3 in [7].
In fact, let us first obtain estimate (2.2) for x0 ∈ K ∩ {uε < 0}. For that purpose we define, for x ∈ B1(0),

u1(x) = 1

τ 2A2

(
uε(τx + x0) − λ

)+
, u2(x) = 1

τ 2A2

(
uε(τx + x0) − λ

)−
,

with λ = uε(x0). Then, using Lemma 2.1 we see that ui are under the assumptions of Theorem 2.1. This implies that,
for 0 < r < 1

4 ,

Φ(r) � C1,

and thus, |∇u1(0)|2|∇u2(0)|2 � C2, which gives (2.2) at x0.
Let us now consider x0 ∈ K ∩ {0 � uε � 2ε}. Without loss of generality we can assume that ε < 1. For x ∈ Bτ/2(0)

we define:

vε(x) = 1

ε
uε(εx + x0).

The estimate obtained in {uε < 0} implies that vε � −C3 in Bτ/2(0). By using Harnack inequality we get:∣∣�vε
∣∣ � C4,

∣∣vε
∣∣ � C5,

in Bτ/4(0) and thus (2.2) holds at x0.
Let us finally consider x0 ∈ K ∩ {uε > ε}. We take vε satisfying:

�vε = f ε in Bτ/2(x0),

vε = 0 on ∂Bτ/2(x0),

and let wε = uε − vε . Since βε(u
ε) = 0 in {uε > ε}, we have:

�wε = 0,
∣∣wε

∣∣ � C6 in Bτ/2(x0) ∩ {
uε > ε

}
,∣∣∇wε

∣∣ � C7 on Bτ/2(x0) ∩ ∂
{
uε > ε

}
(we have used the estimate obtained in {0 � uε � 2ε}).

We now fix ϕ ∈ C∞
0 (Bτ/2(x0)) such that 0 � ϕ � 1 and ϕ ≡ 1 in Bτ/4(x0). Then the function,

ϕ2
∣∣∇wε

∣∣2 + λ
(
wε

)2
,

is subharmonic in Bτ/2(x0) ∩ {uε > ε} if we choose a constant λ large enough (depending only on ϕ). Therefore,
|∇wε| � C8 in Bτ/4(x0) ∩ {uε > ε}, which gives (2.2) at x0. The proof is complete. �

With the uniform estimate obtained in the previous result we can now pass to the limit as ε → 0.

Lemma 2.2. Let uε be a family of solutions to Eε(f
ε) in a domain Ω ⊂ R

N . Let us assume that ‖uε‖L∞(Ω) �A1 and
‖f ε‖L∞(Ω) � A2 for some A1 > 0, A2 > 0. For every εn → 0 there exist a subsequence εn′ → 0, a function u which
is locally Lipschitz continuous in Ω and a function f ∈ L∞(Ω), such that

(i) uεn′ → u uniformly on compact subsets of Ω ,
(ii) ∇uεn′ → ∇u in L2

loc(Ω),
(iii) f εn′ → f ∗-weakly in L∞(Ω),
(iv) �u � f in the distributional sense in Ω .
(v) �u = f in {u > 0} ∪ {u < 0}.

Proof. The result follows arguing as in Lemma 3.1 in [12]. �
The previous result shows that the limit problem has two free boundaries: Γ + = Ω ∩ ∂{u > 0} and Γ − =

Ω ∩ (∂{u < 0} \ ∂{u > 0}). The next result will allow us to draw our first conclusions on the behavior of limit
functions on these free boundaries.
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Proposition 2.1. Let uεj be a family of solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly on
compact subsets of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Then,

�u+ − f χ{u>0} = λ+
u in Ω,

�u− + f χ{u<0} = λ−
u in Ω,

with λ+
u and λ−

u nonnegative Radon measures supported on the free boundary Γ + = Ω ∩ ∂{u > 0}. It follows that

�u − f χ{u �≡0} = Λ in Ω,

with Λ a Radon measure supported on the free boundary Γ + = Ω ∩ ∂{u > 0}. In particular, u ∈ W
2,p

loc in {u � 0}◦,
1 < p < ∞.

Proof. From Lemma 2.1 we deduce that

�u+ − f χ{u>0} = λ+
u in Ω,

�u− + f χ{u<0} = λ−
u in Ω,

with λ+
u and λ−

u nonnegative Radon measures, λ+
u supported on Ω ∩ ∂{u > 0} and λ−

u supported on Ω ∩ ∂{u < 0}.
Let us see that λ−

u is actually supported on Ω ∩ ∂{u > 0}. In fact, let x0 ∈ Ω ∩ (∂{u < 0} \ ∂{u > 0}), and let
Br(x0) ⊂ {u � 0}◦. On one hand there holds that

�u � f � −‖f ‖L∞ in Br(x0).

On the other hand,

�u− + f χ{u<0} = λ−
u � 0

so that

�u = −�u− � ‖f ‖L∞ in Br(x0).

It follows that u ∈ W
2,p

loc (Br(x0)), 1 < p < ∞, and thus,

�u− + f χ{u<0} = 0 in Br(x0).

Therefore support λ−
u ⊂ Ω ∩ ∂{u > 0}. �

Remark 2.1. By different arguments from those in Proposition 2.1 we can deduce that

�u − f = μ in Ω (2.3)

with μ a nonnegative Radon measure. In fact, reasoning in a similar way as in [12], Proposition 3.1, we can deduce
that ∫

K

βεj

(
uεj

)
� CK, for every K � Ω. (2.4)

Therefore there exists a nonnegative Radon measure μ such that βεj
(uεj ) → μ weakly in Ω and such that (2.3) holds.

Notice that, as in [24], (2.3) implies that f � 0 in {u ≡ 0}◦.

Remark 2.2. When uεj � 0 we deduce the nonnegativity of the Radon measure Λ appearing in Proposition 2.1 from
the fact that Λ = λ+

u in Ω .

Remark 2.3. Let us point out that when f εj ≡ 0 there holds that Γ − := Ω ∩ (∂{u < 0} \ ∂{u > 0}) = ∅. If f εj �≡ 0
the boundary Γ − may appear but, as we showed in Proposition 2.1, there holds that u ∈ W 2,p across it.

On the other hand, we know that f � 0 in {u ≡ 0}◦, so if f is continuous necessarily f � 0 in Γ −.
If x0 ∈ Γ − and f < −c < 0 in Bδ(x0) ∩ {u < 0} then we have the well known obstacle problem in a smaller ball

Bδ′(x0).
Examples with Γ − �= ∅ can be easily constructed in one dimension.
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Now we state two results that follow from the convergence result (Lemma 2.2) exactly as Lemmas 3.2 and 3.3
in [12].

Lemma 2.3. Let uεj be a family of solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly on
compact subsets of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0}, and let xn ∈ Ω ∩ ∂{u > 0}
be such that xn → x0 as n → ∞. Let λn → 0, uλn(x) = 1

λn
u(xn + λnx), and (uεj )λn(x) = 1

λn
uεj (xn + λnx). Assume

that uλn → U as n → ∞ uniformly on compact sets of R
N . Then, there exists j (n) → +∞ such that for every

jn � j (n) there holds that
εjn

λn
→ 0, and

(1) (uεjn )λn → U uniformly on compact sets of R
N ,

(2) ∇(uεjn )λn → ∇U in L2
loc(R

N).

Also, we deduce that

(3) ∇uλn → ∇U in L2
loc(R

N).

Lemma 2.4. Let uεj be a solution to Eεj
(f εj ) in a domain Ωj ⊂ R

N with Ωj ⊂ Ωj+1 and
⋃

j Ωj = R
N such that

uεj → U uniformly on compact sets of R
N , f εj → 0 ∗-weakly in L∞

loc(R
N) and εj → 0. Let us assume that for some

choice of positive numbers dn and points xn ∈ ∂{U > 0}, the sequence Udn(x) = 1
dn

U(xn + dnx) converges uniformly

on compact sets of R
N to a function U0. Let (uεj )dn(x) = 1

dn
uεj (xn + dnx). Then, there exists j (n) → ∞ such that

for every jn � j (n), there holds that
εjn

dn
→ 0 and

(1) (uεjn )dn → U0 uniformly on compact sets of R
N ,

(2) ∇(uεjn )dn → ∇U0 in L2
loc(R

N).

We conclude the section by presenting an example of a family of uniformly bounded solutions of Eε(f
ε) in

general settings. This family is obtained by minimization of energy functionals. We will come back to this family in
forthcoming sections.

Proposition 2.2. Let Ω ⊂ R
N be a bounded domain and let φε ∈ H 1(Ω) be such that ‖φε‖H 1(Ω) � A1. Let

f ε ∈ L∞(Ω) such that ‖f ε‖L∞(Ω) � A2. There exists uε ∈ H 1(Ω) that minimizes the energy,

Jε(v) =
∫
Ω

1

2
|∇v|2 + Bε(v) + f εv,

among functions v ∈ H 1(Ω) such that v = φε on ∂Ω . Here Bε(s) = ∫ s

0 βε(τ )dτ .
Then, the functions uε satisfy:

�uε = βε

(
uε

) + f ε in Ω,

and for every Ω ′ � Ω there exists C = C(Ω ′,A1,A2) such that∥∥uε
∥∥

L∞(Ω ′) � C.

Proof. The proof of the existence of a minimizer of Jε is standard and we omit it here. It is also standard the proof
that a minimizer uε is a solution to Eε(f

ε). It is easy to see that ‖uε‖H 1(Ω) � C with C independent of ε.
Let us show that for every Ω ′ � Ω there exists C = C(Ω ′,A1,A2) such that∥∥uε

∥∥
L∞(Ω ′) � C.

In fact, since uε is a solution to Eε(f
ε) in Ω there holds that uε ∈ C1,α(Ω). In particular, {uε < −1} is open and

(uε + 1)− is a nonnegative solution to
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�u = −f ε in Ω ∩ {
uε < −1

}
,

u = 0 on Ω ∩ ∂
{
uε < −1

}
,

with uniformly bounded H 1(Ω) norm. Thus,

sup
Ω ′

(
uε + 1

)− � C.

In particular, uε is uniformly bounded from below. Now, (uε + C + 1) is a nonnegative solution to,

�u � f ε in Ω,

with uniformly bounded H 1(Ω) norm. We deduce that

sup
Ω ′

(
uε + C + 1

)
� �C.

So that the uniform boundedness of uε in Ω ′ follows. �
3. Basic limits

In this section we analyze some particular limits that are crucial in the understanding of general limits.
We need to prove first the following lemma:

Lemma 3.1. Let uεj be solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly on compact sub-

sets of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Then there exists χ ∈ L1
loc(Ω) such that, for a subsequence,

Bεj
(uεj ) → χ in L1

loc(Ω), with χ ≡ M in {u > 0}, χ ≡ 0 in {u < 0}, χ(x) ∈ {0,M} a.e. in Ω . If, in addition, f εj → 0
in {u � 0}◦, there holds that χ ≡ M or χ ≡ 0 on every connected component of {u � 0}◦.

Proof. We follow the same ideas as in Step IV in the proof of Theorem 3.1 in [23], where we had f ε ≡ 0. If f ε �≡ 0
we have, for every K � Ω , ∫

K

∣∣∇Bεj

(
uεj

)∣∣ =
∫
K

βεj

(
uεj

)∣∣∇uεj
∣∣ � CK

∫
K

βεj

(
uεj

)
, (3.1)

where the last term is bounded by a constant C′
K due to estimate (2.4).

Since 0 � Bεj
(uεj ) � M , then, there exists χ ∈ L1

loc(Ω) such that, for a subsequence, Bεj
(uεj ) → χ in L1

loc(Ω).
In order to see that necessarily χ = 0 or χ = M , we modify the argument in [23] as follows. Let ρ1, ρ2 > 0 and

K � Ω . There exist 0 < η < 1 and βη > 0 such that∣∣{x ∈ K | ρ1 < Bεj

(
uεj

)
< M − ρ2

}∣∣ �
∣∣∣∣{x ∈ K

∣∣∣ η <
uεj

εj

< 1 − η

}∣∣∣∣
�

∣∣∣∣{x ∈ K

∣∣∣ βεj

(
uεj

)
� βη

εj

}∣∣∣∣ � εj

βη

∫
K

βεj

(
uεj

) → 0.

This implies that ∣∣{x ∈ K | ρ1 < χ < M − ρ2
}∣∣ = 0,

for every ρ1, ρ2 > 0 and K � Ω , so χ(x) ∈ {0,M} a.e. in Ω .
We now deduce that χ ≡ M in {u > 0} and χ ≡ 0 in {u < 0} as in [13], Theorem 3.1.
Finally, in case f εj → 0 in {u � 0}◦, we take K � {u � 0}◦ in (3.1), we observe that (as in [23]) the last term there

goes to zero and the result follows. �
Proposition 3.1. Let uεj be solutions to Eεj

(f εj ) in a domain Ω ⊂ R
N . Let x0 ∈ Ω and suppose uεj converge to

u = α(x − x0)
+
1 − γ (x − x0)

−
1 uniformly on compact subsets of Ω , with α � 0, γ > 0, f εj → 0 ∗-weakly in L∞(Ω)

and εj → 0. Then

α2 − γ 2 = 2M.
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Proof. The proof follows as that of Proposition 5.1 in [12]. �
Proposition 3.2. Let uεj be solutions to Eεj

(f εj ) in a domain Ω ⊂ R
N . Let x0 ∈ Ω and suppose uεj converge to

u = α(x − x0)
+
1 uniformly on compact subsets of Ω , with α ∈ R, f εj → 0 ∗-weakly in L∞(Ω) and εj → 0. Then

α = 0 or α = √
2M.

Proof. First we see that necessarily α � 0. In fact, if not we would have u � 0 in Ω , u(x0) = 0 and u subharmonic in
Ω and thus u ≡ 0, which is a contradiction.

If α > 0 we deduce that α = √
2M proceeding as in the proof of Proposition 5.1 in [24], but using in the present

case Lemma 3.1 above. �
Proposition 3.3. Let uεj be solutions to Eεj

(f εj ) in a domain Ω ⊂ R
N . Let x0 ∈ Ω and suppose uεj converge to

u = α(x − x0)
+
1 + ᾱ(x − x0)

−
1 uniformly on compact subsets of Ω , with α > 0, ᾱ > 0, f εj → 0 uniformly on compact

subsets of Ω and εj → 0 . Then

α = ᾱ �
√

2M.

Proof. The result was proven for the parabolic version of this problem in Proposition 5.3 in [12], for f ε ≡ 0, and it
was extended to the case f ε �≡ 0 in Proposition 5.2 in [24], under the assumption that uε � 0. But the same proof
in [24] is valid in the present case. �
Remark 3.1. We point out that all the situations present in Propositions 3.1, 3.2 and 3.3 can occur. We refer to Section 3
in [24] for examples of those situations. In particular, the analysis in [24] shows that for any given α ∈ [0,

√
2M ] there

are examples of families uεj of solutions to Eεj
(f εj ) in R

N , with f εj → 0 uniformly on compact sets of R
N such

that

uεj → u = αx+
1 + αx−

1 , uniformly on compact sets of R
N.

4. Behavior of limit functions near the free boundary

In this section we analyze the behavior of limit functions u = limuε , with uε a family of solutions to problems
Eε(f

ε).
The following result says that a limit function is, in a sense, a supersolution to the free boundary problem E(f )—

this holding for any limit function, without imposing any additional hypothesis.

Theorem 4.1. Let uεj be solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly on compact subsets
of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0} and let γ � 0 be such that

lim sup
x→x0

∣∣∇u−(x)
∣∣ � γ.

Then,

lim sup
x→x0

∣∣∇u+(x)
∣∣ �

√
2M + γ 2.

Proof. The proof follows as that of Theorem 6.1 in [12]. In fact, we define:

α = lim sup
x→x0
u(x)>0

∣∣∇u(x)
∣∣

and, proceeding as in [12], we assume that α > 0 and let xn → x0 be such that u(xn) > 0 and |∇u(xn)| → α. Then
we let zn ∈ Ω ∩ ∂{u > 0} be such that dn := |xn − zn| = dist(xn, ∂{u > 0}). As in [12] we choose ε0

n := εjn

dn
→ 0, and

consider the sequences:

udn(x) = 1
u(zn + dnx), uε0

n(x) = 1
uεjn (zn + dnx).
dn dn
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There holds that the functions udn satisfy (iv) and (v) in Lemma 2.2 with right-hand side f n and that uε0
n are solutions

to Eε0
n
(f ε0

n), where the sequences,

f n(x) = dnf (zn + dnx), f ε0
n(x) = dnf

εjn (zn + dnx),

converge uniformly to 0 as n → ∞ on compact sets, since ‖f εj ‖∞ � C. It follows that the blow-up limit
u0 = limudn = limuε0

n is harmonic in the set {u0 > 0} ∪ {u0 � 0}◦. Then we can argue as in [12]. In the present

case we obtain (after a second blow up) a sequence ε00
n → 0 and solutions uε00

n to Eε00
n

(f ε00
n ) in B1(0) such that

uε00
n → u00 = αx+

1 + μx−
1 uniformly on compact subsets of B1(0),

with f ε00
n → 0 uniformly on compact sets. Therefore, Propositions 3.1, 3.2 and 3.3 apply and we arrive at the conclu-

sion as in [12]. �
Theorem 4.2. Let uεj be a solution to Eεj

(f εj ) in a domain Ωj ⊂ R
N such that Ωj ⊂ Ωj+1 and

⋃
j Ωj = R

N .

Let us assume that uεj converge to a function U uniformly on compact sets of R
N , f εj → 0 ∗-weakly in L∞

loc(R
N)

and εj → 0. Assume, in addition, that U is Lipschitz continuous in R
N and ∂{U > 0} �= ∅. If γ � 0 is such that

|∇U−| � γ in R
N then, ∣∣∇U+∣∣ �

√
2M + γ 2 in R

N.

Proof. The proof follows as that of Theorem 6.2 in [12], since U is harmonic in the set {U > 0} ∪ {U � 0}◦. �
5. Nondegeneracy results

At different stages of our work we will prove results for u = limuε , with uε solutions to Eε(f
ε), which hold under

the assumption that u+ satisfies some nondegeneracy condition at the free boundary (see Definition 5.1). The purpose
of this section is to present results that imply some kind of nondegeneracy on u+.

In particular we define the concept of minimal solution to problem Eε(f
ε) and we prove the uniform nondegen-

eracy of u+ on the free boundary when u is the limit of any family of minimal solutions. We also prove the uniform
nondegeneracy of u+ on the free boundary when u is the limit of the minimizers to the energy functional constructed
in Proposition 2.2.

We point out that, from Section 3 in [24], we know that there are examples where u+ degenerates at the free
boundary. Therefore, some additional assumption is required if one wants to guarantee the nondegeneracy of u+ at a
free boundary point.

Definition 5.1. Let v � 0 be a continuous function in a domain Ω ⊂ R
N .

We say that v is nondegenerate at a point x0 ∈ Ω ∩ {v = 0} if there exist c > 0 and r0 > 0 such that one of the
following conditions holds:

−
∫

∂Br (x0)

v � cr for 0 < r � r0, (5.1)

−
∫

Br (x0)

v � cr for 0 < r � r0, (5.2)

sup
∂Br (x0)

v � cr for 0 < r � r0, (5.3)

sup
Br (x0)

v � cr for 0 < r � r0. (5.4)

Otherwise, we say that v degenerates at x0.
We say that v is uniformly nondegenerate on Γ ⊂ Ω ∩ {v = 0} in the sense of (5.1) (resp. (5.2), (5.3) or (5.4)), if

there exist c > 0 and r0 > 0 such that (5.1) (resp. (5.2), (5.3) or (5.4)) holds for every x0 ∈ Γ .
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Remark 5.1. If v � 0 is locally Lipschitz continuous in a domain Ω ⊂ R
N and �v � −C in Ω (which will be our

case), the four concepts of nondegeneracy of Definition 5.1 are equivalent. In fact, this can be seen by arguing in a
similar way as in Remark 3.1 in [23].

There holds the following result which will be applied to our limit functions

Proposition 5.1. Let u be a locally Lipschitz continuous function in a domain Ω ⊂ R
N satisfying that �u � −C in

Ω . Assume that u− is nondegenerate at x0 ∈ Ω ∩ ∂{u > 0} in the sense of (5.2). Then u+ is nondegenerate at x0 in
the same sense.

Proof. The result follows as Lemma 5.2 of [23], if we observe that in the present case uλn(x) = 1
λn

u(x0 + λnx)

converges to u0 with �u0 � 0. �
Our first result implying that u+ is nondegenerate at a free boundary point is the following:

Theorem 5.1. Let uεj be solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly on compact subsets
of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0} and assume that there exists ν ∈ R

N , with
|ν| = 1 such that

lim inf
r→0+

|{u > 0} ∩ {〈x − x0, ν〉 > 0} ∩ Br(x0)|
|Br(x0)| = α1, (5.5)

and

lim inf
r→0+

|{u < 0} ∩ {〈x − x0, ν〉 < 0} ∩ Br(x0)|
|Br(x0)| = α2 (5.6)

with α1 + α2 > 1/2. Then, there exists a constant C > 0 such that, for every r > 0 small,

sup
∂Br (x0)

u � Cr.

The constant C depends only on α1 + α2, N and the function β .
If, instead of (5.6), we have

lim inf
r→0+

|{u � 0}◦ ∩ {〈x − x0, ν〉 < 0} ∩ Br(x0)|
|Br(x0)| = α2,

uεj

εj

→ 0 a.e. in
({u ≡ 0}◦ ∪ ∂{u < 0}) ∩ {〈x − x0, ν〉 < 0

} ∩ Br0(x0),

(5.7)

we obtain the same conclusion.

Proof. Case f ε ≡ 0. The proof was done in [12], Theorem 6.3 under assumption (5.6). Under assumption (5.7), the
proof was done in [19], Proposition 4.1 and Remark 4.1, when uε � 0. It is not hard to see that the proof in [19]
applies also under assumption (5.7) when there is no sign restriction on uε .

Case f ε �≡ 0. The proof was done in [24], Theorem 6.2, under assumption (5.7), when uε � 0. The result in the
statement, both for (5.6) or (5.7), follows as in the case f ε ≡ 0 but treating the term f ε as shown in [24]. �
Remark 5.2. If in Theorem 5.1, instead of (5.7), we have the alternative condition:

lim inf
r→0+

|{u � 0} ∩ {〈x − x0, ν〉 < 0} ∩ Br(x0)|
|Br(x0)| = α2,

uεj

εj

→ 0 a.e. in {u ≡ 0} ∩ {〈x − x0, ν〉 < 0
} ∩ Br0(x0),

we obtain the same conclusion.
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Corollary 5.1. Let uεj be solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly on compact
subsets of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0} be such that there exists an inward
unit normal ν to ∂{u > 0} at x0 in the measure theoretic sense (see Definition 6.1), and assume that one of the
following conditions holds:

(1) lim infr→0+ |{u<0}∩Br(x0)||Br (x0)| > 0,

(2) lim infr→0+ |{u<0}∩Br(x0)||Br (x0)| = 0 and u
εj

εj
→ 0 a.e. in {u ≡ 0} ∩ {〈x − x0, ν〉 < 0} ∩ Br0(x0).

Then, the same conclusion of Theorem 5.1 holds.

Proof. We first notice that there holds (5.5), with α1 = 1/2, and

lim inf
r→0+

|{u � 0} ∩ {〈x − x0, ν〉 < 0} ∩ Br(x0)|
|Br(x0)| = 1

2
.

Then, in case (1) holds the result is an immediate consequence of Theorem 5.1. In case (2) holds the result follows
from Remark 5.2. �
Corollary 5.2. Let uεj be solutions to Eεj

(f εj ) in a domain Ω ⊂ R
N such that uεj → u uniformly on compact subsets

of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0} be such that there exists a ball B ⊂ {u > 0},
with x0 ∈ ∂B , and assume that one of the following conditions holds:

(1) lim infr→0+ |{u<0}∩Br(x0)||Br (x0)| > 0,

(2) lim infr→0+ |{u�0}◦∩Br(x0)||Br (x0)| > 0 and u
εj

εj
→ 0 a.e. in ({u ≡ 0}◦ ∪ ∂{u < 0}) ∩ Bc ∩ Br0(x0).

Then, the same conclusion of Theorem 5.1 holds.

Proof. The result follows from Theorem 5.1, since (5.5) is satisfied with ν the inward unit normal to ∂B at x0 and
α1 = 1/2. �
Corollary 5.3. Let uεj be solutions to Eεj

(f εj ) in a domain Ω ⊂ R
N such that uεj → u uniformly on compact subsets

of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0} be such that there exists a ball B ⊂ {u � 0}◦,

with x0 ∈ ∂B . Assume that lim infr→0+ |{u>0}∩Br(x0)||Br (x0)| > 0, and that one of the following conditions holds:

(1) u < 0 in B ,
(2) u

εj

εj
→ 0 a.e. in {u ≡ 0} ∩ B .

Then, the same conclusion of Theorem 5.1 holds.

Proof. The result follows from Theorem 5.1, since either (5.6) or a condition equivalent to (5.7) are satisfied, with ν

the outward unit normal to ∂B at x0 and α2 = 1/2. �
The nondegeneracy of u+ at a point x0 ∈ ∂{u > 0} can also be derived from Hopf’s Principle under suitable

assumptions on the smoothness of ∂{u > 0} at x0 and on the sign of f . In fact, we have:

Proposition 5.2. Let uεj be solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly on compact
subsets of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0}, and assume that one of the following
conditions holds:

(1) ∂{u > 0} satisfies a Dini interior condition at x0 and f � 0 in Br0(x0) ∩ {u > 0},
(2) there exists a ball B ⊂ {u > 0}, with x0 ∈ ∂B and f � 0 in B ,
(3) ∂{u > 0} satisfies a Dini exterior condition at x0, {u ≡ 0}◦ ∩ Br (x0) = ∅ and f � 0 in Br (x0) ∩ {u < 0},
0 0
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(4) there exists a ball B ⊂ {u < 0}, with x0 ∈ ∂B and f � 0 in B .

Then u+ is nondegenerate at x0.

Proof. In case (1) or (2) hold, the result follows from the application of Hopf’s Principle to u+. In case (3) or (4)
hold, it follows from the application of Hopf’s Principle to u− and from Proposition 5.1. �

We next define the concept of minimal solution to problem Eε(f
ε) and prove a nondegeneracy result for this kind

of solutions. We will follow the lines of [3], Section 4.

Definition 5.2. Let uε be a solution to Eε(f
ε) in a domain Ω ⊂ R

N with f ε ∈ L∞(Ω). We say that uε is a minimal
solution to Eε(f

ε) in Ω if whenever we have hε a strong supersolution to Eε(f
ε) in a bounded subdomain Ω ′ � Ω ,

i.e.,

hε ∈ W 2,p(Ω ′) ∩ C
(
Ω ′), �hε � βε

(
hε

) + f ε in Ω ′, (5.8)

which satisfies, in addition,

hε � uε on ∂Ω ′,

then

hε � uε in Ω ′.

Proposition 5.3. Let uε be a minimal solution to Eε(f
ε) in a domain Ω ⊂ R

N such that ‖f ε‖L∞(Ω) < A. For every
Ω ′ � Ω , there exist positive constants c0, ρ and ε0 depending only on N , A, dist(Ω ′, ∂Ω) and the function β , such
that if ε � ε0 and x ∈ Ω ′, then(

uε
)+

(x) � c0 dist
(
x,

{
uε � ε

})
if dist

(
x,

{
uε � ε

})
� ρ. (5.9)

Proof. Our proof is a modification of Theorem 4.1 in [3]. In fact, let us fix 0 < a < b < 1 and κ > 0 such that
β(s) > κ for s ∈ [a, b]. Let x0 ∈ Ω ′ such that uε(x0) > ε and such that 2δ = dist(x0, {uε � ε}) � dist(Ω ′, ∂Ω) and
δ < 1. Without loss of generality we will assume that x0 = 0.

In B2δ(0) there holds that �uε = f ε . By the Harnack inequality there holds that

uε(x) � Cuε(0) + Cδ2A in Bδ(0),

with C = C(N) > 0. We will exhibit a C1 supersolution hε satisfying (5.8) in Bδ(0). In addition hε = hε(r) will
depend only on r = |x| and will satisfy:

hε(0) = aε < uε(0),

and also hε(δ) � δD−1 for some D > 0 depending only on N,a,b, κ,A. By our hypothesis that uε is a minimal
solution it follows that we cannot have hε � uε everywhere on ∂Bδ(0). Hence

δ

D
� hε(δ) � Cuε(0) + Cδ2A

which gives:

uε(0) � c0δ,

if δ � δ0, for constants c0 and δ0 depending only on N,a,b, κ,A. This is, (5.9) holds.
We will take as hε the function constructed in [3], i.e.,

hε(r) =
⎧⎨⎩

εa for 0 � r � r0,

εa + k
2 (r − r0)

2 for r0 � r � λ,

H − A
2 (r − δ)2 for λ � r � δ,

and we will show that we can choose the numbers r0, λ, k,H and A so that hε has the desired properties for our
problem, provided ε � ε0 = ε0(N,a, b, κ,A).
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As done in [3], we first ask that hε be C1 and hε(λ) = εb, this is,

εb = H − A

2
(λ − δ)2, (5.10)

εb = εa + k

2
(λ − r0)

2, (5.11)

k(λ − r0) = A(δ − λ). (5.12)

We now take

λ = (1 − μ0)δ, (5.13)

r0 = λ − C̃ε(b − a), (5.14)

for some 0 < μ0 < 1 and C̃ > 0 to be fixed later (notice that in order to have r0 > 0 we need ε < Cδ). We now obtain
k,A and H from (5.11), (5.12) and (5.10), resp.

Let us verify that in Bδ(0),

�hε � βε

(
hε

) + f ε. (5.15)

In fact, in 0 � r � r0,

βε

(
hε

) + f ε � κ

ε
−A, (5.16)

so (5.15) holds provided ε � ε0(κ,A).
Next, in r0 � r � λ, also (5.16) holds, so we have:

βε

(
hε

) + f ε � κ

2ε
,

if we take ε0(κ,A) smaller. Now

�hε � k

(
1 + (N − 1)

λ − r0

r0

)
,

and we can make λ−r0
r0

� 1 provided ε � Cδ, for some C depending on C̃,μ0, b and a. Then

�hε � kN = 2N

C̃2ε(b − a)
� κ

2ε
,

if choose C̃ big depending on N,b,a, κ .
It remains to verify (5.15) in λ � r � δ. Here

βε

(
hε

) + f ε � −A,

and

�hε = −A

(
1 − (N − 1)

δ − r

r

)
� −A

(
1 − (N − 1)

μ0

1 − μ0

)
� −A

2
,

if we take μ0 small depending on N . Replacing A gives,

�hε � − 1
�Cμ0δ

� −A,

for appropriate μ0 = μ0(N,a, b, κ,A). This shows that (5.15) holds in Bδ(0).
We have to see now that hε(δ) � δ

D
. In fact,

hε(δ) = H � A

2
(λ − δ)2 = μ0

C̃
δ,

and thus, a constant D = D(N,a, b, κ,A) with the desired property exists.
We finally notice that the construction above fails when ε � Cδ, for C = C(N,a, b, κ,A), but the result is imme-

diate in this case since uε(0) > ε. The proof is now complete. �
As a consequence we obtain:
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Corollary 5.4. Let uεj be a family of minimal solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly
on compact subsets of Ω , f εj → f ∗-weakly in L∞(Ω) with ‖f εj ‖L∞(Ω) < A and εj → 0. For every Ω ′ � Ω , there
exist positive constants c0 and ρ depending only on N , A, dist(Ω ′, ∂Ω) and the function β , such that if x ∈ Ω ′, then

u+(x) � c0 dist
(
x, {u � 0}) if dist

(
x, {u � 0}) � ρ. (5.17)

Proof. Let x0 ∈ Ω ′ such that u(x0) > 0 and such that 2δ = dist(x0, {u � 0}) � dist(Ω ′, ∂Ω). Then u > 0 in B2δ(x0).
Moreover, if 0 < 2σ < 2δ, there holds that

uε > ε in B2σ (x0), (5.18)

if ε is small enough (we have dropped the subscript j ).
From the proof of Proposition 5.3, we know that (5.18) implies that

uε(x0) > c0σ, (5.19)

if σ � ρ and ε � ε0, for some constants c0, ρ and ε0 depending only on N , A, dist(Ω ′, ∂Ω) and the function β .
Then, letting ε → 0 in (5.19) first and then σ → δ, we get:

u(x0) � c0δ,

which gives the desired result. �
Next, we prove the nondegeneracy of the limit of the minimizers constructed in Proposition 2.2. First, we follow

closely the proof of Theorem 1.6 in [15] and we obtain:

Proposition 5.4. Let uε be a minimizer to Jε in the set of functions in H 1(Ω) that are equal to φε on ∂Ω where
‖φε‖H 1(Ω) � C and ‖f ε‖L∞(Ω) � A with C,A independent of ε. Then, for every Ω ′ � Ω , there exist positive con-
stants c0, ρ and ε0 depending only on N , A, dist(Ω ′, ∂Ω) and the function β , such that if ε � ε0 and x ∈ Ω ′, then(

uε
)+

(x) � c0 dist
(
x,

{
uε � ε

})
if dist

(
x,

{
uε � ε

})
� ρ.

Proof. Let x0 ∈ Ω ′ such that uε(x0) > ε and let us call d0 = dist{x0, {uε � ε}} and w(x) = 1
d0

uε(x0 + d0x). Then, in
B1(0),

�w = d0f
ε(x0 + d0x), w(x) >

ε

d0
.

Let ψ ∈ C∞(B1) such that ψ ≡ 0 in B1/4, ψ ≡ 1 in B1 \ B1/2. Let Ω ′ � Ω ′′ � Ω , L � ‖∇uε‖L∞(Ω ′′) and assume
that Bd0(x0) ⊂ Ω ′′. By Harnack inequality there exists a constant c > 0 such that

w(x) � cw(0) + C0d0 in B1/2

for a certain constant C0 depending on A. Let α > 0 be such that uε(x0) = αd0. With this notation me have α = w(0).
We want to prove that there exist c,ρ > 0 such that

α � c if d0 � ρ.

Let

z(x) =
{

min(w(x), (cα + C0d0)ψ) in B1/2,

w(x) outside B1/2.

Then, z ∈ H 1(B1) and z coincides with w on ∂B1 so that, since w is a local minimizer of the functional,

J̃ (v) =
∫
B1

[
1

2
|∇v|2 + Bε/d0(v) + d0f

ε(x0 + d0x)v

]
dx,

there holds that J̃ (z) � J̃ (w).
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Let D = B1/2 ∩ {w > (cα + C0d0)ψ}. Observe that B1/4 ⊂ D and Bε/d0(w) = M in B1/4 whereas z = 0 in B1/4.
Therefore, ∫

D

{
Bε/d0(w) − Bε/d0(z)

}
dx � M|B1/4|.

Thus,

M|B1/4| −Ad0

∫
D

[
w − (cα + C0d0)ψ

]
dx �

∫
D

|∇ψ |2(cα + C0d0)
2 � C(cα + C0d0)

2.

So that,

M|B1/4| −Ad0|B1/2|(cα + C0d0) � C(cα + C0d0)
2. (5.20)

Now, since uε(x0) > ε there holds that α > ε
d0

. Therefore, if ε
d0

� 1 there is nothing to prove. Thus, we may assume
that ε

d0
� 1. Thus, since there is a point x̄ on ∂Bd0(x0) such that uε(x̄) = ε,

α = uε(x0)

d0
� ε + Ld0

d0
= ε

d0
+ L � 1 + L.

Going back to (5.20) we have for d0 � ρ � 1,

0 < k � C(cα + C0d0) � Ccα + k

2
,

if ρ is small enough. Therefore, α � c > 0 and the proposition is proved. �
Then, proceeding as in Corollary 5.4 we get,

Corollary 5.5. Let u = limuεj with εj → 0, where uεj are minimizers of Jεj
in the set of functions in H 1(Ω) that

coincide with φεj
on ∂Ω where ‖φεj

‖H 1(Ω) � C and ‖f εj ‖L∞(Ω) � A with C,A independent of εj . Then, for every
Ω ′ � Ω , there exist positive constants c0 and ρ depending only on N , A, dist(Ω ′, ∂Ω) and the function β , such that
if x ∈ Ω ′, then

u+(x) � c0 dist
(
x, {u � 0}) if dist

(
x, {u � 0}) � ρ.

Finally we prove a result, which will be applied to our limit functions, that relates the nondegeneracy in the sense
of (5.17) with the four concepts of nondegeneracy of Definition 5.1 (recall Remark 5.1).

Proposition 5.5. Let u be a locally Lipschitz continuous function in a domain Ω ⊂ R
N satisfying that �u � −C in Ω .

Assume that u+ is locally uniformly nondegenerate in the sense that (5.17) holds on every compact subset of Ω . Then
u+ is locally uniformly nondegenerate on Ω ∩ ∂{u > 0} in the sense of (5.4) and consequently in the sense of (5.1),
(5.2) and (5.3).

Proof. The proof was done in Lemma 2.15 in [22] for the case in which C = 2. For arbitrary C we proceed exactly

as in [22], considering in the proof the auxiliary subharmonic function v(x) = u(x) + C|x−x1|2
2N

. �
6. Asymptotic development at regular free boundary points

In this section we consider u = limuε , with uε solutions to problems Eε(f
ε), and we prove that the free boundary

condition, ∣∣∇u+∣∣2 − ∣∣∇u−∣∣2 = 2M, (6.1)

is satisfied in a pointwise sense at any point x0 ∈ ∂{u > 0} that has an inward unit normal in the measure theoretic
sense (see Definition 6.1). The result holds if u+ satisfies a nondegeneracy condition at the point (see Definition 5.1).
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We remark that, as shown by the examples in Section 3 in [24], an assumption that guarantees nondegeneracy of
u+ is essential in order to get the free boundary condition (6.1). We refer to Section 5 for a discussion on conditions
under which u+ is nondegenerate at a free boundary point x0.

A key tool in this section is the monotonicity formula of [8] (see Theorem 2.1).

Definition 6.1. We say that ν is the inward unit normal to the free boundary ∂{u > 0} at a point x0 ∈ ∂{u > 0} in the
measure theoretic sense, if ν ∈ R

N , |ν| = 1 and

lim
r→0

1

rN

∫
Br(x0)

|χ{u>0} − χ{x/〈x−x0,ν〉>0}|dx = 0. (6.2)

Definition 6.2. We say that a point x0 ∈ ∂{u > 0} is regular if there exists an inward unit normal to ∂{u > 0} at x0 in
the measure theoretic sense.

We will need the following lemma:

Lemma 6.1. Let uεj be solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj converge to u uniformly on compact

subsets of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0} and let uλ(x) = 1
λ
u(x0 + λx) for

λ > 0. There exists δ � 0 such that if, for a sequence λn → 0, uλn → U uniformly on compact sets of R
N , then there

holds:

ΦU(r) :=
(

1

r2

∫
Br (0)

|∇U+(x)|2
|x|N−2

dx

)(
1

r2

∫
Br (0)

|∇U−(x)|2
|x|N−2

dx

)
≡ δ,

for every r > 0.

Proof. We will assume without loss of generality that x0 = 0 and that B1(0) � Ω . Since �u+ � −‖f ‖L∞ and
�u− � −‖f ‖L∞ (recall Proposition 2.1), we can apply Theorem 2.1 with u1 = u+ and u2 = u−.

For r > 0, let

Φu(r) :=
(

1

r2

∫
Br (0)

|∇u+(x)|2
|x|N−2

dx

)(
1

r2

∫
Br(0)

|∇u−(x)|2
|x|N−2

dx

)
.

Since u+ and u− are locally Lipschitz continuous, Theorem 2.1 implies, in particular, that there exists

δ := lim
r↘0

Φu(r).

Noticing that there holds:

Φuλ(r) = Φu(λr),

we deduce that there exists limλ↘0 Φuλ(r) and it coincides with δ, for every r > 0.
Let now λn → 0 be such that uλn → U uniformly on compact sets of R

N , and let r > 0 be fixed.
By Lemma 2.3 we know that ∇uλn → ∇U in L2

loc(R
N). So that for a subsequence, that we still call λn, we have

∇uλn → ∇U a.e. in R
N . Also |∇uλn(x)| � L for |x| < r0

λn
, where L is the bound of |∇u| in some Br0(0).

Consequently, we may pass to the limit in the expression of Φuλn
(r) to conclude that

Φuλn
(r) →

(
1

r2

∫
Br(0)

|∇U+(x)|2
|x|N−2

dx

)(
1

r2

∫
Br(0)

|∇U−(x)|2
|x|N−2

dx

)
.

So that the lemma is proved with δ = limr↘0 Φu(r) independent of the sequence λn. �
The main result in the section is
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Theorem 6.1. Let uεj be solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj converge to u uniformly on compact
subsets of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0} be a regular point. Assume that u+
is nondegenerate at x0. Then, there exist α > 0 and γ � 0 such that

u(x) = α〈x − x0, ν〉+ − γ 〈x − x0, ν〉− + o
(|x − x0|

)
,

with

α2 − γ 2 = 2M,

where ν is the inward unit normal to ∂{u > 0} at x0 in the measure theoretic sense.

Proof. We will assume, without loss of generality, that x0 = 0 and ν = e1. Let

uλ(x) = 1

λ
u(λx),

and let r > 0 be such that Br(0) � Ω . We have that uλ is Lipschitz continuous in Br/λ(0) uniformly in λ, and
uλ(0) = 0. Therefore, for every λn → 0, there exists a subsequence, that we still call λn, and a function U , Lipschitz
continuous in R

N , such that uλn → U uniformly on compact sets of R
N .

By (6.2), it follows that for every k > 0,∣∣{uλ > 0} ∩ {x1 < 0} ∩ Bk(0)
∣∣ → 0 as λ → 0,

and ∣∣{uλ � 0} ∩ {x1 > 0} ∩ Bk(0)
∣∣ → 0 as λ → 0.

It follows that U is nonnegative in {x1 > 0} and harmonic in {U > 0} and that U is nonpositive in {x1 < 0} and
harmonic in {U < 0} (recall Lemma 2.2(v)). So that U is superharmonic in {x1 < 0}. On the other hand, from Lemma
2.2(iv) we deduce that U is subharmonic in R

N . Thus, U is harmonic in {x1 < 0} and necessarily

U(x) = −γ x1 in {x1 < 0},
for some γ � 0.

On the other hand, since {U > 0} ⊂ {x1 > 0}, by Lemma A.1 in [6], there exists α � 0 such that

U(x) = αx+
1 + o

(|x|) in {x1 > 0}. (6.3)

The nondegeneracy assumption of u+ at x0 implies that necessarily α > 0.
Let us now show that

α2 − γ 2 = 2M. (6.4)

By Lemma 2.3 there exists a subsequence εjn such that δn := εjn

λn
→ 0 and

uδn(x) := 1

λn

uεjn (λnx),

uδn → U uniformly on compact sets of R
N.

Let f δn(x) := λnf
εjn (λnx). Then, f δn → 0 uniformly on compact sets of R

N and uδn is a solution to Eδn(f
δn).

Now let Uλ(x) = 1
λ
U(λx). Then for a sequence λk → 0,

Uλk
→ αx+

1 − γ x−
1 ,

uniformly on compact subsets.

As before, there exists a subsequence δnk
such that δ̄k := δnk

λk
→ 0 and that uδ̄k (x) := 1

λk
uδnk (λkx) satisfies that

uδ̄k → αx+
1 − γ x+

1 ,

uniformly on compact subsets.
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Since uδ̄k are solutions to Eδ̄k
(f̄ δ̄k ) with f̄ δ̄k → 0 (they are rescalings of the functions f δnk ) uniformly on compact

sets of R
N , we may apply Proposition 3.1, if γ > 0, or Proposition 3.2, if γ = 0, and deduce that α2 − γ 2 = 2M .

Let us show that we actually have:

U(x) = αx+
1 − γ x−

1 . (6.5)

In fact, ∂{U > 0} �= ∅, |∇U−| � γ and thus by Theorem 4.2 we have |∇U+| � √
2M + γ 2 = α. Using that U ≡ 0 in

{x1 = 0} we deduce that

U � αx1 in {x1 > 0}.
Since U is globally subharmonic and satisfies (6.3) the application of Hopf’s Principle yields

U = αx1 in {x1 > 0},
which gives (6.5).

Finally we observe that, by Lemma 6.1, there exists δ � 0 independent of the sequence λn such that

δ ≡ ΦU(r) ≡ CNα2γ 2. (6.6)

So that (6.5) holds with α > 0, γ � 0 satisfying (6.4) and (6.6). In particular, α and γ are independent of the
sequence λn. The theorem is proved. �
Remark 6.1. We point out that, from Section 3 in [24], we know that there are examples where u+ degenerates at x0,
and such that the conclusion in Theorem 6.1 does not hold.

We recall that in Section 5 we gave conditions under which u+ is nondegenerate at a free boundary point x0.

7. Viscosity solutions to the free boundary problem

In this section we consider u = limuε , with uε solutions to problems Eε(f
ε), and we prove that, under suitable

assumptions, u is a viscosity solution of the free boundary problem E(f ) (Corollaries 7.1 and 7.2).
First, we prove results on asymptotic developments at free boundary points in which there is a tangent ball contained

either in {u > 0} or in {u � 0}◦ (Theorems 7.1 and 7.2). The corollaries follow as an immediate consequence.
Some of these results hold if u+ satisfies a suitable nondegeneracy condition (we refer to Section 5 for conditions

implying the nondegeneracy of u+).

Definition 7.1. Let Ω be a domain in R
N . For any function u on Ω we define:

Ω+(u) := Ω ∩ {u > 0}, (7.1)

Ω−(u) := Ω ∩ {u � 0}◦, (7.2)

and

F(u) = Ω ∩ ∂{u > 0}. (7.3)

Definition 7.2. Let u be a continuous function in a domain Ω ⊂ R
N . We say that a point x0 ∈ F(u) is a regular point

from the right if there is a tangent ball at x0 from Ω+(u) for (i.e., there is a ball B ⊂ {u > 0}, with x0 ∈ ∂B).
Analogously, we say that a point x0 ∈ F(u) is a regular point from the left if there is a tangent ball at x0 from

Ω−(u) (i.e., there is a ball B ⊂ {u � 0}◦, with x0 ∈ ∂B).

Definition 7.3. Let u be a continuous function in a domain Ω ⊂ R
N . Let f ∈ L∞(Ω). Then u is called a viscosity

supersolution of E(f ) in Ω if:

(i) �u � f χ{u �≡0} in Ω+(u).
(ii) �u � f χ{u �≡0} in Ω−(u).
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(iii) Along F(u), u satisfies the condition, (
u+

ν

)2 − (
u−

ν

)2 � 2M,

in the following weak sense. If x0 ∈ F(u) is a regular point from the right with touching ball B , and

u(x) � α〈x − x0, ν〉+ + o
(|x − x0|

)
in B,

with α � 0 and ν the inward unit normal to ∂B at x0, then

u(x) < −γ 〈x − x0, ν〉− + o
(|x − x0|

)
in Bc,

for any γ � 0 such that α2 − γ 2 > 2M .

Definition 7.4. Let u be a continuous function in a domain Ω ⊂ R
N . Let f ∈ L∞(Ω). Then u is called a viscosity

subsolution of E(f ) in Ω if:

(i) �u � f χ{u �≡0} in Ω+(u).
(ii) �u � f χ{u �≡0} in Ω−(u).

(iii) Along F(u), u satisfies the condition, (
u+

ν

)2 − (
u−

ν

)2 � 2M,

in the following weak sense. If x0 ∈ F(u) is a regular point from the left with touching ball B , and

u(x) � −γ 〈x − x0, ν〉− + o
(|x − x0|

)
in B,

with γ � 0 and ν the outward unit normal to ∂B at x0, then

u(x) > α〈x − x0, ν〉+ + o
(|x − x0|

)
in Bc,

for any α � 0 such that α2 − γ 2 < 2M .

Definition 7.5. We say that u is a viscosity solution of E(f ) in a domain Ω ⊂ R
N if it is both a viscosity subsolution

and a viscosity supersolution of E(f ) in Ω .

We first prove the following result on asymptotic developments at regular points from the right:

Theorem 7.1. Let uεj be solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly on compact subsets
of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ F(u) be a regular point from the right with touching ball
B . Let ν be the inward unit normal to ∂B at x0. Then,

(1) If u− degenerates at x0, u has the following asymptotic development in the ball B:

u(x) = α〈x − x0, ν〉+ + o
(|x − x0|

)
in B,

with 0 � α �
√

2M .
(2) If u− is nondegenerate at x0, u has the following asymptotic development:

u(x) = α〈x − x0, ν〉+ − γ 〈x − x0, ν〉− + o
(|x − x0|

)
,

with α2 − γ 2 = 2M , α > 0, γ > 0.

Proof. By Lemma A.1 in [24] we know that u(x) = α〈x − x0, ν〉 + o(|x − x0|) in B with α � 0.
Since u− � 0, �u− = −f in {u− > 0}, we apply Lemma 2.1 and deduce that �u− � −C in Ω . On the other hand,

u− ≡ 0 in the ball B . Thus, by Lemma A.2 in [24] there holds that

u−(x) = γ 〈x − x0, ν〉− + o
(|x − x0|

)
,

with γ � 0.
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Now, if u− is nondegenerate at x0 we have γ > 0, and

u(x) = α〈x − x0, ν〉+ − γ 〈x − x0, ν〉− + o
(|x − x0|

)
.

Let uλ(x) = 1
λ
u(x0 + λx). Then, for a subsequence, uλn → u0 uniformly on compact subsets of R

N with
u0(x) = α〈x, ν〉+ − γ 〈x, ν〉−. Since u0 is the limit of a sequence uδn = (uεjn )λn of solutions to,

�v = βδn(v) + f δn,

with f δn → 0 and δn → 0, by Proposition 3.1,

α2 − γ 2 = 2M.

This ends the proof in the case (2).
If u− degenerates at x0 we have γ = 0. If α = 0 there is nothing to prove. So let us assume that α > 0. Let us

consider again a blow up limit u0. We know that in this case u0 � 0 in R
N and u0 ≡ 0 on the hyperplane 〈x, ν〉 = 0.

Let us consider the function v = u0χH where H is the half-space 〈x, ν〉 < 0. There holds that its positivity set is
contained in H , �v = 0 in {v > 0} and v is Lipschitz continuous in R

N . Applying Lemma A.1 of [6] we find that

u0(x) = ᾱ〈x, ν〉− + o
(|x|) in 〈x, ν〉 < 0,

with ᾱ � 0. Thus,

u0(x) = α〈x, ν〉+ + ᾱ〈x, ν〉− + o
(|x|).

We take a new blow up limit u00 = lim(u0)λk
. There holds that u00 = limuδ̃k with uδ̃k with the same properties as

uδn above.
On the other hand,

u00(x) = α〈x, ν〉+ + ᾱ〈x, ν〉−.

Thus, we deduce from Proposition 3.2 (if ᾱ = 0) or Proposition 3.3 (if ᾱ > 0) that

0 � α �
√

2M.

The theorem is proved. �
Next, we prove a result on asymptotic developments at regular points from the left.

Theorem 7.2. Let uεj be solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly on compact subsets
of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ F(u) be a regular point from the left with touching ball
B and assume that u+ is nondegenerate at x0. Then, there exist α > 0 and γ � 0 such that the following asymptotic
development holds:

u(x) = α〈x − x0, ν〉+ − γ 〈x − x0, ν〉− + o
(|x − x0|

)
,

with

α2 − γ 2 = 2M,

where ν is the outward unit normal to ∂B at x0.

Proof. Since u+ � 0, �u+ = f in {u+ > 0}, there holds by Lemma 2.1 that �u+ � −C in Ω . On the other hand,
u+ ≡ 0 in B . Thus, by Lemma A.2 in [24],

u+(x) = α〈x − x0, ν〉+ + o
(|x − x0|

)
,

with α � 0. Since u+ is nondegenerate at x0, there holds that α > 0.
Let us consider a blow-up limit u0. Since α > 0 and u � 0 in B ,

u+(x) = α〈x, ν〉+,
0
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and in 〈x, ν〉 < 0, u0 � 0 and �u0 = 0 . So that necessarily,

u0(x) = −γ 〈x, ν〉− in 〈x, ν〉 < 0

with γ � 0.
Summing up,

u0(x) = α〈x, ν〉+ − γ 〈x, ν〉−.

As in Theorem 7.1, we use that u0 = limuδn with uδn solutions to problems Eδn(f
δn) with f δn converging to 0 and

δn → 0, and deduce, by applying Proposition 3.1 if γ > 0 or Proposition 3.2 if γ = 0 that

α2 − γ 2 = 2M. (7.4)

Since α is independent of the blow-up sequence, (7.4) gives that also γ is independent of the blow-up sequence.
Therefore,

u(x) = α〈x − x0, ν〉+ − γ 〈x − x0, ν〉− + o
(|x − x0|

)
.

The theorem is proved. �
As a corollary we obtain:

Corollary 7.1. Let uεj be solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly on compact subsets
of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Then u is a viscosity supersolution to E(f ) in Ω .

Proof. The proof follows immediately from Theorem 7.1. �
We also obtain:

Corollary 7.2. Let uεj be solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly on compact subsets
of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Assume that u+ is nondegenerate at every regular point from the
left in F(u). Then u is a viscosity subsolution to E(f ) in Ω .

Proof. The proof follows immediately from Theorem 7.2. �
Remark 7.1. We point out that, from Section 3 in [24], we know that there are examples where u+ degenerates at x0,
and such that the conclusions in Theorem 7.2 and Corollary 7.2 do not hold.

Remark 7.2. Let u = αx+
1 + αx−

1 be as in Remark 3.1. Then, from Corollaries 7.1 and 7.2 it follows that u is a
viscosity solution to E(f ) in R

N (with f = 0).

Remark 7.3. We have chosen to work with the notion of viscosity solution introduced in this section, because it is a
natural extension to the inhomogeneous problem of the notion of weak solution introduced in [6] for the homogeneous
problem. Notice that the results in this section also hold replacing Definitions 7.3, 7.4 and 7.5 by Definition 4.4 in [8].

8. Uniformly nondegenerate limit functions

In this section we analyze the behavior of limit functions which satisfy the additional hypothesis that u+ is uni-
formly nondegenerate on Ω ∩ ∂{u > 0} (we refer to Section 5 for conditions implying the uniform nondegeneracy
of u+).

Remark 8.1. Let u be a continuous function in a domain Ω ⊂ R
N . If we have HN−1(Ω ∩ ∂{u > 0}) < ∞, then

{u > 0} is a set of finite perimeter in Ω (see [18]). In this situation we will call, as usual, reduced boundary (and
denote ∂red{u > 0}), the subset of points in ∂{u > 0} which have an inward unit normal in the measure theoretic sense
(see Definition 6.1).
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We will next prove a representation formula for u which holds when u+ is locally uniformly nondegenerate. We
will denote by HN−1�∂{u > 0} the measure HN−1 restricted to the set ∂{u > 0}.

Theorem 8.1. Let uεj be solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj converge to a function u uniformly
on compact subsets of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Let us assume that u+ is locally uniformly
nondegenerate on Ω ∩ ∂{u > 0} in the sense of (5.1). Then,

(1) HN−1(Ω ′ ∩ ∂{u > 0}) < ∞, for every Ω ′ � Ω .
(2) There exist Borelian functions q+

u and q−
u defined on Ω ∩ ∂{u > 0} such that

�u+ − f χ{u>0} = q+
u HN−1�∂{u > 0},

�u− + f χ{u<0} = q−
u HN−1�∂{u > 0},

and thus,

�u − f χ{u �≡0} = (
q+
u − q−

u

)
HN−1�∂{u > 0}. (8.1)

(3) For every Ω ′ � Ω there exist C > 0, c > 0 and r1 > 0 such that

crN−1 �HN−1(Br(x0) ∩ ∂{u > 0}) � CrN−1

for every x0 ∈ Ω ′ ∩ ∂{u > 0},0 < r < r1 and, in addition,
(4) 0 < c � q+

u � C and 0 � q−
u � C in Ω ′ ∩ ∂{u > 0}, q−

u = 0 in ∂{u > 0} \ ∂{u < 0}.
(5) u has the following asymptotic development at HN−1-almost every point x0 in ∂red{u > 0} (this is, at HN−1-

almost every point x0 such that ∂{u > 0} has an inward unit normal ν in the measure theoretic sense),

u(x) = q+
u (x0)〈x − x0, ν〉+ − q−

u (x0)〈x − x0, ν〉− + o
(|x − x0|

)
.

Proof. From Proposition 2.1 we know that

�u+ − f χ{u>0} = λ+
u , �u− + f χ{u<0} = λ−

u ,

with λ+
u and λ+

u nonnegative Radon measures supported on Ω ∩ ∂{u > 0}.
On the other hand, since u is locally Lipschitz, for every Ω ′ � Ω there exist C > 0 and r1 > 0 such that

−
∫

∂Br (x)

u+ � Cr,

for any x ∈ Ω ′ ∩ ∂{u > 0}, 0 < r � r1. Therefore, for some c > 0 and r2 > 0,

c � 1

r
−
∫

∂Br (x)

u+ � C (8.2)

for any x ∈ Ω ′ ∩ ∂{u > 0}, 0 < r � r2.
A suitable modification in the proof of Theorem 4.3 in [1] shows that there exist c,C > 0 and r3 > 0 such that

crN−1 �
∫

Br(x)

dλ+
u � CrN−1, (8.3)

for any x ∈ Ω ′ ∩ ∂{u > 0}, 0 < r � r3. In fact, we get for almost all r < r3,∫
Br (x)

dλ+
u =

∫
∂Br (x)

∇u+.ν dHN−1 −
∫

Br(x)

f χ{u>0} � CrN−1,

which proves the second inequality in (8.3).
In order to obtain the first inequality in (8.3), we proceed as in Theorem 4.3 in [1], working with our measure λ+

u

instead of the measure λ appearing there. In our case we need to use that if x ∈ ∂{u > 0}, y is such that u+(y) > 0,
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with |x − y| = κr , 0 < κ < 1 and Gy the positive Green function for the Laplacian in Br(x) with pole y, there holds
that ∫

Br (x)

Gy dλ+
u = −u+(y) +

∫
∂Br (x)

u+∂−νGy dHN−1 −
∫

Br(x)

Gyf χ{u>0},

where we have the following bound for the last term:∣∣∣∣ ∫
Br(x)

Gyf χ{u>0}
∣∣∣∣ � C(κ)‖f ‖L∞r2.

Thus we get the first inequality in (8.3).
Then, arguing exactly as in Theorem 4.5 in [1] we deduce that (1) in the statement holds and that there exists a

Borelian function q+
u defined on Ω ∩ ∂{u > 0} such that

�u+ − f χ{u>0} = q+
u HN−1�∂{u > 0}.

Also we deduce as in [1] that (3) in the statement as well as estimate 0 < c � q+
u � C in Ω ′ ∩ ∂{u > 0} hold.

On the other hand, the same argument employed above and the fact that u− is locally Lipschitz show that there
exist C > 0 and r4 > 0 such that ∫

Br(x)

dλ−
u � CrN−1,

for any x ∈ Ω ′ ∩ ∂{u > 0}, 0 < r � r4.
This implies (see Remark 4.6 in [1]) that there exists a Borelian function q−

u defined on Ω ∩ ∂{u > 0} such that

�u− + f χ{u<0} = q−
u HN−1�∂{u > 0},

with 0 � q−
u � C holding in Ω ′ ∩ ∂{u > 0}. Since u− = 0 in a neighborhood of every point in ∂{u > 0} \ ∂{u < 0},

there holds that q−
u = 0 in ∂{u > 0} \ ∂{u < 0}. Thus, (4) follows.

In order to prove (5) in the statement we first apply similar arguments as those in Theorem 4.8 and Remark 4.9
in [1] to the function u+ to deduce that

u+(x) = q+
u (x0)〈x − x0, ν〉+ + o

(|x − x0|
)
,

for HN−1-almost every x0 in ∂red{u > 0}. We need to use here that any blow-up limit u0 satisfies that �u0 = 0 in
{u0 > 0} = {〈x, ν〉 > 0}.

Proceeding again as Theorem 4.8 and Remark 4.9 in [1] now with the function u− we can also deduce that

u−(x) = q−
u (x0)〈x − x0, ν〉− + o

(|x − x0|
)
,

for HN−1-almost every x0 in ∂red{u > 0}. In this case we need to use that any blow-up limit u0 satisfies that �u0 = 0
in {u0 � 0}◦ = {〈x, ν〉 < 0}.

Then (5) follows and the theorem is proved. �
Remark 8.2. Notice that we had already shown in Proposition 2.1 that there holds, for any general limit u, that
�u − f χ{u �≡0} = Λ, with Λ a Radon measure supported on Ω ∩ ∂{u > 0}. In Theorem 8.1 we characterize Λ in the
particular case that u+ is locally uniformly nondegenerate on Ω ∩ ∂{u > 0}.

On the other hand, under the assumptions of Theorem 8.1, we have that Theorem 6.1 applies at every point x0 in
the reduced boundary. Therefore, the constants α and γ in Theorem 6.1 verify that α = q+

u (x0) and γ = q−
u (x0) where

q+
u and q−

u are the Borelian functions in (2) in Theorem 8.1. In particular, (q+
u (x0))

2 − (q−
u (x0))

2 = 2M and thus, the
function q+

u − q−
u appearing in (8.1) is strictly positive at HN−1-almost every point on ∂red{u > 0}.
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9. Regularity of the free boundary

In this section we study the regularity of the free boundary Ω ∩ ∂{u > 0}. We recall that there are examples where
u+ degenerates at the free boundary as well as examples where there is no portion of {u � 0}◦ at the free boundary
(like u = αx+

1 + αx−
1 , α > 0, see Remark 7.2). Thus, in order to prove that a limit function is a classical solution to

E(f ) these situations need to be ruled out.
We here prove that, under suitable assumptions, there is a subset of the free boundary which is locally a C1,α

surface and u is a classical solution to the free boundary problem E(f ) there.
We refer to Remark 9.7 for a discussion on the different results obtained.
We first obtain, for nonnegative limit functions, the following result on the regularity of the free boundary

Theorem 9.1. Let uεj be solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly on compact subsets
of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Assume that u � 0 in Ω ,

(i) u is locally uniformly nondegenerate on Ω ∩ ∂{u > 0} in the sense of (5.2),
(ii) lim supr→0

|Br(x̄)∩{u≡0}|
|Br (x̄)| > 0 at HN−1-almost every x̄ ∈ Ω ∩ ∂{u > 0}.

Then, there is a subset R of the free boundary Ω ∩ ∂{u > 0} (R = ∂red{u > 0}) which is locally a C1,α surface and
u is a classical solution to the free boundary problem E(f ) in a neighborhood of R. Moreover, R is open and dense
in Ω ∩ ∂{u > 0} and the remainder of the free boundary has (N − 1)-dimensional Hausdorff measure zero.

Proof. Let us first observe that, since Theorem 8.1 applies (we need to argue as in Remark 5.1), the free boundary
Ω ∩ ∂{u > 0} has locally finite (N − 1)-dimensional Hausdorff measure and therefore, {u > 0} has locally finite
perimeter in Ω .

On the other hand, we observe that under our hypotheses, we have for HN−1-almost every point x̄ ∈ Ω ∩ ∂{u > 0},
lim sup

r→0

|Br(x̄) ∩ {u > 0}|
|Br(x̄)| > 0, lim sup

r→0

|Br(x̄) ∩ {u ≡ 0}|
|Br(x̄)| > 0,

and therefore, Lemma 1 in [17], Section 5.8, gives that HN−1-almost all x̄ ∈ Ω ∩ ∂{u > 0} is in the reduced boundary.
It follows from Theorem 8.1 and Remark 8.2 that u is a nonnegative function satisfying:

�u − f χ{u>0} = √
2MHN−1�∂red{u > 0}.

In addition, u is locally Lipschitz continuous and satisfies (8.2) locally on the free boundary.
Under these assumptions, but with f ≡ 0, it was shown in [1] that ∂red{u > 0} is locally a C1,α surface. When

f ∈ L∞, the proofs in [1] can be modified as done in [20] and [22] and the same conclusion holds.
Finally, Theorem 8.1(3) implies that the reduced boundary is dense in Ω ∩ ∂{u > 0}. Thus, the theorem is

proved. �
Remark 9.1. Putting together the results in Corollaries 7.1 and 7.2, we will derive other results on the regularity of the
free boundary for limit functions, when we do not impose that the limit functions be nonnegative. In fact, results of this
kind were obtained in [23], for the particular case that f ε ≡ 0, with the aid the regularity results in [5] and [6]—which
apply to the homogeneous version of our problem. The extension of some results in [5] and [6] for the inhomogeneous
problem is carried out in [9].

Before obtaining regularity results for two-phase limits we need a preliminary result.

Proposition 9.1. Let uεj be solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly on compact
subsets of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0}, and let λn > 0 be a sequence such
that λn → 0. Consider the functions uλn(x) = 1

λn
u(x0 + λnx) and assume that uλn → U as n → ∞ uniformly on

compact sets of R
N . If u− is nondegenerate at x0 in the sense of (5.2), then

U(x) = α〈x, ν〉+ − γ 〈x, ν〉− in R
N,

where ν is a unit vector, and α, γ are positive constants satisfying α2 − γ 2 = 2M .
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Proof. Let us consider, for r > 0,

ΦU(r) :=
(

1

r2

∫
Br(0)

|∇U+(x)|2
|x|N−2

dx

)(
1

r2

∫
Br(0)

|∇U−(x)|2
|x|N−2

dx

)
.

From Lemma 6.1 it follows that there exists δ � 0 independent of the sequence λn such that

ΦU(r) ≡ δ for r > 0. (9.1)

Let us see that we necessarily have δ > 0. In fact, assume that

1

r2

∫
Br(0)

|∇U−(x)|2
|x|N−2

dx = 0

for some r > 0. Then, U− ≡ 0 in Br(0) and therefore,

0 = lim
n→∞

1

r
−
∫

Br (0)

u−
λn

= lim
n→∞

1

λnr
−
∫

Bλnr (x0)

u−,

which contradicts the nondegeneracy of u− at x0 in the sense of (5.2). Since also u+ is nondegenerate at x0 in the
same sense (recall Proposition 5.1), we proceed analogously with U+.

That is, we have shown that (9.1) holds with δ > 0.
We will now deduce that

U(x) = α〈x, ν〉+ − γ 〈x, ν〉− in R
N,

with α > 0, γ > 0 and ν a unit vector.
In fact, this follows from the application of the monotonicity formula in [2] to the functions U+ and U−, which

are harmonic where positive and satisfy (9.1) with δ �= 0 (see [2], Lemmas 5.1, 6.6 and Remark 6.1, and [4]).
Now, as done in previous results, we use that U = limuδn with uδn solutions to problems Eδn(f

δn) with f δn

converging to 0 and δn → 0 and deduce, by applying Proposition 3.1, that α2 − γ 2 = 2M . The proof is complete. �
Next, we obtain the following results for general two-phase limits.

Theorem 9.2. Let uεj be solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly on compact subsets
of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Assume that u+ is locally uniformly nondegenerate in the sense
that (5.17) holds on every compact subset of Ω . If x0 ∈ Ω ∩ ∂{u > 0} is such that ∂{u > 0} has at x0 an inward unit
normal in the measure theoretic sense then, the free boundary is a C1,α surface in a neighborhood of x0. Moreover, u

is a classical solution to the free boundary problem E(f ) in a neighborhood of x0.

Proof. From Corollaries 7.1 and 7.2 we deduce that u is a viscosity solution to E(f ) in Ω (in order to apply
Corollary 7.2 we use Proposition 5.5).

On the other hand, since the free boundary has at x0 an inward unit normal ν in the measure theoretic sense we can
apply Theorem 6.1 to deduce that

u(x) = α〈x − x0, ν〉+ − γ 〈x − x0, ν〉− + o
(|x − x0|

)
,

with α2 − γ 2 = 2M , α > 0, γ � 0.
Then, given λn → 0, the sequence uλn(x) = 1

λn
u(x0 + λnx) converges uniformly on compact sets of R

N to
u0(x) = α〈x, ν〉+ − γ 〈x, ν〉−.

It is not hard to see that for any ε > 0 small, there holds that

uλn > 0 in B1(0) ∩ {〈x, ν〉 > ε
}
, (9.2)

uλn � 0 in B1(0) ∩ {〈x, ν〉 < −ε
}
, (9.3)

if n is large enough. Indeed, (9.2) follows easily and the same happens with (9.3) in case γ > 0. In case γ = 0,
(9.3) follows from the nondegeneracy of u+.
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Therefore, if f ≡ 0, u falls under the hypotheses of Theorem 2′ in [6] for small balls around x0. This eventually
implies that ∂{u > 0} is a C1,α surface in a neighborhood of x0.

If f �≡ 0 the same conclusion follows from the application of the results in [9]. �
Remark 9.2. We point out that in the proof of Theorem 9.2 we only use the fact that the free boundary has at x0 a
normal in the measure theoretic sense to deduce, for a certain blow-up limit u0(x) = lim 1

λn
u(x0 + λnx) with λn → 0,

that u0(x) = α〈x, ν〉+ − γ 〈x, ν〉− for some unit vector ν, with α > 0 and γ � 0.

Theorem 9.3. Let uεj be solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly on compact subsets
of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Assume that u+ is locally uniformly nondegenerate in the sense that
(5.17) holds on every compact subset of Ω . If u− is nondegenerate at x0 ∈ Ω ∩ ∂{u > 0} in the sense of (5.2) then,
the free boundary is a C1,α surface in a neighborhood of x0. Moreover, u is a classical solution to the free boundary
problem E(f ) in a neighborhood of x0.

Proof. We argue in a similar way as in Theorem 9.2, but we apply in the present situation Proposition 9.1 instead of
Theorem 6.1. �

As a consequence we obtain:

Corollary 9.1. Let uεj be solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly on compact subsets
of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Assume that u+ is locally uniformly nondegenerate in the sense that
(5.17) holds on every compact subset of Ω . Let x0 ∈ Ω ∩ ∂{u > 0} and let:

δC(x0) := lim
r→0

(
1

r2

∫
Br(x0)

|∇u+(x)|2
|x − x0|N−2

dx

)(
1

r2

∫
Br (x0)

|∇u−(x)|2
|x − x0|N−2

dx

)
.

If δC(x0) > 0 then, the free boundary is a C1,α surface in a neighborhood of x0. Moreover, u is a classical solution
to the free boundary problem E(f ) in a neighborhood of x0.

Proof. It follows from Lemma 6.1 that if uλn(x) = 1
λn

u(x0 + λnx) → U(x) with λn → 0 then,

δC(x0) =
(

1

r2

∫
Br (0)

|∇U+(x)|2
|x|N−2

dx

)(
1

r2

∫
Br (0)

|∇U−(x)|2
|x|N−2

dx

)
for every r > 0. Therefore, since δC(x0) > 0, there holds that u− is nondegenerate at x0 and Theorem 9.3 applies. �
Remark 9.3. We point out that there are strictly two phase limits u, which are classical solutions to the free boundary
problem E(f ) in a neighborhood of x0 ∈ Ω ∩ ∂{u > 0}, for which δC(x0) = 0. This is possible when f �≡ 0.

We also obtain the next regularity result which is new even in the case that f ε ≡ 0.

Theorem 9.4. Let uεj be solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly on compact subsets
of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Assume that u+ is locally uniformly nondegenerate in the sense
that (5.17) holds on every compact subset of Ω . If x0 ∈ Ω ∩ ∂{u > 0} is a regular point from the left then, the free
boundary is a C1,α surface in a neighborhood of x0. Moreover, u is a classical solution to the free boundary problem
E(f ) in a neighborhood of x0.

Proof. We obtain the result as a consequence of Theorem 7.2, arguing once more in a similar way as in
Theorem 9.2. �
Remark 9.4. The previous result proves that, under suitable nondegeneracy assumptions, limit functions are classical
solutions to problem E(f ) in a neighborhood of a free boundary point x0 which is regular from the left. We point out
that such a result is not true if we have instead that the point x0 is regular from the right (see Remark 3.1).



580 C. Lederman, N. Wolanski / J. Math. Pures Appl. 86 (2006) 552–589
Some extra assumption at the point x0 is needed if one wants to get a result of this kind. We achieve this purpose in
the next two results. The key tool used to obtain them is the local monotonicity formula proven by the authors in [25].

From the results in [25] it follows that if uεj are solutions to Eεj
(f εj ) in BR(x0), u = limuεj uniformly on BR(x0),

f = limf εj ∗-weakly in L∞(BR(x0)), χ = limBεj
(uεj ) ∗-weakly in L∞(BR(x0)), εj → 0 and x0 ∈ ∂{u > 0}, then

there exists δW (x0) ∈ R such that

δW (x0) = lim
r→0+

1

r2

−r2∫
−4r2

∫
RN

(∣∣∇(uψ)
∣∣2 + 2ψ2χ + 1

2

(uψ)2

t

)
G(x − x0,−t)dx dt, (9.4)

where G(x, t) = 1
(4πt)N/2 exp(−|x|2

4t
) and ψ is any function satisfying that ψ ∈ C∞

0 (BR(x0)), 0 � ψ � 1, ψ ≡ 1 in
BR/2(x0).

Moreover, the results in [25] show that 0 � δW (x0) � 6M (see also (9.5) below).
When ψ ≡ 1, α > 0 and u = αx+

1 , there holds that δW (0) = 3M (see the proof of Theorem 9.7); and when ψ ≡ 1,
α > 0 and u = α|x1| there holds that δW (0) = 6M . These values, 3M and 6M , play a major role in the next theorems.

The next two theorems, which are new even when f ε ≡ 0, deal with the case of a point that is regular from the
right.

Theorem 9.5. Let uεj be solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly on compact subsets
of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Assume that u+ is locally uniformly nondegenerate in the sense that
(5.17) holds on every compact subset of Ω . If x0 ∈ Ω ∩ ∂{u > 0} is a regular point from the right and δW (x0) < 6M

(δW (x0) as in (9.4)) then, the free boundary is a C1,α surface in a neighborhood of x0. Moreover, u is a classical
solution to the free boundary problem E(f ) in a neighborhood of x0.

If N = 2 the same result holds without assuming that x0 is a regular point from the right.

Proof. Assume x0 is a regular point from the right. Let λn → 0 such that there exist u0 = limuλn uniformly on
compact sets of R

N and χ0 = limχλn ∗-weakly in L∞
loc(R

N), where uλn(x) = 1
λn

u(x0 + λnx), χλn(x) = χ(x0 + λnx)

and χ = limBεj
(uεj ) ∗-weakly in L∞(Ω). Then, as proved in [25],

δW (x0) =
−1∫

−4

∫
RN

2χ0G(x,−t)dx dt. (9.5)

Since 0 � χ0 � M , our hypothesis on δW (x0) implies that |{χ0 < M}| > 0. On the other hand, since there exists a ball
B ⊂ {u > 0} tangent to ∂{u > 0} at x0, there holds that χ ≡ M in B . (Here we choose a coordinate system such that
x0 = 0 and e1 is the direction from x0 to the center of the ball B .) Thus, χ0 ≡ M in {x1 > 0}.

By Theorem 3.1 in [25], there exist α > 0 and σ ∈ R such that

u(x) = αx+
1 + σx−

1 + o
(|x|) (9.6)

with one of the following situations:

(1) σ � 0 and α2 − σ 2 = 2M ,
(2) σ = α > 0.

But, if σ > 0 there holds that χ0 ≡ M in {x1 < 0}. Since this is a contradiction, there holds that

u(x) = αx+
1 − γ x−

1 + o
(|x|) with γ � 0 and α2 − γ 2 = 2M.

Thus, we are again in a situation in which we can apply Corollaries 7.1 and 7.2 and the results in [9] to deduce that
∂{u > 0} is C1,α in a neighborhood of x0.
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Now assume that N = 2 and let x0 be any free boundary point. If u− is nondegenerate at x0, the result follows
from the application of Theorem 9.3. So let us assume that u− degenerates at x0. Then, in this case, the sequence λn

above can be chosen so that
1

λn

−
∫

Bλn (x0)

u− → 0, as n → ∞. (9.7)

From Corollary 2.1 in [25] it follows that

u0(rx) = ru0(x) for r > 0, x ∈ R
N. (9.8)

We also observe that (9.7) together with (9.8) implies that u0 � 0 in R
N . The nondegeneracy assumption on u+

implies that u0 �≡ 0.
Now consider A a connected component of {u0 > 0}. Then, (9.8) gives that, in some system of coordinates, either

A ⊂ {x1 > 0} or else {x1 > 0} ⊂ A. In the first case, Lemma A1 in [6] implies that u0(x) = αx+
1 + o(|x|) in {x1 > 0},

with α � 0 and then (9.8) yields:

u0(x) = αx+
1 in {x1 > 0} and α > 0.

Now, with a similar analysis in {x1 < 0} we conclude that

u0(x) = αx+
1 + ᾱx−

1 , α > 0, ᾱ � 0. (9.9)

The case in which {x1 > 0} ⊂ A gives, with the same arguments, that again (9.9) holds.
By Lemma 2.3 there exists a subsequence εjn such that δn := εjn

λn
→ 0 and uδn(x) := 1

λn
uεjn (x0 + λnx) → u0(x)

uniformly on compact sets of R
N (uδn thus is a solution to Eδn(f

δn) with f δn(x) := λnf
εjn (x0 +λnx) → 0 uniformly

on compact sets of R
N ). By arguing as in Theorem 3.1 in [25], we can choose the subsequence εjn in such a way that

we also have Bδn(u
δn) → χ0 ∗-weakly in L∞

loc(R
N) (χ0 as above).

Then, ᾱ > 0 in (9.9) would imply χ0 ≡ M , which contradicts the fact that δW (x0) < 6M (recall (9.5)). Therefore

u0(x) = αx+
1 , α > 0,

(and thus α = √
2M ) and now the conclusion follows as in the previous results. �

In the next theorem we guarantee that the density of the nonpositive set at the free boundary point x0 is positive in
a different way.

Theorem 9.6. Let uεj be solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly on compact
subsets of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Assume that u+ is locally uniformly nondegenerate in the
sense that (5.17) holds on every compact subset of Ω . If x0 ∈ Ω ∩ ∂{u > 0} is a regular point from the right and
lim supr→0

|Br (x0)∩{u�0}|
|Br (x0)| > 0 then, the free boundary is a C1,α surface in a neighborhood of x0. Moreover, u is a

classical solution to the free boundary problem E(f ) in a neighborhood of x0.
If N = 2 the same result holds without assuming that x0 is a regular point from the right.

Proof. Assume x0 is a regular point from the right. Then, we proceed as in the proof of Theorem 9.5. This time we
deduce that σ � 0 in (9.6) since σ > 0 implies that

|Br(x0) ∩ {u � 0}|
|Br(x0)| → 0 as r → 0, (9.10)

contradicting our hypotheses.
Now, assume N = 2 and let x0 be any free boundary point. Let λn → 0 be such that limn→∞ |Bλn (x0)∩{u�0}|

|Bλn (x0)| > 0

and such that uλn(x) = 1
λn

u(x0 + λnx) → u0(x). So that

|B1(0) ∩ {u0 � 0}|
|B1(0)| > 0. (9.11)

Let us see that, in a certain coordinate system,

u0(x) = αx+
1 − γ x−

1 with α > 0 and γ � 0. (9.12)
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In fact, proceeding as in Theorem 9.5 with u+
0 we deduce that

u+
0 (x) = αx+

1 + ᾱx−
1 with α > 0 and ᾱ � 0.

Actually, (9.11) implies that ᾱ = 0 so that u+
0 (x) = αx+

1 .
Now we proceed in a similar way with u−

0 and get, for a certain direction ν that

u−
0 (x) = γ 〈x, ν〉− + γ̄ 〈x, ν〉+ with γ and γ̄ � 0.

Since α > 0, it follows that one of them, let’s say γ̄ , is zero.
If γ > 0, there holds that ν = e1 and (9.12) follows. If γ = 0, then u0 = u+

0 and we get again (9.12).
Now, the conclusion follows as before. �
The following regularity result also uses the local monotonicity formula proven by the authors in [25] and it is also

new even when f ε ≡ 0.

Theorem 9.7. Let uεj be solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly on compact subsets
of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Assume that u+ is locally uniformly nondegenerate in the sense
that (5.17) holds on every compact subset of Ω . Let x0 ∈ Ω ∩ ∂{u > 0}. There holds that δW (x0) = 3M (δW (x0) as
in (9.4)) if and only if the free boundary is C1,α in a neighborhood of x0. This implies that u is a classical solution to
the free boundary problem E(f ) in a neighborhood of x0.

Proof. Assume that the free boundary is C1,α in a neighborhood of x0. Then, using that u+ is nondegenerate at x0
we derive that δW (x0) = 3M from Remark 3.1 in [25].

Now assume that δW (x0) = 3M . If u− is nondegenerate at x0, the result follows from the application of
Theorem 9.3.

We will prove that the result also holds when u− degenerates at x0. In fact, in this case there exists a sequence
λn → 0 such that

1

λn

−
∫

Bλn (x0)

u− → 0, as n → ∞. (9.13)

Now consider, for a subsequence, u0 = limuλn uniformly on compact sets of R
N and χ0 = limχλn ∗-weakly in

L∞
loc(R

N), where uλn(x) = 1
λn

u(x0 + λnx), χλn(x) = χ(x0 + λnx) and χ = limBεj
(uεj ) ∗-weakly in L∞(Ω).

Then, there exists a subsequence εjn such that δn := εjn

λn
→ 0, uδn(x) := 1

λn
uεjn (x0 + λnx) → u0(x) uniformly on

compact sets of R
N (uδn thus is a solution to Eδn(f

δn) with f δn(x) := λnf
εjn (x0 + λnx) → 0 uniformly on compact

sets of R
N ) and such that Bδn(u

δn) → χ0 ∗-weakly in L∞
loc(R

N).
Let us show that

u0(rx) = ru0(x) for r > 0, x ∈ R
N, (9.14)

χ0(rx) = χ0(x) for r > 0, a.e. x ∈ R
N. (9.15)

In fact, (9.14) follows from Corollary 2.1 in [25]. We now observe that (9.13) together with (9.14) implies that
u0 � 0 in R

N .
In order to see that (9.15) holds, we first apply Lemma 3.1 to u0 = limuδn to deduce that χ0 ≡ M in {u0 > 0}, and

χ0 ≡ M or χ0 ≡ 0 on every connected component of {u0 ≡ 0}◦, each of these open sets being a cone as a consequence
of (9.14). We thus obtain (9.15) because there holds that |∂{u0 > 0}| = 0 and this last assertion follows from the
application of Theorem 8.1(1) to u0 (notice that u0 is locally uniformly nondegenerate on ∂{u0 > 0} in the sense
of (5.1) because the same property holds for u+).

In addition, the bounds in the proof of Lemma 3.1 imply that χ0 ∈ BVloc(R
N).

Next, we define, as in Section 10 in [27],

HN :=
−1∫ ∫

N

2Mχ{x1>0}G(x,−t)dx dt = 3M
−4 R
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(in [27] it is assumed that M = ∫
β(s)ds = 1

2 ) and using that δW (x0) = 3M , we obtain from Corollary 2.1 in [25] that

−1∫
−4

∫
RN

(
|∇u0|2 + 2χ0 + 1

2

u2
0

t

)
G(x,−t)dx dt = 3M = HN. (9.16)

Moreover, Corollary 2.2 in [25] implies that

−1∫
−4

∫
RN

2χ0G(x,−t)dx dt = 3M,

and thus, χ0 �≡ 0 and χ0 �≡ M .
We are now in a situation very similar to that of Proposition 10.1(1) in [27], and we deduce by a dimension

reduction argument that the equality in (9.16) implies that

u0(x) = α〈x, ν〉+ in R
N,

for some unit vector ν and α > 0 (and therefore α = √
2M ). We refer to [26] for the remaining details.

Finally, arguing as in the previous theorems we get the conclusion. �
We next include a proposition and we discuss its consequences on the regularity of the free boundary (see Re-

mark 9.5)

Proposition 9.2. Let uεj be solutions to Eεj
(f εj ) in a domain Ω ⊂ R

N such that uεj → u uniformly on compact
subsets of Ω , f εj → f ∗-weakly in L∞(Ω) and εj → 0. Assume that u− is nondegenerate at x0 ∈ Ω ∩ ∂{u > 0} in
the sense of (5.2).

Then given 0 < μ < 1 and π
4 < θ0 < π

2 , there exists λ > 0 and ν ∈ R
N , |ν| = 1, such that uλ(x) = 1

λ
u(x0 + λx)

is μ-monotone in B1(0) in any direction τ of the cone Γ (θ0, ν) = {τ : angle(τ, ν) � θ0} (i.e., uλ(x + rτ ) � uλ(x) for
any 1 � r � μ).

Proof. Let λn > 0 be a sequence such that λn → 0 and such that uλn(x) = 1
λn

u(x0 + λnx) converges to a function U

as n → ∞, uniformly on compact sets of R
N .

From Proposition 9.1, it follows that

U(x) = α〈x, ν〉+ − γ 〈x, ν〉− in R
N,

with ν a unit vector, and α, γ positive constants satisfying α2 − γ 2 = 2M .
Therefore, given 0 < μ < 1 and π

4 < θ0 < π
2 , there exists n0 such that, for any n � n0, and x ∈ B1(0),

uλn(x + rτ ) � uλn(x) for any 1 � r � μ

with τ any direction of the cone,

Γ (θ0, ν) = {
τ : angle(τ, ν) � θ0

}
.

This is, uλn is μ-monotone in B1(0) in Γ (θ0, ν). �
Remark 9.5. Let u = limuε (uε solutions to Eε(f

ε)) be such that u+ is nondegenerate at every regular point from the
left in Ω ∩ ∂{u > 0}. Then, from the results in Section 7 it follows that u is a viscosity solution to E(f ) (f = limf ε).

Assume that u− is nondegenerate at x0 ∈ Ω ∩ ∂{u > 0}. Then, in case f ≡ 0, we deduce from Proposition 9.2,
Theorem 1 in [6] and the results in [5] that Ω ∩ ∂{u > 0} is a C1,α surface in a neighborhood of x0 and u is a classical
solution to the free boundary problem E(f ).

In case f �≡ 0 we expect the same conclusion to hold. In fact, we expect a result analogous to Theorem 1 in [6] to
hold, implying the regularity of the free boundary (at least for a wide cone, which is what we get in Proposition 9.2).
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Remark 9.6 (Higher regularity). In all the regularity theorems in this section, when u � 0, we get further regularity
of the smooth portion R of the free boundary according to the regularity of the function f . In fact, from Theorem 2
in [21] it follows that

f ∈ C
k,α
loc (resp. analytic) implies R ∈ C

k+2,α
loc (resp. analytic).

Let us finally summarize the results in this section:

Remark 9.7 (Conclusion). We know that there are examples where u+ degenerates at the free boundary as well as
examples where there is no portion of {u � 0}◦ at the free boundary (like u = αx+

1 + αx−
1 , α > 0). Thus, in order to

prove that a limit function is a classical solution to E(f ) these situations need to be ruled out.
We have obtained different regularity results. In all of them the assumption that u+ is nondegenerate on the free

boundary is present. But it is also necessary to make some other assumption guaranteeing that there is some portion
of {u � 0}◦ at the free boundary.

In the regularity results ranging from Theorem 9.2 to the end of the section, we guarantee this fact by means of
hypotheses of a pointwise nature, and the conclusions obtained hold in a neighborhood of a point.

In contrast, in Theorem 9.1, we guarantee this fact—for nonnegative limit functions—by means of a hypothesis
of a global nature, but with a hypothesis which is the weakest possible way to ensure that there is some portion of
{u � 0}◦ at the free boundary. The conclusion obtained holds almost everywhere on ∂{u > 0}.

We refer to Section 5 for conditions implying the nondegeneracy of u+.
We finally point out that Theorems 9.1, 9.4–9.7 are new even in the case that f ε ≡ 0.

10. Some applications

In this section we discuss applications of our results to the study of the regularity of the free boundary for the limit
of different singular perturbation problems. Namely, for the limit of stationary solutions to the nonlocal combustion
model studied in [24], for the limit of stationary solutions to (1.2), for the limit of the travelling wave solutions to
a combustion model first studied in [3] and for the limit of the minimizers to the energy functional constructed in
Proposition 2.2.

Example 10.1. Consider uε a family of solutions to the following nonlocal combustion model:

θ�uε + (1 − θ)
(
J ∗ uε − uε

) − uε
t = βε

(
uε

) + gε, (10.1)

where 0 < θ � 1, βε as before, ∗ denotes spatial convolution, J = J (x) is an even nonnegative kernel with unit
integral and gε are given functions.

In [24] it was shown that if uε are bounded solutions to (10.1) in R
N × (0, T ), with ‖uε

0‖L∞(RN) � C1 and
‖gε‖L∞(RN×(0,T )) � C2 then ‖uε‖L∞(RN×(0,T )) � C3.

Let us now consider any family uε of solutions to (10.1) with ‖uε‖L∞ � C̃1 and ‖gε‖L∞ � C̃2.
Then, defining ūε(x, t) = uε(

√
θ x, t), it follows that ūε are solutions to Pε(f

ε), with

f ε(x, t) = −(1 − θ)
(
J ∗ uε − uε

)(√
θ x, t

) + gε
(√

θ x, t
)

and ‖f ε‖L∞ � C̃3. If moreover ūε are stationary, then they are solutions to Eε(f
ε) and the results in this paper apply.

We refer to [24] for a discussion of this problem in the one phase evolution case.

Example 10.2. Consider uε a family of solutions to the following combustion model with transport:

�uε + aε(x, t) · ∇uε + cε(x, t)uε − uε
t = βε

(
uε

)
, (10.2)

with βε as before. If ‖uε‖L∞ � C1, ‖aε‖L∞ � C2, ‖cε‖L∞ � C3, then local uniform Lip(1, 1
2 ) bounds are obtained

for such a family in [11] (for uε nonnegative and stationary these estimates also follow from the previous paper [3]).
Then, uε are solutions to Pε(f

ε), with

f ε(x, t) = −aε(x, t) · ∇uε − cε(x, t)uε,

and ‖f ε‖L∞ � C4. If moreover uε are stationary and the coefficients aε and cε are independent of the time t , the
functions uε are solutions to Eε(f

ε) and the results in this paper apply.
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Example 10.3. Let x = (x1, y) ∈ Ω = R × Σ , with Σ ⊂ R
N−1 a smooth bounded domain, let a be a continuous

positive function on Σ and let 0 < σ < 1 be given.
Then, we consider travelling wave solutions to the following combustion model;

�vε − a(y)vε
t = βε

(
vε

)
, (10.3)

where βε is as before. This is, we consider solutions to (10.3) of the form vε(x, t) = uε(x1 + cεt, y). The functions
uε are solutions to

�uε − cεa(y)uε
x1

= βε

(
uε

)
in Ω,

uε(−∞, y) = (1 − σ)−1, uε(+∞, y) = 0 in Σ, (10.4)
∂uε

∂η
= 0 on R × ∂Σ,

for some suitable cε .
Problem (10.4) was studied in [3] (some further regularity was assumed on β near 0 and β ′(0) > 0). In particular,

uniform estimates in L∞ norm were obtained for uε and for ∇uε , as well as uniform bounds for cε . This implies that
uε are nonnegative solutions to Eε(f

ε) in Ω , with

f ε = cεa(y)uε
x1

,

and f ε uniformly bounded in L∞ norm.
In addition, in [3] the authors proved the local uniform nondegeneracy of uε in the sense that (5.9) holds on every

compact subset of Ω . This implies the uniform nondegeneracy of u = limuε on the free boundary in the sense of (5.2)
and also in the sense that (5.17) holds on every compact subset of Ω .

All the results in this paper apply to this family, in particular the results in Section 9. Moreover, following ideas
in [14] and [27], and using results from [25] and [26] we can prove the positive density of the zero set at every free
boundary point. Thus, one of the results we obtain for this family is the following:

Theorem 10.1. Let u = limuεj (εj → 0), with uεj solutions to (10.4). Then, there is a subset R of the free boundary
Ω ∩ ∂{u > 0} (R = ∂red{u > 0}) which is locally a C1,α surface and u is a classical solution to the free boundary
problem E(f ) in a neighborhood of R (f = ca(y)ux1 with c = lim cεj ). Moreover, R is open and dense in Ω ∩∂{u >

0} and the remainder of the free boundary has (N − 1)-dimensional Hausdorff measure zero.
In dimension 2 we have R= Ω ∩ ∂{u > 0}.
In addition, in any dimension, if a ∈ C

k,α
loc (resp. analytic) then, R ∈ C

k+2,α
loc (resp. analytic).

Proof. We will show that for every x0 ∈ Ω ∩ ∂{u > 0},
lim inf
r→0

|{u ≡ 0} ∩ Br(x0)|
|Br(x0)| > 0. (10.5)

Then, we will be under the assumptions of Theorem 9.1. The global regularity result in case N = 2 will follow
from Theorem 9.6.

So let us show that (10.5) holds. In fact, assume it does not hold at a point x0. Without loss of generality we may
assume that x0 = 0. Then, there exists a sequence λn → 0 such that

lim
n→∞

|{u ≡ 0} ∩ Bλn(0)|
|Bλn(0)| = 0.

Let uλn(x) = 1
λn

u(λnx). Then,

lim
n→∞

|{uλn ≡ 0} ∩ B1(0)|
|B1(0)| = 0 so that, lim

n→∞
|{uλn > 0} ∩ B1(0)|

|B1(0)| = 1

and, since χλn(x) = χ(λnx) = M for every x in the positivity set of uλn , we deduce that

lim
|{χλn = M} ∩ B1(0)| = 1.
n→∞ |B1(0)|
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Let χ0 = limn→∞ χλn (we may assume without loss of generality that this limit exists almost everywhere). Then,
χ0 = M almost everywhere (we use again that χ0 is homogeneous). Now, proceeding as in Theorem 9.7, we see that
we are in a situation very similar to that of Proposition 10.1(1) in [27] and we deduce, by a dimension reduction
argument, that there exist γ � 0 and a unit vector ν such that u0(x) = γ |〈x, ν〉| (see [26] for the details).

Since u+ is nondegenerate, the same property holds for u0, so that γ > 0. The fact that this leads to a contradiction
was proved in [14], Lemma 5.10. For the readers convenience, we will sketch the proof.

Let εjn → 0 be such that δn = εjn

λn
→ 0 and uδn = (uεjn )λn → u0. Let δ > 0 then, if n is large enough,

uδn(x) >
(
γ
∣∣〈x, ν〉∣∣ − δ

)+
in B1.

Let now ϕn be the solution to (recall the notation x = (x1, y)):{
�ϕn − cεjn λna(λny)ϕnx1

= 0 in B1,

ϕn = (γ |〈x, ν〉| − 2δ)+ on ∂B1.
(10.6)

Then, ϕn = ϕ + ϕ̃n, where {
�ϕ = 0 in B1,

ϕ = (γ |〈x, ν〉| − 2δ)+ on ∂B1
(10.7)

and ϕ̃n ⇒ 0 and |∇ϕ̃n| ⇒ 0 in B1. Thus, for every μ > 0 and every sequence μn → 0 there holds that

{0 < ϕn < μn} ⊂ μ-neighborhood of
{
γ
∣∣〈x, ν〉∣∣ < 2δ

} ∩ ∂B1.

Moreover, for every K > 0 there exist δ0,μ > 0 such that if δ < δ0, |∇ϕ| � 2K in the μ-neighborhood of
{γ |〈x, ν〉| < 2δ} ∩ ∂B1. So, let us assume that, from the beginning, we have chosen δ smaller that δ0 so that, for
n large enough

|∇ϕn| � K in a μ-neighborhood of
{
γ
∣∣〈x, ν〉∣∣ < 2δ

} ∩ ∂B1.

Let now

Γn(t) =
{0, t � 0,

t2/2μn, 0 � t � μn,

t − μn/2, t � μn,

and ψn = Γn(ϕn). Then, if we take μn = 2δn and K large enough,

�ψn − cεjn λna(λny)ψnx1
= Γ ′′

n (ϕn)|∇ϕn|2

= 1

μn

χ{0<ϕn<μn}|∇ϕn|2 � K2 1

2δn

χ{0<ψn<δn} � βδn(ψn).

Finally, let us show that uδn � ψn. Since u
δn
x1 � 0, uδn(x) > ψn(x) on ∂B1 (recall that uδn > 0 in B1) and

uδn → (1−σ)−1

λn
uniformly in B1 as x1 → −∞, there exists s0 > 0 depending on n such that

uδn(x1 − s0, y) > ψn(x) in B1 and uδn(x1 − s, y) > ψn(x) on ∂B1 for 0 � s � s0.

Let h > 0 be a constant to be determined later and let η > 0 small such that

uδn(x1 − s0, y) > ψn(x) + ηeh|x|2 in B1, and

uδn(x1 − s, y) > ψn(x) + ηeh|x|2 on ∂B1 for 0 � s � s0.

Finally, let

s̄ = inf
{
0 < s < s0/u

δn(x1 − s, y) > ψn(x) + ηeh|x|2 in B1
}
.

If s̄ = 0 there holds that uδn(x) � ψn(x) and we are done. If s̄ > 0, there exists x̄ ∈ B1 such that uδn(x̄1 − s̄, ȳ) =
ψn(x̄)+ηeh|x̄|2 and uδn(x1 − s̄, y) � ψn(x)+ηeh|x|2 in B1. Thus, using the fact that a(y) is bounded and the velocities
cεj are uniformly bounded, we get, for a universal constant c1,
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βδn

(
uδn(x̄1 − s̄, ȳ)

) = �uδn(x̄1 − s̄, ȳ) − cεjn λna(λnȳ)uδn
x1

(x̄1 − s̄, ȳ)

� �ψn(x̄) − cεjn λna(λnȳ)ψnx̄1
(x̄) + 2ηheh|x̄|2(N + h|x̄|2 − c1|x̄1|

)
� βδn

(
u(x̄1 − s̄, ȳ)

) − 1

δ2
n

‖∇β‖∞ηeh|x̄|2 + 2ηheh|x̄|2(N + h|x̄|2 − c1|x̄1|
)

> βδn

(
u(x̄1 − s̄, ȳ)

)
if h is chosen big enough (h > max(

‖∇β‖∞
Nδ2

n
,2c3

1)). This is a contradiction. Therefore, s̄ = 0 and uδn � ψn in B1. In

particular,

lim inf
n→∞ uδn(0) � lim

n→∞ψn(0) = ϕ(0) > 0.

Since this contradicts the fact that uδn → γ |〈x, ν〉| as n → ∞, we deduce that it is impossible in the present situation
that uλn → γ |〈x, ν〉| with γ > 0 for a sequence λn → 0. Therefore (10.5) holds and the theorem is proved. �
Example 10.4. Let uε be the minimizers to the energy functional Jε constructed in Proposition 2.2. As in that propo-
sition we assume that the boundary data are uniformly bounded in H 1 norm and the functions f ε are uniformly
bounded in L∞ norm. Let u = limuεj with εj → 0. By Corollary 5.5 we know that u is locally uniformly nondegen-
erate in the sense that (5.17) holds on every compact subset of Ω . By Proposition 5.5, this implies the local uniform
nondegeneracy of u+ on the free boundary in the sense of (5.2).

All the results in this paper apply to this family, in particular the results in Section 9. Moreover, following some
arguments in [15] we can prove that the density of the nonpositive set is positive at every free boundary point. Thus,
one of the results we obtain for this family is the following:

Theorem 10.2. Let u = limuεj and f = limf εj with εj → 0, where uεj are minimizers of Jεj
in the set of functions

in H 1(Ω) that coincide with φεj
on ∂Ω , where ‖φεj

‖H 1(Ω) � C and ‖f εj ‖L∞(Ω) �A, with C,A independent of εj .
Then, there is a subset R of the free boundary Ω ∩ ∂{u > 0} (R = ∂red{u > 0}) which is locally a C1,α surface and u

is a classical solution to the free boundary problem E(f ) in a neighborhood of R. Moreover, R is open and dense in
Ω ∩ ∂{u > 0} and the remainder of the free boundary has (N − 1)-dimensional Hausdorff measure zero.

In dimensions 2 and 3 we have R= Ω ∩ ∂{u > 0}.
In addition, in any dimension, if u � 0 and f ∈ C

k,α
loc (resp. analytic) then, R ∈ C

k+2,α
loc (resp. analytic).

Proof. First, let us see that if x0 ∈ Ω ∩ ∂{u > 0}, then

lim inf
r→0

|Br(x0) ∩ {u � 0}|
|Br(x0)| > 0. (10.8)

In fact, assume this is not true and let λn → 0 such that

lim
n→∞

|Bλn(x0) ∩ {u � 0}|
|Bλn(x0)| = 0.

Let uλn(x) = 1
λn

u(x0 + λnx). Thus,

lim
n→∞

|B1(0) ∩ {uλn � 0}|
|B1(0)| = 0. (10.9)

Moreover, we may assume that there exists u0 = limn→∞ uλn .
Now, by the uniform nondegeneracy of u+ in the sense of (5.17), the fact that (10.9) holds implies that B1(0) ∩

{u0 � 0}◦ = ∅.
On the other hand, there exists a sequence δn → 0 such that u0 = limuδn and uδn are solutions to Eδn(f

δn) with
f δn → 0 uniformly on compact sets of R

N . Then, following the arguments in [15], Theorem 1.16 we can prove that
u0 is a local minimizer of the functional,

J (v) =
∫ [

1 |∇v|2 + Mχ{v>0}
]

dx. (10.10)

2
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Since u+ is nondegenerate there holds that 0 ∈ ∂{u0 > 0}. Thus, by Theorem 7.1 in [2],

|B1(0) ∩ {u0 � 0}|
|B1(0)| > c > 0.

In particular, |B1(0) ∩ {u0 � 0}| > 0 which contradicts the fact that B1(0) ∩ {u0 � 0}◦ = ∅ and |∂{u0 > 0}| = 0
(see [2]). Therefore, (10.8) holds.

Since u+ is locally uniformly nondegenerate, by applying (1) in Theorem 8.1, we have that the free boundary has
locally finite HN−1 measure. Moreover,

lim sup
r→0

|Br(x0) ∩ {u > 0}|
|Br(x0)| > 0 (10.11)

and, by (10.8) and (10.11), HN−1-a.e. point in the free boundary belongs to the reduced free boundary ∂red{u > 0}.
If u � 0, Theorem 9.1 applies. In the general case, Theorem 9.2 applies at HN−1 almost every point in Ω ∩∂{u > 0}

and thus the statement is proved in case N � 4.
In dimension 2 the regularity of the whole free boundary follows from the application of Theorem 9.6 (re-

call (10.8)).
Let us consider the case of dimension 3. Let x0 ∈ Ω ∩ ∂{u > 0}. If u− is nondegenerate at x0, Theorem 9.3 applies

and we deduce that the free boundary is C1,α in a neighborhood of x0. Let us now assume that u− degenerates at
x0. Then, there is a blow up limit u0 centered at x0 that is nonnegative in B1(0) and since u0 is homogeneous (see
Corollary 2.1 in [25]), u0 � 0 in R

N . We will use Theorem 9.2 and Remark 9.2. In fact, we will show that, in a certain
coordinate system,

u0(x) = √
2M x+

1 . (10.12)

This will prove the regularity of the free boundary around the free boundary point x0.
Indeed, the fact that (10.12) holds follows by direct application of [10] where the authors prove that this is true for

any nonnegative homogeneous minimizer of (10.10). �
Acknowledgements

The authors want to thank Prof. Luis A. Caffarelli and Prof. David Jerison for helpful discussions concerning the
regularity for inhomogeneous two-phase free boundary problems.

References

[1] H.W. Alt, L.A. Caffarelli, Existence and regularity for a minimum problem with a free boundary, J. Reine Angew. Math. 325 (1981) 105–144.
[2] H. Alt, L.A. Caffarelli, A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc. 282 (2) (1984)

431–461.
[3] H. Berestycki, L.A. Caffarelli, L. Nirenberg, Uniform estimates for regularization of free boundary problems, in: C. Sadosky (Ed.), Analysis

and Partial Differential Equations, Lecture Notes in Pure and Applied Mathematics, vol. 122, Marcel Dekker, New York, 1990, pp. 567–619.
[4] J.B. Brothers, W. Ziemer, Minimal rearrangements of Sobolev functions, J. Reine Angew. Math. 384 (1988) 153–179.
[5] L.A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are C1,α , Rev. Mat.

Iberoamericana 3 (2) (1987) 139–162.
[6] L.A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Part II: Flat free boundaries are Lipschitz, Comm. Pure

Appl. Math. 42 (1989) 55–78.
[7] L.A. Caffarelli, A monotonicity formula for heat functions in disjoint domains, in: J.-L. Lions, C. Baiocchi (Eds.), Boundary Value Problems

for P.D.E.’s and Applications. Dedicated to E. Magenes, Masson, Paris, 1993, pp. 53–60.
[8] L.A. Caffarelli, D. Jerison, C.E. Kenig, Some new monotonicity theorems with applications to free boundary problems, Ann. of

Math. (2) 155 (2) (2002) 369–404.
[9] L.A. Caffarelli, D. Jerison, C.E. Kenig, Regularity for inhomogeneous two-phase free boundary problems. Part I: Flat free boundaries are

C1,α , in preparation.
[10] L.A. Caffarelli, D. Jerison, C.E. Kenig, Global energy minimizers for free boundary problems and full regularity in three dimensions, in:

Noncompact Problems at the Intersection of Geometry, Analysis, and Topology, in: Contemp. Math., vol. 350, Amer. Math. Soc., Providence,
RI, 2004, pp. 83–97.

[11] L.A. Caffarelli, C.E. Kenig, Gradient estimates for variable coefficient parabolic equations and singular perturbation problems, Amer. J.
Math. 120 (2) (1998) 391–439.



C. Lederman, N. Wolanski / J. Math. Pures Appl. 86 (2006) 552–589 589
[12] L.A. Caffarelli, C. Lederman, N. Wolanski, Uniform estimates and limits for a two phase parabolic singular perturbation problem, Indiana
Univ. Math. J. 46 (2) (1997) 453–490.

[13] L.A. Caffarelli, C. Lederman, N. Wolanski, Pointwise and viscosity solutions for the limit of a two phase parabolic singular perturbation
problem, Indiana Univ. Math. J. 46 (3) (1997) 719–740.

[14] L.A. Caffarelli, K.-A. Lee, A. Mellet, Singular limit and homogenization for flame propagation in periodic excitable media, Arch. Rat. Mech.
Anal. 172 (2) (2004) 153–190.

[15] L.A. Caffarelli, S. Salsa, A Geometric Approach to Free Boundary Problems, Amer. Math. Soc., Providence, RI, 2005.
[16] L.A. Caffarelli, J.L. Vazquez, A free boundary problem for the heat equation arising in flame propagation, Trans. Amer. Math. Soc. 347 (1995)

411–441.
[17] L. Evans, R. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL,

1992.
[18] H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.
[19] J. Fernández Bonder, N. Wolanski, A free boundary problem in combustion theory, Interfaces Free Bound. 2 (2000) 381–411.
[20] B. Gustafsson, H. Shahgholian, Existence and geometric properties of solutions of a free boundary problem in potential theory, J. Reine

Angew. Math. 473 (1996) 137–179.
[21] D. Kinderlehrer, L. Nirenberg, Regularity in free boundary problems, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., Ser. IV 4 (2) (1977) 373–391.
[22] C. Lederman, A free boundary problem with a volume penalization, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., Ser. IV 23 (2) (1996) 249–300.
[23] C. Lederman, N. Wolanski, Viscosity solutions and regularity of the free boundary for the limit of an elliptic two phase singular perturbation

problem, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., Ser. IV 27 (2) (1998) 253–288.
[24] C. Lederman, N. Wolanski, Singular perturbation in a nonlocal diffusion problem, Commun. Partial Differential Equations 31 (2) (2006)

195–241.
[25] C. Lederman, N. Wolanski, A local monotonicity formula for an inhomogeneous singular perturbation problem and applications, Ann. Mat.

Pura Appl., in press.
[26] C. Lederman, N. Wolanski, A note on properties of the free boundary in a flame propagation model, in preparation.
[27] G.S. Weiss, A singular limit arising in combustion theory: fine properties of the free boundary, Calc. Var. Partial Differential Equations 17 (3)

(2003) 311–340.


