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ABSTRACT

Using the semi-analytic method proposed by Esmailzadeh et al. (1991) we

calculate the abundances of the light elements produced during primordial nu-

cleosynthesis assuming that the gauge coupling constants of the fundamental in-

teractions may vary. We analyze the dependence of the nucleon masses, nuclear

binding energies and cross sections involved in the calculation of the abundances

with the fundamental constants assuming the chiral limit of QCD. The abun-

dances of light elements as a function of the fundamental constants are obtained.

Finally, using the observational data of D, 3He, 4He and 7Li we estimate con-

straints on the variation of the fundamental constants between the primordial

nucleosynthesis and the present. All observational abundances and the WMAP

estimate of the baryon density, can be fitted to the theoretical predictions with

varying coupling constants. The possible systematic errors in the observational

data, precludes from stronger conclusions.
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1Facultad de Ciencias Astronómicas y Geof́ısicas. Universidad Nacional de La Plata. Paseo del Bosque

S/N 1900 La Plata, Argentina

2Departamento de F́ısica, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria - Pab. 1, 1428

Buenos Aires, Argentina

http://arxiv.org/abs/astro-ph/0411150v3


– 2 –

1. Introduction

Big Bang Nucleosynthesis (BBN) is one of the most important tools to study the early

universe. The model is simple and has only one free parameter, the density of baryonic

matter, which can be determined by comparison between theoretical calculations and ob-

servations of the abundances of the light elements. On the other hand, data on cosmic

microwave background (CMB) provide an alternative, independent method for determining

ΩBh
2 (Spergel et al. 2003). Recently, the concordance between both methods has been inves-

tigated by many authors (Cyburt et al. 2003; Romano et al. 2003; Cuoco et al. 2004; Cyburt

2004; Coc et al. 2004a,b). From the WMAP baryon density , the predicted abundances are

highly consistent with the observed D but not with 4He and 7Li. They are produced more

than observed. Such discrepancy is usually ascribed to non reported systematic errors in the

observations of 4He and 7Li. Indeed, more realistic determinations of the 4He uncertainty

implies a baryon density in line with the WMAP estimate (Cyburt 2004; Olive and Skillman

2004). On the other hand, Richard et al. (2005) have pointed out that a better understanding

of turbulent transport in the radiative zones of the stars is needed for a better determination

of the 7Li abundance. However, if the systematic errors of 4He and 7Li are correctly esti-

mated, we may have insight into new physics beyond the minimal BBN model, for example:

new neutron lifetime (Mathews et al. 2005), super WIMP scenario (Feng et al. 2003), lepton

asymmetry (Ichikawa et al. 2004) and varying constants (Bergström et al. 1999; Nollet and

Lopez 2002; Ichikawa and Kawasaki 2002, 2004). Therefore, BBN is not only one of the most

important tests of the Big Bang theory, but it is also useful to obtain stringent constraints

on deviations from standard cosmology and on alternative theories to the Standard Model

of fundamental interactions (SM).

Among these theories, there are some in which the gauge coupling constants may vary

over cosmological time scales like string derived field theories (Wu and Wang 1986; Maeda

1988; Barr and Mohapatra 1988; Damour and Polyakov 1994; Damour et al. 2002a,b), related

brane-world theories (Youm 2001a,b; Palma et al. 2003; Brax et al. 2003), and (related or

not) Kaluza-Klein theories (Kaluza 1921; Klein 1926; Weinberg 1983; Gleiser and Taylor

1985; Overduin and Wesson 1997). On the other hand, a theoretical framework in which

only the fine structure constant varies was developed by Bekenstein (1982) and improved

by Barrow et al. (2002). This model was generalized in order to study the time variation

of the strong coupling constant (Chamoun et al. 2001). Different versions of the theories

mentioned above predict different time behaviors of the gauge coupling constants. Thus,

bounds obtained from astronomical and geophysical data are an important tool to test the

validity of these theories.

The experimental research can be grouped into astronomical and local methods. The
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latter ones include geophysical methods such as the natural nuclear reactor that operated

about 1.8 109 years ago in Oklo, Gabon (Damour and Dyson 1996; Fujii et al. 2000, 2002),

the analysis of natural long-lived β decayers in geological minerals and meteorites (Dyson

1966; Sisterna and Vucetich 1990; Smolliar 1996) and laboratory measurements such as

comparisons of rates between clocks with different atomic number (Prestage et al. 1995;

Sortais et al. 2000; Marion et al. 2003). The astronomical methods are based mainly in the

analysis of spectra form high-redshift quasar absorption systems (Cowie and Songaila 1995;

Varshalovich et al. 1996; Webb et al. 1999, 2001; Murphy et al. 2001a,b; Levshakov et al.

2002; Ivanchik et al. 2002; Murphy et al. 2003; Ivanchik et al. 2003; Bahcall et al. 2004).

Although, most of the previous mentioned experimental data gave null results, evidence of

time variation of the fine structure constant was reported recently from high-redshift quasar

absorption systems (Webb et al. 1999, 2001; Murphy et al. 2001a,b, 2003; Ivanchik et al.

2003). However, other recent independent analysis of similar data (Mart́ınez Fiorenzano

et al. 2003; Quast et al. 2004; Bahcall et al. 2004; Srianand et al. 2004) found no variation.

On the other hand, measurements of molecular hydrogen (Ivanchik et al. 2002, 2003) reported

a variation of the proton to electron mass µ = mp

me

The time variation of the gauge coupling constants in the early universe can be con-

strained using data from the Cosmic Microwave Background (CMB) (Battye et al. 2001;

Avelino et al. 2000; Martins et al. 2002; Rocha et al. 2003) and the primordial abundances of

light elements (Bergström et al. 1999; Nollet and Lopez 2002; Ichikawa and Kawasaki 2002,

2004).

The prediction of the light elements abundances (4He, D, 7Li) produced during the

first minutes of the universe can be calculated using numerical (Wagoner 1973; Kawano)

and analytical (Esmailzadeh et al. 1991; Mukhanov 2003) methods. Ichikawa and Kawasaki

(2002) modified the public code in order to analyze the BBN scenario with varying gauge

coupling constants. They considered a theoretical model taken from string theory where the

variation of the coupling constant is related to the expectation values of the dilaton field and

compared with observational data. In consequence, the results they obtained are restricted to

the validity of this model. Furthermore, numerical calculations of the theoretical abundances

of the light elements allowing only a variation of the fine structure constant were performed

by different authors (Bergström et al. 1999; Nollet and Lopez 2002; Ichikawa and Kawasaki

2004). On the other hand, an analytical study of 4He abundance including variation of

the gauge coupling constants was performed by Müller et al. (2004). Moreover, the change

in the abundance of 4He due to variable mass in 5 dimensional theories was analyzed by

Anchordoqui et al. (1996). Finally, the effect of considering non extensive thermostatistics

has been analyzed by various authors (Torres et al. 1997; Pessah et al. 2001; Pessah and

Torres 2001).
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In this work, we follow the semi-analytical method proposed by Esmailzadeh et al. (1991)

to study the effect of a possible variation of the values of the three gauge coupling constants

of the Standard Model of Particles Interactions (SM) between primordial nucleosynthesis and

the present. Even though, the semi-analytical method gives results one order of magnitude

less accurate that the calculations performed with the numerical code, it is very useful to find

out the dependence of the abundances and temperatures with the fundamental constants,

which is one of the principal aims of this work.

We will not assume any of the theoretical models for varying constants mentioned above.

Motivated by theoretical predictions and observational data, we will study the formation of

the light elements in the early universe assuming that the values of the gauge coupling con-

stants of the fundamental interactions (electromagnetic, strong and weak) may be different

from their actual value. Thus, our approach is a phenomenological one and our results will

be model independent. Furthermore, we assume the chiral limit of QCD to analyze the de-

pendence of nucleon masses, binding energies and cross sections with the strong interaction

coupling constants. The gauge coupling constants of U(1), SU(2) and SU(3), namely, α1,

α2 and α3 are related with the fine structure constant α, the QCD energy scale ΛQCD and

the Fermi coupling constant GF through the following equations:

α−1 (E) =
5

2
α−1
1 (E) + α−1

2 (E) (1)

ΛQCD = E exp

[
−2π

7
α−1
3 (E)

]
(2)

GF =
π α2 (MZ)√

2M2
Z

(3)

where E refers to the energy scale and MZ refers to the boson Z mass. Actually, we will

study the dependence of the different physical quantities involved in the calculation of the

primordial abundances with α, ΛQCD and GF .

Almost all of the observational and experimental data are consistent with no variation

of the constants (Landau and Vucetich 2002). Moreover, the reported variations (Murphy

et al. 2003; Ivanchik et al. 2003) are very small (∆αi

αi
∼ 10−5). Therefore, in order to find

out the dependences of relevant physical quantities with α, ΛQCD and GF we will perform a

Taylor expansion to first order in each case as follows:

∆Q =
∂Q

∂α
|(αtoday,Λtoday

QCD ,Gtoday
F )∆α

+
∂Q

∂ΛQCD
|(αtoday,Λtoday

QCD ,Gtoday
F )∆ΛQCD +

∂Q

∂GF
|(αtoday,Λtoday

QCD ,Gtoday
F )∆GF (4)
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where Q refers to the physical quantities involved in the nucleosynthesis calculation such as

nucleon and nucleus masses, nuclear binding energies, cross sections and abundances of the

elements.

In the standard picture, the only free parameter of the nucleosynthesis calculation is

the density of baryonic matter ΩBh
2. This quantity has been determined with a great

accuracy with data from the CMB provided by WMAP (Spergel et al. 2003). On the other

hand, the baryon density can also be estimated using data provided by galaxy surveys

(SDSS, 2dF) and x-ray satellites (Chandra, XMM-Newton, ROSAT, ASCA). In appendix

A we combine different data to obtain an estimation of ΩBh
2 independent of the WMAP

estimate. Therefore, we shall approach to the problem studying the dependences of all

physical quantities and abundances with both the fundamental constants and the baryon

density. Thus, we will obtain the uncertainties of the abundances of the light elements as

function of the variations of the fundamental constants with respect to their actual value

and as function of the variation of ΩBh
2 with respect to the WMAP estimate (Spergel et al.

2003). On the other hand, we will also compare the predicted theoretical expressions for

the abundances with observational data and include independent estimates of the baryon

density in the analysis (see section 5).

Furthermore, in section 2, we shall calculate the dependence of the nucleon masses

and binding energies with the fundamental constants, and in section 3, the corresponding

dependence of the relevant scattering cross sections. We have carried this calculations in

some detail, since there are several subtle points in these dependences that will be clearly

exhibited in the final results. In section 4 we apply the semi-analytical method proposed by

Esmailzadeh et al. (1991) to calculate the abundances of the light elements and their de-

pendence with the fundamental constants. In section 5 we briefly describe the observational

data and the results of comparing them with the theoretical predictions calculated in this

work. We also discuss our conclusions.

2. Masses and binding energies of light elements

In this section we analyze the dependence of the nucleon masses, nuclear binding energies

and nuclei masses of the light elements with the fundamental constants α and ΛQCD. The

weak interaction contribution is too small to produce any observable consequences (Haugan

and Will 1976; Chamoun and Vucetich 2002).

The dependence of the hadronic masses and nuclear binding energies with the QCD

coupling constant α3 or the QCD scale parameter ΛQCD depends on the model of hadronic
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interactions considered. However, if we assume that the quark masses are null, an assumption

which is called in the literature as chiral limit, there is a only a single parameter in the

theory, namely the QCD scale parameter ΛQCD. Even though great efforts (Beane and

Savage 2003b,a; Epelbaum et al. 2003; Flambaum and Shuryak 2002, 2003; Dmitriev and

Flambaum 2003; Dmitriev et al. 2004; Olive et al. 2002) have been done in order to analyze

the dependence of nucleon masses and binding energies with ΛQCD beyond the chiral limit,

this task is not trivial and highly model dependent.

On the other hand, from simple dimensional analysis (Stevenson 1981), it follows that

in a theory with only one relevant parameter all static observables with dimension of mass

must be proportional to this parameter, which in our case is ΛQCD. More precisely, any

quantity σ with units of ED (where E means energy) must satisfy an equation of the form:

σ = ΛD
QCDf

[
Q

ΛQCD

]
(5)

where Q is a quantity specifying the energy scale. Furthermore, for static quantities such as

nucleon masses the previous equation takes the form:

σ = ΛD
QCDf

[
σ

ΛQCD

]
(6)

since the only scale parameter is σ itself. The solution of equation 6 reads:

σ = ΛD
QCDX (7)

where X is a dimensionless numerical constant. In such way, all low-energy static quantities

will satisfy an equation of the form 7. Moreover, all nucleon masses and energies will have

a linear dependence:

mN ∼ ǫB ∼ ΛQCD (8)

and all nuclear radii will satisfy:

R ∼ Λ−1
QCD (9)

since we use units where ~ = c = 1 for this analysis. The chiral limit was previously

considered by Sisterna and Vucetich (1990) studying time variation of fundamental constants

in planetary phenomena.

The mass of the nucleons can be written as a sum of two contributions: the electromag-

netic contribution mC
N and the strong interaction contribution mS

N :

mN = mC
N +mS

N (10)
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The electromagnetic contribution depends on the nuclear radius R as follows:

ǫC =
Z

4πǫ0

e2

R
(11)

Therefore the electromagnetic contribution to the nucleon mass in the chiral limit has the

following dependence with ΛQCD:

mC
N ∼ ΛQCD (12)

Cottingham (1963) used perturbation theory to calculate the electromagnetic self energy

of a nucleon mN to first order in α:

mC
N ∼ Kα (13)

where K can be expressed as a function of Sachs form factors GN
E,M , which can be calculated

from measurements of electron-nucleon scattering. On the other hand, the strong interaction

contribution to the mass in the chiral limit is proportional to ΛQCD. Therefore, we can write:

mC
N = mC

N

α

αtoday

ΛQCD

Λtoday
QCD

(14)

mS
N = mS

N

ΛQCD

Λtoday
QCD

(15)

After performing a Taylor expansion to first order, as explained in section 1 and using

equations 14 and 15, we obtain the dependence of the nucleon masses with the fundamental

constants:
δmN

mN
=

mC
N

mN

δα

α
+

δΛQCD

ΛQCD
= P

δα

α
+

δΛQCD

ΛQCD
(16)

The values of P are shown in table 1.

Next, we analyze the dependence of the nuclei masses with α and ΛQCD. As we did for

nucleons, we perform a Taylor expansion to first order to obtain for a nucleus of mass mx

the following expression:

δmx

mx
= (A− Z)

mn

mx

δmn

mn
+ Z

mp

mx

δmp

mp
− ǫx

mx

δǫx
ǫx

(17)

In the more general case, the binding energy (ǫx) can be written as a sum of two terms: the

electromagnetic contribution (ǫC) and the strong interaction contribution (ǫS) as follows:

ǫx = ǫC + ǫS. However, in the cases of nuclei with only one proton (D and T), there is no

electromagnetic interaction and therefore the electromagnetic contribution (ǫC) is null . On

the other hand, the same arguments that were used to obtain equations 14 and 15 can be

applied for the binding energy to obtain:

δǫx
ǫx

=
ǫC
ǫx

δα

α
+

δΛQCD

ΛQCD

(18)
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Table 1: Dependence of nucleon and nuclei masses with the fundamental constants: δmN

mN
=

P δα
α
+

δΛQCD

ΛQCD

Nucleon/Nucleus P (×10−4)

mp 6.71

mn -1.38

D 2.67

T 1.32
3He 1.05
4He 0.66
6Li 1.50
7Li 1.14
7Be 2.30

Inserting this last expression in equation 17, we obtain the general expression for the depen-

dence of a nucleus mass with α and ΛQCD:

δmx

mx

= P
δα

α
+

δΛQCD

ΛQCD

(19)

The values P for different nuclei are shown in table 1.

3. Thermonuclear reaction rates

In this section we calculate the thermonuclear reaction rates as functions of fundamental

constants. We also show the dependence of the reaction rates with the baryon density

ρB = ΩBh
2. Following Esmailzadeh et al. (1991) we can write the thermonuclear reaction

rate as:

[ij → kl] = ρBNA〈σv〉 = 0.93× 10−3ΩBh
2T 3

9NA〈σv〉
1

seg
(20)

where σ is the cross section, v is the relative velocity, ρB = 0.93 × 10−3ΩBh
2T 3

9
g

cm3 is the

density of baryonic matter, NA is Avogadro’s number per gram, T9 is the temperature in

units of 109K.

Using a Maxwell-Boltzmann distribution in velocities, the Boltzmann averaged cross

section, 〈σv〉 can be expressed as follows:

〈σv〉 =
( µ

2πkT

)3/2 ∫
e−

µv2

2kT vσ(E)d3v (21)
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We need to find out δ[ij→kl]
[ij→kl]

as a function of the relative variations of the fundamental

constants,
(

δα
α
,
δΛQCD

ΛQCD
, δGF

GF

)
and δΩBh2

ΩBh2 : the relative variation of the value of the baryon den-

sity with respect to WMAP estimate ΩBh
2 = 0.0224 (Spergel et al. 2003). The temperature

does not depend on the values of the fundamental constants, but the final temperature of

each stage does and therefore, we can write:

δ[ij → kl]

[ij → kl]
=

δΩBh
2

ΩBh2
+ 3

δT f
9

T f
9

+
δ〈σv〉
〈σv〉 (22)

where T f
9 = f(α,ΛQCD, GF ) for all the reaction rates. On the other hand, δ〈σv〉

〈σv〉
depends

on the fundamentals constants through the masses of the nucleons and light nuclei and the

form factor of the reactions. In the general case, there are not analytic expressions for σ(E)

derived from “first principles”. We suggest several expressions that attempt to fit σ(E),

according to the elements in the reactions .

3.1. Cross sections for charged particles reactions

The cross section for charged particles reactions is given by Fowler et al. (1967, 1975);

Wagoner et al. (1967):

σ =
S(E)

E
e−2παZ1Z2

√
µc2/2E (23)

where Zi is the charge of the i particle, µ = m1m2

m1+m2
is the reduced mass, E is the energy,

S(E) is the form factor. The dependence of the cross sections for charged particle reactions

have been analyzed previously (Bergström et al. 1999; Nollet and Lopez 2002). In particular,

Nollet and Lopez (2002) improved the analysis and studied the form factor as a function of

α. In this paper, we use the criteria established by these authors to analyze the dependence

of the form factor with α.

Next, we analyze the dependence of the form factor with ΛQCD using dimensional ar-

guments and the chiral limit. The units of the cross section are cm2 and therefore it follows

that in a theory with massless quarks σ ∼ Λ−2
QCD. The only quantity of eq. 23 that has units

is the factor S(E)
E

and thus we obtain:

S(E) ∼ Λ−1
QCD (24)

This is valid for all charged particle reactions. The exact dependence of the form factor

S(E) with the energy is unknown. However, as it is usually done in the literature (Fowler
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et al. 1967, 1975; Wagoner et al. 1967), we can do a MacLaurin expansion:

S(E) = S(0)

(
1 +

(
dS

dE

)

E=0

1

S(0)
E +

1

2

(
d2S

dE2

)

E=0

1

S(0)
E2

)
(25)

where dS
dE

and d2S
dE2 are expressed in barn and barn Mev−1 respectively. The terms inside the

brackets have no dimensions, therefore:

S(0) ∼ Λ−1
QCD (26)

The dependence of the charged particle cross sections with α has been analyzed by Nollet

and Lopez (2002), yielding:

S(0) ∼ α (27)

Furthermore, it follows that all radiative capture rates should be multiplied by a factor α
αtoday ,

except the reactions T(αγ)7Li and 3He(αγ)7Be. This cross sections should be multiplied by

f(α) =
∑

bi
[

α
αtoday − 1

]
(see table 2). Finally, in the cases in which the reaction produces

two charged particles, the cross section should by multiplied by 1− b+ b α
αtoday (see table 3 ).

We insert the expression for σ(E) into the equation (21) in order to calculate the Boltz-

mann averaged cross sections:

〈σv〉 =
√

8

µπ
(kT )−1/2

2∑

i=0

(kT )i

i!

(
diS

dEi

)

E=0

∫ ∞

0

yie−y−ξy−1/2

dy (28)

where ξ = 2παZ1Z2

√
µc2/2kT and the masses in kg. The integrals are calculated in

Bergström et al. (1999). Tables 4 and 5 show the dependence of charged particles reac-

tion rates with the fundamental constants.

3.1.1. Cutoff factor

The truncated MacLaurin series we have use for S(E) diverges at high energy. Thus,

it is important to include a cutoff factor for non-resonant reaction rates so that they can

Table 2: Radiative captures, its dependence on α
(
f(α) =

∑
bi
[

α
αtoday − 1

])

Reaction b0 b1 b2 b3 b4 b5
3H(α, γ)7Li 1 1.372 0.502 0.183 0.269 -0.218

3He(α, γ)7Be 1 2.148 0.669 -5.566 -10.630 -5.730
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be used at any energy. The next term in the expansion for S(E) would be proportional to

E3 ∼ T 2, so as it is proposed in the literature (Fowler et al. 1967, 1975) we consider a cutoff

factor: fco = e−(T9/Tco)2 , where Tco ∼ Er

α
and Er is the resonant energy (Fowler et al. 1967,

1975). Therefore we multiply the expression (28) by a factor:

fco = e−(
αT9
Er

)
2

(29)

This correction is relevant for the following reactions: 3He(d, p)4He, 3H(d, n)4He, 6Li(p, α)3H,
6Li(α, p)10Be, 7Li(p, α)4He.

3.1.2. Alternative expression for the form factor

In the MeV range the cross section form factor varies considerably. In this range the

truncated MacLaurin series is not satisfactory so that it is convenient (Fowler et al. 1967,

1975) to use for S(E) an expression of the form: S(E) = S(0)e−aE . In such way, the cross

sections are given by:

σ(E) =
S(0)

E
e−aEe−2παZ1Z2

√
µc2/2E (30)

where a has no dependence on the fundamental constants. The quantities with units in

equation 30 are S(0) and E, therefore, in the chiral limit we have S(0) ∼ Λ−1
QCD. In such

way, the Boltzmann cross section (eq.(21)) yields:

〈σv〉 = 8√
6

( µ

kT

)3/2 S(0)kT

akT + 1

(
ξ2a
4

)1/6

e
−3

(
ξ2a
4

)1/3 [
1 +

5

36

(
ξ2a
4

)−1/3
]
cm3

seg
(31)

Table 3: Dependence on α of different kinds of reactions rates

Reaction Multiplied by

Charged particles reaction rates α
αtoday

Photon emission α
αtoday

2H(d, p) 1 + 0.16− 0.16 α
αtoday

3He(n, p) 1− 0.30 + 0.30 α
αtoday

3He(d, p) 1 + 0.09− 0.09 α
αtoday

7Li(p, α) 1 + 0.18− 0.18 α
αtoday

7Be(n, p) 1− 0.20 + 0.20 α
αtoday



– 12 –

where ξa = ξ
√
akT + 1 = 2παZ1Z2

√
µc2

2kT
(akT + 1). This alternative expression for non-

resonant reaction rates is relevant for the following reactions: 6Li(p, γ)7Be, 3H(α, γ)7Li and
3He(α, γ)7Be

3.2. Resonant charged particle reaction rates

The expressions for the cross sections vary with the temperature. Moreover, in the range

of energies relevant for our calculation there are certain reactions that proceed through many

resonances. In this case, we have to include an extra term in the cross section. There are

two kinds of resonances: i) Single Resonance, ii) Continuum Resonance. In each case we use

the expressions given by Fowler et al. (1967, 1975).

3.2.1. Resonance cross sections

In this case, the following expression provides a good fit to the cross section: Fowler

et al. (1975):

σ(E) =
π~2

2µE

ωrΓ1Γ2

(E − Er)2 + Γ2/4
(32)

where Γi is the partial with for the decay of the resonant state by the reemission of (i−1)+ i,

Γ is the sum over all partial widths (the partial widths are not functions of α), ωr =
(1+δab)gr

gagb

and gr = 2Jr + 1, Jr being the spin of the resonant state, µ in kg and Er is the resonance

energy in the center of momentum system and depends on the nuclear radius. Finally, the

Boltzmann cross section 〈σv〉 can be calculated as follows:

〈σv〉 =
(
2π~2

µkT

)3/2
(ωγ)r
~

eEr/kT
cm3

seg
(33)

where γr =
(
Γ1Γ2

Γ

)
r
. Here, the cross section depends on the fundamental constants through

the final temperature and the resonance energy. Besides, the resonance width is also a

function of the fundamental constants, but the cross section is much less sensitive to this

dependence.

In a theory with massless quarks: Er ∼ ΛQCD. On the other hand, Er does not depend

on α. The dependence of the temperature will be analyzed in section 4. This correction

is relevant for the following reactions: 2H(α, γ)6Li, 6Li(p, α)3H, 6Li(α, γ)10Be, 7Be(p, γ)8Be

and 7Li(p, α)4He.
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3.2.2. Continuum resonances

When the temperature scale is of order T9 ∼ 1 , there are several reactions that proceed

through many resonances that are separated by intervals not greater than their widths or

that overlap to form a continuum. In this cases, the cross section can be written as Fowler

et al. (1975):

σ(E) =

{
2σ(2C)C

E

(
E
C
− 1
)m+1/2

si E ≥ C

0 si E ≤ C
(34)

where m is integer or rational fraction, C is the effective continuum threshold energy and

σ(2C) is the cross section at E = 2C.

After inserting this expression in the integral (21), we obtain:

〈σv〉 = Γ(m+ 3/2)σ(2C)

√
32C

πµ

(
kT

C

)m

e−C/kT (35)

where Γ(m + 3/2) is the gamma function. On the other hand, C has units of energy.

Therefore, in the chiral limit C ∼ ΛQCD. This correction is relevant for the following

reactions: 3He(d, p)4He, 3H(d, n)4He, 6Li(p, α)3H and 6Li(α, γ)10Be.

3.3. Non charged particles reaction rates

In this case, there is no Coulomb barrier so the cross section cannot be written as the

equation (23). Following Fowler et al. (1967) we write:

σ(E) =
S(E)

v
(36)

where v is the relative velocity. We consider the expression given by Fowler et al. (1967):

S(E) = S(0) +

(
dS

dẼ

)

Ẽ=0

E1/2 + 1/2

(
d2S

dẼ2

)

Ẽ=0

E (37)

where Ẽ = E1/2.

In chiral limit σ ∼ Λ−2
QCD, and therefore:

S(0) ∼ Λ−2
QCD (38)
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In this way, the expression for the reaction rates (equation 21) yields:

〈σv〉 = S(0)

(
1 +

2√
π

S
′

(0)

S(0)
(kT )1/2 +

3

4

S
′′

(0)

2S(0)
kT

)
(39)

where dS

dẼ
is in units of cm3

seg
MeV−1/2 and d2S

dẼ
in in units of cm3

seg
MeV−1

For radiative emission reactions, the cross section should be multiplied by a factor α
αtoday .

Table 6 shows some reaction rates between a neutron and a nucleus.

In some cases the reaction rates of the inverse reactions are needed. Next, we show the

expressions for these reaction rates. For inverse reactions of the form [BCAn], where neither

B or C are photons, we use the expression given by Fowler et al. (1967, 1975):

[BCAn] =
2(1 + δBC)gA
(1 + δAn)gBgC

(
mAmn

mBmC

)3/2

e−Q/kT [AnCB]
1

seg
(40)

where Q = mA +mn −mB −mC . In this case, the form factor S(0) should be multiplied

by α
αtoday because of the Coulomb barrier.

For inverse reactions of the form [BγnA], we use the expression given by Fowler et al.

(1967, 1975):

Yγ[BγnA] =
gAgn

(1 + δAn)gB

(
mAmn

mB

)3/2(
M2

UkT

2π~2

)3/2

e−Q/(kT )〈σv〉 1

seg
(41)

where Q = mA +mn −mB, gn = 2jn + 1 = 2 and MU = 1
NA

.

In both cases, the additional dependence on the fundamental constants introduced by

the inverse reactions proceed from the temperature (see section 4) and the masses (see section

2).

3.4. Neutron lifetime

Neutron β decay is one of the few reactions whose cross section can be explicitly com-

puted from first principles in terms of the fundamental constants. It can be approximated

by the one point interaction of neutron, proton, electron and neutrino. The reaction rate for

neutron β decay is:

n → p+ e− + νe (42)

Following Ichikawa and Kawasaki (2002) we write the inverse of neutron lifetime as

follows:
1

τ
≃ G2

F

∫ P0

0

d3ped
3pν δ(Ee + Eν +mp −mn) (43)
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where, GF is Fermi coupling constant, Ee and Eν are the electron and neutrino energy, and

pe and pν are the electron and neutrino momenta. After integration we obtain:

1

τ
=

16

60
π2G2

Fm
5
e

(√
q2 − 1 (2q4 − 9q2 − 8) + 15q ln

(
q +

√
q2 − 1

)) 1

seg
(44)

where me is the electron mass, q = Q
me

= mn−mp

me

In such way, we obtain the dependence of the neutron decay rate τ−1 on GF and on the

mass difference (which is a function of α and ΛQCD, see section 2):

δ[n]

[n]
= −δτ

τ
= 2

δGF

GF

+ 6.54
δΛQCD

ΛQCD

− 3.839
δα

α
(45)

4. Abundances as functions of fundamental constants

In this section we calculate the abundances of light elements and their dependence on

fundamental constants. First we obtain the neutron abundance until the freeze-out time of

weak interaction. After this time the neutrons decay freely into protons and electrons, so

their abundance only changes due to this decay.

The general form of the equations that govern the abundances of the light elements is:

Ẏi = J(t)− Γ(t)Yi (46)

where J(t) and Γ(t) are time-dependent source and sink terms and the dot corresponds to

the time derivative. The time-dependent static solution of this equation is what we will call

following Esmailzadeh et al. (1991) the quasi-static equilibrium (QSE) solution:

fi =
J(t)

Γ(t)
(47)

To determine the formation of light nuclei we shall solve the following equations using

only the most important reactions according to the rates of production and destruction

following the criteria established by Esmailzadeh et al. (1991):

Ẏn = YdYd[ddn3] + YdYT [dTnα] + YpYT [pTn3] + YdYγ[dγnp] +

−YnYp[npdγ]− YnY3[n3Tp]− Yn[n] (48)

Ẏd = YnYp[npdγ]− 2YdYd ([ddpT ] + [ddn3])− YdYT [dTnα] +

−YdY3[d3pα]− YdYγ[dγnp]− YdYp[dp3γ] (49)

Ẏ3 = YdYp[pd3γ] + YTYp[pTn3] + YdYd[ddn3] +
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−YdY3[d3pα]− YnY3[n3pT ] (50)

ẎT = YnY3[n3pT ] + YdYd[ddpT ]− YdYT [dTnα] +

−YpYT [pTn3]− YpYT [pTγα] (51)

Ẏ6 = YdYα[dα6γ]− YnY6[n6αT ]− YpY6[p6Tα] (52)

Ẏ7 = YnYα[n67γ] + YnYB[nBp7] + YTYα[Tα7γ] +

−YpY7[p7αα]− YnY7[n78γ] (53)

ẎB = YpY6[p6Bγ] + Y3Yα[3αBγ]− YγYB[Bγ3α]− YnYB[nBp7] +

−YpYB[pBγ8]− YdYB[dBααp] (54)

Ẏα = YdY3[d3pα] + YnY3[n3αγ] + YdYT [dTnα] + YpYT [pTγα] (55)

where n refers to neutron, p to proton, d to deuterium, T to tritium, 3 to 3He, α to 4He, 6

to 6Li, 7 to 7Li, B to 7Be, γ to the photon and [ijkl] is the rate of the reaction i+ j → k+ l

and Yi is the abundance of the i element relative to baryons
(
Yi =

ni

nB

)
. In addition, these

equations obey neutron number conservation:

Ẏn + Ẏd + Ẏ3 + 2ẎT + 2Ẏα = −Yn[n] (56)

The method of Esmailzadeh et al. (1991) consists in calculating the different abundances

between fixed point or stages. We shall solve equations 48 to 55 only for one element in

each stage. For the other elements it is necessary to solve the quasi static equilibrium

equation using only the most important rates of production and destruction. On the other

hand, we perform the calculation of all final temperatures and abundances and all freeze-out

temperatures numerically. Table 7 shows the different stages and the used equation.

The equations that describe the production of n, D, 3He and T are independent to the

equations for 6Li, 7Li and 7Be. Therefore, we shall solve the first three using the quasi static

equilibrium equation and then we use these results to calculate the other abundances.

To calculate the final abundance of light elements it is necessary to know the freeze-out

temperature. The freeze-out of the production of each element happens when the most

important destruction reaction rate equals to the expansion rate of the Universe. The

dependence of the freeze-out temperatures and final temperature of each stage with the

fundamental constants, will be calculated by deriving the equation that determines each

temperature.

Each section in this chapter will discuss the calculation of abundances during a certain

stage.
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4.1. Neutron abundance until the freeze-out of weak interaction, T > 9.1× 109K

For the calculation of neutron abundance we follow the analysis performed by Bernstein

et al. (1989). Let λpn(T ) be the rate of weak process that convert protons into neutrons and

λnp(T ) the rate of weak process that convert neutrons into protons. The basic rate equation

reads:

dX

dt
= λpn(t)(1−X(t))− λnp(t)X(t) (57)

where t is the time, and X is the ratio of the number of neutrons to the total number of

baryons. After changing variables
(
y = ∆m

T

)
, the solution of the last equation can be written

as follows:

X(y) = Xeq(y) +

∫ y

0

dy
′

ey
′
[
Xeq(y

′

)
]2

eK(y)−K(y
′

) (58)

where

K(y) = b

[
4

y3
+

3

y2
+

1

y
+

(
4

y3
+

1

y2

)
e−y

]
; b = 255

Mpl

∆m2τ

√
45

43π3

Xeq(y) =
1

1 + ey
(59)

τ is the neutron mean life and ∆m = mn −mp. In order to obtain the asymptotic behavior,

the limit T → 0 or y → ∞ is taken:

X(y = ∞) =

∫ ∞

0

dy
′

ey
′

Xeq

(
y

′

)2
e
−K

(
y
′
)

= 0.151 (60)

In the last equation, only b depends on the fundamental constants through τ and ∆m

(see sections 2 and 3 for the dependence of these quantities with the fundamental constants).

In such way, from equation 60, we obtain:

δX(y = ∞)

X(y = ∞)
= −1.04

δGF

GF
− 2.361

δΛQCD

ΛQCD
+ 1.386

δα

α
(61)

4.2. Until the production of 4He becomes efficient, 9.1× 109K > T > 0.93× 109K

After the freeze-out of the weak interactions, the only change in the neutron abundance

is due to neutron decay. Therefore, the neutron abundance in this stage reads:

Yn = X(y = ∞) e−t/τ = e−0.198/T 2

9 (62)
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In the beginning of this stage there are no nucleus with two or more nucleons, therefore

it is a good approximation to consider: Yp ≃ 1 − Yn. However, as the universe expands,

the temperature goes down and light nuclei formation begins. Therefore, at the end of this

stage, this expression is no longer valid.

In order to get a consistent solution of equation 56 (Esmailzadeh et al. 1991), it it is

necessary to set all the rates equal to zero with the exception of the largest rate which equals

to −2Ẏα − Yn[n]. In such way, the equations to solve in this stage are:

Ẏn = −2Ẏα − Yn[n] (63)

Ẏd = Ẏ3 = ẎT = 0 (64)

Table 8 shows the solutions.

When the production of 4He becomes efficient the stage ends. The final temperature is

given by is given by setting Ẏn = 0 in equation 63. For this stage, we obtain T f
9 = 0.93 and

the following results:

Y f
p = 0.76 Y f

d = 4.1× 10−4 Y f
T = 2.0× 10−5

Y f
n = 0.12 Y f

3 = 5.8× 10−8 Y f
α = 0.06

where Y f
i is the final abundance of each nucleus or nucleons on this stage. It follows that

the the abundances of D, T and 3He are negligible respect to the abundances of neutrons

and 4He. This means:

Y f
p = 1− Y f

n − Y f
d − Y f

T − 2Y f
α − 2Y f

3

≃ 1− Y f
n − 2Y f

α = 1− 2Y f
n (65)

Now, in order to calculate the dependence of the final temperature with the fundamental

constants for this stage, we derivate the equation 2Ẏα = Yn[n] with respect to the fundamental

constants and the temperature. In such way, we obtain:

δT f
9

T f
9

= 0.068
δΩBh

2

ΩBh2
− 0.053

δGF

GF
+ 0.063

δα

α
+ 0.871

δΛQCD

ΛQCD
(66)

where we also considered the dependence with the baryon fraction. Finally, the dependence

of the abundance of neutrons on the fundamental constants and ΩBh
2 yields:

δYn

Yn
= 0.029

δΩBh
2

ΩBh2
− 1.522

δGF

GF
+ 2.296

δα

α
− 3.459

δΛQCD

ΛQCD
(67)
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4.3. Final abundance of 4He

The next stage corresponds to the calculation until the rate of production of deuterium

dominates over the rate of change of neutrons. However, the freeze-out temperature of 4He

(T = 0.915×109K) is lower than the final temperature of the previous stage but bigger than

the final temperature of the next one. Therefore, we calculate now the final abundance of
4He. In this case, the neutron number conservation equation reads:

2Ẏα = Yn[n] (68)

For the others nucleus the quasi static equilibrium equation is valid (see table 8). The

production of 4He is dominated by [dTnα] and [pTγα]:

Ẏα = YdYT [dTnα] + YpYT [pTγα] =

(
YnYp

[npdγ]

Yγ[dγnp]

)2

[ddpT ] (69)

After solving numerically for T9 the equation (68), we obtain T α
9 = 0.915 and Y f

α =

2Yn = 0.238. When the rate of 4He production equals to the rate of neutron destruction,

there is no more neutron that can form 4He. Since this happens earlier than the usual

freeze-out-time, we use equation 68 to calculate the freeze-out temperature. In such way,

the dependence of the freeze-out temperature on the fundamental constants and ΩBh
2 yields:

δT α
9

T α
9

= 0.061
δΩBh

2

ΩBh2
− 0.052

δGF

GF
+ 0.063

δα

α
+ 0.869

δΛQCD

ΛQCD
(70)

Finally, since Y c
α = 2Yn, we can express the variation of the final abundance of 4He as

a function of fundamental constants and ΩBh
2:

δY c
α

Y c
α

= 0.029
δΩBh

2

ΩBh2
− 1.538

δGF

GF
+ 2.324

δα

α
− 3.496

δΛQCD

ΛQCD
(71)

4.4. Neutron cooking, 0.93× 109K > T > 0.765× 109K

In this section we shall calculate the deuterium abundance as long as the change of

neutron dominates the deuterium production rate. This is valid until the production rate of

deuterium dominates the rate of change of neutrons, so this stage is over when Yn = Yd. In

this stage, the neutron number conservation equation reads:

Ẏn = −2Ẏα (72)
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For D, T and 3He we solve the quasi-static equilibrium equations. The solutions are shown in

table 8. For 4He we solve the complete equation but considering only the largest production

term YdYT [dTnα]. Inserting all these solutions in equation 72, we obtain:

Ẏn = −2

(
YnYp

[npdγ]

Yγ[dγnp]

)2

[ddpT ] (73)

where the initial condition is given by the final values of the previous stage: Y 0
n = 0.12 and

T 0
9 = 0.93. We can write the solution to the last equation as follows:

Yn =

(
1

Y 0
n

+ 2

∫ t

tinitial

(
Yp

[npdγ]

Yγ[dγnp]

)2

[ddpT ]dt

)−1

(74)

After changing the integration variable to T9 we perform the integral numerically as a func-

tion of temperature. We also compute the final temperature of this stage using the condition:

Yn = Yd (75)

We obtain:

T f
9 = 0.765 Yn = 6.4× 10−4 = Yd (76)

From 75 we obtain the dependence of the final temperature of this stage with respect to the

fundamental constants and ΩBh
2:

δT f
9

T f
9

= 0.031
δΩBh

2

ΩBh2
+ 0.015

δGF

GF
− 0.023

δα

α
+ 1.034

δΛQCD

ΛQCD
(77)

Finally, the dependence of the final neutron and deuterium abundance can be obtained from

equation (74):

δYd

Yd

=
δYn

Yn

= −1.099
δΩBh

2

ΩBh2
− 0.058

δGF

GF

+ 1.871
δα

α
− 0.488

δΛQCD

ΛQCD

(78)

4.5. Deuterium cooking, T → 0

For temperatures lower than T9 = 0.765, the largest production rate corresponds to

deuterium. Therefore, we set all other derivatives to zero in equation 56. Since the largest

term for deuterium destruction is tritium production, the equation to solve is:

Ẏd = −2YdYd[ddpT ] (79)
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with the initial condition Y 0
d = 6.4× 10−4 on T 0

9 = 0.765. Since this equation has the same

form of equation 73, the solution reads:

Yd =

(
1

Y 0
d

+ 2

∫ t

tinitial

[ddpT ]dt

)−1

(80)

In order to calculate the deuterium final abundance we consider the limit T → 0 (

t → ∞). We obtain numerically, the deuterium final abundance Y f
d = 2.410 × 10−5. On

the other hand, the dependence of the deuterium final abundance with the fundamental

constants and ΩBh
2 can be calculated by deriving equation 80:

δY c
d

Y c
d

= −1.072
δΩBh

2

ΩBh2
− 0.036

δGF

GF

+ 2.320
δα

α
+ 0.596

δΛQCD

ΛQCD

(81)

4.6. Final abundances

Here we calculate the freeze-out temperature and final abundances of 3He, T, 6Li, 7Be

and 7Li and the dependence of these quantities with the fundamental constants. In order

to calculate any light element abundance it is necessary to solve the quasi-static equilibrium

equation:

Ẏi = 0 (82)

We solve these equations considering only the most relevant reactions. In table 9 we show

the quasi-static equilibrium solutions.

In order to compute the freeze-out temperature, we set the largest rate of destruction

Γ of each equation that governs the abundance of the light elements equal to the universe

expansion rate H :

Γ = H =
1

356
T 2
9 seg

−1 (83)

Table 10 shows the different freeze-out temperatures and their dependence on fundamental

constants which is calculated deriving the previous equation. Using the freeze-out tempera-

ture we calculate the final abundance of the different nucleus and their dependence on the

fundamental constants and ΩBh
2. In table 11 we show these results.

5. Results and discussion

In this section we compare the theoretical predictions of the abundances of the light

elements obtained in the last section with observational data.
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In section 4 we have obtained 7 equations of the form:

δY f
i

Y f
i

= Ai
δGF

GF

+Bi
δα

α
+ Ci

δΛQCD

ΛQCD

+Di
δΩBh

2

ΩBh2
(84)

where Ai, Bi, Ci and Di are constant coefficients (see table 11), δYi

Yi
=

Y obs
i −Y SBBN

i

Y SBBN
i

; and

Y SBBN
i and Y obs

i are the theoretical and observed abundance respectively.

However, independent observational data are only available for the abundances of D,
3He, 4He and 7Li. In table 13 we show the independent data we consider in this work. For a

recent review of all observational available data on primordial abundances see Particle Data

Group et al. (2004). On the other hand, recent papers (Coc et al. 2004a; Cyburt 2004) have

brought the attention to the errors introduced by the values of the cross sections involved in

the calculation of the abundances. Cyburt (2004) has also analyzed the propagation through

the theoretical abundances, yielding a “theoretical” percent error of 5%. In the original work

of Esmailzadeh et al. (1991), the error introduced by the semi-analytical method is estimated

to be of order 5%. Therefore, we will add in order to solve system 84, to the errors of table

13 an error of order 10%.

First we perform a test to check the consistency of the data (Riveros and Vucetich

1986). For each group of data (Yi) belonging to the same abundance, we calculate the

weighted averaged value Y and its corresponding error σi. Then we compute:

χ2 =
∑

i

(Yi − Y )2

σ2
i

(85)

If the errors are Gaussian distributed, the expected value of χ2 is (k − 1) where k is the

number of data in each group. Furthermore, the corresponding ideogram of each group of

data (Particle Data Group 2002), should be a Gaussian. It follows from figure 1 and from

the calculation of χ2 that D and 4He data are not Gaussian distributed. However, since

Θ =
√

χ2

k−1
is not that greater than one, we can use the data but increasing the observational

error by a factor Θ. The values of Θ are 2.4 for D, 2.33 for 4He.

We assume that any difference between the theoretical abundance and the observational

abundance is due to the variation of fundamental constants. In such way, the solution of

system (84) gives a constraint to this variation. The solution is given by (Arley and Buch

1968):

δαi

αi
=
[(
BtPB

)−1
BtPδ

]
i
±
√[

(BtPB)−1]
ii
s (86)
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where B is the n× 4 matrix, n is the number of observational data:

B =




A1 B1 C1 D1

A2 B2 C2 D2

...
...

...
...

An Bn Cn Dn


 (87)

δ is the n× 1 matrix:

δ =




δY1

Y1

δY2

Y2

...
δYn

Yn


 (88)

and P is the n× n matrix of weight:

P =




p1 0 . . . 0

0 p2 . . . 0
...

...
. . .

...

0 0 . . . pn


 (89)

where pi =
1
σ2

i
and σi are the observational errors.

The most accurate estimation of ΩBh
2 arrives from constraining parameters with data

from the CMB provided by WMAP (Spergel et al. 2003). Fixing the baryon fraction with the

WMAP value (i.e. setting Di = 0), the results of solving the system 84 with all data listed

in table 13 are shown in table 14. These results are consistent within 3σ with variation of

the fundamental constants. On the other hand, the results considering only variation of the

fine structure constant are shown in table 15. These results are consistent with no variation

of α within 3σ. In order to rule out any systematic error of the data, we computed the

solution of system 84 again but excluding one group of data at each time. Again, the results

are consistent with variation of the fundamental constants in all cases but in the case where

the 7Li data were excluded (see tables 14 and 15).

Even though, the WMAP estimate of the baryon density is the most accurate one, it

is still affected by degeneracies with other cosmological parameters (Spergel et al. 2003).

Therefore, we added an independent estimation of ΩBh
2 in our analysis. In appendix A we

use data from X-ray measurements, galaxy surveys and cepheids calibration in order to get

an independent value of the baryon density. Furthermore, we computed again the results

of sections 3 and 4, changing the value of ΩBh
2 to 0.0223. This value is the weighed mean

value between the WMAP estimate and the value of appendix A. However, we found no
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difference in the value of the coefficients of the variation of fundamental constants and ΩBh
2.

The results obtained solving system 84 including both estimates for the baryon fraction (i.

e. Di 6= 0 ) show no significant difference with respect to the case where only the WMAP

value was considered (see tables 16 and 17). Furthermore, in order to check for consistency

of our method, we solved again system 84 allowing only for variation of ΩBh
2 with respect

to the weighed mean value (i.e. Ai = Bi = Ci = 0). These results are shown in table 18.

On the other hand, in order to learn about the degeneracies of the fundamental constants

within the BBN model, we computed the correlation coefficients from the error matrix. We

find that there is high correlation between α and ΛQCD, α and GF and ΛQCD and GF , while

the correlation between other pairs of parameters is not significant.

In order to understand the discrepancy of the results obtained with and without the
7Li data, we computed the relative residuals (Arley and Buch 1968), and their respective

theoretical and empirical probability in both cases. Figure 2 shows that in the case where

both the variation of the fundamental constants and the deviation of ΩBh
2 from the WMAP

estimate is considered, the theoretical and empirical probability distributions are very similar,

while in the case where only the deviation of ΩBh
2 is considered, there is slight difference

between the empirical probabilities (both with all data and excluding 7Li data) and the

theoretical probability. Including the variation of fundamental constants gives more degrees

of freedom to system 84. Therefore, we suspect that the possible non reported systematic

uncertainties “hide” under the variation of the fundamental constants. On the other hand,

we performed a Kolmogorov-Smirnov (K-S) test, in order to check the goodness of our fit. For

the results obtained considering variation of all constants and ΩBh
2, we obtain a probability

of 21% to obtain a worse fit, while excluding the 7Li data the probability lowers to 11%.

On the other hand, if we only consider the deviation of ΩBh
2 with respect to the WMAP

data, we obtain a probability of 99% for all data, while excluding the 7Li data gives a 49%

of probability to get a worse fit. However, we consider the results of the K-S test only

indicative, since even though the data considered are independent the residuals are not.

We mentioned in the introduction the disagreement between the 7Li observational abun-

dances with the D observational abundance and WMAP estimate of the baryon density.

Richard et al. (2005) claim that a better understanding of turbulent transport in the stars

is necessary to understand this discrepancy. Moreover, Meléndez and Ramı́rez (2004) have

reanalyzed the 7Li data with an improved infrared flux method temperature scale, obtaining

values that are marginally consistent with the WMAP estimate. However, solving system

84 with the 7Li abundance taken from their work, does not change in a significant way our

results.

We adopt the conservative criterion that the third and fourth column of tables 14 and
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16 are the constraints on the variation of the constants we obtain with the method and

hypothesis described in this paper. We also consider that more observations of 7Li are needed

in order to arrive to stronger conclusions. However, if the all data are correct, this analysis

shows that varying coupling constants may solve the concordance problem between BBN

and CMB. Our results within 2 σ are consistent with the analysis performed by Ichikawa

and Kawasaki (2004), where only the variation of α and a non standard expansion rate.

A. Appendix I

In this appendix, we combine independent astronomical data in order to obtain and

independent estimation of the baryon density. From measurements of hot gas in clusters it

possible to obtain an estimate of ΩB

Ωm
h3/2.

Ettori (2003) has brought the attention to the fact that the contribution from baryons

in galaxies and “exotic sources” like intergalactic stars and baryonic dark matter are not

considered in the results obtained from measurements of hot gas in clusters. Furthermore,

Donahue et al. (2003) have estimated the contribution from the galaxies as follows: fgal =

0.15h3/2fgas while the “exotic” contribution has been estimated in fexotic = 0.3fgal (Ettori

2003). Therefore, we add to the estimation of the baryon fraction done by Donahue et al.

(2003) the contribution from galaxies, yielding the following value:

ΩB

Ωm
h3/2 = 0.0737± 0.0143 (A1)

The values of the other estimates (Majerowicz et al. 2002; Castillo-Morales and Schindler

2003) are contained within the error in this estimation.

On the other hand, Ωmh has been estimated from large redshift galaxy surveys like

Sloan Digital Sky Survey (Pope et al. 2004) and 2dF Galaxy Redshift Survey (Percival

et al. 2001), while the most stringent bound on the Hubble constant follows from cepheid

calibration (Freedman et al. 2001). Thus, combining all these data (see table 19) , and after

propagating errors, we obtain the following value for the baryon density:

ΩBh
2 = 0.017± 0.007 (A2)

This value is less accurate that the estimation done with the data of WMAP (Spergel

et al. 2003)

ΩBh
2 = 0.0224± 0.0009 (A3)

but we will consider it in order to have an independent data of this quantity.
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Table 4: Charged particles reaction rates Θ = ΩBh
2T

7/3
9 α1/3µ−1/3, Ψ = µα2, Ξ(b) =

ΩBh
2µ−b, Σ(a) = α

αtoday

(
1 + a− a α

αtoday

)
, PIB(Ψ, T9, c1, c2, c3, c4, c5) = 1 + c1 ×

10−12Ψ−1/3T
1/3
9 + c2 × 1010Ψ1/3T

2/3
9 + c3T9 + c4 × 1020Ψ2/3T

4/3
9 + c5 × 1010Ψ1/3T

5/3
9

Reaction Reaction rate
(

1
seg

)

3H (p, γ)4He 1.14× 10−7 Θ [Σ(0)]2 e
−9.55×1010

(
Ψ

T9

)
1/3

×
PIB (Ψ, T9, 4.36, 4.14, 1.26, 3.35, 2.61)

2H (d, n)3He 2.26× 10−3 Θ Σ(0) e
−9.55×1010

(
Ψ

T9

)1/3
×

PIB (Ψ, T9, 4.36, 1.96, 0.6, −0.206, −0.16)

2H (3He, p)
4
He 0.39 Θ Σ(0.09) e

−1.52×1011
(

Ψ

T9

)
1/3

−(507.36T9α)2×
PIB (Ψ, T9, 2.75, −2.16, −0.42, 13.5, 6.58)+

+2.63× 10−8 Ξ
(
1
2

)
Σ(0.09) T

5/2
9 e−1.76T−1

9

3H (d, n)4He 0.49 Θ Σ(0) e
−9.55×1010

(
Ψ

T9

)1/3
−(1141.67T9α)2×

PIB (Ψ, T9, 4.36, 3.78, 1.16, 46.8, 3.64× 1011) +

+3.39× 10−8 Ξ
(
1
2

)
Σ(0) T

7/3
9 e−0.523T−1

9

2H (d, p)3H 2.37× 10−3 Θ Σ(0.16) e
−9.55×1010

(
Ψ

T9

)1/3
×

PIB (Ψ, T9, 4.36, 1.16, 0.35, −0.051, −0.04)

2H (α, γ)6 Li 1.88× 10−10 Θ [Σ(0)]2 e
−1.52×1011

(
Ψ

T9

)
1/3

×
PIB (Ψ, T9, 2.75, −9.9, 8.85, −2.43, −1.19)+

+8.27× 10−39 Ξ
(
3
2

)
[Σ(0)]2 T

3/2
9 e−8.228T−1

9

H (6Li, α)
3
H 0.20 Θ Σ(0) e

−1.99×1011
(

Ψ

T9

)
1/3

−(24.94T9α)2×
PIB (Ψ, T9, 2.10, −0.14, −0.02, 0.033, 0.012)+

+4.53× 10−8 Ξ
(
1
2

)
Σ(0) T 2

9 e−21.82T−1

9 +

+6.68× 10−34 Ξ
(
3
2

)
Σ(0) T

3/2
9 e−17.76T−1

9
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Table 5: Charged particles reaction rates Θ = ΩBh
2T

7/3
9 α1/3µ−1/3, Ψ = µα2, Ξ(b) =

ΩBh
2µ−b, Σ(a) = α

αtoday

(
1 + a− a α

αtoday

)
, PIB(Ψ, T9, c1, c2, c3, c4, c5) = 1 + c1 ×

10−12Ψ−1/3T
1/3
9 + c2 × 1010Ψ1/3T

2/3
9 + c3T9 + c4 × 1020Ψ2/3T

4/3
9 + c5 × 1010Ψ1/3T

5/3
9 ,

PLN(x, d1, d2, d3, d4, d5) = 1 + d1x+ d2x
2 + d3x

3 + d4x
4 + d5x

5, T9v = vT9 + 11.605

Reaction Reaction rate
(

1
seg

)

3H (α, γ)7 Li Θ [Σ(0)]2 PLN

(
α−αtoday

αtoday , 3.17, 0.50, 0.18, 0.27, −0.22
)
×

{
7.47× 10−6 e

−1.52×1011
(

Ψ

T9

)1/3
×

PIB (Ψ, T9, 2.75, −0.76, −0.15, 0.36, 0.18)+

+2.68× 10−5 T
−5/6
9v e

−6.69×1010
(

ΨT9v
T9

)
1/3
}

v = 1.59
3He (α, γ)7 Be Θ [Σ(0)]2 PLN

(
α−αtoday

αtoday , 2.15, 0.67, −5.57, 10.63, −5.73
)
×

{
3.27× 10−5 e

−2.41×1011
(

Ψ

T9

)1/3
×

PIB (Ψ, T9, 1.73,−0.0019,−0.00024,−0.00028,−8.8× 10−5) +

+3.12× 10−4T
−5/6
9v e

−1.06×1011
(

ΨT9v
T9

)
1/3
}

v = 1.24

H (7Li, α)
4
He 3.33× 10−3 Θ Σ(0) e

−1.99×1011
(

Ψ

T9

)1/3
−(0.22αT9)

2

×
PIB (Ψ, T9, 2.10, 3.65, 0.54, −5.30, −1.98)+

+Ξ
(
2
3

)
Σ(0) T

3/2
9 ×[

5.54× 10−34e−30.44/T9 + 7.98× 10−38e−4.479/T9

]

H (d, γ)3He 1.11× 10−8 Θ [Σ(0)]2 e
−9.545×1010

(
Ψ

T9

)
1/3

×
PIB (Ψ, T9, 4.36, 8.66, 2.65, 1.26, 0.98)
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Table 6: Non charged particles reactions rates, Σnc(a) = 1 + a − a α
αtoday , PF (T9, c1, c2) =

1 + c1T
1/2
9 + c2T9, q = mn−mp

me

Reaction Reaction rate
(

1
seg

)

n ( , e−)H 16
60
π2G2

Fm
5
e

[√
q2 − 1 (2q4 − 9q2 − 8)+

+15q ln
(
q +

√
q2 − 1

)]

H (n, γ) d 40.92 ΩBh
2 Σnc(−1) T 3

9 PF (T9, −0.86, 0.43)

Yγ {H (γ, n)H} 2.70× 1049 Σnc(−1)
(

mpmn

md

)3/2
T

3/2
9 e−11.605ǫd/T9×

PF (T9, −0.86, 0.43)
3He (n, p)3H 6.53× 105 ΩBh

2 T 3
9 Σnc(0.3) PF (T9, −0.59, 0.1832)

3H (p, n)3He 6.53× 105 ΩBh
2 Σnc(0.3) Σnc(−1)

(
m3mn

mTmp

)3/2
×

PF (T9, −0.59, 0.1832) e−11.605Q6/T9T 3
9

7Be (n, p)7 Li 6.27× 106 ΩBh
2 Σnc(0.2) T

3
9 PF (T9, −0.903, 0.215)

Table 7: Stages and equations

Stage Equations Final temperature

Until the weak interaction freeze-out

Until the production of 4Hebecomes efficient Ẏn = −2Ẏα − Yn[n] 2Ẏα ∼ Yn[n]

Ẏd = Ẏ3 = ẎT = 0

Production of deuterium dominates the Ẏn = −2Ẏα Yn = Yd

rate of change of neutrons Ẏd = Ẏ3 = ẎT = 0

Deuterium final abundance Ẏd = −2Ẏα T9 → 0

Ẏn = Ẏ3 = ẎT = 0
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Table 8: Solutions of the quasi static equilibrium equations for each stage

T9 Nucleus Solution

D Yd = YnYp
[npdγ]

Yγ [dγnp]

9.1 > T9 > 0.93 T YT = YdYp[pd3γ]+YdYd[ddn3]+YTYp[pTn3]

Yd[d3pα]+Yn[n3pT ]
3He Y3 =

YnY3[n3pT ]+YdYd[ddpT ]
Yd[dTnα]+Yp[pTn3]

D Yd = YnYp
[npdγ]

Yγ [dγnp]

0.93 > T9 > 0.765 T Y3 = Yd
[ddn3]
[d3pα]

3He YT = Yd
[ddpT ]
[dTnα]

D Yd = YnYp
[npdγ]

Yγ [dγnp]

T9 → 0 T Y3 = Yd
[ddn3]
[d3pα]

3He YT = Yd
[ddpT ]
[dTnα]

Table 9: Quasi-static equilibrium solutions

Nucleus Quasi-static equilibrium solutions
3He Y3 =

Yd[ddn3]
[d3pα]

T YT = Yd[ddpT ]
[dTnα]

6Li Y6 =
YdYα[dα6γ]
Yp[p6Tα]

7Be YB = Y3Yα[3αBγ]
Yn[nBp7]

7Li Y7 =
YnYB [nBp7]+YTYα[Tα7γ]

Yp[p7αα]

Table 10: Freeze-Out temperature and their dependence on fundamental constants,
δT i

9

T i
9

=

W δGF

GF
+R δα

α
+ T

δΛQCD

ΛQCD
+ J δΩBh2

ΩBh2

Nucleus Equation T Freeze−Out
9 W R T J

3He Yd[d3pα] = H 0.403 0.008 −0.510 1.168 0.016

T Yd[dTnα] = H 0.105 0.009 0.122 1.181 0.018
6Li Yp[p63α] = H 0.069 −0.076 1.962 1.118 −0.156
7Be Yn[nBp7] = H 0.319 0.217 −0.712 1.39 0.350
7Li Yp[p7αα] = H 0.185 −0.088 1.692 0.946 −0.182
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Table 11: Abundances and their dependence on fundamental constants,
δY f

i

Y f
i

= A δGF

GF
+B δα

α
+

C
δΛQCD

ΛQCD
+D δΩBh2

ΩBh2

Y f
i Abundance A B C D

2H 2.741× 10−5 −0.036 2.320 0.596 −1.072
3He 6.95× 10−6 −0.051 0.983 0.999 −1.102
3H 1.21× 10−7 −0.041 0.252 0.941 −1.083
4He 0.238 −1.538 2.323 −3.497 0.029
6Li 5.7× 10−14 −2.061 7.414 −3.462 −1.047
7Be 5.60× 10−10 −0.172 −9.450 −1.038 2.209
7Li 2.36× 10−10 −0.720 1.824 −3.411 0.068

Table 12: Theoretical abundances in the standard model the WMAP estimate ΩBh
2 = 0.0224

Nucleus Y SBBN
i ± δY SBBN

i
2H (2.51± 0.37)× 10−5

3He (1.05± 0.15)× 10−5

4He 0.2483± 0.0012
7Li (5.0± 0.3)× 10−10
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Table 13: Observational abundances used in this work

Nucleus Y obs
i ± δY obs

i Cite

D (1.65± 0.35)× 10−5 Pettini and Bowen (2001)

D (2.54± 0.23)× 10−5 O’Meara et al. (2001)

D
(
2.42+0.35

−0.25

)
× 10−5 Kirkman et al. (2003)

D (3.25± 0.3)× 10−5 Burles and Tytler (1998a)

D
(
3.98+0.59

−0.67

)
× 10−5 Burles and Tytler (1998b)

D
(
1.6+0.25

−0.30

)
× 10−5 Crighton et al. (2004)

3He (1.1± 0.2)× 10−5 Bania et al. (2002)
4He 0.244± 0.002 Izotov and Thuan (1998)
4He 0.243± 0.003 Izotov et al. (1997)
4He 0.2345± 0.0026 Peimbert et al. (2000)
4He 0.232± 0.003 Olive and Steigman (1995)
7Li

(
1.23+0.68

−0.32

)
× 10−10 Ryan et al. (2000)

7Li
(
1.58+0.24

−0.20

)
× 10−10 Bonifacio et al. (1997)

7Li (1.73± 0.05)× 10−10 Bonifacio and Molaro (1997)
7Li

(
2.19+0.30

−0.26

)
× 10−10 Bonifacio et al (2002)
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Fig. 2.— The full line shows the theoretical probability of the residuals, the dotted line shows

the empirical probability computed with all data and the dotted line shows the empirical

probability computed with all data but 7Li. Left: Only deviation of ΩBh
2 with respect to

its mean value is considered; Right: variation of all constants and deviation of ΩBh
2 from

the mean value is considered.
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Table 14: Constraints on the variation of fundamental constants (ΩBh
2 = 0.0224).

All data All data but 7Li

Value σ Value σ
δGF

GF
-0.886 0.053 -0.257 0.659

δα
α

-0.136 0.041 -0.054 0.097
δΛQCD

ΛQCD
0.309 0.023 0.087 0.233

Table 15: Constraints on on the variation of α (ΩBh
2 = 0.0224).

All data All data but 7Li

Valor σ Value σ
δα
α

-0.041 0.024 -0.015 0.005

Table 16: Constraints on the variation of the fundamental constants using two independent

estimates for the baryon fraction.

All data All data but 7Li

Value σ Value σ
δΩBh2

ΩBh2 0.004 0.036 0.0005 0.039
δGF

GF
-0.886 0.050 -0.258 0.64

δα
α

-0.134 0.044 -0.053 0.095
δΛQCD

ΛQCD
0.310 0.023 0.087 0.229

Table 17: Constraints on the variation of α using two independent estimates for the baryon

fraction.

All data All data but 7Li

Value σ Value σ
δα
α

-0.086 0.034 -0.015 0.005
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Table 18: Constraints on the deviations of ΩBh
2 respect to the mean value considered in this

work (0.0223).

All data All data but 7Li

Value σ Value σ
δΩBh2

ΩBh2 -0.085 0.294 -0.014 0.054

Table 19: Observational data used to perform an estimate of the baryon density

ΩB

Ωm
h3/2 Cite

0.067± 0.03 (Donahue et al. 2003)

0.073± 0.013 (Majerowicz et al. 2002)

0.056± 0.007 (Castillo-Morales and Schindler 2003)

Ωmh Cite

0.20± 0.03 (Percival et al. 2001)

0.207± 0.030 (Pope et al. 2004)

h Cite

0.72± 0.08 (Freedman et al. 2001)


