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ABSTRACT 
We compare two statistical models of Alfvén solitons whose evolution is described by the one-dimensional 

derivative nonlinear Schrôdinger (DNLS) equation, contrasting their predictions with solar wind observations. 
Both distribution functions give the same mean number of solitons. This confirms a previous calculation of 
Ponce Dawson and Ferro Fontán of the number of solitons which evolve from an arbitrary initial condition. 
One of the distribution functions follows an exponential law with soliton energy and the other follows a 
power law; the latter gives better results than the former. Within these models, we can explain the variation of 
the observed spectra (spectral index, outer scale, and maximum value) with the heliocentric distance. This 
variation is related to the radial dependence of the mean level of modulational instability in the medium. 
Concerning the spectral index, our calculation improves that of Ovenden, Shah, and Schwartz, because an 
average over the soliton phases is included. 
Subject headings: hydromagnetics — Sun: solar wind 

I. INTRODUCTION 

A great amount of information about the structure of the fluctuations in the solar wind has been collected from spacecraft 
observations for a long time. The results are currently presented in the form of autocorrelation or cross-correlation functions of the 
magnitudes of interest (magnetic field, density enhancements, and velocities). In general, these correlation functions are Fourier 
transformed to produce power spectra which are functions of the frequency. There has been much interest in explaining these 
observed spectra. 

The magnetic field fluctuations are generally measured in situ. Their spectra exhibit similar behavior (see, e.g., Fig. 3 of Jokipii 
1971): they remain almost constant for low-frequency values (wavenumbers k and frequencies v are related by k = 2nv/vw, with vw 
the solar wind velocity), follow a power law k's along approximately two orders of magnitude of k with s < 2, and afterward 
decrease more rapidly (see, e.g., Denskat and Neubauer 1983). The unidimensional power index increases with the heliocentric 
distance. According to the observations analyzed in Denskat and Neubauer (1983), the index ranges between 1.59 and 1.69 at 0.97 
AU and between 0.87 and 1.15 at 0.24 AU. The k values at which the spectra change from a constant to a power law may be 
associated with the existence of an outer scale L0(k0 ~ Lq1)- The value of k0 decreases with increasing heliocentric distance (see, e.g., 
Denskat and Neubauer 1983). 

The density fluctuations spectra, which are generally obtained indirectly by interplanetary scintillation (IPS) techniques, also 
show the same behavior. According to Scott, Ricket, and Armstrong (1983) and Scott, Coles, and Bourgois (1983), a broken power 
law is the best fit to the observations with a unidimensional power index s ^ 1.0 ± 0.5 if 0.002 km-1 <k< 0.016 km-1 and 
s ^ 1.7 + 0.3 for 0.016 km-1 <k< 0.05 km-1 at heliocentric distances between 0.27 and 0.47 AU. The k value at which the power 
index changes, leading to a steeper spectrum, may be associated with the existence of an inner scale ~ L^1). The outer and 
inner scales define an interval (k0, k,) in wavenumber space over which the spectra follow a power law. 

Another fact that has been known since the work of Belcher, Davis, and Smith (1969) is the presence of finite-amplitude Alfvén 
waves in the solar wind. The nonlinear evolution of Alfvén waves in the presence of sound waves has been studied extensively, and 
simplified evolution equations have been derived for different cases. In this work, we will be concerned with the so-called derivative 
nonlinear Schrôdinger (DNLS) equation (Mjolhus 1976, Spangler and Sheerin 1982a, Sakai and Sonnerup 1983): 

iq, + iqx + — l_ ^ (q\ q \2)x + qxx = 0, (1) 

where q = (By — iBz)/B0 = ( — viy + iviz)/vA (B0 is the static magnetic field which is supposed to lie on the x-direction, r* is the 
velocity of the ions, vA is the Alfvén velocity v\ = Bl/(4nn0 n0 is the unperturbed density, and ß = c^/v\(cs = [y{Te + Tj}/ 
(nti + me)]

1/2 is the sound velocity with y the ratio of specific heats, y = 5/3 in the adiabatic case, and Te, Th me9 nil are the 
temperatures and masses of electrons and ions). In equation (1), time is measured in units of a/a>ci(a = |[1 — (mjniij] ^ jcoci = 
eB0lmi c is the ion-cyclotron frequency) and lengths are measured in units of dt = (xvja>c{. 

The DNLS equation describes the evolution of weakly nonlinear, weakly dispersive MHD waves propagating parallel to the 
ambient magnetic field B0 = B0x. Dispersion enters through finite ion-inertial effects (see, e.g., Roberts 1984), and the nonlinear 
term arises due to a coupling between transverse magnetic field (Alfvén waves) and plasma density perturbations. 

Equation (1) may be obtained from the set of nondissipative MHD equations, where all the variables are supposed to depend only 
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on the x-coordinate (see Sakai and Sonnerup 1983 or Spangler and Sheerin 1982a) by means of a reductive perturbation method 
(Taniuti and Wei 1968). Because of this geometric restriction, the model obtained is unidimensional and the equations governing the 
evolution of the x-component of the magnetic field are simply dx Bx = dtBx = 0. This means that Bx = B0 always, and therefore 
longitudinal perturbations on B cannot be described by equation (1). The expansions performed on the remaining variables 
B = By — iBz, v = viy — iviz9 n(n = ^ ne\ and u = vix, and the stretching of the coordinates, 

X = ô(x-t), T = 02t, (2) 

are standard. Two small positive parameters <5 and e are introduced, and the following scaling is assumed: 

ôn n — n0 Su u x — = ^ ~ ~ O(e), 
no «o vA vA 

(3a) 

ÖB _ B ôv _ v 

Bo B0 vA vA 

0(e1/2) . (3b) 

S = e. (4) 
The quantities ôn. Su, SB, and ôv are perturbations of the variables around an equilibrium solution which, if we intend to apply the 
model to the solar wind, corresponds to a description in the wind reference frame. 

It may be seen from equation (3) that while the perturbations of the Alfvénic variables ÔB and ôv have nonvanishing terms of 
order e1/2, the lowest order terms of the sound variables ôn and ôu are 0(e). It means that the magnetic field perturbation is e~1/2 

times greater than that of the density. This is the same assumption as the one considered by Hollweg (1971). It is valid if we restrict 
our attention to almost pure Alfvén waves (Spangler 1987) and would fail if the decay instability of an Alfvén wave into ion sound 
waves (Terasawa et al 1986) had produced a high level of the latter ones (Spangler 1987). However, it is realistic for the study of 
fluctuations in the solar wind (see, for instance, Fig. 1 of Denskat and Neubauer 1983, where \ôB\/B0 ^ 0.4, while \ôn\/n0 ^0.1; 
according to this figure, e would be of order 0.1). Besides, the scaling in equation (3) also means that, to lowest order in e, the 
magnetic and thermal energy perturbations are of the same order. This differs with the situation described in Patel and Dasgupta 
(1987), where a KBM expansion method (Kakutani and Sugimoto 1974), instead of the reductive perturbation method (Taniuti and 
Wei 1968), is used, leading to the NLS equation for the Alfvén wave amplitude if a scaling | ôn \/n0 ~ \ ÔB \/B0 is assumed. 

We must note then that expression (2) implies a change to a frame of reference, which we will call the Alfvén reference frame, that 
travels at the Alfvén velocity in the positive x-direction with respect to the wind. This imposes a further restriction, because only 
forward propagation of waves may be described in this way. Therefore, the DNLS equation cannot model the decay instability of 
Alfvén waves, because it is not applicable for a case where backward propagating waves are present (Terasawa et al 1986). 

The stretching of the x-coordinate in equation (2) is valid when long wavelengths predominate, with the quantity ô representing a 
measure of the characteristic wavenumber of the perturbation (<5 1). The characteristic length of the microscale Lm in the 
interplanetary medium satisfies Lm < 0.01 AU (Burlaga 1972). Considering the typical values uA ^ 50 km s-1 and coci ^0.5 s-1 

(which corresponds to a magnetic field B0 = 5y), Lm measured in our units (^ = 50 km) results in Lm < 3 x 104 i/f. Thus, we may see 
that the stretching in equation (2) is suitable for the study of a wide range of microscale phenomena in the solar wind. However, the 
predictions of the model may fail in the region of large wavenumbers. 

The quantity T in equation (2) serves to describe the slow time variation of the variables involved in the Alfvén reference frame. 
This slow variation is related to a frequency shift Aco (because co does not exactly satisfy the dispersion relation co = k) and is due to 
the combined effect of dispersion and nonlinear interactions between sound and Alfvén waves. To lowest order in <5, dispersion 
produces a shift of order ô2. In order for nonlinear effects to balance the effect of dispersion, it is necessary that they contribute with 
a shift of order Ô2 also, and therefore <5 = e (eq. [4]). The stretching given in equation (2), while being reasonable for the quantities 
relevant to the Alfvén wave (v and B), may become invalid for the sound wave-associated quantities (u and n). It means that we are 
only describing slow time variations in the Alfvén reference frame (more rapid variations are “ integrated away ”). More quantitat- 
ively, the model describes only processes with time scales much greater than the time it takes for a sound wave to propagate across 
an Alfvén wave packet (Spangler 1985,1986). This is called the static approximation and has been discussed in Sakai and Sonnerup 
(1983) and in Spangler (1987). The nonstatic case may be described by the set of equations 

iôBt. + ivAôBx. + l- |^(<5uöB)x. + I Su vA + ôBx x, di vA = 0 , (5a) 

ôntr - ßv2
AönX'X, = (I ôB\2)x,x, v2

a , 
2B2 

ônt. + n0 ôuX' = 0 

(5b) 

(5c) 

(Sakai and Sonnerup 1983), where x' and t' are related to the dimensionless coordinates x and t of equation (1) by x' = dtx and 
f = <xt/coci. A similar set of equations is obtained in Spangler (1987). 

The static approximation is recovered by inserting equation (2) into equation (5) retaining the terms of lowest order in e, and 
changing back to the wind reference frame. During this procedure, the following equations are found : 

ôn ôu 

"o vA ’ 
(6a) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

0A
pJ

. 
. .

34
8.

 .
7 

61
D 

No. 2, 1990 SOLITON GAS MODELS OF MHD TURBULENCE 763 

ÔB_ ôv 

B0 
VA 

ôn = l^l2 n0 

2(1 -ß)B2
0’ 

(6b) 

(6c) 

A comparison of equations (5) and (6) shows that the density and magnetic field perturbations are no longer proportional in the 
nonstatic case. Instead, the evolution of the density perturbation is described by an inhomogeneous wave equation equal to the one 
derived by Hollweg (1971) with a ponderomotive force term proportional to the gradient of the Alfvén wave intensity. An analysis of 
the differences between the evolution of the density fluctuations as predicted by equations (5) and (6) has been made in the work by 
Spangler (1987). It is shown in this paper that while the evolution of ön in the presence of an Alfvén wave packet which does not 
steepen with time is perfectly describable by the static approximation, this is not the case for steepening wave packets. The departure 
from the static approximation is mainly determined by ß and the ratio l0/(vA tnl), where tnl is the characteristic steepening time for 
an initial wave packet of modulation scale l0 (see eq. [59] below). In the nonstatic case, the position of the maximum density 
perturbation is displaced with respect to that of the Alfvén wave packet, and, for sufficiently large values of l0/(vA tnl), the sign of ön 
can even change within one wave packet. However, the value of ön usually does not exceed the static estimate in equation (6) 
(Spangler 1987). Moreover, because l0/(vAtnl) ~ | öB\2/(Bl \1 — ß\) (Spangler 1987), we can conclude that the static approximation 
is valid in the case of small-amplitude waves, and, as it is speculated in Spangler (1987), may still be valid for large-amplitude waves 
if damping processes are included. Moreover, because nonstatic features appear only during the phase of wave packet steepening, 
they will not be observable in the presence of Alfvén solitons, which, as we will show later, are special noncontracting traveling 
solutions of the DNLS equation. It may be also seen from equation (6) that the static approximation becomes invalid for /? = 1, 
when the sound and Alfvén speeds are the same. This singularity appears in all treatments which use fluid equations (Spangler and 
Sheerin 1982a; Khanna and Rajaram 1982). In Mjolhus and Wyller (1988), a DNLS-like equation is obtained from a hybrid fluid 
and kinetic model adequate for a collisionless situation, using the reductive expansion method. This treatment provides an 
additional term which represents nonlinear Landau damping by resonant particles. When this term is not taken into account, the 
relevant equation reduces to equation (1), but with coefficients ^ and c3 in front of the nonlinear and dispersive terms, respectively. 
For /? = 0, ¿i and c3 reduce to those of equation (1). In the limit of cold ions, they still resemble the coefficients of equation (1), but 
become less similar as the temperature ratio Ti/Te is increased (Mjolhus and Wyller 1986). The value of cl always remains finite 
(though large) in the vicinity of vA = cs and only changes sign at /? = 1 for extremely low values of 7]/Te. For higher values of this 
ratio, the coefficient ci hardly differs from its cold-limit value. According to Mjolhus and Wyller (1986), the important effect of finite 
temperature is that of resonant particles. In Mjolhus and Wyller (1988), the treatment is extended further to cover collision- 
dominated cases obtaining a DNLS equation with an additional diffusive term and coefficients ^ and c3 similar to those of equation 
(1). These results would mean that equation (1) is only valid for low ß values. However, for high ß values (neglecting resonant effects 
that will be discussed later), only the coefficients in front of the nonlinear and dispersive terms should be modified, and these factors 
can be absorbed by rescaling q, x, and t to obtain equation (1). 

Let us analyze now the relationship between solar wind observations and equation (6). Studies of the correlation between ön and 
öu give a phase which clusters around zero for frequencies v > 10“5 s-1 (see Fig. 4 in Goldstein and Siscoe 1972), and this agrees 
with equation (6a). It may also be seen in Denskat and Neubauer (1983; Fig. 3) and in Goldstein and Siscoe (1972; Fig. 9) that the 
phase of the correlation between öv and ÖB is n for almost the entire frequency range, which agrees with equation (6b). The 
correlation between ön and | öB\2 also gives a phase equal to n (see Fig. 10 of Goldstein and Siscoe 1972) for v > 10-5 s-1. This 
would mean that ß > 1 if equation (6c) is supposed to be valid. In any case, even if the static approximation is not valid, as for 
typical solar wind parameters |<5B|2/(^ol 1 ~ ß\) = 0.25 (according to the results of Spangler 1987), a sign for ön/ö\B\2 different 
from the one in equation (6c) would hardly be seen. Although typical values of ß in the solar wind satisfy ß < 1 (Sakai and Sonnerup 
1983), evidence exists of the occurrence of ß > 1 values during highly perturbed periods (Burlaga 1972; Spangler and Sheerin 1982h). 
However, we must remember that new effects should probably be taken into account if ß is too high. 

With all these limitations of the DNLS equation in mind, let us review some of its properties. A circularly polarized Alfvén wave 
of finite amplitude 

q = b exp (ikx — icot), (O = k k 
b2 

4(1 - ß) 
+ k\ (7) 

is an exact solution of equation (1). Such a wave is unstable against amplitude modulations The conditions for modulational 
stability or instability are 

8(1 — /?)/c + h2 > 0 (stable), (8a) 

8(1 — /?)k + h2 < 0 (unstable), (8b) 

This means that, in a /? < 1 case, while the right-hand polarization is stable, the left-hand polarization may be unstable. This picture 
is reversed forß> 1. The evolution of modulated wave packets has been numerically studied in Spangler, Sheerin, and Payne (1985), 
Spangler (1985), and in Ponce Dawson and Ferro Fontán (1988a). In the last two papers, it is shown that the modulational 
instability stops leading to the formation of a soliton train. 

Solitons are special solutions of certain nonlinear equations which travel without deformation owing to a balance between 
nonlinear and dispersive effects. The DNLS equation has soliton solutions of the form (Kaup and Newell 1978) 

<7.s = <t>lx - (1 + i>Jt] exp - (1 + v)t~\ + 4A4i}| , (9) 
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where 

<t>2(z) = 
32A2 sin2 y\\-ß\ 

cosh [4A2 sin y(z — x0)] + cos y ’ 

b)L,fa>ï+''v 
( \ v í \ 3 

v = —4sA2 cos y 

s = sgn (1 - ß), 

(10a) 

(10b) 

(10c) 

(lOd) 

The term x0 is the position of the peak of the soliton, and (p0 is an arbitrary phase. 
The form of these solitons is characterized by two parameters. Following Kaup and Newell (1978), we have chosen A2 (A2 > 0) 

and y (0 < y < n), but the soliton peak amplitude 

, _ f 32À2 sin2 y 11 — /? | Y/2 

0maxOO =  —  \ 1 + cos y / 

the soliton velocity in the Alfvén reference frame v (eq. [10c]), or the pair of parameters 

k0 = —s2A2 cos y , 

co0 = 4A4(sin2 y — cos2 y) , 

(11) 

(12a) 

(12b) 

that are used in Mjolhus and Wyller (1986) could have been chosen also. Owing to the existence of these two parameters, there is not 
a unique relationship between 0max and v (see eq. [10]). Besides, there are two characteristic length scales: that of the soliton 
amplitude 

^ ~ (4A2 sin y)_1 , (13) 
which we may call the modulation scale or soliton width, and that of the phase which may be referred to as the soliton 
wavelength. Because the soliton phase is related nonlinearly to the amplitude (see eq. [10]), this wavelength and its inverse, the 
soliton wavenumber 

ks = —2sA2 cos y - - <ft2 (14) 

~ |ksr\ are amplitude dependent. The behavior of ks and of the ratio l,p/l,P is strongly dependent on the value of the soliton 
parameter y (which is proportional to its energy). This may be seen in Figure 1, where the amplitude </>/(4| 1 — ß |)1/2 and the real part 
(</> cos (ps)/(4\ 1 — ß\)1/2 are plotted against x for A2 = 0.25 and for different values of y. For low-y values, the nonlinear term in 
equation (14) may be neglected, and therefore 

- 12A2 cos yl-1 . (15) 

Moreover, </>max is very small, while the soliton modulation scale is very large and contains several wavelengths (/^//^ > 1). If the 
value of A2 is kept constant, <£max increases, while /0 decreases with y. The ratio l^/l^ decreases with y in the interval (0, n/2) and 
increases for y e (n/2, n). In the latter case, the nonlinear term in equation (14) becomes very important and ks changes its sign, and 
therefore the soliton changes its sense of polarization within one wave packet. For this reason, solitons with y e (0, n/2) are called 
normal, and those with y e (n/2, n) are called anomalous in Mjolhus (1978). 

The DNLS equation has the property of being completely integrable by the inverse scattering transform (1ST) method (Kaup and 
Newell 1978). For this reason, an arbitrary initial condition q(x, 0) decays into the superposition of a soliton train (which may be 
absent) and a radiation residue which disperses away with time (Ablowitz et al 1974). The soliton number and the parameters which 
define its form remain invariant during the evolution. Besides, it has an infinity of conserved quantities. Three of them are 

O') (16) 

which have been found in a previous work (Ponce Dawson and Ferro Fontán 19886) and is proportional to the helicity ¡ dx A • B, 
with A the vector potential in the Coulomb gauge, 

which may be called the energy of the system, and 

l4ol 
8ii-/?r 

(17) 

1 
32| l — ß\2 m-ß)q*q + (18) 

This last constant seems to play a fundamental role in the formation of solitons. Ponce Dawson and Ferro Fontán (1988a) observed 
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Fig. 1.—(a) Soliton amplitude $ = 0/(4| 1 — ß\) with (f) defined in eq. (10a) is plotted against x for A2 = 0.25 and y = 3, 1.5708, 0.1. It may be observed how the 
soliton peak amplitude decreases with y while the modulation scale is increased, {b), (c), (d) Soliton amplitude $ and the real part qr = 4> cos are plotted against x 
for s = — 1 and (b) y = 0.1, (c) y = 1.5708, and (d) y = 3. It may be observed how the ratio l^/l^ decreases with increasing y for 0 < y < tc/2 and afterward increases for 
tu/2 <y < n. The particular behavior of qr for y = 3 reflects the fact that anomalous solitons (n/2 < y < n) change their sense of polarization within the soliton 
wavepacket. 

that solitons appear whenever Ci < 0; this last condition is an integrated version of Mjolhus (1976) criterion (eq. [8]). This may be 
seen readily if we write the initial condition as 

q0 = q(x, 0) = I q0(x) \ exp [¡>(x)] , (19) 

because the condition of modulation instability may be written as 

8(1 — ß)<Px + I îol2 < 0 , (20) 

and Q = Jdx| 4oI7(64| 1 - /?|2)(8[1 - + |«ol2)- 
The values of the constants (16)-(18) for a one-soliton solution are 

2 sin v 
C-i = “^2 ; Q = C1 = — 4A2 sin y . (21) 

It may be seen from equation (21) that the parameter y is proportional to the soliton energy and that C1 < 0 for each soliton. 
Solitons play a fundamental role in nonlinear physics, and not only in the case of integrable equations. They appear also during 

the evolution of nonintegrable equations, such as the Zakharov set (Zakharov 1972). Actually, these are not solitons but solitary 
waves, because they do not remain invariant after nonlinear interactions. Nevertheless, a turbulent state can be envisaged as a 
collection of these nonlinear entities. Solitons are the building blocks of the treatments which have been used in Kingsep, Rudakov, 
and Sudan (1973), Matsuno (1977), and Meiss and Horton (1982), among others. 

We are interested in obtaining a statistical description of DNLS solitons, contrasting the results derived from the model with 
observations in the solar wind. There are two previous works which attempted a similar approach: Spangler and Sheerin (1982b), 
which also used DNLS solitons, and Ovenden, Shah, and Schwartz (1983). In the latter, a set of equations is derived, which written 
in our variables reads 

ib,. + ivA(l + 2k'Ad¡)bx + 
ôn 
2n0 

b — ôu b k'A + dtvA bX X’ = 0 . (22a) 

ôntr - ßv2
Aônx.x, = k'A\ft|2 vl, (22b) 

Zn0 

ôntr + n0 ôux> = 0 , (22c) 

instead of equation (5), where b is the amplitude of a circularly polarized Alfvén wave of the form in equation (7a) with b = B0b, 
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= kjdi, and cof
A = vAk'A + kAvAdi. In the static approximation (when a scaling similar to eq. [2] may be introduced), equations 

(22a)-{22c) reduce to the relationships (6a) and (6c), and the nonlinear Schrôdinger (NLS) equation which, written in dimensionless 
variables, reads 

ibt + 2ikAbx - kA 
\b\2b 

4(1 - ß) 
+ bxx = 0 (23) 

(see, e.g., Roberts 1984; Mjolhus and Wyller 1986). We want to stress that the solitons considered in the paper of Ovenden, Shah, 
and Schwartz (1983) are solutions of equation (23) and not of equations (22a)-(22c). 

It is necessary to mention that solitons do not apply only to solar wind observations. More recently, the presence of solitons in 
Earth’s magnetosphere has been reported (Patel and Dasgupta 1987). Also, in cometary plasmas, the relation between the pertur- 
bations in the magnetic field and in the density shows that the description using a gas of solitons may be suitable (Lakhina 1987). 
Moreover, in Lakhina and Buti (1988), the interaction of Alfvén solitons and plasma waves is invoked to explain some features of 
the observed cometary kilometric radiation in the vicinity of comet Halley. It is also mentioned in this work that coherent 
structures, probably Alfvén solitons, have been seen in the spectra of hydromagnetic turbulence by Vega 2 (Galeev 1986). 

The organization of the paper is as follows. In § II, the statistical description of the DNLS equation is developed, comparing 
different models which use solitons as their building blocks. In § III, the limitations of the DNLS equation and of the soliton gas 
model are discussed. In § IV, the theoretical correlation functions are obtained and compared with observations. Finally, the 
conclusions are summarized in § V. 

II. STATISTICAL DESCRIPTION OF ALFVÉN SOLITONS 

We will now analyze the application of different statistical models to the DNLS equation. First, we will study the method of 
Matsuno (1977), which applies to integrable equations such as the DNLS one. The basic assumption involved is that the radiation 
component may be neglected and that the asymptotic solution of the dynamical equation (in this case, the DNLS) may be written as 
a superposition of solitons 

N 
4 = L qs(x, t; Af, yi( x0i) (p0i), (24) 

i=l 
where qs represents a soliton solution (9)-(10) of parameters Af, yh initial peak position x0i and initial phase (p0i. The particular set 
of solitons that enters into the sum depends on the initial condition. Although each initial condition determines unambiguously the 
whole evolution q(x, t), the interaction among solitons can produce phase shifts (leaving the parameters Af and invariant). 
Therefore, for a statistical description, it is usual to assume an uniform distribution of x0l and (p0i over their ranges of variation, 
retaining the influence of the initial condition only on the set {Af, yj. 

If the number of solitons is large enough, the discrete summation in equation (24) may be replaced by an integral of the form 

q = ^F(a,b,lqo])qsdadb, (25) 

where we have chosen as the soliton parameters a = sA2 cos y and h = A2 sin y, and where F(a, b, [g0]) da db, which is a functional 
of the initial condition q0, is the number of solitons with a between a and a da and b between b and b + db. The quantity b is 
proportional to the inverse of the soliton modulation scale 1$ (see eq. [13]), and a is proportional to the soliton wavenumber (14) 
when y <0. 

Because expression (25) is valid only for cases with a large number of solitons and a negligible radiation component, it is necessary 
to determine under which conditions this assumption holds. We have seen during previous numerical simulations of the DNLS 
equation (Ponce Dawson and Ferro Fontán 1988a) that the asymptotic solution of equation (1) is of the form of equation (24) when 
the constant Ci < 0. As we have already stated, this means that the initial condition is modulationally unstable in an integrated 
sense. We have also found in a recent work (Ponce Dawson and Ferro Fontán 1989) that solitons develop from regions of the initial 
condition which are modulationally unstable (those that satisfy eq. [20]) and that their number is large while the radiation 
component remains negligible in a strongly unstable case (Mjolhus 1978), 

-8(l-0)(^M<?ol2. (26) 
In equation (26), the initial condition has been written the same way as in equation (19). In such a case, once the modulational 
instability is saturated, the complete solution of equation (1) may be written the same way as in equation (25). 

Extending the treatment of Karpman and Sokolov (1967), which applies to the Korteweg-de Vries (KdV) equation, we have 
found that, for initial conditions of the form (19) that satisfy 

lo = \q\/\q\x> iAo 
where k0 = — scpx, the soliton distribution function is 

(27) 

F(a, b) dx bô\ ja + \ 
M2 

4(1 - ß). 
(R - b2) -1/2 (28) 

where R = [ —8<px/(l — ß) + \ ¿?ol2/(l — ß)2](l 4ol2/64) (Ponce Dawson and Ferro Fontán 1989). A comparison of equation (28) and 
our previous numerical findings (Ponce Dawson and Ferro Fontán 1989) showed good agreement even for a case with only one 
soliton. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

0A
pJ

. 
. .

34
8.

 .
7 

61
D 

No. 2, 1990 SOLITON GAS MODELS OF MHD TURBULENCE 161 

The function (28) gives the total number of solitons 

~ -8<?x Igol2 1 Igol2] 1/2 

_(1 -ß) (1 - ß)2j 64 J 
(29) 

It may be seen from equations (28) and (29) that if the initial condition has no modulationally unstable regions (i.e., regions where 
eq. [20] is fulfilled), solitons are not formed. Expression (28) gives the correct value of the constant Ci for any initial condition, 
whenever the radiation component is negligible. Because this constant is related to the first moment of the distribution function, we 
suppose that expression (29), which is the zeroth order moment of equation (28), is essentially correct for any initial condition, 
though the actual distribution for initial conditions which do not satisfy equation (27) may be different from equation (28). This 
conclusion is based on the fact that higher order moments, which are related to higher order constants of the DNLS equation, 
mostly affect the behavior of the distribution function in the tails. 

Expressions (28) and (29) reduce to 

F(a, b) = <5| 
J8b2\ 1 -ß\ < |go(x)l2fco 

jx
b- 

71 
feol go(X) 12 

.8|1—j?| 

n 
I gol2 

8|l-/?l 

in a strongly unstable case. In such a case, it may be seen from equations (30) and (31) that 

0 < h2 < I gol 
2 
max 

8(1 - ß) (-<Px) ■ 

(30) 

(31) 

(32) 

Since the inequality (26) is also satisfied, equation (32) implies that 

\b/a \ = \ tan y | <0 ; A2 ^ sa ^ —scpjl. (33) 

This means that, at least in this case, the system prefers to share the available energy E among a large number of solitons of low 
energy and equal velocities v = —4a (see eq. [10]) rather than to concentrate it in a few of them (remember that the energy content 
of one soliton is 2y, and if the solitons are sufficiently separated, it may be assumed that £[sol] = 2^). This behavior is also 
observed in our previous numerical simulations. The situations plotted in Figures 4-6 of Ponce Dawson and Ferro Fontán (1988a) 
correspond to initial conditions with the same energy (E = C0 = 2.195) and different values of It may be seen there that as the 
“level of the modulation instability” contained in the initial condition (measured by — Cx) is increased, the number of solitons is 
also increased, and, but of necessity, the energy content of each soliton decreases. 

Since for y 1 the soliton wavenumber ks ^ — 2sA2, it may be seen from equation (33) that, in a strongly unstable case, solitons 
with the same wavenumber as that of the initial condition are formed (ks = (px). Moreover, if the initial wavenumber k0 = —s(px <£ 1, 
then A2 will also satisfy A2 1. Therefore, solitons with large modulation scale and wavelength but with a high ratio 
appear from strongly unstable initial conditions of short wavenumber. This property renders the model suitable for describing 
low-frequency waves upstream from Earth’s bow shock as well, since, as stated in Spangler (1985), they remain coherent over several 
cycles. 

It may also be shown that, for initial conditions of the form (19) with —sq)x = k0 that satisfy relation (27) (wave packet limit), the 
DNLS equation reduces in the strongly unstable case to the NLS equation (23) (Mjolhus and Wyller 1986). Therefore, under this 
assumption, the results using equations (1) or (23) should be similar. 

Up to now, we have introduced no statistics. When the initial conditions are unknown, but a probability distribution in function 
space P[<?0] may be given, a statistical description is possible. This is what occurs in many cases, particularly in the solar wind. 
Quantities such as the mean value of q- or n-point correlation functions must be used to describe the system, instead of q(x, t). Mean 
values which are functions of x and t are calculated through a functional integration over the initial conditions 

<•••> = Jög°ápoáx°P(x°)ß(g>°), (34) 

where Dq0 stands for the integration measure in function space. Expression (34) involves an average over the set of initial conditions 
which are distributed according to the probability density in the space of functions ^[^0]- An average over the initial peak position 
x0 and phase <p0 of the solitons is also included in equation (34) through the uniform distribution probabilities P(x0) and Q(<Po)- 

In this way, an averaged distribution function of solitons may be defined through 

/(a, b) = <F((a, b), [40])> , (35) 

which is useful whenever one works with the continuous formulation (25). The function /(a, b) gives the density of solitons in the 
parameter space (a, b) for an ensemble of initial conditions distributed according to ^[¿Zoî* Choosing different probability distribu- 
tions 0>lqo] for the initial conditions, different distribution functions /(a, b) may be obtained. Particularly, functions which follow an 
exponential (canonical) or power law with soliton energy may appear. 

Because the application of the method of Matsuno (1977) is rather complicated and the actual distribution F(a, b) may differ from 
equation (28), we will follow the simplified version of Meiss and Horton (1983; hereafter MH). This method uses the value obtained 
in equation (29) for the total number of solitons, which is essentially correct, and it considers an averaged distribution function 
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which follows an exponential law with soliton energy. Afterward, we will compare it with the method of Kingsep, Rudakov, and 
Sudan (1973; hereafter KRS), which naturally gives an averaged distribution function/which follows a power law instead. Both 
methods reproduce the feature of a high concentration of solitons in the low-energy region of the parameter space. 

The method of Meiss and Horton (1983) was developed for the case of drift-wave turbulence. In that work, the authors use only 
the expression for the total number of solitons as a functional of the initial conditions, they calculate its mean value <AT) with a 
canonical distribution of initial conditions, and they assume a canonical averaged distribution function of solitons / The tem- 
peratures of both canonical distributions are related, equating the energy content of the soliton gas to the energy of the initial 
conditions. 

Let us now apply this method to the DNLS equation. Let us thus consider a canonical distribution of initial conditions 

^[<?o] = ^ exp 
-f¿*kol2l 

_ (2T) J ’ 
(36) 

with Z = J Dq0 exp (—j dx\ q0\2/[2TJ). With this distribution, it is possible to calculate the mean number of solitons <1V> by means 
of relation (34). Using the strongly unstable approximation (31) <AT) results, 

1 / mL \1/2 

<N>' = 6(rr^<ko|2>) ’ (37> 

where <| q0\2} is related to the mean energy content WL of the perturbations by WL = L<| <?ol2>/(8| 1 ~ ß\\ and the subscript I is 
used to identify the MH procedure. The functional integration which leads to equation (37) has been made by discretizing the 
variables over the distance L and by assuming — s[<p(L) — <p(0)] = 2mn. The integer number m measures the number of wavelengths 
of the initial condition that the system, of length L, contains. Since the distribution of the initial conditions does not depend on the 
phase (p, the functional integration over q> e (0, 2mn) is equivalent to having supposed a uniform distribution of initial wavenumbers 
k0 = —s(px on the interval (0, 2mn/L). We suppose then that the <iV> solitons are distributed canonically in energy. Since the soliton 
energy is 2y and each soliton is characterized by A2 and y, this method gives no information about the A2 distribution. We assume 
then that all the solitons have the same value of A2. In this way, the distribution function results in 

<N\ 
Á = exp (—'Fy)(5(A2 - Ag), (38) 

with Z = jdy exp ( — 'Ey). The value of T* may be calculated by equating the mean energy content of the soliton gas to the initial 
state energy 

<N>I<2y> = L<k0|
2>/(8|l-/|). (39) 

This calculation gives, in a strongly unstable case, 

8/mll—liy/2 

3U<l«ol2V 
(40) 

Since —s\q\2(px ~ <|q\2)m/L and \q\* ~ <|q|2>7 the assumption of a strongly unstable case means that <| q0\2yL/\ 1 - ß\ -4 m. 
Then T» > 1. 

The value of may be obtained from another constant of motion; for instance, C ¡ or C,. Supposing C , ~ <\q\2>L2/ 
(4m| 1 — /1), — C/ ~ <| g |2>m/(4| 1 — /1) (see their expressions [16] and [18]), both constants give the same result : 

(41) 

The computation offis now completed. It reads 

8 /m|l — jff|\1/2 

3U<kol2>; 
(42) 

Another possibility for obtaining the A2 distribution is to follow Matsuno’s method. According to equation (33) (which holds in a 
strongly unstable case), if —s(p is distributed uniformly in the interval (0, 2mn) and the system is of length L, a natural choice for A2 

may be that of a uniform distribution over the interval (0, mn/L). In such a case, the mean value of A2 would be A2 = mn/2L, the 
same that could have been obtained following the argument which led us to equation (41) if we had taken Cx ~ —mn(\q\2}/ 
(3|1—/I). 

The second approach we will discuss is the method introduced by Kingsep, Rudakov, and Sudan (1973) for unidimensional 
Langmuir turbulence as described by the Zakharov equations (Zakharov 1972). In this treatment, it is supposed that all the 
available states of the system are made up of N identical solutions with randomly distributed initial peak positions and phases. Since 
the governing equations are nonintegrable, the number of solitons can vary, due mainly to the process of soliton fusion. In this way, 
each state is characterized by the number of solitons N. The soliton parameters of an AT-state are determined from the value of the 
energy available in the initial conditions. 

It is then assumed that all states with 1 < iV < Nm!lx are équiprobable. In order to determine the value Armax, the following 
argument is used. The soliton width depends on N through the soliton parameters. Thus, the maximum number of solitons that 
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may be supported by a system of length L may be calculated from 

/Äax^max ~ ¿ • (43) 
The treatment of Kingsep, Rudakov, and Sudan (1973) is used by Ovenden, Shah, and Schwartz (1983) to exploit the similarity 
between equations (22a)-(22c) and the Zakharov set. It must be mentioned that these authors considered only the absolute value of 
the soliton and not its phase. Therefore, the average over the phases did not play any role in their description. 

The KRS method cannot be applied directly to the DNLS equation, because it is completely integrable and its solitons cannot be 
destroyed. However, it may be applied to equations (5a)-(5c). This set of equations has soliton solutions which, written in 
dimensionless variables x and i, are of the form 

with 

c Iun I  
" " 2[(1 + v)2 -ßlB2’ 

(l+t;pg|2 fA 

“ 2[(1 + v)2 -ß-]B2’ 

ôB = BqI <5-B[x — (1 + t>)í] I exp [¿{(p[x — (1 + t>)t] + 4A4t}| , 

(44a) 

(44b) 

(44c) 

I öB(z) 12 = 
 32A2 sin2 y[(l + v)2 - /?]  
a cosh [4A2 sin y(z — x0)] + (1 + 2v) cos y ’ 

, . v 3 + 4t> 
<?>(z) - 2 z - 16[(1 + ^2 _ fl dz'\ ÖB(z') 12 + (Po , 

(45a) 

(45b) 

where a = [(1 + 2v)2 + (4t;/3)(l + v) sin2 y]1/2 and v is given by equation (10c) (with s = sgn [(1 + v)2 — /?]). These solitons are very 
similar to those of the DNLS equation. Particularly when y = tt/2 (v = 0), equations (45) and (9)-(10) are exactly equal, and, if v 1, 
the solitons of the DNLS equation are approximate solutions of the set (5). If we limit ourselves to the study of solitons with long 
wavelengths (small wavenumbers), which is one of the assumptions that led to the DNLS equation and to equation (5a), according 
to equation (33) the soliton velocities v = —4a would satisfy 11; | <^ 1. In such a case, we can consider that the DNLS solitons with ôn 
and Su given by equation (6) are solutions of equations (5a)-(5c). 

Let us apply the KRS method with these solitons. Since each state is made up of N identical solitons, the parameters A2(N) and 
y(N) may be obtained from the constants of motion as 

2N sin y _  L ~ c 
A2 =C-1’ 

(46) 

2Ny ^ C0 , (47) 

— ÍV4A2 sin y = Cj . (48) 

It is clear from equations (46)-(48) that, if C , = (L2<| q |2)/4m| 1 — ß\),C0 = (L<| q |2)/8| 1 — /i |), C[ = — (m<| q |2)/8| 1 ß\) and 
y = (I q\2}L/4N <<; 1 (which is equivalent to the assumption 'P > 1 in the first approach), equations (46) and (48) both give the same 
result : 

y(N) = 
16| 1 - ß\N’ 

(49) 

A2(JV) = . (50) 

If we take the soliton width = A/(4A2 sin 7) (where A is a scaling parameter introduced for later convenience, A = 1 both in 
Kingsep, Rudakov, and Sudan 1973 and in Ovenden, Shah, and Schwartz 1983), then, when 7 1, it reads 

and the maximum number of solitons 

SAN\ 1 - 

m<M2> ’ 
(51) 

Wmax = 
/mL<|q|2)y'2 

\SA\l-ß\J 
(52) 

Since in this model all the states of the system with 1 < N < Nmax are équiprobable, the distribution function /(A2, 7) may be 
calculated as 

/(A2, y) = 
JV 

<5[A2 - A2(A0My - y(JV)] . (53) 
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It results in 

2m /y, 
/n = T^M(A 

m 
2L 

V(y rJ » (54) 

(55) 

where H(x) is the Heavyside function 

*« = in X>n [0 x < 0 , 

and ym is the minimum value of ym = (AL<| q |2>/32m| 1 — ß |)1/2 = The mean number of solitons for this distribution is 

/ mL<l g I2) V/2 

<iV>„ : \32A| 1 -ß\ 
(56) 

which for A = 9/8 is exactly equal to the one obtained through the first approach. 
Actually, the lower limit of integral (53) is 1, and this would give an upper limit yM to the allowed values of y. Moreover, yM should 

also satisfy #^4/(4A2 sin yM) < L. However, if the contributions from y >yM to the correlation functions are negligible, expression 
(54) is essentially correct. 

Let us now compare fY and /„. Actually, the results of the first approach should be modified, because the system cannot support 
solitons of width greater than L. Taking this into account,/! results in 

„ 4m 
/i = — exp 

24 
7 

/m| 1 — 

\L<\qo\2>) 

1/2 
(y - 7m) ¿I 

m 
2L H(y-ym). (57) 

Although/, and/„ give a similar mean number of solitons, the distribution among the possible values of y is quite different. This can 
be seen in Figure 2, where both functions are plotted against ÿ = (3T74)y with A = 9/8. As we have already stated, both distributions 
show that almost all the solitons have small values of y and that the concentration around ym is sharper for larger values of *¥. The 
function /„ gives more low-energy solitons than / does. For ÿ > 3, the values of / are almost negligible, proving that it is not 
necessary to take into account the upper limit yM. 

Finally, we will briefly mention the model described by Rudakov and Tsytovich (1978) for Langmuir turbulence in the presence of 
a large number of ion-sound waves, that has also been used by Spangler and Sheerin (1982h) in the case of Alfvén turbulence. 
Considering the processes of soliton fusion and the breakup of solitons by ion-sound waves, the authors found a dependence of the 
distribution function with the soliton amplitude of the form 

f~ ^x84 . (58) 
This treatment is used by Spangler and Sheerin (1982fc) for the DNLS equation. Although it is clear that it cannot be applied to an 
integrable equation such as the DNLS equation, it may be suitable for the nonintegrable equations (5a)-(5c), of which the DNLS 
equation is the static limit. We may also justify the application of this method or the KRS method with the argument that the 
dynamical equation is actually nonintegrable owing to the presence of other effects such as damping, resonant interaction with 
particles, etc., which have been neglected so far. 

III. LIMITATIONS OF THE SOLITON GAS MODEL 
As we have already mentioned, the model developed so far does not include damping or wave growth effects. The picture of an 

initial condition transforming into a soliton train plus a radiation residue may be changed in a dissipative case. The inclusion of 
additional damping and growth terms has been analyzed in a collection of papers (Spangler 1986; Ghosh and Papadopoulos 1987; 

Fig. 2—Functions (a) g(y) = ß <*//(/) and (b) f(y) =f(y, A2)/[m<5(A2 - A¿)], where / is the soliton distribution function, are plotted against ÿ = 3vFy/4, a 
quantity proportional to the soliton energy. Distribution function/is calculated following (I) the MH method (eq. [58]) and (II) the KRS method (eq. [55]). It may be 
seen in Fig. la that both functions give the same number of solitons, and, as is shown in (b), both distributions cluster around the minimum value ym. This effect turns 
out to be more important as the value of the mean level of modulational instability 'F is increased. However, the y distributions of/, and /„ are”different : /„ gives 
more low-energy solitons than /,. 
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Mjolhus and Wyller 1986, 1988; Flâ, Mjolhus, and Wyller 1988a, b). Among the possible damping processes, we may cite decay 
instability into daughter Alfvén waves and a sound wave (Terasawa et al 1986), ion-cyclotron damping (Spangler 1986), and 
nonlinear damping by resonant particles (Mjolhus and Wyller 1986,1988). 

The first two processes cannot be included consistently in a derivation similar to the one that led to the DNLS equation (1). As we 
have already discussed, the first process is precluded by the restriction of forward propagation. The decay instability converts the 
initial Alfvén wave in two Alfvén waves (forward- and backward-propagating) and one forward-propagating soundlike wave. The 
energy of the parent wave mainly goes to the sound and backward-propagating Alfvén waves (Goldstein 1978; Terasawa et al 
1986). The absence of such backward-propagating waves in the solar wind at 1 AU is explained in Terasawa et al (1986), invoking 
the large characteristic time of the process for the long wavelengths observed therein. This problem may also arise for the 
development of the modulational instability and the subsequent formation of solitons. We will discuss this problem later. 

The ion-cyclotron damping is of order exp (— l/e) (Flâ, Mjolhus, and Wyller 1988h) and can only enter in a fully nonlinear model 
(e ~ 1). However, in Spangler (1986) the addition of such a linear damping term and a source term (amplification by particle beams) 
to equation (1) is analyzed. The growth rate mostly affects the region of low wavenumbers, while dissipation affects that of 
k > coci/vA (a region over which the DNLS equation may not be valid). The value of k at which dissipation becomes important 
decreases with increasing ß. A picture is obtained in which energy is injected in the low-wavenumber region and then transferred to 
higher wavenumbers by the modulational instability, where it can be damped efficiently. Solitons may appear if their characteristic 
wavenumbers correspond to regions of low dissipation. Therefore, only solitons with sufficiently large characteristic wavelengths 
will survive. 

In Ghosh and Papadopoulos (1987), equation (1) with an additional linear damping term is solved numerically. The system is 
driven by one unstable discrete Fourier mode. The following results are found. The asymptotic time behavior is independent of the 
initial conditions. For sufficiently low values of the unstable mode strength, the formation of solitons is observed. When this 
strength is increased, a transition from this ordered state (characterized by the presence of “ solitons ” whose amplitude may oscillate 
with time) to turbulence is obtained. 

Finally, as we have already mentioned, a DNLS-like equation which takes into account the effect of resonant particles (nonlinear 
Landau damping and amplification) has been obtained in Mjolhus and Wyller (1988). The resonant term becomes important for 
ß > 1 (Mjolhus and Wyller 1986), In Flâ, Mjolhus, and Wyller (1988h) it is found that Alfvén waves may be excited by particle 
beams traveling at the Alfvén velocity. The effect of this new term on the evolution of a circularly polarized Alfvén wave is also 
analyzed therein. It is observed that the growth rate of the modulational instability is decreased when the damping coefficient is 
increased. However, for ß < 1, the reduction does not exceed 35% of the value for ß = 0. It is also found that a new modulational 
instability is introduced : while in the nondissipative nonresonant case condition (8b) must be fulfilled for the wave to be modula- 
tionally unstable, with this additional term waves with any wavenumber or polarization may be unstable. However, it has not been 
investigated yet whether this instability could lead to the formation of solitons. A transfer of energy toward the low-wavenumber 
region of the spectrum is also observed. The wavenumber k decreases proportionally to the energy owing to the conservation of the 
action I Ek\2/k. 

In Flâ, Mjolhus, and Wyller (1988a), the effect of the resonant term on an Alfvén soliton is analyzed both analytically (using 
perturbation theory) and numerically when this new term is sufficiently low, obtaining the following results. Normal solitons are 
slightly perturbed, while anomalous ones develop an important nonsolitonic feature. Damping is most effective in the transition 
region between normal and anomalous solitons. In the damped case, all solitons eventually end up in the normal regime, because 
the energy dissipation tends toward zero with y. 

This discussion allows us to conclude that solitons could also appear even if damping and growth terms are added to the original 
equation, provided the growth rate is sufficiently low. We can also conclude that solitons with long characteristic length scales will 
survive, because damping effects are rather unimportant in the short-wavenumber region. Moreover, according to Flâ, Mjolhus, 
and Wyller (1988a), low-energy (~y) solitons will appear, which, as we have already seen, are characterized by large modulation 
scales. Therefore, the model of a gas of low-energy solitons similar to that presented in the preceding section may be suitable even if 
some of these new effects are included. We may also suppose that the distribution function fn obtained with the KRS method could 
give better results than /,, because it is characterized by a larger number of low-energy solitons than/¡ is. 

Besides the limitations of the DNLS equation, the approach of a gas of solitons as a model of MHD turbulence pursues its own 
restrictions. First, of all, one may ask if there is enough time for the solitons to be formed under solar wind conditions. In Spangler 
(1985), a characteristic nonlinear time 

IWHo/X, 
'Nl_ »» u 

for the development of the modulational instability from an initial Alfvén wave of modulation scale /0 and amplitude b is obtained. 
The author observes that, for almost all the numerical simulations performed, the packet reaches its maximum peak amplitude for 
0.7tnl < t < 2.4tnl. 

Another nonlinear time may be deduced from the maximum growth rate of modulational instability of an initial circularly 
polarized Alfvén wave of amplitude b and wavenumber k0 obtained in Longtin and Sonnerup (1986): 

r(2) _ tNL — 
4\l-ß\fBoy 

Va^o \b) ' 
(60) 

Equation (60) is equal to equation (59) with 4/k0 instead of l0. For typical solar wind conditions (| 1 — ß \ = 0.4, rA = 50 km s 1, 
b/B0 = 0.4), t'nV = 0.05/q s km'1 and = 0.2/k0 s km '. During this time, an initial perturbation is convected by the solar wind to 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

0A
pJ

. 
. .

34
8.

 .
7 

61
D 

772 PONCE DAWSON AND FERRO FONTÁN Vol. 348 

an heliocentric distance D ~ tnl vw. Supposing vw ~ 500 km s- \ we obtain that, according to equation (59), the initial perturbation 
should travel a distance D(1) = 25/0 and according to equation (60), D(2) = 100/ko before soldons were formed. These distances must 
be compared with the heliocentric distances DH at which the power spectra are obtained. This condition imposes a limit on the 
values of the characteristic scales the soliton model can describe at each heliocentric distance. For example, for DH = 03 AU, we 
obtain from D(2\ k0 > 2 x 10-11 cm 1 and, from D(1), /0 < 2 x 1011 cm. Since the model developed in the preceding section 
requires k0l0$> 1, both conditions give a similar range of wavenumbers the soliton gas model can describe: 2 x 10-11 cm-1 < 
k0 =2 x 10 ~7 cm-1 or, equivalently, the frequency range 1.6 x 10-4s-1 < q> < 1.6 s-1 (the upper limit comes from the 
basic assumptions that led to the DNLS equation). This range covers a wide region of the observed power spectra (see, e.g., Denskat 
and Neubauer 1983). At larger heliocentric distances, the model applies for lower wavenumbers. 

The characteristic times derived from equations (59) and (60) may be altered if other effects are taken into account. For example, 
in Spangler (1986), it is argued that the inclusion of a wave growth term in the low-wavenumber region may cause the modulational 
instability to develop in times rather shorter than equations (59) or (60). In this way, the application of the soliton gas model is 
enhanced. 

However, even if solitons are not actually formed, they may be thought of as a nonlinear basis for solutions of the DNLS 
equation. In this way, soliton gas models are better than models which use plane waves as a basis, since even with a finite number of 
solitons the main nonlinear features of the dynamical equation can be reflected, while an infinite number of plane waves is necessary 
to reproduce them. The observation of density perturbations is evidence of the existence of some nonlinear processes which couple 
the density and the magnetic field. This coupling may not be describable by the model we analyze in this paper. For this reason, it is 
necessary to take into account all these limitations if one is interested in a quantitative comparison with the observations. 

Finally, we must also mention that a full three-dimensional treatment could also lead to the appearence of a whole set of new 
effects. In the case of Zakharov equations, unidimensional solitons are not stable under transverse perturbations. We do not know 
what happens with these DNLS solitons; the presence of the static magnetic field could possibly render DNLS solitons stable. 
Nevertheless, this problem could only be studied within the frame of an extended model, such as the one described by the 
three-dimensional equation derived by Mjolhus and Wyller (1988). 

IV. OBSERVATIONS AND THE SOLITON GAS MODEL 

We have already said that relevant quantities for the study of the magnetic field and plasma parameter fluctuations in the 
interplanetary medium are the correlation functions 

Khg(*> T) = <ôH(x, t) • ÔG(x + *, i + T)> , (61) 
and their Fourier transforms, the power spectra 

Pnoik, v) = JdX3 /W0, 0, X3, 0) exp (i , (62) 

where RhG is the correlation function between G and H (two quantities of interest, such as magnetic fields or density enhancements) 
in the wind frame, X3 is the coordinate along the direction of vw, and PHG is the spectrum in the spacecraft frame (i.e., the observed 
frequency power spectrum). 

If we want to apply the soliton gas model to the solar wind, the assumption which led to equation (62) is satisfied, because our 
solitons travel with a speed very close to the Alfvén velocity and vA ^ 40 km s-1 while vw ^ 400 km s-1. Since all the relevant 
variables are related according to equation (6), the independent autocorrelations of the model are 

PBy(v) = JáT exp (-InivTKÔB/x, t + T)ÔBy(x, t)> , (63) 

p^v) = |</T exp (-2mvT)<\SB(x, t + T)\\ ÔB(x, f)|> , (64) 

Pn(y) = J dT exp (—2nivT)(óñ(x, t + T)c>ñ(x, t)> , (65) 

where ôBy = ôBy/B09 \ôB \ = \öB \/B0, and ôh = ôn/n0 correspond to dimensionless variables in the spacecraft reference frame. 
Particularly, using relation (6c) and approximating ö\B\ = (1 + By + B2)1/2 — 1 ^ j(By + B^) = j\B |2, it may be seen that 

P\B\(v) = (1 - ß)2Pn, (66) 

where P|B| is the Fourier transform of <<5| Æ|<5| R'|>, the power spectrum of fluctuations of the magnetic field amplitude. The 
correlation functions (63)-(65) can be calculated analytically leading to (see Appendix) 

P„, - y) [p(! + t', ,) + - k\ 

P, = {. 

= 

dA2 dyf(A2, 7) 

dA2 dyf(A2, y) 

1-/4 (k \ 
vWxL 

P\K’ 7’ 

327tA2 sinh2 [y(fe/K)] 
vWxL sinh2 [n(k¡KY\ ’ 

(67) 

(68) 

(69) 
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where k = 2nv/vWx, k = (s/2) cot y, K = 4A2 sin y, p(Ç, y) = [sech (7r^)P_1/2 + ^(cos y)]2, and P_1/2 + j£(cos y) is the Legendre function 
of the first kind, also called the conical function (Erdélyi 1953, p. 120). It is interesting that equation (67) contains a 
sech (tc/c/4A2 sin y) term, because for a gas of equal NLS solitons, such as the one described by O venden, Shah, and Schwartz (1983), 
each soliton gives a contribution proportional to sech (rjk), with rj a real constant. The effect of the Pv(cos y) term in equation (67) is 
to slow down the falling off of the hyperbolic secant with k. This effect is more important as y increases. Once again, this means that 
in a strongly unstable case, as y ^ 1, the NLS and DNLS pictures will give similar results whenever one considers only one initial 
wavenumber. 

Let us now use the expressions of /j and /„ that were obtained in § II in order to calculate PBy, PB, and Pn. In Figure 3, PBy, PB, and 
Pn are plotted versus /c for T* = 7, and, in Figure 4, for *¥ = 50. All functions behave qualitatively like the observed correlations. 

Concerning the spectral indices, we may see that for PBy and PB, values obtained with the KRS method (II) are better than those 
obtained with the MH method (I). In the case of Pn9 both methods give similar values of s which do not depend on XF. The fact that 
the theoretical Pn does not follow a power law with k may be an indication that the density perturbations are not described correctly 
by the static approximation. The same problem arises for P|B|, which according to the model is proportional to P„. In this case, it is 
probably the unidimensionality of the DNLS equation that makes it impossible to describe longitudinal perturbations of the 
magnetic field. 

The differences between the model and the observations is that the first shows a more rapid decreasing of the spectra with k than 
observed. However, for ^ = 50, we find that both PBy and PB, computed with /n, show a k"s dependence along two orders of 
magnitude with s = 2 for PB and s = 1.88 for PBy. The behavior of PB is thus similar to that of the correlation function calculated by 
Ovenden, Shah, and Schwartz (1983). Actually/if the lower limit AT = 1 is maintained in the integral (35) of Ovenden, Shah, and 
Schwartz (1983), it may be seen that their result P(k) ~ k~2 is valid for a finite k interval. The s value obtained decreases when one 
computes the correlation the way that we do for PBy. The s value thus obtained is closer to the observed value. This is due to the fact 
that an average over the soliton phases is taken into account in this calculation, while the phases are not considered either in PB or 
in Ovenden, Shah, and Schwartz (1983). 

For 'F = 7, PBy and PB also follow a power law, but only along one decade. In this case, it is more difficult to estimate the power 
index. It ranges between 1.8 and 2 for PB and is approximately equal to 1.79 for PBy. The fact that with 'F = 50, one obtains better 

Fig. 3 

p„ 

k 
Fig. 4 

Fig. 3.—Spectra (a) PBy = vWxLPBJ{Ln\ I - ß\), {b) PB = vWxEPB/(4nL\ I - ß\), and (c) Pn = vWxELPJ(\6nm2) are plotted against k = Lk/2m for 'F = 7. In all 
cases, the spectra were calculated using the distribution functions/, (eq. [58]) and/„ (eq. [55]). The spectra are qualitatively similar to the observed ones. However, 
they predict a faster decrease with the wavenumber than observed. 

Fig. 4.—Same as Fig. 3, but for 'F = 50. The results in this case are better than those of Fig. 3. This may be because the mean level of modulational instability ¥ is 
larger and the model developed applies to strongly unstable cases. 
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results than with ¥ = 7 may be due to the fact that the model has been developed for a modulationally strongly unstable case, and 
'F is a measure of such instability. 

Concerning the outer and inner scales, we can only obtain those corresponding to PBy and PB. Moreover, it is impossible to 
obtain the value of /ct using the MH method (see Figs. 3 and 4). From Figures 3 and 4, it may be deduced that £o0F = 7) > k0Ç¥ = 
50), where the actual wavenumbers k0 and k0 are related by k0 = k0 L/2m. 

Let us now analyze the radial variations of the different quantities that enter the soliton model comparing them with the 
observations described in Denskat and Neubauer (1983). We are concerned mainly with the maximum level PBy(k = 0) and with the 
wavenumber k0 related to the outer scale. Actually, the soliton gas model cannot describe the k^O region of the spectrum. The 
term PBy(k = 0) must be understood as PBy(kmin), kmin the lowest k value the soliton gas model can describe. 

The model we have developed so far assumes constant values of ambient magnetic field B0 and mean density n0 against which all 
quantities are dedimensionalized. In order to analyze what happens when B0 and n0 vary, we can divide the space into regions of 
length L over which B0 and n0 are almost constant. Assuming a power-law dependence with the heliocentric distance r(B0 ~ r_a, 
n0 ~ r~&) the length L would scale according to L ~ r, the Alfvén velocity vA ~ r-a+d/2, the proton gyrofrequency coci ~ r-a, and 
our unit of length ~ rd/2. Therefore, the length L of the system used in the preceding section, which is equal to L measured in units 
of dh will satisfy L ~ r1 _d/2. 

Each arbitrary pulse which enters a region of length L (in units of d¿) is finally transformed into a soliton train, whenever the 
evolution may be described with the DNLS equation. In a strongly unstable case, according to equation (33), the solitons will have 
the same wavenumber as the initial pulse. Let us consider two neighboring regions 1 and 2, with region 1 closer to the Sun than 
region 2. Let us suppose that all initial pulses entering region 1 have the same wavenumber kx (an assumption that according to 
eq. [33] is consistent with the <5[Á2 — m/2L] function in ^ and /n). All the solitons in region 1 will have the wavenumber 
2À2 cos y ^ 2Á2 = kt = These solitons travel without deformation until they arrive at region 2, their expression being 
equations (9)-{10) with x1=x and ^ = i coordinates dedimensionalized with the units that correspond to region 1. If we write the 
expression of a region 1 soliton in terms of the coordinates of region 2 (x2 and i2)> we find 

q = \qs\ exp x2 —^ (1 + v^t VA2 
(70) 

where the subscripts 1 and 2 identify the regions and where we have simplified expression (10b) supposing \q\2 kx ^ 2A2 1. We 
see from equation (70) that this soliton acts as an initial pulse of k2 = M^Mi) f°r region 2, and therefore all the solitons of region 2 
will have this wavenumber. We can conclude that the wavenumber k(k = m/[2L]), measured in d¡~1 units, evolves according to 

m 
2L 

k (71) 

It is mentioned in Denskat and Neubauer (1983) that their measurements are consistent with saturated fluctuating amplitudes of 
the magnetic field. This means that the quantity <| g |> = <| |> does not depend on the heliocentric distance. If we suppose that 
1 — /? is also independent of r (as it is in Ovenden, Shah, and Schwartz 1983), we can deduce that 

'F 
m 

L<\q\2y 

1/2 
rm (72) 

so that the mean level of modulational instability increases with r. If this is so, Figure 3 would correspond to a region which is closer 
to the Sun than that of Figure 4. The conclusion that ¥ should increase with r is also drawn if we compare the power index s in 
Figures 3a and 4a with observations at different heliocentric distances: s decreases with r, and s^F = 7) < $(¥ = 50). However, the 
model cannot describe the variation of the power index for the P^ case. This may be due to the fact that fluctuations of the 
magnetic field component parallel to B0 are not taken into account. 

We can further compute the radial variation of PBy(k = 0) and k0. If we make the estimates 

PBy(k = 0) ^ PB(k = 0) = 
4nL\ 1 -ß\ 

9x¥LvWx ’ 
(73) 

we obtain 

k0 = <4A2 sin y) = ^ <y> = 

P By 
Lva Lr^a+m 

~ L fen ~ r' ,3/4 

(74) 

(75) 

where we have assumed that the solar wind velocity is independent of the heliocentric distance and thus, when measured in units of 
i'A (as it is in expressions [63] -[65]) it varies according to vw ~ vA 1. 

In order to contrast these results with the observed ones, we must remember that PBy and fe0 are dedimensionalized quantities : PBy 
is measured in units of aßo/ci>ci(a = £), and fe0 is measured in units of 1/d,. Taking this into account, we can deduce from Figure 4 of 
Denskat and Neubauer (1983) that 

PBy ~ r*-2'6 , 
k0~r*2-0-6 . 

(76) 

(77) 
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If we use the observational scaling B0 ~ r_ 16, we obtain PBy ~ r “ ^ In that case, equations (76) and (77) agree with equation (75) if 

,9 = 2.4 , (78) 

L 
— = const. (79) 

The relation (78) implies that the mean density rc0 ~ r~2-4, so it decreases slightly faster than with a r-2 law. This behavior agrees 
with that observed by Helios (Schwenn 1983). Had we assumed an r~2 law for n0, the result from equation (74) would have given a 
dependence for k0 similar to that obtained by Ovenden, Shah, and Schwartz (1983) (remember that their khr = /c0M), but is slightly 
different from the observed one (see, e.g., eq. [77]). 

Let us now discuss the meaning of the quantity L and that of the relation (78). In general, L = L. However, if we want to extract 
from the observations the model values of T*, m/L, and <| q |2>, we may see that it is impossible to adjust PBy and P^ simultaneously 
with L = L. This may be due to the fact that the model does not describe the spectrum of magnitude fluctuations P\Bl correctly. 
Nevertheless, we can make the assumption that in a strongly unstable case the number of solitons is so large that it is not a good 
approximation to consider them as uncorrelated entities. Instead of trying a new model of correlated solitons, we can simply modify 
the existing model by introducing the quantity L, which represents the distance over which we can choose the peak position of each 
correlated soliton. Since <NX/0) ~ const, where is defined in equation (13), it seems correct that L/L does not depend on the 
heliocentric distance, as equation (79) asserts. 

V. CONCLUSIONS 

We have compared two statistical models of Alfvén solitons with solar wind observations. An analysis of the characteristic time 
that is necessary for the solitons to be formed shows that soliton gas models cannot explain spectra in a range of wavenumbers 
k < kmin. The quantity kmin decreases when the heliocentric distance is increased. It may be reduced further if wave amplification is 
taken into account (Spangler 1986). However, it cannot be reduced indefinitely, because very low wavenumbers are modulationally 
unstable only for extremely low magnetic field perturbations. Although the number of solitons could be large even in this case, 
producing a large value of PBy{k = 0), the processes described by the model in the low-wavenumber region could be masked by other 
processes related to higher perturbations of the magnetic field. However, we must remember that the inclusion of resonant effects 
produces a new kind of modulational instability (Flà, Mjolhus, and Wyller 19886), and this may cause the soliton gas model to be 
valid even for k ^ 0. 

The models we analyze in this paper give a similar mean number of solitons, and this fact reinforces the idea that the expression 
(29) found in a recent paper (Ponce Dawson and Ferro Fontán 1989) is essentially correct. The main difference between both models 
is the behavior of the distribution functions with the energy of the solitons. The first model (MH) is an extension of the one 
developed by Meiss and Horton (1982) for drift-wave turbulence and gives a distribution which follows an exponential law with 
energy. The second model (KRS) is an extension of the work of Kingsep, Rudakov, and Sudan (1973), which applies to strong 
Langmuir turbulence and uses a distribution function which follows a power law instead. It may be applied to the DNLS case, 
Keeping in mind that damping or wavegrowth effects render the equation nonintegrable. According to the results of § III, the 
consequences that produces the inclusion of these terms could be better described by the KRS model than by the MH model. This 
agrees with the fact that the former gives results which better resemble the observations than the latter. 

We have also found that the results are improved when the quantity 'F, which measures the mean level of modulational 
instability, increases. This is due to the fact that the model developed in this paper is valid for strongly unstable situations. In such 
cases, the DNLS equation reduces to the NLS if the IC is of the form of a plane wave with a given wavenumber. It is then 
meaningful to compare these results to those of Ovenden, Shah, and Schwartz (1983). We have found a qualitatively good agreement 
between the theoretical predictions and the observations. However, the model gives power spectra which decrease with the 
wavenumber faster than observed. This aspect could probably be improved if dissipative and amplification effects are consistently 
included in the model. 

Concerning the spectral index, our results seem better than those of Ovenden, Shah, and Schwartz (1983), because we have 
considered an average over the phases that was not taken into account in that paper. Regarding the outer and inner scales, we have 
found that they vary with the heliocentric distance r, as observed, if the mean level of modulational instabilities 'F increases with r 
and if the density perturbations decrease slightly faster than according to a r“2 law. This last result agrees with Helios observations 
(Schwenn 1983). Within this model, we could explain the radial variation of PBy(k = 0), /c0, and s simultaneously (in Ovenden, Shah, 
and Schwartz 1983, only the radial dependence of k0 was analyzed). 

These results, which have been obtained with a unique initial wavenumber, remain almost unchanged if a uniform distribution of 
wavenumbers over a given range is considered. 

Since the model is unidimensional, it cannot explain the perturbations of the magnetic field component parallel to the ambient 
field. Probably for this reason, it is impossible to adjust all the observed power spectra (PBy and P^) simultaneously. However, the 
existence of some kind of correlation between the solitons may also explain this fact. This may be taken into account through the 
quantity L, the distance over which the initial peak position x0 may be chosen. Moreover, if we try to adjust the model to the 
observations quantitatively, it is necessary that L # L if 'F > 1. It would be interesting to extend these models to cover weakly 
unstable cases in order to decide which is the one that gives the best results. In a weakly unstable case, as solitons with tt/2 < y < n 
would appear (Ponce Dawson and Ferro Fontán 1989), the power index would decrease due to the factor P1/2 + iv in Pbv (see e(l- 
[67]). Besides, since the solitons would be narrower, no kind of correlation among them would be necessary. However, the 
maximum level PBy(k = 0) would also decrease due to a diminishing of the number of solitons. It must be stressed that the weakly 
unstable case could only be analyzed within the frame of the DNLS equation, which does not reduce in such a case to the NLS one. 
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Finally, it must be noted that both kinds of distribution functions compared in this paper could have also been obtained within 
the frame of Matsuno’s (1977) method choosing different probability densities for the initial conditions. We may then conclude that, 
in order to obtain spectra following a power law with wavenumber, it is necessary that the distribution of the initial conditions and 
that of the solitons follow a power law with the energy. 

We are indebted to S. R. Spangler for his fruitful comments and suggestions. 
This work has been supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) under grant 

9069/03 and by the University of Buenos Aires under grant 097-EX. S. P. D. benefited from a fellowship awarded by the CONICET, 
and C. F. F. is a member of the Carrera del Investigador Científico at the same institution. 

APPENDIX 

We want to calculate 

dT exp ( — 2nivT)(ôBy(x, t + T)ôBy(x, i)> , (Al) 

where ôBy is the dedimensionalized component of the magnetic field perturbation in the spacecraft reference frame, and the average 
must be calculated the same way as in equation (34). We assume that ôBy may be written as a superposition of solitons 

SB, 
kn(2\l-ß\y2 

A„[cosh (k„ xn) + cos yj1'2 COS [S cot y„ - y J dz <j>j(z) + 4A4í + <p0n (A2) 

where kn = 4Á^ sin yn;xn = x — (vWx + 1 — skn cot yn)t — x0n, vWx = vw • x is the solar wind velocity in the direction of the ambient 
magnetic field B0, and is the absolute value defined in equation (10a) with A2 = A2 and y = yn. The quantities kn and y„ are 
functionals of the initial conditions, and uniform distributions are assumed for (p0n e (0, 2n) and x0n e (0, L„). 

Granting a sufficiently dilute gas of solitons, products of different soliton contributions in equation (Al) will be negligible. 
Moreover, for the case of a gas with predominantly low y solitons and k 1, the terms 4A4i and (3/4)5^^ dz <£2(z) (upper bounded 
by 3y) can be neglected in front of (cot yn) (kn xJ2). If we also suppose vWx > 1 (remember that vw is measured in units of vA), 
equation (Al) reduces to 

Vv) = i J dz dp„ dq„ P(x0„)Q((p0„) exp -2niv 
2k2\l- ß\ cos (qn) cos (qn - skn cot ynz/2) 

iwLAiítvJcosh (k„p„) + cos yj1/2 {cosh [/c„(p„ - z)] + cos y, 
(A3) 

where we have defined pn = x — x0n — vWxt, qn = (s cot y„) {kJ2) (x — vWxt) -h (p0n, and z = TvWx. The integral over qn can be 
performed immediately, leading to 

PbP) dz dpn P{x0n) exp I — 2niv — kj\l- ß \ cos (k„ cot ynz/2) 
VwJttfvwXcosh (knp„) + cos y„]1/2{cosh [k„(p„ - z)] + cos y„]1/2J ' 

(A4) 

Writing the cosine term as a sum of exponentials, if P(x0„) is a uniform distribution over the long distance Ln, equation (A4) can be 
thought of as the sum of two Fourier transforms of a convolution. This gives 

•• ■ ? [{s“h Kï+>■>} |sec" 
«¡--K —1/2 + i( — k' + k/k, Jcos y) (A5) 

where k = 2nv/vWx, k'n = (s/2) cot yn, and L = Lnis independent of n. In general, L is taken to be equal to L. We will postpone the 
discussion of the value of L until the comparison with the observations is made. In equation (A5), P_1/2+IV(cos y) is the Legendre 
function of the first kind, which is proportional to Gauss’s hypergeometric series (Erdélyi 1953, p. 120): 

P—1/2+ív(cos y) = 1 + 
4v2 + 1 

sin 
7» + 

(4v2 + l)(4v2 + 32) . 4 /y\ 
2242 \2/ + ' 

(A6) 

Expression (A5) may be reobtained in the case vWx > 1 from the wind reference frame correlation function by using relation (61). 
When the number of solitons is large enough, a continuous description may be applied. In such a case equation (A5) reduces to 

P., - jdi‘dyM‘, ,) [{sech [«(I + í')]p_ l/2 + i(k'+k/K)(C°S y) 

-I- { sech P_ 1/2 +il i(-k’+k/K)(COS T) (A7) 

where K = 4A2 sin y and kf = s/2 cot gy. 
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The power spectra PB and Pn can be calculated in a similar way (in these cases, there is no phase dependence, and some of the 
assumptions that led to eq. [A7] are not necessary). Their continuous versions read 

Pn = dA2dyf(A2, y) 
2n\l-ß\ 

sech tí 
K -1/2+ i(k/Ky ,(C0S 

dA2 dyf(A2, y) 
32kA2 sinh2 \_y{klK)\ 
vWxL sinh2 \_n(k/K)] ' 

(A8) 

(A9) 
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